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1. INTRODUCTION 

The provision of effective and cost efficient ambulance services is a problem encountered in 
all major cities. Faced with budget cuts, several authorities have had, in recent years, to 
reassess or reorganize their emergency services, see for example, Fuziwara ef al. (1987); 
Trudeau et al. (1989); Goldberg et al. (1990b); Repede and Bernard0 (1994). The problem 
has long been studied by operations researchers, but with the advent of new solution method- 
ologies, particularly in the field of metaheuristics (Osman and Laporte, 1996), and with the 
development of computer and telecommunication technologies, solution techniques of the 
past may no longer be the answer to today’s needs. 

Decisions in the context of ambulance services typically arise at three different levels. 

??Strategic decisions involve the location and construction of fixed facilities, the purchase 
of equipment and the hiring and training of specialized staff. 

?? Tucticul decisions relate to staff scheduling, location of emergency vehicles at any point 
in time and deployments and relocation of vehicles when calls are received. 

??Oper&ul decisions are concerned with procedures to be followed by paramedical staff 
depending on the nature of calls. 

‘To whom correspondence should be addressed. 
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The focus of this paper is on locational decisions made at the tactical level. More specifically, 
the aim is to develop and solve heuristically a static coverage location model. It is intended 
to embed this model, at a later stage, within a decision support system to assist real-time 
vehicle redeployment operations. 

The aim of ambulance location models is to provide adequate coverage. This can be 
interpreted and measured in many ways. The most common models are those where ambu- 
lances are located to ensure single coverage, that is, all the population lies within r time units 
of an ambulance. This model has been extended to double coverage defined in the following 
sense. Two radii r, and rZ (r2> r,) are used. All the demand must be covered by an 
ambulance located within r2 time units, and, in addition, a proportion CI of the demand must 
also be within r, units of an ambulance, which may or may not be the same ambulance that 
covers this customer within r2 time units. The United States Emergency Medical Services 
(EMS) Act of 1973 (see Ball and Lin, 1993) sets the following standards; r, = 10 min, 
r* = 0.95. Currently, no value is set for r2. In Montreal, ambulances are run by “Urgences 
Sante” which uses r, = 7 min and c( = 0.90 (Desrosiers and Thibault, 1996). Urgences Sante 
would also like to attain a standard of r2 = 15 min in the near future. Various covering 
models have been proposed in the literature; see, for example, Toregas et al. (1971), Church 
and ReVelle (1974) Daskin (1983), Hogan and ReVelle (1986), ReVelle and Hogan (1989) 
Ball and Lin (1993) and Marianov and ReVelle (1996). Depending on their size and sophisti- 
cation, such models can either be solved exactly (ReVelle and Hogan, 1989; Ball and Lin, 
1993; Marianov and ReVelle, 1996), or approximately (Daskin, 1983). To the authors’ know- 
ledge, Hogan and ReVelle (1986) were the first to incorporate double coverage in their 
model. A number of authors have used analytical tools to assess the quality of a proposed 
solution, but not to actually construct a solution. A common methodology is simulation. It 
has been employed by Davis (1981) and Goldberg et al. (1990a). More sophisticated tech- 
niques are based on queuing theory; see, for example, Larson (1974), Larson and Odoni 
(1981) Brandeau and Larson (1986) and Burwell et al. (1992). These evaluative concepts can 
be combined with local search procedures to yield good solutions to the problem (Jarvis, 
1975; Fitzsimmons and Srikar, 1982; Trudeau et al., 1989). The surveys by Daskin et al. 
(1988) and by Marianov and ReVelle (1995) provide interesting overviews of available 
models in the more general area of emergency vehicle siting. 

The authors’ aim is to develop a double coverage model, and to design a tabu search 
heuristic for its solution. The proposed model is simpler than some alternatives described in 
the literature (see, e.g., Ball and Lin, 1993) as it only considers population coverage and does 
away with sophisticated probability driven parameters, which are typically hard to measure 
and evaluate in practice. The method considered should also be quick, robust and capable of 
producing high quality solutions on instances of realistic dimensions. The computational 
results show that the tabu search heuristic possesses these desirable features. 

The model is presented in the next section, followed by the algorithm in Section 4, and by 
the conclusion in Section 5. 

2. MODEL 

The model proposed solves the double coverage problem described in Section 1 for a given 
number of ambulances, where the objective is to maximize the demand covered by two 
ambulances within a radius r,. The problem is defined on a graph G= (V n W,E) where 
V= lv, ,... ,v,,l and W= fv,,+ ,,. .,~,,+,,~l are two vertex sets representing, respectively, demand 
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points and potential location sites, and E = ( (vi,vi):v, E V and V, E IV} is an edge set. With each 
edge (V;,Vj) is an associated travel time t;,. The demand at vertex vi E V is equal to i,. The 
number of ambulances is given and equal to p. Also define for v, E V and \I,,+, E W the 
coefficients 

I t 1.n + , d rl (vi is covered within the small radius Y,) 
?‘I,= 

0 otherwise 

and 

(5,, = 
1 if t,.,,+, <r, (v, is covered within the large radius r2) 

0 otherwise. 

Again, x is the proportion of the total demand that must be covered by an ambulance located 
within r, units. The following variables are also used: yi is an integer variable denoting the 
number of ambulances located at v,,+ , E W, and p, is an upper bound on y,; x! is a binary 
variable equal to I if and only if vi is covered at least k times within the small radius ~1, where 
k = 1 or 2. The formulation is then: 

(P) maximize ,f’= ,_, &x2 (1) 

subject to 

?‘,<p, (vu+, E WI (7) 

Xl, xf E (0,I ) (v, E V) (8) 

y, integer (v,,+ , E W) (9) 

In this model, the objective represents the total demand covered at least twice within r, 
units. Constraints (2) and (3) express the single and double coverage requirements. Con- 
straints (2) state that all demand must be covered within r2 units. The left-hand side of 
constraints (4) counts the number of ambulances covering v, within Y, units; the right-hand 
side is equal to 1 if vi is covered once within r, units, and equal to 2 if it is covered at least 
twice within r, units. Constraints (3) and (4) taken together ensure that a proportion M of all 
demand is covered (constraints (3)) and the coverage radius must be r, units since by 
constraints (4) xl +x,’ = 0 whenever yi,y; = 0 for all j. By constraints (5), a vertex v, cannot be 
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covered at least twice if it is not covered at least once. Constraints (6) (7) and (9) impose 
limits on the number of ambulances at each site. Note that provided p<2m, there always 
exists an optimal solution in which y, 12 for all j since nothing is gained by covering a 
demand point more than twice. Thus, in practice one can impose pj = 2 in equation (7) and 

Yj E {OY~,~} Cvtr+ j E W) instead of equation (9). 
An interesting feature of this type of mode1 is that it incorporates requirements such as 

those imposed by the EMS Act of 1973. However, a feasible solution may not exist if the 
parameters r,, r2 and c( are too restrictive. In fact, no model can guarantee a feasible solution 
at all times in practice since demand for ambulances is highly stochastic and circumstances 
may occur where there is a shortage of available ambulances or insufficient coverage in some 
areas. When no feasible solution exists, the possible courses of action are to increase the 
number of ambulances or to relax the coverage constraints. The same can happen in the 
model of Hogan and ReVelle (1986) which has strict coverage constraints. In some other 
models (see, e.g., ReVelle and Hogan (1989) and Marianov and ReVelle (1996)) the 
coverage requirements are expressed by the objective function and there is always a feasible 
solution. In the Ball and Lin (1993) model, a solution always exists since the number of 
ambulances is not fixed a priori. The main characteristics of the available coverage models 
are summarized in Table 1. 

3. TABU SEARCH HEURISTIC 

A tabu search heuristic capable of providing high quality solutions within modest computing 
times has been developed. Essentially, tabu search is a local search method that moves at 
each iteration from a solution to its best neighbour even if this causes the objective value to 
deteriorate. To avoid cycling, solutions similar to recently examined solutions are forbidden, 
or tabu, for a number of iterations. The modern version of this method is rooted in the work 

Table t . Comparison of five ambulance location coverage models 

Model 

Hogan and ReVelle 
(1986) 

Objective 

Maximize a linear 
combination of demand 
covered at least once and at 
least twice within r,. 

Coverage constraints 

All demand covered 
within rz. 

Number of ambulances 

Total given. 

ReVelle and Hogan 
(1989) 

Maximize the total demand 
covered an an appropriate 
number of ambulances. 

None. Total given. At most 
one ambulance per site. 

kill and Lin (19%) 

Marianov and 
ReVelle (1996) 

This paper 

Minimize the sum of 
ambulance fixed costs. 

Maximize the total demand 
covered an an appropriate 
site specific number of 
ambulances. 

Maximize the total demand 
covered at least twice within 

rr. 

Proportion s( of all 
demand covered 
within r,. 

None. 

All demand covered 
within r2. Proportion 
L-I of all demand 
covered within r,. 

Decision variable. No 
constraint on the 
number of ambulances 
per site. 

Total given. Upper 
bound (> 1) on the 
number of ambulances 
per site. 

Total given. Upper 
bound (2 1) on the 
number of ambulances 
per site. 
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of Glover (1986) and that of Hansen and Jaumard (1990). In recent years, several research- 
ers have refined and extended the basic ideas (see, e.g., Osman and Laporte (1996)). To the 
authors’ knowledge, this work is the first to apply tabu search to a covering location problem, 
although some algorithms such as that of Rolland et al. (1996) for the p-median problem 
could possibly be applied to covering problems. In the following subsections, the main 
components of the algorithm are presented, followed by a step-by-step description. 

3. I. Solution and objective function 

At any iteration of the algorithm, a solution is fully specified by the number of ambulances 
located at each vertex of W. During the course of the algorithm, a solution may be infeasible 
with respect to the covering constraints. The algorithm works on constraints (2) and (3) and 
on the objective function in a hierarchical fashion, that is, it operates with pre-emptive 
priorities, similar to what is done in goal programming. It is convenient to define a mega- 
objective function F(s) to be maximized, associated with each solution S, defined as 

where AI,, M2 are two weights satisfying M, > Mz > 1, 

I( 111 

.f ICY) = V;E v: c 6,$,3 I , 
,= I }I (12) 

and 

(13) 

Here, f(s) is the original objective representing the total demand covered at least twice within 
r, units,f,(s) is equal to the number of demand points covered within r2 units, andf&) is the 
minimum between c( and the properties of the demand covered at least once within rI units. 
Note that F(s) can be computed even if s is infeasible. 

3.2. Initial solution 

At iteration t = 0, the linear relaxation of (P) is solved. If it is infeasible, the overall problem 
has no solution and some constraints must be relaxed. If the linear relaxation is feasible, 
consider the yj values j,, . . . , j,,,, and let 7 be the value of the solution. If all j, are integer, the 
current solution is feasible and optimal. Otherwise, allocate Lji_/ ambulances to each vertex 
V ,:+, E W, and compute Y = c;l&,J. Compute S = (v,,, , E W:O<y,< I >. If p-Y> ISI, allocate 
one ambulance to each vertex of S and randomly allocate at most one of the remaining 
p-Y -(S( available ambulances to the vertices of T= (v,,+, E W: I <y,<2}. If p-Y < JSI, 
randomly allocate at most one of the remaining p-Y available ambulances to the vertices of 
S. The initial solution s produced may be infeasible, but it uses p ambulances. In the 
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following, yi denotes the number of ambulances located at vertex v,,,,; E W. Vertex v,+ i is 
said to be saturated if si = p,. 

3.3. Basic operations and tabu status 

A basic operation in this algorithm consists of displacing an ambulance from a vertex 
v,, + , E W with yj > 1 to v,, + ;, E W. As tabu, status is then assigned to the ordered pair (j’, j), 
meaning that as long as it is effective, no ambulance can be moved from v,,+ iv to v,,, ;. As 
suggested by Taillard (1991) the tabu duration (measured in number of iterations) is a 
random variable I), chosen on some interval [0,,8,], where & and e, are parameters. 

3.4. Neighbourhood structure 

At any iteration, given a solution s, the process generates a set N(s) of neighbor solutions, 
where IN(s)] = (I2 and Q2 is a parameter. During the generation of these neighor solutions, 
some vertex pairs are temporarily declared tabu, but these restrictions are lifted at the start 
of the generation of the next neighbor. At the end, when all (I2 neighbors have been 
generated, the neighbor solution s* E N(s) having the best value of the objective F(s) is 
selected and all tabu pairs corresponding to s* are reinstated for 0, iterations. O2 neighbor 
solutions s’ E N(s) are first generated by applying Steps 1, 2 and 3. Step 4 is then applied to 
the best of these neighbors. 

3.4.1. Step 1. Consider a vertex v,, +, E W and j, > 1 and the five closest neighbor vertices of 
v,,+ j in W defined by using the edges of E and their associated travel times to. If all these 
vertices are saturated, discard v,,+, and start again. Move an ambulance from v,,+ i to one of 
its unsaturated neighbor vertices. Set the counter p: = 0. 

3.4.2. Step 2. Define U as the subset of vertices v, of V for which equation (2) is violated, that 
is, which are not within r2 units of an ambulance. Also define A = iv,,+, E W:6,,= I for some 
v~EU},~~~S~={V,,+,EW:~~~I and~,,+~ is one of the five closest neighbors of a vertex of 
A}. If fi = @, the generation of s’ terminates. Otherwise, move an ambulance from a vertex 
v,, + j E Sz to a vertex v,, + ,’ E A in such a way that (j,j’) is non-tabu and the number of vertices 
vi E V satisfying equation (2) is maximized. Declare (j’, j) tabu. Set p: = p + 1. Stop the 
generation of s’ if p = OX, where O3 is a parameter. Repeat this step as long as f,(s’) <n. 

3.4.3. Step 3. Redefine U as the subset of vertices vi of V which are not within rI units of an 
ambulance. Define A = iv,,+, EWyi,=lforsomev,EU)andR={v,,+iEW~j>landv,,+,is 
one of the five closest neighbours of a vertex of A}. If R = 0, the improvement process 
terminates. Otherwise, move an ambulance from a vertex v,,+ i E Q to a vertex v,, + ,’ E A in 
such a way that (j, j’) is non-tabu and the number of vertices vi E V located within rl units of 
an ambulance is maximized. Declare (j’, j) tabu. Set p: = p + 1. Stop the generation of S’ is 
p = &. Repeat this step as long as fi(s’) < IX, that is, as long as constraint (3) is not satisfied. 
If some vertices vi E V violate constraints (2), go back to Step 2. 

3.4.4. Step 4. The fourth and final step is entered only if the best neighbor solution identified 
in Steps 1, 2 and 3 is feasible. An attempt is made to increase the value of the objective 
function associated with the best neighbor by making non-tabu moves of ambulances within 
W in a greedy fashion, as long as feasibility is maintained and improvements can be obtained. 
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Whenever an ambulance is moved from v,,, i E W to v,,+ ;’ E W, the pair (j’, j) is declared 
tabu, and p is incremented at each move. Stop when no move is possible or when p = 07. 

3.5. Diversification 

As it is now commonly done in some tabu search algorithms, a diversification strategy is 
applied to enable the search process to move to different regions of the solution space. More 
specifically, it is applied if the objective value has not improved for Oq iterations, where fIq is 
a parameter. Then in Step 1 of Section 3.4, instead of considering the five closest neighbour 

Table 2. Computational results for r = 0.9 

n m 

SO 

200 60 

70 

SO 

300 60 

70 

SO 

400 60 

70 

- 

Tabui CPLEX2I p Maxi Tahu CPLEX2 
P CPLEX 1 CPLEX 1 CPLEX 1 CPLEX I time time 

30 
3s 
40 
4s 

30 
3s 
40 
4s 

30 
3s 
40 
4s 

30 
35 
40 
4s 

30 
3s 
40 
4s 

30 
3s 
40 
4s 

30 
35 
40 
45 

30 
3s 
40 
4s 

30 
35 
40 
45 

0.998 
0.997 
0.999 
0.999 

0.998 
0.999 
0.999 
0.997 

0.995 
0.999 
0.998 
0.999 

0.993 0.999 
0.996 0.998 
0.996 0.999 
0.996 0.998 

0.992 0.956 
0.996 0.982 
0.991 0.999 
0.997 0.996 

0.995 0.890 
0.997 0.999 
0.994 0.95 1 
0.999 0.999 

0.994 
0.997 
0.996 
0.999 

0.624 
0.853 
0.999 

0.992 
0.992 
0.997 
0.997 

0.999 

0.716 
0.997 
0.999 
0.996 

0.999 
0.999 
0.999 
0.995 

0.999 
0.999 
0.997 
0.997 

0,999 
0.999 
0.999 
0.997 

0.944 
0.997 
0.999 
0.999 

1.004 
I .003 
1 .ooo 
I .ooo 

I.000 
1.003 
1.000 
1 .ooo 

1.001 
1.002 
1.000 
1.000 

I.003 
1.004 
1.001 
1.002 

1.003 
1.003 
1.001 
1.001 

1.003 
1.004 
1.001 
1.001 

1.005 
1.003 
1.002 
1.002 

1.005 
1.003 
1.001 
1.002 

1.002 
1.002 
1.000 
1.001 

1.165 
1.091 
1.040 
1 .oss 

12 
13 

1 
1 

IS 
1030 

1 
2 

I.085 I 1 
1.083 I 4 
1.090 1 2 
1.025 I I 

1.118 
I.068 
1.031 

35 
2 
2 
2 

130 
6 
I 
I 1.041 

I .383 12 341 I 
1.101 14 24 
I.105 7 6 
1.081 3 7 

1.234 
1.073 

7s 00 
26 8 

Y IO82 
13 6 

1.096 
1.034 

I.203 67 5296 
I.126 70 4756 
I .os3 4s 3 
1.0.52 3 4 

IS10 185 23 69’) 
I.300 34 470 
1.207 22 22 IS6 
1.079 s I3 

1.347 
1.181 
1.093 
1.076 

I39 
43 

5 
5 

107 
54 
45 

5 

18 I20 
20 085 

20 
24 

1.359 
1.149 
1.070 
1.068 

2s 126 
93 

4 
I4 
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vertices of v,,+ i in W, consider all vertices of W that are not among the five closest neigh- 
bours of \I,,+ j. The remaining three steps are the same as in Section 3.4. This diversification 
strategy is applied during at most Hs consecutive iterations, where Q5 is a parameter. The 
diversification rule stops being applied when the objective improves. 

3.6. Stopping rule 

The algorithm stops when it has identified a solution of value at least equal to 0.99?, or when 
no objective value improvement has been obtained for 0, consecutive iterations, where f& is 
a parameter. 

Table 3. Computational results for n = 300 and 2 = 0.85, 0.9 and 0.95 

Tabui CPLEX2I P Max/ Tabu CPLEXZ 
2 m P Feasible CPLEXl CPLEXl CPLEXl CPLEXl time time 

so 

0.85 60 

70 

SO 

0.90 60 

70 

so 

60 
0.95 

70 

30 3 0.994 
35 3 0.993 
40 3 1.000 
45 3 0.999 

30 3 0.999 
35 3 0.996 
40 3 0.996 
45 3 0.996 

30 3 0.991 
35 3 0.996 
40 3 0.994 
45 3 0.997 

30 3 0.995 
3s 3 0.997 
40 3 0.998 
45 3 0.999 

30 3 0.993 
35 3 0.996 
40 3 0.996 
45 3 0.996 

30 3 0.992 
35 3 0.996 
40 3 0.991 
45 3 0.997 
35 1 0.997 
45 1 0.996 

30 3 0.999 
35 3 0.996 
40 2 0.998 
45 2 0.996 

30 3 0.997 
35 1 0.990 
40 3 0.993 
45 1 0.997 

0.999 1.006 1.231 67 1616 
0.997 1.002 1.096 58 5 
1.000 1.000 1.101 3 3 
0.999 1.002 1.081 3 7 

0.999 1.006 1.174 64 38 
0.998 1.003 1.073 23 8 
0.999 1.001 1.078 38 7 
0.998 1.001 1.034 7 7 

0.995 1.004 1.157 75 10 
0.999 1.005 1.114 87 16 
0.999 1.001 1.053 47 3 
0.996 1.001 1.052 3 4 

0.994 1.003 1.383 12 3411 
0.997 1.004 1.101 14 24 
0.999 1.001 1.105 7 6 
0.999 1.002 1.081 3 7 

0.999 1.003 1.234 75 90 
0.998 1.003 1.073 26 8 
0.999 1.001 1.096 9 1082 
0.998 1.001 1.034 13 6 

0.956 1.003 1.203 67 5296 
0.982 1.004 1.126 70 4756 
0.999 1.001 1.053 45 3 
0.996 1.001 1.052 3 4 
0.998 1.005 1.079 3 68 
0.999 1.001 1.094 13 16 

0.999 1.009 1.501 221 2912 
0.999 1.004 1.110 39 113 
0.999 1.001 1.043 4 4 
0.999 1.001 1.016 5 8 

0.867 1.008 1.404 258 8884 
0.999 1.002 1.088 120 23 
0.999 1.001 1.055 47 130 
0.993 1 1.019 3 3 
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Fig. 1. Population distribution on the Island of Montreal. 

Table 4. Computational results for the Island of Montreal data 

Tabui CPLEXY jI Maxi Tabu 

P CPLEX 1 CPLEX 1 CPLEX 1 CPLEX 1 time 

25 0.997 

40 30 0.997 
35 0.993 
40 0.999 

25 0.995 

SO 30 0.995 
35 0.995 
40 0.999 

0.997 
0.998 
0.996 
1.000 

0.996 
0.996 
0.994 
0.999 

1.002 1.087 282 
1.000 1.053 227 
1.001 1.030 259 
1.000 1.011 188 

1.003 1.078 692 
1.001 1.038 403 
1.000 1.014 186 
1.000 1.010 I75 

25 0.996 0.997 1.001 1.068 354 491 
60 30 0.992 0.993 1 .OOO 1.010 353 316 

3s 0.996 0.998 1.000 1.015 238 2.14 
40 0.996 0.999 I.000 1.009 194 207 

25 0.993 0.995 1.002 I .064 628 1855 
70 30 0.995 0.997 1.001 1.026 333 331 

35 0.995 0.996 1 .ooo 1.008 270 225 
40 0.998 0.999 1 .ooo 1.003 201 221 

CPLEXZ 
time 

____ 

349 
20s 
330 
lS7 

2999 
396 
227 
1% 
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3.7. Step-by-step description of the algorithm 

It is now possible to proceed to the description of the tabu search algorithm. 

3.7.1. Step I (initialtiation). Set the iteration count t: = 0 and solve the linear relaxation of 
(P). If it is infeasible or feasible and integer, stop. Otherwise, denote this solution by J and 
compute an upper bound f = f(S) on f(s). Construct an integer solution s as described in 
Section 3.2 and compute F(s). Set the best known solution value F*: = F(s). Set r, the 
number of consecutive iterations without improvement in F(s) equal to 0. 

3.7.2. Step 2 (neighbor solution). Set t: = t +l. If T <tf,, generate the best neighbor s* of s 
using the procedure described in Section 3.4. If O4 < r < 0, + 05, generate the best neighbor s* 
of s using the diversification procedure described in Section 3.5. Stop if, while generating 
neighbors, a feasible solution s having a value f(s) in excess of 0.99 f is encountered. 

3.7.3. Step 3 (incumbent update and stopping rule). If F(s*) fF*, set r: = tf 1; if 
T = 04+ OS+ 1, set 7: = 0. If F(s*) > F*, set F*: = F(s*), t*: = t and r: = 0. If t = t* +06, stop. 
Otherwise, set s: = s* and go to Step 2. 

. . . *f+i 
: . . :::.. 

+‘. . . :‘; :; 
. . . 
. :‘: *.: :: . . . 4.:: 

.._ . *.. 

+’ 

* . 

Fig. 2. Potential sites (+) and ambulance locations on the Island of Montreal. An x represents one ambulance 
and a * represents two ambulances. 
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4. COMPUTATIONAL RESULTS 

The tabu search algorithm just described was tested on a series of randomly generated 
instances and on a set of instances based on some real data. The random instances were 
constructed as follows. First II demand points were randomly generated in the [0,30]* square 
according to a continuous uniform distribution. For each of these points vi, a demand ibi was 
then generated according to a negative exponential distribution of mean 1. The [0,30]* square 
was divided into nine equal square zones. Then 2mllO potential location sites were generated 
in the central zone, and m/10 sites were generated in each of the eight remaining zones. 
Again, these points were generated according to a continuous uniform distribution. One 
hundred and eight instances were generated in total: three instances for each combination of 
n = 200, 300, 400 demand points, m = 50, 60, 70 potential location sites, and p = 30, 35, 40, 
45 ambulances. To convert distances into times, the side of the square region was assumed 
to be equal to 30 km and the ambulance speed to be 40 km/h. 

4. I. Instance generation parameters 

rl (small covering radius) 7 min; 

r2 (larger covering radius) 15 min; 
c( (percentage of covered demand within r,) 0.9. 

4.2. Tahu search parameters 

(tabu status duration) 
(range of tabu status duration) 
(number of neighbor solutions) 
(number of moves used to generate a neighbor) 
(maximum number of consecutive iterations without 

improvement before diversification) 
(number of iterations used for diversification) 
(maximum number of consecutive iterations without 

improvement): 

[10,301; 
20; 

Pi 
100; 

20; 
1000. 

The algorithm was coded in C+ + and run on a Sun Sparcstation 1000. All instances were 
solved three times using tabu search, and twice using CPLEX (1993). In the first pass, 
denoted CPLEXl, the branch-and-bound process was terminated at the optimum or at 
100000 nodes. In the second pass, denoted CPLEX2, a second stopping rule was also 
imposed by which the process terminated as soon as a feasible solution of value at least equal 
to 0.99fwas identified, wherefis the objective function value at the root of the search tree. 

In Table 2 the average statistics for the three tabu resolutions for each combination of n, 
m and p are reported. The table headings are as follows: 
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n 
m 
P 
Tabu/CPLEXl 

CPLEX2CPLEXI 

fICPLEX1 

MaxKPLEXl 

Tabu time 
CPLEX2 time 

Number of demand points; 
Number of potential location sites; 
Number of ambulances; 
Ratio of the tabu solution over the best known upper bound identi- 

fied by CPLEXl; 
Ratio of the best known feasible solution value identified by CPLEX2 

over the best upper bound value identified by CPLEXl (there is no 
guarantee that CPLEX2 will find a feasible solution, but it always 
did in the tests); 

Ratio of the objective function value at the root node, over the best 
known upper bound identified by CPLEXl; 

Ratio of the objective function value obtained by locating two ambu- 
lances at every site over the best known upper bound identified by 
CPLEXl ; 

Number of seconds required by the tabu search algorithm; 
Number of seconds required by CPLEX2. 

In Table 3, the results for n = 300 are reported, using three different values of CI: 0.85; 0.9 
and 0.95. In some cases, no feasible solutions were identified. In column FEASIBLE the 
number of feasible instances and all statistics are computed over that number are reported. 

Computational results presented in Table 2 and Table 3 confirm the quality of the tabu 
search algorithm. It always yields a solution within 1% of optimal@, with computing times 
varying between 1 s and 4 min. Most instances involving 300 demand points or less are solved 
within 1 min, while the remaining instances are more difficult. As expected, computing times 
increase with n and m, and decrease with p. When problems are difficult (as indicated by a 
large max/CPLEXl ratio), CPLEX2 can be time consuming and does not always produce a 
good solution (as indicated by a low CPLEX2KPLEXl ratio). Even if the$CPLEXl ratio is 
usually quite low (typically below 1.003) it may still be quite difficult to obtain an optimal 
solution with CPLEX. This justifies using a heuristic and the small flCPLEX1 ratio also 
justifies using 0.99 f as a stopping rule. Table 3 shows that problem difficulty is very sensitive 
to CI. Instances with M = 0.85 are all very easy, even for CPLEX, while instances with M = 0.95 
can become quite problematic and are often infeasible. 

The algorithm was also tested on a real population distribution. For this, 1986 population 
data of the Island of Montreal was used (Statistics Canada, 1991). The data provide the 
population for each of the 2521 census tracts in Montreal (ranging from 2 to 7000 inhabitants 
per tract). There are 1758600 inhabitants in total. The population distribution is illustrated 
in Fig. 1. 

The Island of Montreal extends over 40 km from its southwest to its northeast extremities. 
If one were to draw a straight line between these two points, the length of the longest 
perpendicular to that line would be about 20 km. With the orientation used in Fig. 1, the 
island covers a wide of 40 km and a height of 33 km. A grid was superimposed on the island, 
using a mesh size of 5 km. Thirty-two of the 5 x 5 squares actually cover the island. To 
generate potential location sites, we randomly selected one point in each square, and then a 
total of 8, 18, 28 or 38 additional sites by giving a larger weight to the most population 
squares. Thus, the number of potential sites was equal to m = 40, 50, 60 or 70. The number 
of ambulances was set equal to p = 25, 30, 35 or 40. Three instances were generated for each 
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combination of m and p considered. The computational results are presented in Table 4, 
using the same headings as in Table 2 and Table 3. These results are consistent with those 
obtained on the randomly generated problems. If anything, the Montreal problem is easier 
than the random instances and it can often be solved exactly by CPLEXl. In Fig. 2 the 
results obtained on the Island of Montreal are shown. 

The computation times indicate that the tabu search algorithm is perfectly suited for 
decision making at the tactical level. In the test problems, CPU times never exceed a few 
minutes and do not become excessive when p, the number of available ambulances, becomes 
small. In contrast, the CPLEX 2 time can be quite large in such cases. In terms of solution 
quality, the algorithm always provided optimal or near-optimal solutions whereas CPLEX2 
may yield highly suboptimal solutions, as has already been pointed out. Since both CPLEXI 
and CPLEX2 are truncated branch-and-bound algorithms, they do not guarantee optima@ 
and therefore offer no advantage over tabu search. 

5. CONCLUSION 

A new model and a tabu search algorithm for an important ambulance location problem 
have been developed. The model uses the rules set by the United States Emergency Medical 
Services Act of 1973. On randomly generated instances and on instances derived from the 
Island of Montreal data, the tabu search algorithm provides near-optimal solutions within 
modest computing times. The next step in this research will be to incorporate it within a 
decision support system to assist real-time ambulance relocation decisions. 
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