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Recent studies have demonstrated the effectiveness of applying adaptive memory tabu search
procedures to combinatorial optimization problems. In this paper we describe the devel-

opment and use of such an approach to solve binary quadratic programs. Computational ex-
perience is reported, showing that the approach optimally solves the most difficult problems
reported in the literature. For challenging problems of limited size, which are capable of being
approached by exact procedures, we find optimal solutions considerably faster than the best
reported exact method. Moreover, we demonstrate that our approach is significantly more ef-
ficient and yields better solutions than the best heuristic method reported to date. Finally, we
give outcomes for larger problems that are considerably more challenging than any currently
reported in the literature.
(Integer Programming; Heuristics; Nonlinear Optimization)

1. Introduction
Tabu search (TS) has been demonstrated to be a pow-
erful solution methodology for a wide variety of diffi-
cult combinatorial optimization problems. Illustrative
applications along with fundamental TS principles can
be found in recent survey papers (Glover 1994, Glover
and Laguna 1993, Glover et al. 1994). The distinguishing
feature of TS is its use of adaptive memory structures
coupled with associated strategies for exploiting infor-
mation gathered during the search process. This adap-
tive memory component of TS typically incorporates
both recency-based and frequency-based memory de-
fined over varying short-term and long-term spans of
the search history. The memory operates through con-
trol mechanisms of tabu restrictions and aspiration cri-
teria, and associated penalties and inducements to mod-
ify move evaluations.

These constructs, implemented within a framework
that fosters an effective interplay between intensifica-
tion and diversification, have proved very successful in
orchestrating a robust search of the solution space. Such
an approach designed to solve multidimensional knap-

sack problems, recently reported in Glover and Kochen-
berger (1995), incorporates a ‘‘critical event’’ memory
structure that we embody in our present investigation.

In this paper we present a tabu search implementa-
tion designed to solve the binary quadratic program:

QP: max x Å xAx,0

where x is a zero–one vector.

Binary quadratic programs with an explicit linear com-
ponent in the objective can always be put in this form,
and thus we adopt this representation without loss of
generality.

A large number of important applications of this
model, which is known to be NP-hard, have been re-
ported in the literature. For example, the QP problem
has applications to capital budgeting and financial anal-
ysis problems (Laughunn 1970, McBride and Yormark
1980), CAD problems (Krarup and Pruzan 1978), traffic
message management problems (Gallo et al. 1980, Wits-
gall 1975), and machine scheduling problems (Alidaee
et al. 1994, Lakshminarayan et al. 1979). The QP for-
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mulation also encompasses many classical combinato-
rial optimization problems such as the maximum cut
and maximum clique problems (Hammer and Simone
1987, Hammer et al. 1968, Pardalos and Phillips 1990),
as well as a variety of nonlinear 0-1 programs.

Our approach is motivated by the success of recently
developed tabu search strategies for multidimensional
knapsack problems (Glover and Kochenberger 1995).
As will be shown, an adaptation of these strategies
yields a fruitful approach for QP problems as well. In
the sections that follow, we discuss the basic TS ideas
employed, outline their algorithmic implementation,
discuss our computational experience, and conclude
with some final remarks.

2. Basic Notions
The TS approach taken here is based on strategic oscil-
lation, which is a nonmonotonic guidance mechanism
that directly or indirectly underlies many tabu search
implementations. Our procedure embodies a straight-
forward type of oscillation which alternates between
constructive phases (progressively setting variables to
1) and destructive phases (progressively setting vari-
ables to 0). The process of setting variables to 1 during
a constructive phase will be referred to as ‘‘adding vari-
ables’’ and the process of setting variables to 0 during
a destructive phase will be referred to as ‘‘dropping’’
variables.

To control this form of oscillation we use a memory
structure that is updated at critical events. For the binary
quadratic programs considered here, we define a critical
event to occur when the next move (either an add or a
drop) causes the objective function to decrease. This def-
inition is based on the fact that the search process is
structured so that typically the most recent previous
move before such a critical move causes the objective
function to increase or remain unchanged. The solution
corresponding to a critical event is called a critical solu-
tion. We utilize a parameter, span, to indicate the am-
plitude of oscillation about a critical event, measured by
the number of variables added during a constructive
phase or the number of variables dropped during a de-
structive phase. In this particular application, we main-
tain the same depth (‘‘amplitude’’) of oscillation in both
phases.

The parameter span itself is made to vary to com-
pound the non-monotonic pattern of oscillation. The
manipulation of the parameter span may be viewed as
an outer oscillation that contains the oscillations of con-
structive and destructive phases within it.

We will not attempt to give a detailed picture of tabu
search in this paper, but will focus the special details
that underlie the present implementation, considering a
particular subset of the strategies of tabu search that we
find to be effective in the context of the QP problem. We
first give an overview of relevant parameter and mem-
ory structures, followed by the description of the
method that incorporates them.

3. Parameter Functions and Memory
Structures

3.1. The Role of Span
The span parameter controls the pattern of oscillation
in the following way. During a constructive phase, vari-
ables are added until the span parameter indicates it is
time to switch to the destructive phase. The search pro-
cess then turns around and proceeds toward (and typ-
ically past) the next critical event by dropping variables.
Eventually, we switch again to the constructive phase
and start once again adding variables. Sitting above this
oscillation pattern, following Glover and Kochenberger
(1995), is a related pattern that we use to control the
span parameter itself.

We begin with span equal to 1 and gradually increase
it to some limiting value. For each value of span, a series
of alternating constructive and destructive phases is ex-
ecuted before progressing to the next value. At the lim-
iting point, we begin to gradually decrease span, allow-
ing again for a series of constructive and destructive
phases. When span reaches a value of 1, a complete span
cycle is concluded and once again a gradual increase in
span is initiated, starting the next span cycle.

3.2. Using Recency and Frequency Information
In order to influence the search by recency information,
we record (in a circular list) the last t solutions obtained
at critical events. In our implementation, t is a simple
function of problem size, and takes values in the range
from 3 to 12 in the problems we have tested. For the
results reported later in this paper, t was set equal to 3.
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Using this record of the last t critical solutions, which
range from x(last) to x(last–(t–1)), we maintain a short-
term recency vector (TABUTR) that is the sum of the
last t solutions. That is, each time a new x(last) is iden-
tified, we set

TABU R Å TABU R / x(last) 0 x(last-t).T T

Although we refer to TABUTR as a ‘‘recency’’ vector,
its entries record the frequency that variables have been
assigned the value 1 (in the t most recent critical solu-
tions).

Long-term frequency information is captured for use
in the search process by maintaining another vector
(TABUTF) which is the sum of all critical solutions en-
countered to date, rather than the last t critical solutions.
Additional vectors can be maintained to record fre-
quencies of values assignments over other spans of
time, or to maintain frequency values that are dis-
counted by time (as by exponential smoothing), but we
have found that these two simple memory structures
suffice to give very good results in the present appli-
cation.

We use these memory structures to influence the
search process to head in new directions as we pursue
new critical solutions. This is accomplished by applying
the memory to affect the choice of variables to receive
new value assignments at the ‘‘turn-around’’ points of
oscillation.

To illustrate the underlying rationale, suppose we
have just switched from the destructive phase to the
constructive phase. Other things equal, we would like
to choose the variable (to add next) that contributes the
largest net increase to the objective function value, x0.
To facilitate a search that appropriately balances inten-
sification and diversification, however, we also would
like to choose variables that have not appeared at a
value of 1 in recent critical solutions. Thus, we seek to
impose the condition that the first variable added back,
xj, will have TABUTR( j) Å 0. That is, we may conceive
the condition TABUTR( j) ú 0 as implying that xj is
tabu. More generally, we seek to require that the first k
variables added back (after turn around) to have
TABUTR( j)Å 0. Such a requirement may not be strictly
possible. Consequently, we attach a penalty weight,
PENTR, to TABUTR( j) and create a penalty value
PENTR*TABUTR( j). This penalty value is subtracted

from the x0 evaluation of variable xj to provide a penal-
ized evaluation.

Long-term frequency information is included by sub-
tracting another penalty term, PENTF*TABUTF( j),
from the evaluation of variable xj. The positive weight,
PENTF, is scaled by the iteration count so that the pen-
alty influence derived from long-term frequency infor-
mation is small compared to the somewhat larger
PENTR weight of the short-term recency information.
In this manner, long-term tabu information plays a sub-
tle but useful role of breaking ties (or ‘‘near ties’’) that
may otherwise occur via the use of short-term infor-
mation only. For the results reported later in this paper,
we set PENTR equal to the maximum element in the A
matrix and PENTF equal to PENTR divided by 1000
times the number of transfer phase executions (itera-
tions).

Similarly, when we switch from the constructive
phase to the destructive phase, we want to restrict the
choice of variables to drop so that the first k variables
chosen are selected from those xj with the maximum
entries in the tabu lists TABUTR and TABUTF. Here,
the tabu restriction is implemented by adding the short
and long term penalty terms to the normal x0 calculation
and choosing the variable with the maximum evalua-
tion. These calculations are summarized below.

Let eval( j) denote the evaluation of variable j and del
x0( j) denote the net increase in x0 associated with flip-
ping xj. Let countTvar be the number of variables cho-
sen since the last turn-around and let j* be the index of
the variable to be chosen next. Then in the constructive
phase, we choose j* (from the set of all j such that xj

Å 0) as follows:

If count var ú k, let eval(j) Å del x ( j).0T

If count var ° k, let eval(j) Å del x ( j)0T

0 PEN R*TABU R(j) 0 PEN F*TABU F(j).T T T T

Then j* corresponds to the variable with the maximum
value of eval( j). In the destructive phase, we proceed
as above (again to maximize) except that we add the
penalty terms and search for j* among the set of j such
that xj Å 1.

The parameter k, which identifies the number of tabu-
influenced adds or drops made immediately after a
turn-around, is managed in a fashion that fosters addi-
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tional diversity in the search process. We start with k
Å 1, and after a number of iterations (e.g., 2t), we set k
Å k / 1. We continue in this fashion until k reaches a
limit (KMAX), at which point we set k back to 1 and the
process repeats. In general, KMAX should be a function
of problem size. However, over a rather wide range of
problems, KMAX in the range from 2 to 4 has performed
well in our testing.

4. Overview of Method
Given the preceding discussion, we now present a gen-
eral sketch of our method. Below we denote by J(0) the
set of variables currently equal to 0, J(1), the set of vari-
ables currently equal to 1, x0 the objective function
value, and x* the best solution found so far. The nota-
tion x0:(xj Å v) for v Å 0 or 1, refers to the value of x0

that results by changing the value of xj from 1 0 v to v,
while holding the value of all other variables un-
changed.

Initialization:
set x Å x* Å 0, Å 0`, countTspanÅ0, kÅ1*x0

while iter count (or # span cycles) õ limit do

Constructive Phase:
{comment: adding variables up to critical event}

while ÉJ(0)É ú 0 do
find j* Å argmax {x0:(xj Å 1)}

j √ J(0)

if Å 1) ú x0 then*x :(x0 j

set Å 1*xj

else
if xAx ú x*Ax* then

set x* Å x
endif

endif
endwhile

{comment: add variables beyond critical event}
while countTspan ° span and ÉJ(0)É ú0 do

set countTspan Å countTspan / 1
find j* Å argmax{x0:(xj Å 1)}

j √ J(0)
set Å 1*xj

endwhile

Transfer Phase:

{comment: manage span (as specified later), do book-
keeping, etc.}

set countTspan Å 0

Destructive Phase:
{comment: dropping variables up to critical event}

while ÉJ(1)É ú 0 do
find j* Å argmax{x0:(xj Å 0)}

j √ J(1)

if Å 0) ú x0 then*x :(x0 j

set Å 0*xj

else
if xAx ú x* Ax* then

set x* Å x
endif

endif
endwhile

{comment: dropping variables beyond critical event}
while countTspan ° span and ÉJ(1)É ú0 do

set countTspan Å countTspan / 1
find j* Å argmax{x0:(xj Å 0)}

j √ J(1)

set Å 0*xj

endwhile

Transfer Phase:
{comment: manage span, do bookkeeping, etc.)

set countTspan Å countTspan / 1

endwhile

The preceding method terminates whenever a selected
number of iterations have been performed or after a pre-
set number of complete span cycles have been per-
formed.

4.1. Managing the Outer Oscillation Parameter
(Span)

The oscillations about critical events are shaped by the
parameter span. Span is fixed for a certain number of
iterations and then changed in a systematic fashion. In
our implementation, we manage span in the Transfer
Phase by the following rules:

{comment: iterTspan is the number of transfer phase
executions at the current span value; dir denotes
whether span is increasing or decreasing}
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enter with values for span, p1, p2, iterTspan, and dir
iterTspan Å iterTspan / 1
if dir is increasing then

if span ° p1 then
if iterTspan ú p2*span then

set span Å span /1
set iterTspan Å 0

endif
else

if iterTspan ú 4 then
set span Å span /1
set iterTspan Å 0

endif
endif
if span ú p2 then

set span Å p2
set dir to decreasing

endif
else

if p1 /1 ° span ° p2 then
if iterTspan ú 4 then

set span Å span 0 1
set iterTspan Å 0

endif
else

if iterTspan ú p2*span then
set span Å span 0 1
set iterTspan Å 0

endif
endif
if span Å 0 then

set span Å 1
set direction increasing

endif
endif

Large values of p1 and p2 foster aggressive diversi-
fication, while smaller values facilitate a search in a
more compact neighborhood around the most recent
critical solution. The default values we employ are p1
Å 3 and p2 Å 7. These particular values have proven to
be effective in a variety of problem settings including
labor scheduling problems and multidimensional knap-
sack problems. As shown in the next section, they also
worked well on the quadratic binary programs ad-
dressed in this paper.

5. Computational Experience

5.1. Initial Testing and Comparisons
Due to the widespread application as well as compu-
tational challenge of QPs, many researchers have re-
ported algorithms designed to solve 0–1 quadratic pro-
grams over the years. A survey of early work is found
in Hansen (1979). More recently, a variety of additional
exact and heuristic approaches have been published
and tested (Barahona et al. 1989, Chardaire and Sutter
1995, Gulati et al. 1984, Hammer and Simone 1987, Par-
dalos and Rodgers 1989, Williams 1985). Of the heuris-
tic approaches in the literature, the decomposition
method of Chardaire and Sutter (1995) recently pub-
lished in Management Science is reported to be very suc-
cessful on standard test problems. The most successful
exact algorithm is the gradient-based branch and bound
approach of Pardalos and Rodgers (1989). Despite the
advances reported in the literature QP problems are, in
general, difficult to solve. Later in this section, we offer
a comparison of our approach with the two leading
methods of Chardaire and Sutter (1995) and Pardalos
and Rodgers (1989).

To test our approach, we made use of a standard test-
bed of problems provided by Pardalos and Rodgers
(P&R) (1989), which has been designed to incorporate
various characteristics as a challenge to other research-
ers. (P&R specify problem characteristics, provide a ran-
dom number generator, and specify the random num-
ber seed to enable alternative algorithms to be com-
pared on the same test problems.) While some problems
are harder than others, all are believed to be difficult.
We specifically tested our method on three classes of
problems that we arbitrarily refer to as problem sets a,
b, and c. The ‘‘a’’ problems were generated as specified
by P&R in what they labeled the ‘‘WBJR experiments.’’
There are eight such problems, varying in size form 40
to 100 variables with all A matrix elements randomly
generated between 0100 and 100.

The ‘‘b’’ problems were generated according to the
problems P&R labeled the ‘‘Gulati experiments.’’ There
are 10 such problems, ranging in size from 20 to 125
variables. Here, the off-diagonal elements of A were
generated between 0 and 100, while the diagonal ele-
ments were between 063 and 0. Finally, the ‘‘c’’ prob-
lems are the seven ‘‘most difficult’’ problems given by
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Table 1 Initial Testing

ID n Den Seed

Opt
Obj
Fun

Tabu Search
Conditions at ‘‘Best’’ Solution

Cycle
# SPAN k

Time to
(sec)

Time for
5 Cycles

P&R

Time to
Opt

Time to
Terminate

1a 50 0.1 10 3,414 1 3 1 õ1 37 õ1 õ1
2a 60 0.1 10 6,063 1 1 1 õ1 60 õ1 õ1
3a 70 0.1 10 6,037 1 2 2 15 71 32 133
4a 80 0.1 10 8,598 1 3 1 14 93 õ1 219
5a 50 0.2 10 5,737 1 3 1 7 38 2 29
6a 30 0.4 10 3,980 1 2 1 õ1 15 õ1 3
7a 30 0.5 10 4,541 1 1 1 õ1 14 õ1 4
8a 100 0.0625 10 11,109 1 3 1 17 141 õ1 2
1b 20 1.0 10 133 1 1 1 õ1 2 õ1 õ1
2b 30 1.0 10 121 1 6 2 õ1 4 õ1 õ1
3b 40 1.0 10 118 1 5 1 õ1 5 õ1 õ1
4b 50 1.0 10 129 1 1 1 õ1 8 õ1 õ1
5b 60 1.0 10 150 1 1 1 õ1 11 õ1 1
6b 70 1.0 10 146 1 3 1 õ1 14 õ1 1
7b 80 1.0 10 160 1 1 1 õ1 18 õ1 2
8b 90 1.0 10 145 1 6 3 5 21 õ1 3
9b 100 1.0 10 137 2 2 1 11 27 õ1 5

10b 125 1.0 10 154 1 5 2 5 46 1 8
1c 40 0.8 10 5,058 1 1 1 õ1 27 õ1 1,805
2c 50 0.6 70 6,213 1 1 1 õ1 40 õ1 30,400
3c 60 0.4 31 6,665 1 3 2 3 64 õ1 *
4c 70 0.3 34 7,398 1 6 1 10 74 õ1 18,003
5c 80 0.2 8 7,362 3 2 1 41 100 983 16,051
6c 90 0.1 80 5,824 3 2 1 49 111 43 160
7c 100 0.1 142 7,225 1 3 1 7 140 230 248

* Did not terminate in 17 hours. However, the solution given was proven by Pardalos and Rodgers (1989) to be optimal (private correspondence).

P&R, which are instances of the ‘‘Barahona experi-
ments.’’ For these problems, off-diagonal elements are
generated between050 and 50, while diagonal elements
are between 0100 and 100.

Table 1 presents the results we obtained on these
problems. Each problem is identified as to class, size,
and density of A matrix. Moreover, the random number
seed used is given for each problem as well. Each of the
25 problems was run for a span cycle limit of 5 cycles
on a Pentium PC. Across all 25 problems, the time re-
quired for the five span cycles ranged from 2 to 141
seconds with an average of 47 seconds. For each prob-
lem, we report the best solution found along with the
conditions of the search at the time this solution was
obtained. For instance, for problem 1a, the best solution

was found in span cycle #1, with span Å 3 and k Å 1,
yielding x0 Å 3414. We also note that this solution was
found in less than 1 second and that it took 37 seconds
to complete the 5 cycles.

Our method found optimal solutions to all 25 prob-
lems. This was verified by solving each problem by the
exact algorithm (Q01D.FOR) provided by P&R. The last
two columns of Table 1 indicate, respectively, the time
required for the branch-and-bound code to locate the
optimal solution and to terminate, having proven opti-
mality.

It is interesting to note that on 22 of the 25 problems,
the optimal solution was found in the first span cycle.
One problem took two span cycles, and two problems
took three cycles. Thus the limit of five span cycles was
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more than adequate. Across all problems, there is some
variation in the value of the parameter span at which
the best solution was obtained. Most often, however, the
best solution was found at span Å 3. Values of k most
often associated with the best solution were 1 and 2,
with k Å 1 occurring most frequently.

Note that the exact algorithm of P&R performed ex-
ceptionally well on most of the problems in Table 1. For
the easily solved ‘‘a’’ and ‘‘b’’ problems, it recorded
shorter computational times than our tabu search heu-
ristic. Such performance appears to owe significantly to
the ingenuity of their approaches for generating starting
solutions, since in most cases these first solutions turned
out to be optimal for these simple problems.

The performance of the P&R approach on the more
challenging ‘‘c’’ problems, however, is quite different.
Their starting points were still good, but less frequently
optimal, and their method generally took excessive
times to prove optimality for these problems. In general,
larger size and greater density degrades the perfor-
mance of the P&R algorithm. This degradation is in-
creased when the distribution of the gradient range is
fairly uniform. Pardalos and Rodgers (1989, p. 143) pur-
posely generated the ‘‘c’’ problems with these charac-
teristics to illustrate the difficulty such problems pose
for their gradient based branch and bound approach.
The results reported in Table 1, consistent with those
reported in by P&R in Pardalos and Rodgers (1989),
bear out this difficulty.

In contrast to the P&R results, note that the perfor-
mance of our tabu search heuristic is quite uniform
across all 25 problems in Table 1—including the ‘‘c’’
problems. In all cases, we found optimal solutions in a
few span cycles and within modest computational
times. This is somewhat surprising, from the point of
view of the low heuristic content of our choice rules,
since we did not attempt to incorporate any particular
ingenuity into these rules, but relied primarily on the
searching power of the critical event memory.

The ‘‘c’’ problems of Table 1 illustrate that for certain
modest sized problems, the exact method of P&R runs
into severe practical limitations. To further explore the
limitations of the P&R algorithm on modest sized (but
difficult) problems, and to provide additional compar-
isons with our tabu search heuristic, we generated 10
additional test problems of size Å 100 with densities

ranging from 0.1 to 1.0. For each of these problems, the
off-diagonal elements were randomly generated be-
tween {50, and the diagonal elements were taken to be
between {75. The results of our testing are shown in
Table 2.

These 10 problems, with characteristics similar to the
‘‘c’’ problems, proved to be beyond the practical capa-
bility of the P&R algorithm. Each problem was initially
run for a limit of five span cycles on our tabu search
heuristic and a limit of five million vertices on the P&R
branch-and-bound algorithm. Table 2 reports the best
solution found by each approach and the corresponding
computational times in seconds. For only one of the
problems (1d), did the branch and bound algorithm
match our TS approach in terms of solution quality. In
all cases, the algorithm of P&R took considerably more
time (generally about 50 times longer) in spite of failing
to obtain solutions of matching quality.

Subsequent runs of the branch and bound algorithm
were made on all 10 problems with the default limit
(given by P&R) of 134 million vertices. In no case did
the algorithm terminate with a completed tree search
before the default limit was reached. Moreover, in no
case did they improve on the solutions reported in Table
2. On the Pentium 90 PC, these runs took more than 30
hours each.

Table 2, consistent with the performance reported in
Table 1, shows that our approach efficiently generated
attractive solutions to each of these problems. In all
cases but one, where the two methods found the same
solution, our approach generated solutions superior to
those found by the P&R procedure while investing only
a small fraction of the computation time. For each prob-
lem, the time required for the five span cycles was
roughly one minute, illustrating both the efficiency and
robustness of our approach.

The more recent heuristic method of Chardaire and
Sutter (C&S) reported in Management Science (Chardaire
and Sutter 1995) is also applied to a subset of the P&R
test problems. (Their method is not applied to larger
problems, however, such as those indicated subse-
quently.) C&S report testing on selected problems from
the ‘‘a’’ problem category with varying densities rang-
ing in size from 40 to 100 variables. Average perfor-
mance is cited over ten problems for each size and den-
sity. For small to medium sized problems (50 variables
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Table 2 Additional 100 Variable Problems

ID Den Seed

Tabu Search

Best Obj
Fun

Time
to Best

Time for
5 Cycles

P&R

Best Obj
Fun

Time for 5
Million Vertices

1d 0.1 31 6,333 3 60 6,333 3,885
2d 0.2 37 6,579 18 56 6,467 3,242
3d 0.3 143 9,261 3 62 9,205 3,343
4d 0.4 47 10,727 7 59 10,705 3,203
5d 0.5 31 11,626 53 64 11,589 3,288
6d 0.6 47 14,207 32 64 14,017 3,425
7d 0.7 97 14,476 23 63 13,999 3,441
8d 0.8 133 16,352 11 63 16,143 3,503
9d 0.9 307 15,656 1 58 15,584 3,507

10d 1.0 1,311 19,102 2 70 18,930 3,504

Note: 1. All problems are of size n Å 100 with off diagonal elements between //0 50 and
diagonal elements between //0 75. All times are in seconds on a Pentium 90 computer.

2. For all 10 problems, the initial P&R solutions (which were found in less than 1 second) were
not improved upon or verified as optimal in five million vertices generated by their branch and
bound algorithm.

or less), C&S typically find an optimal solution. How-
ever, for larger problems, even of this relatively simple
type, their solution quality falls off and enlarged gaps
appear between the best lower and upper bounds they
compute on the optimal objective function value. Char-
daire and Sutter comment (1993, p. 71) ‘‘. . . our
method has some limits. Gaps increase with size of
problem.’’

For problems of size n Å 75, C&S failed to find the
optimal solution on 21 of the 30 problems attempted.
For problems of size n Å 100, the optimal solution was
found for only one of the 30 problems attempted. No
experience was reported for problems larger than n
Å 100. In contrast, we should note that P&R report read-
ily finding optimal solutions to low density problems
from this category with up to 100 variables. And, as
discussed previously, our tabu search approach had no
difficulty finding optimal solutions to all such prob-
lems.

In addition to the degradation in solution quality with
problem size, the solution times reported by C&S seem
to be quite large compared to our experience on similar
problems. For problems of size n Å 75, they report av-
erage solution times as large as 12 minutes (HP 720
workstation) and, for problems of size n Å 100, they

report average times as large as 45 minutes. Considering
both solution quality and solution time, it appears that
their approach is suitable only for small problems (50
variables or less). For larger problems, our TS approach
gives better performance on both measures.

5.2. Additional Testing
In an effort to test our approach on larger problems, we
generated 10 additional problems with the characteris-
tics of the ‘‘c’’ problems. Five of these problems are for
n Å 200, and five are for n Å 500. Due to their size and
characteristics, these problems should be very difficult
to solve. In fact, we believe them to be the most chal-
lenging problems reported in the literature to date—far
beyond the capabilities of current exact methods and
challenging as well for heuristic approaches. Our results
are shown in Table 3.

Each problem was run for an arbitrary preset limit of
outer span cycles. For the 200 variable ‘‘e’’ problems,
the limit was set at 10 cycles, and the times reported in
the table are seconds on a Pentium 90 PC. For the 500
variable ‘‘f ’’ problems, the span limit was set at 20 cy-
cles, and the times reported are in seconds on a VAX
Alpha 2100 model 300 computer. Note that these larger
problems often took several span cycles to locate the
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Table 3 Larger Test Problems

Problem n Density Seed

Search Condition at ‘‘Best’’ Solution

Objective
Function

Cycle
# Span Iter k

Time
(sec)

Time for
Cycle
Limit

1e 200 0.1 51 16,464 5 3 598 1 374 876
2e 200 0.2 43 23,395 2 7 207 1 149 913
3e 200 0.3 34 25,243 1 7 63 3 56 1,069
4e 200 0.4 73 35,594 1 2 20 1 21 1,054
5e 200 0.5 89 35,154 3 6 362 1 284 1,007
1f 500 0.10 137 61,194 10 1 1,399 2 506 985
2f 500 0.25 137 100,161 4 3 528 1 211 1,001
3f 500 0.50 137 138,035 1 7 69 2 41 980
4f 500 0.75 137 172,771 11 3 1,440 1 504 967
5f 500 1.00 137 190,507 3 3 309 1 118 1,018

Note: 1. These problems were generated according to the approach given by P&R as used for the ‘‘c’’ problems of Table 1. The termination limit for the
‘‘e’’ problems was arbitrarily set at 10 span cycles. For the ‘‘f’’ problems, the termination limit was set at 20 span cycles for each problem.

2. The ‘‘e’’ problems were generated with off diagonal elements between //0 50 and the diagonal elements between //0 100. The times given for the
‘‘e’’ problems are in seconds on a Pentium 90 PC.

3. The ‘‘f’’ problems were generated with off diagonal elements between//0 50 and the diagonal elements between//0 75. Due to the size and complexity
of these problems, they were run on a VAX Alpha 2100 model 300 computer. This machine is roughly five times faster than the Pentium 90. Times shown
are in seconds.

best solution found. Nonetheless, our approach quickly
located solutions to these larger problems. Here, how-
ever, we have no proof of optimality, since these prob-
lems are beyond the scope of those that can be handled
within practical time limits by exact algorithms.

6. Conclusions
We report a new tabu search approach to binary quad-
ratic programs, based on a flexible memory system that
utilizes recency and frequency information from critical
events encountered during the search process. The
method incorporates a strategic oscillation scheme that
alternates between constructive and destructive phases,
and drives the search to variable depths on each side of
critical solutions.

Our approach successfully (and quickly) found optimal
solutions for test problems characterized as challenging in
previous studies. On problems representing a nontrivial
level of difficulty, our approach significantly outper-
formed both the best exact method and the best heuristic
method previously reported in the literature. Moreover, it
quickly found good (perhaps optimal) solutions to diffi-

cult problems larger than those examined in previous
investigations—problems too large to permit optimality
to be verified by exact methods that represent the state of
the art. These results were obtained using a straightfor-
ward implementation of our tabu search procedure with
a simple choice rule and a minimum of parameter exper-
imentation. This success, coupled with the results reported
in Glover and Kochenberger (1995) on multidimensional
knapsack problems, highlights the effectiveness of critical
event memory schemes in tabu search and suggests they
may find useful applications to solving other types of op-
timization problems.
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