
Journal of Heuristics, 11: 89–108, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

A GRASP and Path Relinking Heuristic for Rural
Road Network Development

MARIA P. SCAPARRA
Kent Business School, University of Kent, Canterbury CT2 7PE, UK

RICHARD L. CHURCH∗
Department of Geography, University of California, Santa Barbara, Santa Barbara, California 93106-4060, USA
email: church@geog.ucsb.edu

Submitted in December 2003 and accepted by Steve Chiu in February 2005 after 1 revision

Abstract

This paper presents a model for rural road network design that involves two objectives: maximize all season
road connectivity among villages in a region and maximize route efficiency, while allocating a fix budget among
a number of possible road projects. The problem is modeled as a bicriterion optimization problem and solved
heuristically through a greedy randomized adaptive search procedure (GRASP) in conjunction with a path relinking
procedure. The implementation of GRASP and path relinking includes two novel modifications, a new form of
reactive GRASP and a new form of path relinking. Overall, the heuristic approach is streamlined through the
incorporation of advanced network flow reoptimization techniques. Results indicate that this implementation
outperforms both GRASP as well as a straightforward form of GRASP with path relinking. For small problem
instances, for which optimality could be verified, this new, modified form of GRASP with path relinking solved
all but one known instance optimally.
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Introduction

Road network design and investment planning has been the subject of considerable research
in the past three decades (see, for example, Magnanti and Wong, 1984; Yang and Bell, 1998,
for comprehensive surveys). In the most general form, the network design problem (NDP)
can be stated as the problem of optimally allocating a limited budget among road projects
in order to maximize efficiency. Road investments include the construction of new links as
well as the upgrade and widening of existing road segments.

The wide range of network design models proposed in the literature reflects the need
for planning efficient road systems in very diverse socioeconomic and environmental con-
texts. Depending upon the field of application, in fact, different operational characteris-
tics, technical requirements, problem objectives and system performance measures arise
which need to be captured within an optimization model. As an example, planning for a
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high-volume urban transportation network must account for traffic congestion, elastic de-
mand and equilibrium flow patterns (Sheffi, 1985). On the other side of the spectrum, the
design of low-volume, dispersed rural roads in developing countries is not concerned with
congestion effects but requires encompassing other system perspectives, such as connec-
tivity and accessibility (Antunes, Seco, and Pinto, 2003). The objective of this paper is to
address the latter type of problem, planning rural road development in developing countries.

The transportation systems in many developing countries are often substandard, and rep-
resent a major barrier to people and goods mobility, agricultural development, and economic
growth. Village connectivity is usually very poor and mainly relies on earthen tracks, which
become impassable during the rainy season. As an example in Uganda 20 percent of the Na-
tional Roads are paved and 85 percent of the community access roads are in a poor condition.
In Sudan, asphalted all-weather roads amount to roughly 10–15 percent of the total road
system while most of the commercial flows occur on substandard earth or gravel roads. A
common objective of development is to provide all-weather road connectivity to towns and
villages. The objective of this paper is to propose an optimization model that is capable of
identifying the most cost-effective way of developing an all-weather road system through the
selection of road segments to be upgraded and paved. The primary goal of the model is to pro-
vide efficient connections among villages while maximizing the connectivity level achieved.

Yang and Bell (1998) identify four major components characterizing network design
problem variants: design variables, routing behavior, demand characteristics and design
objectives. The model we propose for planning rural road development uses discrete
design variables to represent the choice of the links to be upgraded and paved. The ex-
isting system of gravel and earthen roads are treated as the available links for upgrading
and paving. Commonly, discrete models are applied when planning for the formation of
new road systems, whereas models using continuous variables are more applicable to road
capacity expansion planning in congested networks (Abdulaal and LeBlanc, 1979). In terms
of routing behavior, we assume that the optimal routing of trips among villages is via the
shortest paths on the all-weather network. This is a reasonable assumption for those models
where congestion is not a major concern and providing efficient all-weather transportation
access is one of the principal objectives. When dealing with traffic flow among villages in
developing countries, the basic travel demand can be assumed largely inelastic. Within this
context, we do not consider the effect on improved mobility due to network improvements,
although this could be easily done. We assume a fixed matrix of trips among villages and
use a gravity model as a proxy for generating the trip distribution.

The prevailing objective function in the design of transportation networks has been the
minimization of the total network travel costs. However, many other objectives have also
been considered, which include accessibility (Antunes, Seco, and Pinto, 2003), equity (Feng
and Wu, 2003), social and economic benefits (Meng and Yang, 2002) among others. Fur-
thermore, in recognition of the inherent multi-objective nature of transportation planning
problems, many authors have investigated the possibility of identifying best compromise
solutions with respect to several development objectives (see Current and Min, 1986; Yang
and Bell, 1998, for reviews on multi-objective models). The problem treated in this paper is a
bicriterion optimization problem aimed at minimizing the sum of trip-weighted shortest path
distances between all pairs of villages connected by all-weather roads (efficiency criterion)
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and maximizing the traffic flow volume provided by all-weather paved roads (connectivity
criterion). Network design problems that only consider the first objective have received
considerable attention in the literature (Boyce, Farhi, and Weischedel, 1973; Johnson et al.,
1978; Dionne and Florian, 1979) and are referred to by Magnanti and Wong (1984) as
budget design problems. However, these formulations assume that it is both necessary and
possible to provide a fully connected network passable in all seasons. In practice, planning
situations exist where satisfying the entire traffic flow is either impossible because of the
resource constraints, or not efficient, meaning that enforcing full connectivity may result in
a lengthy and inefficient network. Our scope is to develop a model that can yield reasonable
compromise solutions in view of both efficiency and connectivity. This problem has never
been formally treated in the literature.

This bicriterion network investment problem is addressed by combining the two ob-
jectives into one through the use of weighting coefficients. Depending upon the weights
assigned to each criterion, different pavement strategies are generated that reflect the rela-
tive importance of the two goals. In the following, we will refer to the bicriterion problem
stated above as connectivity maximizing budget design problem (COMBDP).

The connectivity maximizing BDP is a generalized model of the BDP. Since the BDP
has been classified as NP-hard (Johnson, Lenstra, and Rinnooy Kan, 1978), the COMBDP
can also be so classified. Since only small instances of this problem have been solved opti-
mally, our research has concentrated on the development of a heuristic strategy for solving
COMBDP. Our proposed methodology is based upon an adaptation of the greedy random-
ized adaptive search procedure, GRASP (Feo and Resende, 1989), used in conjunction with
the recently introduced path relinking technique, PR (Glover and Laguna, 1997).

The remainder of the paper is organized as follows. In the next section, we introduce some
useful notation, which is used to define COMBDP more formally. Section 2 gives a brief
overview of the solution methodology. In Section 3, we discuss the implementation details
of the greedy randomized adaptive search procedure, while the path relinking approach is
described in Section 4. Some computational experience follows in Section 5. We conclude
with a summary and recommendations for future work.

1. Notation and problem statement

Rural road network systems can be represented as an undirected graph G = (N , A) where
the set N of nodes represents the villages of the rural region under study and the set of arcs
A represents the existing earth-tracks which connect the villages as well as possible new
connections. Each link (i, j) in A has two numerical values, di j and ci j , associated with it,
which represent respectively its length and the cost for upgrading it to a paved, all-weather
road connection. For each pair of nodes i and j, we denote by ai j the volume of traffic flow
between the corresponding villages i and j. We assume here that the traffic volume is static
over time and that such volume will not increase with improved routes, although this can be
easily handled by the heuristic. For instance, if we assume that the traffic volume between
two villages i and j increases from ai j to a′

i j if an all-weather connection is established
between i and j, the only modification required in the approach consists in using the new
value a′

i j instead of the initial ai j . This is straightforward based upon our assumption that
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both the connectivity and the efficiency objectives are measured only in terms of the traffic
flow on the all-weather road network.

A solution to the network investment problem is a subgraph G ′ = (N ′, A′) of G, where
the set of arcs A′ corresponds to the road segments selected for pavement, and the set of
nodes N ′ corresponds to the set of villages that are served by at least one paved road.

A solution G ′ is feasible if the total cost of the selected arcs does not exceed a prespecified
budget B, that is to say:

∑

(i, j)∈A′
ci j ≤ B (1)

Note that G ′ is not necessarily connected but it can be represented as the union of a number
K of disjoint subgraphs G ′

1, . . . , G ′
k , . . . , G ′

K , each one representing a maximal set N ′
k of

connected nodes. A subgraph G ′
k represents a set of villages which are pairwise connected by

at least one all-season paved route. The value of each connected subgraph G ′
k, k = 1, . . . , K ,

is measured in terms of: (1) the traffic volume that can be served by all-season paved roads,
and (2) the weighted distance associated with traffic being efficiently routed on all-season
paved roads. The total value, P(G ′

k), of a subgraph G ′
k can be expressed as the weighted

combination of these two performance measures. Formally:

P(G ′
k) = w1

∑

i∈N ′
k

∑

j∈N ′
k

ai j − w2

∑

i∈N ′
k

∑

j∈N ′
k

ai j Li j (2)

where Li j is the length of the shortest all-season route between i and j in subgraph G ′
k .

The first term in the right hand side of formula (2) represents the total traffic volume
among the villages in G ′

k . This first term represents inter-village traffic volume served
by all season paved routes. The second term of the right hand side of formula (2) is
the sum of trip-weighted shortest path distances (using all season paved roads) between
all pairs of villages in G ′

k . The two terms are weighted by w1 and w2 which represent
the relative importance of each objective. Overall, we want to maximize the value of
the first term (i.e. maximize connectivity) and minimize the value of the second term
(i.e. minimize total weighted travel distance on all season paved roads). These two objec-
tives can be combined by including a minus sign for the second term (when P(G ′

k)is to
maximized).

The total combined value of a solution G ′ over all subgraphs k is then:

P(G ′) =
K∑

k=1

P(G ′
k) (3)

The COMBDP seeks an investment strategy that maximizes P(G ′), i.e., the strategy that
optimizes the weighted combination of traffic flow volume served by paved roads and
weighted traveled distance associated with those traffic volumes.
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2. Solution method

In order to find good approximate solutions to COMBDP, we propose a methodology based
on the combined use of GRASP and path relinking. GRASP, which first appeared in Feo
and Resende (1989) and was later formalized in Feo and Resende (1995), is an iterative
two-phase metaheuristic. At each iteration, the first phase produces a solution through
the use of a randomized greedy construction scheme. Local search is then applied in the
second phase to this solution, in order to obtain a local optimum in its neighborhood.
Enhanced versions of the basic GRASP metaheuristic have been applied to a wide range of
combinatorial optimization problems (the reader is referred to Resende and Ribeiro (2002)
for an extensive treatment of the methodology and its applications, and Festa and Resende
(2001) for an annotated bibliography).

Path-relinking was first introduced as a tool to compound intensification and diversifica-
tion strategies in the context of tabu search (Glover, 1996; Glover and Laguna, 1997). The
strategy is formulated on the principles of evolutionary approaches but unlike conventional
evolutionary techniques (e.g., genetic algorithms), it does not employ randomization to
generate new solutions. Instead, it constructs them through a methodical exploration of tra-
jectories that connect previously generated high quality solutions. An in-depth description
of path relinking can be found in Glover (1999) and Glover, Laguna and Martı́ (2000).

The first application of GRASP and path relinking was undertaken by Laguna and Martı́
(1999). Since then, a few other applications have appeared that combine the two methodolo-
gies. Some applications use path relinking as an intensification strategy within the GRASP
procedure (see, for example, Resende and Ribeiro, 2003); others apply path relinking as a
post-optimization step after the execution of GRASP (Ribeiro, Uchoa, and Werneck, 2002).
Some authors considered both utilizations of the path relinking strategy (Aiex et al., 2003;
Resende and Werneck, 2002). According to the survey work on GRASP by Resende and
Ribeiro (2002), path relinking is more effective when used as an intensification phase. In
our implementation, we have chosen to use it at the end of each GRASP iteration in order
to intensify the search around local optima.

3. GRASP implementation

When implementing a GRASP procedure, several different issues need to be addressed
and tailored to the structural characteristics of the problem under study. First, an adap-
tive greedy function needs to be defined to guide the iterative construction phase, which
builds the solution by adding one element at the time. The greedy function is adaptive in
the sense that it must be updated after the insertion of each new element in the partial
solution under construction. Second, a restriction mechanism must be defined to build
the restricted candidate list (RCL), that is the list from which to select the next ele-
ment to be added to the solution. A probabilistic selection strategy must then be spec-
ified to select an element from the RCL. Finally, the essential constituents of the lo-
cal search procedure (i.e., the neighborhood structure and the search strategy) must be
defined.
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3.1. Constructive phase

The constructive phase for COMBDP starts with an empty solution and iteratively adds
arcs to it according to a randomized greedy scheme. When no more arcs are affordable for
pavement, the constructive phase terminates and the local search procedure is initiated.

The greedy function guiding the arc selection is defined as the incremental unit value due
to the addition of an unselected arc to the solution. Formally, for each arc (i, j) which is not
part of the current partial solution G ′, the greedy function is given by:

pi j = �Pi j

ci j
= w1�Ai j − w2�Di j

ci j
(4)

In formula (4), �Pi j denotes the change of the objective function value due to the insertion
of arc (i, j) in the solution, and is obtained as the weighted combination of the change
in covered demand flow (�Ai j ) and the change in weighted traveled distance (�Di j ). We
provide a detailed approach to how these two terms (�Ai j and �Di j ) can be calculated
efficiently in Section 3.3.

At each construction iteration, the greedy function is used to determine a restricted list
of candidate arcs for selection (RCL). The RCL is built by means of an achievement level
restriction mechanism (Resende, 1998). Namely, the unselected arcs are ranked according
to the adaptive greedy function (4) and inserted in the RCL if the following two conditions
are met: (i) their incorporation in the solution does not violate the budget constraint (1);
and (ii) their greedy function value is in the range [αpmax, pmax], where pmax is the greedy
function value of the best possible insertion at that construction iteration. The restricted
candidate parameter α varies between 0 and 1, and its value strongly conditions the kind of
solutions generated. In particular, values of α close to 0 increase the amount of randomness
of the algorithm. This generally results in poor solution but greater diversification among
the solutions generated in the constructive phase. On the other side, values of α close
to 1 increase the amount of greediness, thus producing solutions of higher quality but
less diversified. In our computational investigation we will show the results obtained for
different values of α ranging between 0.1 and 0.9. We also investigate the use of a self-tuning
mechanism for automating the choice of the parameter α. Such a calibration process, known
as Reactive GRASP (Prais and Ribeiro, 2000), uses a probability distribution to select at
each iteration a particular value for α from a set of candidate values. As the algorithm
execution proceeds, the selection probabilities are biased to reflect the goodness of each
alpha choice in producing high quality solutions.

Once the restricted candidate list is defined, a candidate arc is randomly selected from
it and added to the partial solution under construction. The unit values pi j associated with
each arc not in the solution are then updated according to formula (4) to reflect the changes
based upon the inclusion of the last added arc. The constructive phase terminates when
no arc can be added to the solution without exceeding the residual available budget. The
obtained solution is then subjected to the local search phase.
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3.2. Local search

The neighborhood local search phase is based upon add, drop and swap moves. Namely, the
neighbors of the current solution are all the solutions that can be obtained either by adding
a new arc to the set of already selected arcs (add), or by removing a selected arc (drop),
or by substituting a selected arc with an unselected arc (swap). A move is legal only if it
maintains the feasibility of the solution with respect to the budget constraint. The worth
of a move is calculated as the change in the weighted objective function resulting from it.
Since the evaluations of all neighboring solutions are computationally expensive, we use a
first improvement strategy in our local search phase, meaning that the current solution is
replaced by the first improved solution detected in its neighborhood.

The search of an improving neighbor is performed by storing the arcs in the current
solution and the arcs not in the current solutions in two lists, Lin and Lout, respectively.
Each arc in Lin is first evaluated for dropping. If the arc removal is profitable, the move
is performed and the search resumes from the next arc in the list; otherwise the arcs in
Lout are examined in order until an arc is detected which can be profitably swapped with
the arc in Lin under examination. If neither profitable drops nor profitable swaps can be
detected after a whole pass of the elements in Lin, the local search enters the add phase in
which add moves are attempted for the elements in Lout. If a profitable add move can be
performed the search is restarted by evaluating the arcs in Lin for dropping and swapping.
The search ends after a full pass of both lists with no improvement of the solution. Different
ways of alternating add, drop and swap moves have been experimented in the initial testing.
However, the particular choice just described was the one that provides the best results,
both in terms of solution quality and execution time.

3.3. Add and drop operations

As already observed in the previous sections, arc insertions and removals imply a change
in both the demand flow served by paved roads and in the weighted distance of flow of the
current solution. Computing the changes in the values of the objective terms can be compu-
tationally extensive, since it requires checking the graph connectivity and recomputing the
shortest path distances among all pairs of connected nodes. Furthermore, these operations
need to be performed a considerable number of times in each GRASP iteration, both in
the construction phase for updating and adding the selected arcs, and in the local search
phase for each attempted move. To reduce the computational effort, the add and drop move
implementations can be streamlined by exploiting the structural characteristics of the partial
solution graph and by incorporating in the solution approach efficient methods for shortest
path reoptimization. We explain this in detail next.

In the following, we assume that, throughout the algorithm execution, we keep track of
all the connected subgraphs that form the partial solution G ′ as well as the shortest path
distance matrix, L, which stores the shortest distances, Li j , between each pair of nodes i and
j in G′. After each add and drop move, the data structures storing the solution subgraphs
and the shortest path distance matrix are updated to reflect the changes just made to the
solution. For each node i in the current solution (i.e., i ∈ N ′), we denote by G ′(i) the
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connected subgraph that contains i and by N ′(i) its node set. We next describe how changes
in the two objective function terms can be efficiently computed when accounting for the
insertion of a new arc in the solution.

Let (i, j) be the arc to be added to a partial solution graph G ′ = (N ′, A′). The change
in value of the two objective function terms due to an add move can be best defined by
distinguishing four possible cases.

(i) Neither node i nor node j belong to N′. In this case, adding arc (i, j) does not affect the
connectivity among the other nodes in the solution, and the change of the two objective
terms are simply:

�Ai j = ai j ,

�Di j = ai j di j .

(ii) Only one of the arc endpoints belongs to N′. Without loss of generality, assume, for
example, that node j belongs to the subgraph G′(j) of G′, while i /∈ N ′. In this case,
adding arc (i, j) allows connecting node i to all the nodes h in N′(j). The changes in the
objective terms are easily computed as:

�Ai j =
∑

h∈N ′( j)

aih,

�Di j =
∑

h∈N ′( j)

aih(di j + Lhj ).

Note that the values Lhj are known and no shortest path recalculation is needed.
(iii) Both node i and node j are in N′ and they belong to two different subgraphs, G′(i) and

G′(j). When arc (i, j) is added, all the nodes in G′(i) and G′(j) can be connected only
through link (i, j). This means that we can compute the change in the values of the two
objective terms as:

�Ai j =
∑

l∈N ′(i)

∑

h∈N ′( j)

alh,

�Di j =
∑

l∈N ′(i)

∑

h∈N ′( j)

alh(Lli + di j + L jh).

Also in this case, there is no need for shortest path recalculations.
(iv) Both node i and node j are in G′ and they belong to the same subgraph, G ′

k . Only
in this case, does evaluating the change in weighted traveled distance, �Di j , require
recomputing the shortest path distances between the nodes in G ′

k , since some of the
traffic flow might best be served through a path which uses link (i, j). The change in
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served traffic volume is 0, since the newly inserted arc does not affect the total traffic
volume that can be provided by paved roads. Hence:

�Ai j = 0, (5)

�Di j =
∑

l∈N ′
k

∑

h∈N ′
k

alh(L ′
lh − Llh). (6)

In formula (6), L ′
lh denotes the new shortest path distance from node l to node h after

the insertion of arc (i, j) in G ′
k .

Computing formula (6) requires reoptimizing the shortest path tree rooted at each node
in G ′

k . In order to perform the reoptimization efficiently, we use one of the algorithmic
approaches described in Pallottino and Scutellà (2003) and based on the pioneering work
of Gallo (1980). The procedure is designed for finding the new shortest path tree when the
cost of one arc is reduced. To adapt the procedure to our problem, we assume that the cost
of the arc to be added is initially infinite and that, as result of the add move, it is decreased
to its actual length (in practice, for each connection to be added, we insert into the graph
two directed arcs, (i, j) and ( j, i), with equal lengths). The basic premise of this method
is to exploit the knowledge of the existing shortest path tree in computing the new shortest
path tree. In the initial shortest path tree, the arc reduced costs associated with a linear
programming model of the shortest path tree are all positive, as stated by the optimality
conditions of linear programming. If the reduced costs of the newly inserted arcs are also
positive, the tree is still optimal and no reoptimization is needed. Otherwise, if one of the
reduced costs is negative, a Dijkstra shortest path procedure, which uses the reduced costs
instead of the actual costs, is applied to propagate the negative value associated with that
arc. It is important to note that when the Dijkstra procedure, based on the reduced costs,
terminates, the label associated with each node measures the contraction of the shortest
path tree from the root to that node. In our specific case, this value is exactly the shortest
path distance variation L ′

lh − Llh needed in formula (6), for a given root node l and a
generic node h in G ′

k . For more details on the reoptimization methodology the reader is
referred to Pallottino and Scutellà (2003) and Gallo (1980). The use of this procedure within
our solution approach proved to be very effective in practice and significantly reduced the
computational time required for recomputing shortest paths.

We now describe how to efficiently compute a drop move. Let (i, j) be the arc to be
dropped from the current solution and G ′

k the subgraph currently containing node i and
node j. We can identify two possible cases.

(i) The removal of arc (i, j) disconnects node i and node j in terms of all-season paved
road travel, i.e., it generates a cut (N ′

k(i), N ′
k( j)) in G ′

k , where N ′
k(i) is the subset of

nodes connected to node i after the removal, and N ′
k( j) is its complement. The change

in values of the two objective terms must reflect the loss of connectivity among the
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nodes in N ′
k(i) and N ′

k( j) due to the removal of (i, j). Formally,

�Ai j = −
∑

l∈N ′
k (i)

∑

h∈N ′
k ( j)

alh

�Di j = −
∑

l∈N ′
k (i)

∑

h∈N ′
k ( j)

alh Llh

(ii) The removal of arc (i, j) does not disconnect node i and node j in terms of all-season
paved road travel. If the connectivity of the nodes in G ′

k is preserved, the shortest
paths among the nodes in G ′

k need to be recomputed, since the loss of the dropped arc
might cause an increase in the shortest path distances. �Ai j and �Di j are defined as in
formulas (5) and (6), but this time we have L ′

lh ≥ Llh .

In order to recompute the shortest paths after the removal of one arc, we use the dual ascent
approach for shortest path reoptimization as described in Pallottino e Scutellà (2003). The
procedure is an adaptation of the “dual-hanging” approach described in Pallottino and
Scutellà (1997) to the problem of finding the new shortest path tree when the cost of
one arc is augmented. The choice of this procedure is motivated by the fact that the dual
feasibility of the shortest path tree is preserved when the cost of an arc is increased (or
equivalently, when an arc is removed and its cost is set to a very large value). If the primal
feasibility is also preserved, meaning that the removed arc is not in the optimal tree, no
reoptimization is needed. Otherwise, suitably designed hanging operations can be used to
optimally reconnect the fragment of the optimal tree that might have been disconnected by
the arc removal (i.e., to restore the primal feasibility). Preliminary results showed that the
use of the dual ascent algorithm appreciably improved the computational time of the overall
methodology as compared to the use of standard label-setting or label-correcting shortest
path algorithms (Dreyfus, 1969). Also in this case, the reoptimization algorithm must be
repeated to recalculate the shortest path tree rooted at each node in G ′

k .

4. Path relinking implementation

At the end of each GRASP iteration, we apply path-relinking as an intensification strategy
in the attempt to detect value-improving solutions around the local optima just generated.
The relinking is performed by investigating the trajectory that starts from a locally optimal
solution obtained after local search (the initiating solution) and directed towards a solution
selected from a pool of high quality solutions previously found (the guiding solution). The
trajectory is built by gradually transforming the current solution into the guiding solution
through appropriate arc additions, deletions or swaps. To define the set of moves which
should be applied, we first compute the symmetric difference between the initiating and
guiding solutions, i.e., the set of arcs which are selected for pavement in one of them but
not in the other. At each stage of the trajectory construction, a new solution is generated by
performing a move that reduces the symmetric difference. The next move to be performed is
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always chosen in a greedy fashion, i.e., it is the add, drop or swap move that results in a best
possible improvement or a least possible deterioration of the objective function value. After
the generation of each new solution, the benefits of all the remaining moves are evaluated
again and the next move is selected, until the guiding solution is finally attained. The best
solution found along the trajectory is returned by the procedure and evaluated for possible
insertion in the pool of elite solutions.

The pool of elite solutions is progressively built and updated in the following way.
Each solution obtained at the end of a GRASP iteration or returned by the path-relinking
procedure is a candidate to be inserted in the pool, unless already present. Such a solution
is automatically inserted if the maximum pool size has not yet been reached. If the pool is
already full, the candidate is inserted only if it is better than the worst elite solution. In this
case, the worst solution is removed from the elite set.

As for the selection of the guiding solutions, a simple and commonly used strategy is
to select it at random from the pool of elite solutions. In our empirical investigation, we
provide results for this strategy. Additionally, we tested an alternative scheme which favors
solution diversity. Namely, we select the solution that is most different from the incumbent,
breaking ties randomly. The importance of guaranteeing diversity among the solutions
subjected to the path-relinking process was already emphasized by other authors (see for
example Resende and Werneck, 2002). Solution diversity can be enforced when dealing
with the pool by inserting only solutions which are sufficiently diverse from the other elite
solutions, or, as in our approach, when selecting the guiding solution for a given initiating
solution.

5. Computational experiments

In this section, we report on the computational results obtained with different implemen-
tations of the GRASP and path relinking approach. All of the algorithm implementations
were coded in Visual Basic 6.0 and run on a PC with a Pentium 4/2.0GHz processor and
1GB of RAM. The proposed heuristics were tested on a set of 15 networks, generated
as part of a project supported by the U.S.D.O.T. The village coordinates were uniformly
generated within a bounding box, while the populations at each village were generated
from a uniform distribution in [1,1000]. The Euclidean distances among nodes and the
node population sizes were then used as input to a gravity model in order to estimate the
traffic flow among villages. The rural road connections among villages were established
through the use of a Graphical User Interface developed within the project framework. The
pavement costs of the arcs were assumed to be proportional to the arc lengths. The problem
set includes 5 classes of 3 problems each. Each problem in the same class has the same
dimension, although different in layout. For example, the problems in the first class have
50 villages and 80 rural road segments; the problems in the remaining four classes have
dimensions (75, 120), (100, 160), (125, 200), (150, 240), respectively. Each problem was
solved for 3 budget levels and for 2 pairs of objective weighting coefficients. We hence con-
ducted experiments on 18 instances for each class, resulting in a total number of 90 different
problems. The budget levels were chosen to be equal to constant proportions of the total
network construction costs. More specifically, proportions equal to 15%, 30% and 45% of
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the total pavement cost were chosen. Based upon preliminary experiments, the weighting
coefficient of the efficiency objective, w2, was fixed to 1 while the weighting coefficient
related to the connectivity objective, w1, was fixed to 50 in one case and 100 in the other.

5.1. Parameter testing

A calibration phase was conducted to determine appropriate values of the key parameters
and implementation options of the GRASP + PR approach. In particular, we experimented
with different schemes for selecting the achievement level parameter α, with different
path-relinking strategies and various pool size values. Two hundred independent runs were
executed for each algorithm variant.

Tables 1 and 2 show the results obtained by varying the parameter α, when the pool size
is fixed to 10 and the path-relinking is performed by using as a guiding solution, the most
distant solution from the incumbent. Table 1 lists for each of the five classes the average
deviation from the value of the best-known solution. The average is computed over the
18 instances of each class. For the first class (namely, for the problems with 50 nodes),

Table 1. Tests on the GRASP parameter α: Average percent deviation from best known solutions.

Fixed α Reactive GRASP

Pr. Set 0.1 0.3 0.5 0.7 0.9 25 50 75∗ 100∗

Pr50 0.007 0.022 0.047 0.089 0.146 0.039 0.001 0.001 0.001

Pr75 0.034 0.040 0.125 0.108 0.368 0.046 0.018 0.038 0.042

Pr100 0.055 0.134 0.098 0.154 0.559 0.141 0.120 0.067 0.072

Pr125 0.067 0.047 0.068 0.193 0.375 0.038 0.060 0.062 0.057

Pr150 0.171 0.165 0.259 0.413 0.597 0.115 0.120 0.093 0.110

Avg. 0.067 0.082 0.119 0.191 0.409 0.076 0.064 0.052 0.056

Options: DPR, ps = 10.

Table 2. Tests on the GRASP parameter α: Execution time (sec.).

Fixed α Reactive GRASP

Pr. Set 0.1 0.3 0.5 0.7 0.9 25 50 75∗ 100∗

Pr50 33 22 19 16 14 18 19 19 18

Pr75 143 79 60 47 38 65 65 66 65

Pr100 351 189 156 158 175 168 215 174 172

Pr125 765 376 300 271 245 339 418 336 336

Pr150 1796 751 608 595 465 709 897 688 672

Avg. 617 283 228 217 187 260 323 257 253

Options: DPR, ps = 10.
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the best-known solution corresponds to the optimal solution found by CPLEX (for the IP
formulation of COMBDP the reader is referred to Church and Scaparra, 2004). The larger
problems in the following four sets could not be solved by CPLEX. Hence, the best-known
solution for these problems is the best solution found in our computational investigation by
some of our algorithmic variants.

In Table 1, the first column gives the problem set name, the following five columns list the
average percent deviation when different fixed values of the parameter α were used, while
the last section of four columns reports the percent deviation obtained with four different
implementations of Reactive GRASP. The header of each of the last four columns refers
to the parameter block iterations used to implement the Reactive GRASP procedure (Prais
and Ribeiro, 2000). The block-iterations parameter represents the number of iterations after
which the probabilities, which guide the selection of a particular α value, are updated.
For the update operation we use the same absolute qualification rule as described in Prais
and Ribeiro (2000), with the suitable changes to reflect the maximization nature of our
problem. We then introduce a variation to the general reactive scheme, which consists in
using a variable block-iterations parameter. Namely, in the initial runs, we use a large value
for block-iterations in order to have a better estimate of the goodness of each α choice.
As the algorithm proceeds, we systematically reduce its value so as to intensify the use of
good α values. Several different ways of scaling down the value of block iterations were
attempted. We only report the results for two implementations (indicated with an asterisk
in the column header): in the first case (75∗), we set the initial value to 75 and reduce it by
25 units every time we update the probability distribution; in the second case (100∗), we
initially set it to 100 and halve its value after each update, up to a minimum value of 25.
The results in the first two Reactive GRASP columns refer to a standard implementation of
Reactive GRASP with a fixed block-iterations set up to 25 and 50, respectively.

Table 2 has a similar structure, but displays the average computational times required by
the different implementations for each problem set.

From the analyses of the two tables it can be noticed that when GRASP is implemented
with a fixed α, the percent deviation clearly increases as bigger α values are used, meaning
that in terms of solution quality the variants which favor randomness are to be preferred
to the more greedy implementations. However, small values of α require a significantly
higher computational time, which is especially spent by the local search phase to reach
local optima from highly random solutions.

The variants using Reactive GRASP are clearly superior to the ones with fixed α. The
dominance is not as noticeable for fixed block-iterations (columns indexed by 25 and 50).
This is mainly due to the limited number of iterations (200) we could run without incurring
an excessive amount of computational time and, consequently, to the lack of sufficient in-
formation to set-up a reliable self-adjusting selection mechanism. This limitation, however,
can be partially bypassed by iteratively reducing the value of block-iterations, as previously
described. Reactive GRASP with variable block-iterations (last two columns in Tables 1
and 2) turned out to be a good trade-off between computational time and solution quality. In
particular, the option denoted by 75∗ yields the best average percent deviation, performing
considerably well on the largest problems (set Pr150), and it is very competitive in terms
of computational time. Furthermore, it is the implementation that finds the largest number
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Table 3. Results for different path relinking strategies.

% Deviation Time (sec.)

Pr. Set NPR RPR DPR NPR RPR DPR

Pr50 0.004 0.001 0.001 17 18 19

Pr75 0.127 0.050 0.038 59 62 66

Pr100 0.135 0.065 0.067 154 159 174

Pr125 0.251 0.101 0.062 300 321 336

Pr150 0.346 0.144 0.093 630 661 688

Avg. 0.173 0.072 0.052 232 244 257

Options: Reactive 75∗, ps = 10.

of best-known solutions (55 out of the 90 problems) among all the variants tested. Hence,
we selected the option 75∗ as the base case to test the other implementation options.

The second experiment was conducted to investigate the behavior of the path-relinking
strategy. As already mentioned in Section 4, we consider two path-relinking variants, which
re-link the incumbent solution to a solution randomly selected from the pool and to the most
different solution, respectively. The pure GRASP variant without path relinking was also
tested to provide evidence of the effective gain deriving from the use of path-relinking.
In Table 3, the three algorithmic variants are referred to respectively as NPR (for no path-
relinking), RPR (for random path-relinking), and DPR (for path-relinking based on maximal
distance). It can be noted that there is a clear benefit in using path-relinking: it systematically
leads to improvements in the solutions found and the computational effort associated with it
is negligible when compared to a pure GRASP strategy. As for the selection of the guiding
solution, the exploration of longer trajectories among solutions enforced by the DPR strategy
generally produces better solutions at little extra computational effort, in accordance with
the theoretical expectation.

Finally to study the sensitivity of the overall methodology to the dimension of the pool
of elite solutions, we report the results obtained for different pool size (ps) values. Among
the various values tested, we provide the results for pool sizes equal to 3, 10 and 20. Table 4
shows that a size of 10 is a good trade-off. With a smaller pool size (ps = 3), the average
deviation deteriorates for each problem set and the saving in terms of computational time is
minor. Handling a larger pool (ps = 20) requires additional computation effort (especially
on large problems) but does not pay off in terms of solution quality (it leads to a marginal
improvement only on the second set, but it is inferior in all of the other cases).

5.2. Final results

Detailed results for the best parameter combination (i.e., Reactive 75∗, DPR and ps =
10) are provided in Tables 5 and 6. For each of the 3 problems in each problem set and
for each combination of the budget values and weighting coefficients, Table 5 reports
the percent deviation from the best known solutions and the execution time to run the 200
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Table 4. Results for various pool size values.

% Deviation Time (sec.)

Pr. Set ps = 3 ps = 10 ps = 20 ps = 3 ps = 10 ps = 20

Pr50 0.004 0.001 0.001 18 19 19

Pr75 0.052 0.038 0.023 66 66 68

Pr100 0.092 0.067 0.078 169 174 176

Pr125 0.080 0.062 0.089 336 336 357

Pr150 0.138 0.093 0.139 694 688 810

Avg. 0.073 0.052 0.066 256 257 286

Options: Reactive 75∗, DPR.

Table 5. Percent deviation from best known and execution time (sec.) for different budgets and objective
weights.

Pr50 Pr75 Pr100 Pr125 Pr150

Pr. no. B w1 %Dev Time %Dev Time %Dev Time %Dev Time %Dev Time

1 15 100 0.000 6 0.000 2 0.000 2 0.482 9 0.000 9

1 15 50 0.000 3 0.142 2 0.103 2 0.000 9 0.000 7

1 30 100 0.000 38 0.000 64 0.106 84 0.138 144 0.366 358

1 30 50 0.000 8 0.000 35 0.092 39 0.138 66 0.000 124

1 45 100 0.000 70 0.020 456 0.000 858 0.237 1508 0.000 6025

1 45 50 0.000 14 0.000 42 0.029 148 0.024 202 0.018 875

2 15 100 0.000 1 0.000 2 0.000 3 0.039 11 0.000 6

2 15 50 0.000 1 0.000 2 0.000 4 0.000 16 0.058 8

2 30 100 0.000 11 0.000 50 0.141 189 0.000 127 0.079 315

2 30 50 0.000 6 0.000 18 0.218 34 0.000 64 0.000 99

2 45 100 0.012 55 0.108 200 0.000 912 0.000 903 0.314 1580

2 45 50 0.000 12 0.000 35 0.000 108 0.008 219 0.033 205

3 15 100 0.000 0 0.338 2 0.000 6 0.000 13 0.073 11

3 15 50 0.000 1 0.000 1 0.000 8 0.000 9 0.485 7

3 30 100 0.000 26 0.051 38 0.000 87 0.000 617 0.079 260

3 30 50 0.000 6 0.000 24 0.000 36 0.000 76 0.046 130

3 45 100 0.000 70 0.021 174 0.236 538 0.000 1893 0.112 1983

3 45 50 0.000 11 0.000 35 0.280 67 0.048 170 0.004 383

Avg. 0.001 19 0.038 66 0.067 174 0.062 336 0.093 688
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Table 6. Connectivity (%cov) and efficiency (vmt) objective values for different budgets and objective weights.

Pr50 Pr75 Pr100 Pr125 Pr150

Pr. no. B w1 %cov vmt %cov vmt %cov vmt %cov vmt %cov vmt

1 15 100 82.42 9,532 59.86 12,684 44.39 15,494 50.14 28,337 45.87 28,954

1 15 50 79.92 7,665 58.63 10,480 42.18 11,542 49.05 24,230 45.61 27,892

1 30 100 95.94 16,819 85.50 31,815 77.69 50,802 70.66 55,825 77.04 120,571

1 30 50 87.71 10,325 78.40 20,813 68.05 30,126 64.90 35,706 67.81 65,297

1 45 100 98.85 17,701 99.55 45,483 96.41 72,545 92.72 114,241 97.15 179,959

1 45 50 89.57 10,850 83.35 22,514 80.13 38,831 76.52 51,942 80.25 89,780

2 15 100 69.95 3,700 58.47 7,213 55.43 15,500 50.45 21,974 52.36 23,988

2 15 50 67.75 2,987 58.47 7,213 52.79 10,510 49.41 18,486 51.19 20,274

2 30 100 86.95 8,083 81.95 17,980 82.47 40,015 75.44 54,250 73.22 58,242

2 30 50 78.57 4,801 76.09 12,743 69.28 18,954 69.37 36,817 66.53 35,682

2 45 100 93.42 9,510 99.61 32,073 96.01 52,351 89.87 75,246 89.65 96,880

2 45 50 84.93 6,058 80.47 13,823 76.07 22,080 78.41 44,962 75.40 47,749

3 15 100 55.73 3,965 58.54 9,551 51.33 14,339 62.73 34,367 51.46 23,493

3 15 50 54.47 3,515 56.63 7,782 48.54 10,848 59.79 26,130 48.49 17,285

3 30 100 88.94 12,924 81.68 22,218 77.11 32,363 89.01 81,108 75.20 53,090

3 30 50 72.31 6,132 73.59 13,398 67.57 19,279 75.93 42,255 66.98 32,564

3 45 100 96.21 13,471 91.40 28,269 95.74 51,680 96.30 87,499 93.35 87,493

3 45 50 75.58 6,393 79.86 15,950 76.15 23,478 81.59 47,266 76.02 40,660

The vmt measure is expressed in 000’s units.

iterations, whereas Table 6 lists the values of the two objectives, for the best solution of each
problem.

As shown in Table 5, all but one problem in the first set are solved to optimality by our
approach with the chosen parameter setting. The problem complexity increases as more
importance is given to the connectivity measure (w1 = 100 vs. w1 = 50), and, especially, as
the budget level is increased. This observation suggests an alternative way of implementing
the GRASP constructive phase when high budget levels are considered. Namely, we could
start the constructive phase with a completely paved network and delete arcs according
to a randomized greedy scheme, until the budget constraint is satisfied. Since the time-
consumption of the algorithm is largely dependent on the number of network evaluations
needed every time an arc is added or removed, for high budget availability this approach
could reduce the running time associated to the GRASP phase.

The results in Table 6 demonstrate how connectivity can be traded for greater operational
efficiency. As an example, consider the first problem in the set Pr100. With more importance
placed on the first objective (w1 = 100) and a budget of 15%, the traffic flow volume covered
by paved roads equals around 44% of the total traffic flow on the network. By contrast, the
solution obtained when more importance is assigned to the second objective (w1 = 50),
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Figure 1. Connectivity vs. efficiency for different budget values for the first problem in Pr100.
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Figure 2. Pareto-near-optimal frontier for the first problem in Pr100 (B = 45%)

covers only 42% of the traffic flow volume but improves on the efficiency measure by
25%. This trade-off is even more noticeable for increasing budget availability. For the same
problem and a budget of 30%, a drop in the covered traffic flow from 78% to 68% yields a
40% improvement in network efficiency. With a budget of 45%, the network efficiency can
be improved by almost 50% by sacrificing 15% of the traffic coverage.

The solutions corresponding to the 6 situations just described for the first problem in the
set Pr100 are depicted in figure 1. In the picture, the dots represent villages. The thin lines
depict dirt roads while the heavy lines show candidate paved sections. It can be noticed that
when greater importance is placed on the efficiency measure (figures b, d and f), the approach
tends to generate more disjoint components in the resulting road configuration. However,
even if fewer interconnections are provided by paved roads, each cluster represents a more
efficient road sub-network.

Finally, for the same problem, we display in figure 2 the Pareto near-optimal front, ob-
tained by applying our algorithm a number of times with equi-spaced values of w1 ranging
from 5 to 200. In spite of a recognized deficiency of the weighted sum approach in generating
unsupported non-dominated solution (see for example Koski, 1985), the method seems to
work well for solving COMBDP. As evidenced in figure 2, the weighting method fails to pop-
ulate only small sections of the Pareto boundary while producing efficient network solutions.

6. Conclusions and future research

In this paper we have presented a GRASP and Path-relinking strategy for finding approxi-
mate solutions to a budget network design problem when complete coverage of all the traffic



GRASP AND PATH RELINKING HEURISTIC 107

flow volume by all-season roads is not strictly required. We have shown how the computa-
tional efficiency of the approach can be improved by exploiting the structural characteristics
of the solutions as well as by using specialized routines for shortest path reoptimization.
Furthermore, we have enhanced the performance of a standard GRASP and Path Relinking
implementation by introducing a new form of reactive GRASP which allows a more effi-
cient parameter calibration, and by relinking the incumbent solution with the most different
elite solution. Results on 90 problems with up to 150 nodes and 240 undirected links val-
idate the effectiveness of these variants: all of the smaller problems for which optimality
could be verified were solved to optimality; for larger problems, which cannot be solved
by CPLEX, the enhanced implementation never exceeded a 0.5% deviation from the best
known solutions in reasonable computational time.

Even though the model has been primarily devised for solving the rural road network
design problem, its applicability is not confined to this problem. Other application settings
exist where it is realistic, and beneficial, to sacrifice service provision to a segment of users
in favor of more economical, operational and higher quality service to others.

A possible extension of the model includes an added objective that accounts for all
traffic, in addition to all season traffic flow. For some developing countries it is adequate
to consider efficiency as provided by good roads only, since road segments which are not
paved or upgraded could be completely impassable or inaccessible during some parts of the
year. However, for other road systems it could be reasonable to consider the efficiency of the
overall network for each season. Finally, the plan for future research includes an extension
of the methodology to account for multi-period planning.
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