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This dissertation addresses the optimization of the 
owshop scheduling

problem with sequence-dependent setup times. The goal of the decision-maker

is to provide a schedule that minimizes the time at which all jobs in the system

are processed. The goal of this work is to provide the decision-maker with

e�cient ways of deriving such schedules. This type of problem arises in many

manufacturing environments. In the printing industry, for example, presses

must be cleaned and settings changed when ink color, paper size or receiving

medium di�er from one job to the next. Setup times are strongly dependent on

the job order. In the container manufacturing industry machines must be ad-

justed whenever the dimensions of the containers are changed, while in printed

circuit board assembly, rearranging and restocking component inventories on

the magazine rack is required between batches. In each of these situations,

sequence-dependent setup times play a major role and must be considered ex-

plicitly when modeling the problem.

This research includes the implementation of heuristic approaches to

obtain feasible solutions of high quality, the development of lower bounding
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procedures, the study of the set of feasible solutions from the polyhedral per-

spective, and the integration of all of these components into exact optimization

schemes. The �rst is based on branch and cut and the second on branch and

bound. The proposed procedures are found to be very e�ective, providing

good approximations of the true optimal to a large class of data instances, and

optimal solutions in other cases.

Another contribution of this work is the development of a technique to

randomly generate data instances with real-world attributes.
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Chapter 1

Introduction

In this dissertation, we address the problem of �nding a permutation schedule

of n jobs in an m-machine 
owshop environment that minimizes the maxi-

mum completion time Cmax of all jobs, also known as the makespan. The

jobs are available at time zero and have sequence-dependent setup times on

each machine. All parameters, such as processing and setup times, are as-

sumed to be known with certainty. This problem is regarded in the scheduling

literature as the sequence-dependent setup time 
owshop (SDST 
owshop or

F jsijk; prmujCmax using the scheduling notation described in Appendix A) and

is evidentlyNP-hard since the case where m = 1 is simply a traveling salesman

problem (TSP).

Applications of sequence-dependent scheduling are commonly found in

most manufacturing environments. In the printing industry, for example,

presses must be cleaned and settings changed when ink color, paper size or

receiving medium di�er from one job to the next. Setup times are strongly

dependent on the job order. In the container manufacturing industry machines

must be adjusted whenever the dimensions of the containers are changed, while

in printed circuit board assembly [46], rearranging and restocking component

inventories on the magazine rack is required between batches. In the chemi-

cal and pharmaceutical industry [5], the processing of di�erent chemical com-

pounds in a speci�c machine may require some cleansing between process runs,

1
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and the time to set up a machine for the next task may be strongly depen-

dent on the immediate predecessor. In the problem of scheduling an aircraft

approaching or leaving a terminal area [16], the time separations between suc-

cessive aircraft belonging to di�erent categories are to be changed according

to their respective position. Thus sequence-dependent processing times must

be allowed for a more realistic description of the problem. brand will mingle

with the scent of the following brand unless the machine is cleaned thoroughly

and very carefully resulting in high setup times. In each of these situations,

sequence-dependent setup times play a major role and must be considered ex-

plicitly when modeling the problem.

The objective of this work is to provide e�ective methods to �nd exact

or high quality approximate solutions to this problem. This includes the im-

plementation of heuristics to obtain good feasible solutions, the development

of lower bounding procedures, the study of the set of feasible solutions from a

polyhedral theory perspective, and the integration of all of these elements into

exact optimization schemes.

As far as approximate solutions are concerned, we present an hybrid

heuristic that exploits the underlying asymmetric traveling salesman prob-

lem (ATSP) and a greedy randomized adaptive search procedure (GRASP).

GRASP is a heuristic approach to combinatorial optimization problems that

combines greedy heuristics, randomization, and local search techniques. Both

heuristics are found to be very e�ective on �nding feasible solutions of high

quality.

Recent developments on the polyhedral structure of the ATSP and the

similarities between the ATSP and the SDST 
owshop motivated our study on

the SDST 
owshop polyhedron; i.e., the convex hull of incidence vectors of all

feasible solutions. In so doing, we consider two di�erent models or formulations.

Model A is based on the asymmetric traveling salesman problem (ATSP) and
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model B is based on a formulation due to Srikar and Ghosh [66]. In each case,

two sets of variables are identi�ed: a set of binary decision variables which

determines the sequence or ordering of the jobs, and a set of nonnegative real

variables which determines the times processing begins for each job. When the

time variables are ignored the binary variables give rise to a subspace of the

SDST 
owshop consisting of the convex hull of incidence vectors of feasible

sequences. For model A, this subspace is the well known ATSP polytope; for

model B, the corresponding subspace (here, called the S-G polytope) has not

been previously studied. In our work, we show how any facet-de�ning inequality

(or facet) for either of these polytopes induces a facet for the SDST 
owshop

polyhedron. We also investigate the facial structure of the S-G polytope and

develop several valid inequalities for the SDST 
owshop polyhedron. We �nd

these valid inequalities to be e�ective when incorporated into a branch-and-cut

(B&C) exact optimization algorithm; however, this e�ectiveness was somehow

limited by the fact that the linear programming lower bound of the relaxed

subproblems was still not tight enough.

By relaxing some machine requirements rather than the integrality con-

ditions on the MIP formulations, alternate lower bounding procedures were de-

veloped. The generalized lower bound (GLB) is obtained by reducing the orig-

inal m-machine to a 2-machine problem, and the machine-based lower bound

(MBLB) is obtained by reducing to a single machine problem. Both procedures

were found to be marginally better than the LP-relaxation lower bound, with

the MBLB being more e�ective than the GLB.

Extending these lower bounding procedures to handle partial schedules

as well, enabled us to develop a branch-and-bound enumeration scheme. This

scheme included, in addition to the lower and upper bounding procedures, a

dominance elimination criterion and several searching strategies to provide us

with an intelligent way of searching for optimal solutions. This algorithm was
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found extremely e�ective, providing optimal solutions to a large class of data

instances, and near-optimal solutions in other cases.

The dissertation is organized as follows. The most relevant work on this

area is presented in Chapter 2. In Chapter 3, we introduce the mathematical

models A and B, and discuss their basic di�erences and properties. Major

results relating the polyhedral structure of models A and B are given in Chap-

ter 4. Then, the e�ectiveness of the valid inequalities within a B&C framework

is assessed in Chapter 5 which includes a discussion of separation algorithms,

and a B&C code implementation. The heuristic procedures are described and

evaluated in Chapter 6. In Chapter 7, we present a full description and ex-

tensive computational experimentation of the branch-and-bound enumeration

algorithm, including a discussion of non-LP-based lower bounds and dominance

rules. We conclude with a discussion of the results and directions for future

research in Chapter 8.



Chapter 2

Related Work

In this section we highlight the main contributions to the 
owshop schedul-

ing �eld. For a description of the notation, see Appendix A. Lawler et al. [44]

present an extensive survey, concentrating on the area of deterministic machine

scheduling. They review complexity results and optimization and approxima-

tion algorithms involving a single machine, parallel machines, open shops, 
ow

shops and job shops. They also pay attention to two extensions of this area:

resource-constrained project scheduling and stochastic machine scheduling.

Blazewicz et al. [7] present a review of a variety of deterministic machine

scheduling problems. They overview the existing results and present solution

strategies for resource-constrained scheduling, scheduling tasks that require

more than one machine at a time, scheduling with nonlinear speed-resource

alloted functions, and scheduling in 
exible manufacturing systems.

Blazewicz et al. [6] present a survey that compiles a large number of

mathematical programming formulations for a variety of machine scheduling

problems. Their formulations include single machine scheduling, parallel ma-

chine nonpreemptive scheduling, parallel machine preemptive scheduling, job

shop scheduling, and parallel machine scheduling with nonlinear speed-resource

amount functions.

5
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2.1 Minimizing Makespan on Regular Flowshops

The 
owshop scheduling problem (with no setups) has been studied extensively

over the past 25 years. The pioneering work in 
owshop scheduling dates back

to 1954 when Johnson [39] presented a simple decision rule for solving F2jjCmax

to optimality in polynomial time. He also discussed how to solve a special case

of F3jjCmax. Nevertheless, virtually all other cases of the 
owshop problem are

hard problems.

2.1.1 Exact Optimization Schemes

Several exact optimization schemes, mostly based on branch and bound, have

been proposed for F jjCmax including those of Lageweg et al. [42], Potts [58] and

Carlier and Rebai [10]. The 3-machine special case of this problem is considered

by Ignall and Schrage [38] and Lomnicki [47]. Della Croce et al. [17] present a

branch-and-bound approach for the 2-machine case.

2.1.2 Heuristics

Heuristic approaches for F jjCmax can be divided into (a) quick procedures [56,

9, 28, 15, 68, 51, 35, 34, 63, 49] and (b) extensive search procedures [75, 71, 54]

(including techniques such as tabu search). Several studies have shown (e.g.,

[72]) that the most e�ective quick procedure is the heuristic due to Nawaz et

al. [51]. In our work, we attempt to take advantage of this result and extend

their algorithm to the case where setup times are included within a randomized

algorithm. Our implementation, GRASP, is further described in Section 6.3.
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2.2 Sequence-Dependent Setup Times

2.2.1 Exact Optimization Schemes

Multiple-machine case: The best e�orts to solve the problem optimally have

been made by Srikar and Ghosh [66], and later by Sta�ord and Tseng [67] in

terms of solving MIP formulations. Srikar and Ghosh introduce a formulation

that uses half the number of binary variables in the TSP-based formulation.

They used this model and the SCICONIC/VM mixed integer programming

solver (based on branch and bound) to solve several randomly generated in-

stances of the SDST 
owshop. The largest solved was a 6-machine, 6-job

problem, in about 22 minutes of CPU on a Prime 550 computer.

Later, Sta�ord and Tseng corrected an error in the S-G formulation and

using LINDO solved a 5 � 7 instance in about 6 hours of CPU time on a PC.

They also proposed three new MIP formulations of related 
owshop problems

based on the S-G model.

To the best of our knowledge, there have been no better approaches to

solve the problem optimally. However, Gupta [32] presents a branch-and-bound

algorithm for the case where the objective is to minimize the total machine

setup time. No computational results are reported.

Two-machine case: Work on F2jsijk; prmujCmax includes Corwin and Esog-

bue [12], who consider a subclass of this problem that arises when one of the

machines has no setup times. After establishing the optimality of permutation

schedules, they develop an e�cient dynamic programming formulation which

they show is comparable, from a computational standpoint, to the correspond-

ing formulation of the traveling salesman problem. No algorithm is developed.

Gupta [29] establishes some complexity results for special cases. After

showing the NP-hardness of this problem he proposes a TSP formulation for

the case where jobs are processed continuously through the shop. He uses
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these results to describe an approximate algorithm for the case where limited

or in�nite intermediate storage space is available to hold partially completed

jobs.

Gupta and Darrow [30] establish the NP-hardness of the problem and

show that permutation schedules do not always minimize makespan. They

derive su�cient conditions for a permutation schedule to be optimal, and pro-

pose and evaluate empirically four heuristics. They observe that the procedures

perform quite well for problems where setup times are an order of magnitude

smaller than the processing times. However, when the magnitude of the setup

times was in the same range as the processing times, the performance of the

�rst two proposed algorithms decreased sharply.

Szwarc and Gupta [69] develop a polynomially bounded approximate

method for the special case where the sequence-dependent setup times are

additive. Their computational experiments show optimal results for the 2-

machine case.

1-Machine Case: Work on the single-machine case includes Lockett and Muh-

lemann [46], who address a special case where the setup takes the form of

number of tool changes from one job to the next. The jobs di�er considerably

in their tool requirements and may need tools that are not presently on the

turret. The authors focus on minimizing the total number of tool changes.

This problems di�ers from the typical sequence-dependent setup time problem

in that the changeover for the next job depends not only on the previous job,

but on all preceding jobs, if some of the stations are empty. They describe

several heuristics based on the traveling salesman problem and report that the

TSP heuristic without backtracking gives the best results. They also derive a

branch-and-bound procedure, but it was found to be ine�ective in all but the

smallest instances.
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White and Wilson [74] developed a procedure that classi�es setup oper-

ations and predicts the setup times for a single-machine problem. Then, based

on these predictions, they develop a heuristic based on the TSP to sequence

the jobs. No computational experience is reported.

Bianco et al. [5] propose a branch-and-bound algorithm for

1jrj; sjkjCmax. After establishing some lower and upper bounding schemes

and dominance criteria rules, they test their algorithm on 10-, 15- and 20-job

instances with processing times randomly generated in [1; 10] and ready times

randomly distributed in the following three intervals [0; 25], [0; 40], and [0; 50]

for the 10 and 15-job instances; and in [0; 100] for the 20-job instances. For the

[0; 25] interval, the average CPU time for over 50 randomly generated instances

was 4.2 sec., and 26.2 sec. for the 10 and 15 job instances, respectively. For

the [0; 50] interval, average CPU time was 20.6 sec. and 409.5 sec. for the 10

and 15 job instances. The 20-job instances took, in average, 115.3 sec. of CPU

time.

Gupta et al. [31] considered the single machine bi-criteria scheduling

problem where jobs are from multiple classes and where customer orders con-

sist of at least one job from each of the classes. A setup time is needed whenever

the machine is changed over from a job in one class to a job in another. One

objective is to minimize the makespan which is equivalent to minimize the total

setup time. The other objective is to minimize total carrying costs of the cus-

tomer orders. This cost is measured by the length of the time interval between

the completion times of the �rst job and the last job in the customer order.

They proposed polynomial-time algorithms for the two bi-criteria scheduling

problems in which one objective is to be optimized while holding the other

objective �xed at its optimal value.

Van der Veen and Zhang [73] considered a problem where n jobs are to

be processed on a single machine such that the total required change-over time
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is minimized. They further assumed that the jobs can be divided into K classes

and that the change-over time between two consecutively scheduled jobs solely

depends on the job-classes that the two jobs belong to. They showed that this

problem is solvable in O(n) time for K �xed.

Zdrza lka [76] considered the single-machine scheduling problem in which

each job has a release date, a delivery time, and a sequence-independent setup

time. Preemption is permitted and the objective is to minimize the time by

which all jobs are delivered. He showed that the problem is NP-hard and

proposed an O(n log n) heuristic with a tight worst-case performance bound of

3
2 .

Hansmann [33] presented several heuristics for the setup cost minimiza-

tion in a problem arising from a major cigarette company in Germany. His

threshold heuristic gave better results than his simulated annealing heuristic

in problems with up to 120 jobs.

2.2.2 Heuristics

The most relevant work on heuristics for F jsijk; prmujCmax is due to Simons

[65]. He describes four heuristics and compares them with three benchmarks

that represent generally practiced approaches to scheduling in this environment.

Experimental results for problems with up to 15 machines and 15 jobs are

presented. His �ndings indicate that two of the proposed heuristics (SETUP

and TOTAL) produce substantially better results than the other methods tested.

In this work, we provide an enhanced version of these heuristics by correcting

some of its shortcomings and by adding a local search phase. Full description

is given in Section 6.2.



Chapter 3

Mathematical Formulation

3.1 Statement of Problem

In the 
owshop environment, a set of n jobs must be scheduled on a set of

m machines, where each job has the same routing. Therefore, without loss of

generality, we assume that the machines are ordered according to how they are

visited by each job. Although for a general 
owshop the job sequence may not

be the same for every machine, here we assume a permutation schedule; i.e., a

subset of the feasible schedules that requires the same job sequence on every

machine. We suppose that each job is available at time zero and has no due

date. We also assume that there is a setup time which is sequence dependent

so that for every machine i there is a setup time that must precede the start of

a given task that depends on both the job to be processed (k) and the job that

immediately precedes it (j). The setup time on machine i is denoted by sijk

and is assumed to be asymmetric; i.e., sijk 6= sikj. After the last job has been

processed on a given machine, the machine is brought back to an acceptable

\ending" state. We assume that this last operation takes zero time because

we are interested in job completion time rather than machine completion time.

Our objective is to minimize the time at which the last job in the sequence

�nishes processing on the last machine, also known as makespan. This problem

is denoted by Fmjsijk; prmujCmax or SDST 
owshop.

In modeling this problem as a mixed-integer program (MIP), we consider

11
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two di�erent formulations. In the �rst case, a set of the binary variables is used

to de�ne whether or not one job is an immediate predecessor of another; in the

second case, the binary variables simply determine whether or not one job

precedes another. A set of nonnegative real variables is also included in the

formulations. In either case, they have the same de�nition and are used to

determine the starting time of each job on each machine.

Example 3.1 Consider the following instance of F2jsijk; prmujCmax with four

jobs.

pij 1 2 3 4 s1jk 1 2 3 4 s2jk 1 2 3 4

1 6 3 2 1 0 3 4 1 7 0 2 3 1 6

2 2 2 4 2 1 - 5 3 2 1 - 1 3 5

2 5 - 3 1 2 4 - 3 1

3 2 1 - 5 3 3 4 - 1

4 3 2 5 - 4 7 8 4 -

A schedule S = (3; 1; 2; 4) is shown in Figure 3.1. The corresponding

makespan is 24, which is optimal. 2

Setup time Processing time

25

M1

M2

15 205 10

3

Time

42

421

13

Figure 3.1: Example of a 2� 4 SDST 
owshop

Triangle inequality: The triangle inequality for the setup times is stated as

follows:

sijk + sikl � sijl i 2 I; j; k; l 2 J: (3.1)
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Throughout the sequel, we will assume that the triangle inequality holds. In

most operations (e.g., see [66, 67]), the time it takes to set up a machine from

job j to job l is less than the time it takes to set up a machine from j to another

job k, and then set up the machine from k to l. Nevertheless, if there really

exists a machine i and jobs j; k; l such that sijk + sikl < sijl, we can always

replace sijl with s0ijl = sijk + sikl and force (3.1) to hold as an equality.

3.2 Notation

In the development of the mathematical programming model, we make use of

the following notation.

Indices and sets

m number of machines

n number of jobs

i machine index; i 2 I = f1; 2; : : : ;mg

j; k; l job indices; j; k; l 2 J = f1; 2; : : : ; ng

J0 = J [ f0g extended set of jobs, including a dummy job denoted by 0

Input data

pij processing time of job j on machine i; i 2 I, j 2 J

sijk setup time on machine i when job j is scheduled right before job k;

i 2 I, j 2 J0, k 2 J

Computed parameters
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Ai upper bound on the time at which machine i �nishes processing its last

job; i 2 I,

Ai = Ai�1 +
X
j2J

pij + min

8<
:
X
j2J0

max
k2J
fsijkg;

X
k2J

max
j2J0
fsijkg

9=
;

where A0 = 0

Bij lower bound on the starting time of job j on machine i; i 2 I, j 2 J

Bij = maxfsi0j; Bi�1;j + pi�1;jg i 2 I; j 2 J

where B0j = 0 for all j 2 J

Common variables

yij nonnegative real variable equal to the starting time of job j on ma-

chine i; i 2 I, j 2 J

Cmax nonnegative real variable equal to the makespan;

Cmax = max
j2J
fymj + pmjg

3.3 Model A

Let A = f(j; k) : j; k 2 J0; j 6= kg be the set of arcs in a complete directed

graph induced by the node set J0. We de�ne the decision variables as follows:

xjk =

8<
: 1 if job j is the immediate predecessor of job k; (j; k) 2 A

0 otherwise

In the de�nition of xjk, notice that x0j = 1 (xj0 = 1) implies that job j

is the �rst (last) job in the sequence for j 2 J. Also notice that si0k denotes the

initial setup time on machine i when job k has no predecessor; that is, when

job k is scheduled �rst, for k 2 J . This variable de�nition yields what we call

a TSP-based formulation.



15

Minimize Cmax (3.2.1)

subject to X
j2J0

xjk = 1 k 2 J0 (3.2.2)

X
k2J0

xjk = 1 j 2 J0 (3.2.3)

yij + pij + sijk � yik +Ai(1� xjk) i 2 I; j; k 2 J (3.2.4)

ymj + pmj � Cmax j 2 J (3.2.5)

yij + pij � yi+1;j i 2 I n fmg;

j 2 J (3.2.6)

xjk 2 f0; 1g (j; k) 2 A (3.2.7)

yij � Bij i 2 I; j 2 J (3.2.8)

Equations (3.2.2) and (3.2.3) state that every job must have a prede-

cessor and successor, respectively. Note that one of these 2n + 2 assignment

constraints is redundant in the description of the feasible set. Time-based sub-

tour elimination constraints are given by (3.2.4), and establish that if job j

precedes job k, then the starting time of job k on machine i must not exceed

the completion time of job j on machine i (yij + pij) plus the corresponding

setup time. Here, Ai is a large enough number (an upper bound on the com-

pletion time on machine i). Constraint (3.2.5) assures that the makespan is

greater than or equal to the completion time of all jobs on the last machine,

while (3.2.6) states that a job cannot start processing on one machine if it has

not �nished processing on the previous one. A lower bound on the starting

time for each job on each machine is set in (3.2.8).

In formulation (3.2.1)-(3.2.8), we assume that sij0, the time required to

bring machine i to an acceptable end state when job j is processed last, is zero

for all i 2 I. Thus the makespan is governed by the completion times of the

jobs only. We are also assuming that all jobs need processing on all machines.
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If this last condition were not true, then eq. (3.2.5) could be replaced by

yij + pij � Cmax i 2 I; j 2 J

at the expense of increasing the number of makespan constraints from n to mn.

Note that it is possible to combine pij + sijk in (3.2.4) into a single term

tijk = pij + sijk, but that we still need to handle the processing times pij sepa-

rately in constraints (3.2.5) and (3.2.6).

If the triangle inequality does not hold, constraint (3.2.8) must be re-

placed by

Bij � yij + Ci(1 � x0j) i 2 I; j 2 J;

where Ci is a large enough number (an upper bound on the initial setup time

for machine i).

3.4 Model B

Srikar and Ghosh (S-G) [66] proposed a second MIP formulation for the SDST


owshop. Their formulation contained a slight error that was later corrected

by Sta�ord and Tseng [67]. The Srikar-Ghosh model does not consider the

initial setup time si0k for the �rst job in the sequence, that is, it is assumed to

be zero. Our formulation includes this parameter.

Let Â = f(j; k) : j; k 2 J; j < kg. The decision variables are de�ned as

follows:

xjk =

8<
: 1 if job j is scheduled any time before job k; (j; k) 2 Â

0 otherwise

The MIP formulation is

Minimize Cmax (3.3.1)
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subject to

yij + pij + sijk � yik +Ai(1� xjk) i 2 I; (j; k) 2 Â (3.3.2)

yik + pik + sikj � yij +Ai(xjk) i 2 I; (j; k) 2 Â (3.3.3)

ymj + pmj � Cmax j 2 J (3.3.4)

yij + pij � yi+1;j i 2 I n fmg;

j 2 J (3.3.5)

xjk 2 f0; 1g (j; k) 2 Â (3.3.6)

yij � Bij i 2 I; j 2 J (3.3.7)

Constraints (3.3.2) and (3.3.3) ensure that time precedence is not vio-

lated. They also eliminate cycles. Equation (3.3.4) establishes the makespan

criterion. Equation (3.3.5) states that a job cannot start processing on one

machine if it has not �nished processing on the previous machine. A lower

bound on the starting time of each job on each machine is set in (3.3.7).

Srikar and Ghosh point out that the triangle inequality must hold in or-

der for constraints (3.3.2)-(3.3.3) to hold. However, Sta�ord and Tseng provide

a stronger condition for constraints (3.3.2)-(3.3.3) to be valid; i.e.,

sijk + sikl + pik � sijl i 2 I; j; k; l 2 J: (3.4)

Note that (3.4) is stronger than the triangle inequality (3.1), and implies that

constraints (3.3.2)-(3.3.3) of the model hold, even if (3.1) does not hold for

setup times. They illustrate this by means of an example.

If the triangle inequality does not hold, constraints (3.3.2), (3.3.3) and

(3.3.7) are no longer valid. One possible replacement is

yij + pij + sijk � yik + (n+ 1)Ai(1 � xjk) +Ai[P (k)� P (j)� 1]

yij + pij + sijk � yik + (n+ 1)Aixjk +Ai[P (j)� P (k)� 1]

for i 2 I, (j; k) 2 Â and

Bik � yik + Ci[P (k)� 1]
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for i 2 I, k 2 J , respectively, where Ci is a large enough number (upper bound

on the starting processing time of all jobs on machine i), and P (j) represents

the position in the schedule of job j given by

P (j) =
X
p<j

xpj +
X
q>j

(1� xjq) + 1 j 2 J: (3.5)

In addition, the following constraints must be added to the formulation:

P (j) + 1 � P (k) + n(1� xjk) (j; k) 2 Â

P (k) + 1 � P (j) + nxjk (j; k) 2 Â

Thus, when the triangle inequality does not hold, the problem size increases

considerably.

3.5 Model Comparison

Model A Model B

Variables Binary n(n+ 1) Binary 1

2
n(n� 1)

Real mn + 1 Real mn + 1

Total n(n+ 1) +mn + 1 Total 1

2
n(n� 1) +mn + 1

Constraints (3.2.2) n + 1 (3.3.2) 1

2
mn(n � 1)

(3.2.3) n + 1 (3.3.3) 1

2
mn(n � 1)

(3.2.4) mn(n� 1)

(3.2.5) mn (3.3.4) mn

(3.2.6) n(m� 1) (3.3.5) n(m � 1)

Total mn2 +mn + n + 2 Total mn2 +mn � n

Nonzeros (3.2.2) n(n+ 1) (3.3.2) 3

2
mn(n � 1)

(3.2.3) n(n+ 1) (3.3.3) 3

2
mn(n � 1)

(3.2.4) 3mn(n� 1)

(3.2.5) 2mn (3.3.4) 2mn

(3.2.6) 2n(m� 1) (3.3.5) 2n(m � 1)

Total 3mn2 + 2n2 +mn Total 3mn2 +mn � 2n

Table 3.1: Problem size for models A and B

Table 3.1 shows the problem size in terms of number of variables, con-

straints, and nonzeros for either model. As can be seen, model B is considerably
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smaller than model A in terms of both the number of constraints and the num-

ber of binary variables. This would appear to make it more attractive when

considering exact enumeration methods such as branch and bound (B&B) and

branch and cut (B&C). Nevertheless, the fact that much is known about the

ATSP polytope gives added weight to model A. Table 3.2 displays the number

of binary and real variables, number of constraints, number of nonzeros and

density of the matrix of constraints for several values of m and n.

m � n Model Binary Real Constraints Nonzeros Density

2� 10 A 110 21 252 840 0.025

B 45 21 230 620 0.041

2� 20 A 420 41 902 3280 0.008

B 190 41 860 2440 0.012

10� 10 A 110 101 1212 3400 0.013

B 45 101 1190 3180 0.018

10� 20 A 420 201 4422 13200 0.005

B 190 201 4380 12360 0.007

Table 3.2: Problem size examples for models A and B

To date, it has not been possible to tackle even moderate size instances of

the SDST 
owshop with either of these formulations due mainly to the weakness

of their LP-relaxation lower bounds. LP-based enumeration procedures such

as B&B and B&C require good LP-relaxation lower bounds. For example,

Sta�ord and Tseng required about 6 hours of CPU time on a 80286-based PC

to optimally solve a 5�7 instance using LINDO with formulation B. To improve

the polyhedral representation of the relaxed feasible regions it is necessary to

generate valid inequalities, the strongest being facets. One way to achieve

this is by looking into the related subspaces: the ATSP polytope and the S-G

polytope for models A and B, respectively. Many facets have been developed

for the ATSP polytope over the last 20 years (e.g., see [1, 2, 3, 24, 59]). For

model B, though, the S-G polytope remains unexplored. As we show presently,
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the facets of either of these polytopes can be extended to facets of the SDST


owshop polyhedron.

(b)  Model B

0 1

23

1

23

(a)  Model A

Figure 3.2: Graph representations for schedule (3,1,2)

When comparing the ATSP polytope with the S-G polytope fundamen-

tal di�erences can be observed. In the former, we have a clear picture of what a

feasible solution (also called a tour) looks like in a graph. This makes it easier to

visualize, for instance, when certain constraints, such as the subtour eliminate

constraints, may be violated. However, for model B, it is not a straightfor-

ward matter to identify in a graph a feasible solution from a given set of arcs.

Figure 3.2 shows the graph for a 3-job problem and the solution for schedule

S = (3; 1; 2) for both models. For model B, an undirected graph can be used

because xjk is only de�ned for j < k. The dotted lines represent all feasible

arcs (12 for model A and 3 for B); the solid lines identify the solution.

Figure 3.3 shows how a solution for model B can be built from a solution

for model A. Note that each arc ê 2 Â (Step 2) is visited just once so the

procedure is O(jÂj) = O(n2). In Step 1, a node (job) within brackets ([j])

denotes the job scheduled in the j-th position.
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Procedure A-to-B()

Input: An arc set T (or directed tour, jT j = n+ 1) cor-

responding to a feasible schedule for the SDST 
owshop

under model A.

Output: An arc set T̂ corresponding to the equivalent

schedule under model B.

0: Initialize visited(ê)=NO for ê 2 Â and set T̂ = ;

1: Sort T as

T = f(0; [1]); ([1]; [2]); : : : ; ([n� 1]; [n]); ([n]; 0)g

2: for j = 1 to n do

2a: Choose the j-th arc in T

2b: for each unvisited arc ê 2 Â incident to [j] do

2c: visited(ê)=YES

2d: for each unvisited arc ê 2 Â incident from [j] do

2e: visited(ê)=YES

2f: T̂  T̂ + ê

3: Output T̂

Figure 3.3: Procedure to go from solution of A to solution of B

Likewise, a solution for model A can be easily constructed from a feasible

solution for model B. Let T̂ be an arc set representing a feasible schedule

under model B. Let x̂ 2 BjÂj be its corresponding characteristic vector; that is,

xjk = 1 if (j; k) 2 T̂ , and xjk = 0 otherwise. For each job j, its position in the

schedule P (j) is determined by eq. (3.5) in n(n � 1) operations. The schedule

S is found by sorting the jobs by increasing value of P (j) and a feasible tour T

is easily built from S in O(n) time so that the complete conversion takes O(n2)

time.
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Polyhedral Theory

Concepts and de�nitions relating basic polyhedral theory are contained in Ap-

pendix B.

4.1 Polyhedral Results for Model A

4.1.1 The PA Polyhedron

Consider the MIP model of the SDST 
owshop given by (3.2.1)-(3.2.8). We

are interested in the polyhedral description of the convex hull of the set of

feasible solutions. Let Gn+1 = (Vn+1; An+1) be a directed graph on n+1 nodes,

where each node in the set Vn+1 is associated with a job in J0. We assume

that Gn+1 is complete. Thus jAn+1j = n(n + 1). Let Xn+1 = fx 2 Bn(n+1) :

x is the incidence vector of a tour in Gn+1g.

Let

SA = f(x; y) 2 Bn(n+1)�Rmn+1 : (x; y) is a feasible solution to (3.2.2)-(3.2.8)g;

where the y vector includes the mn time variables (3.2.8) plus the makespan

variable Cmax. Then SA can be represented as follows:

SA = f(x; y) : x 2 Xn+1; (x; y) 2 CA; y 2 Y g;

where Xn+1 is the set of constraints involving the binary variables only, CA =

f(x; y) : (x; y) satis�es (3.2.4)g is the set of coupling constraints involving both

22
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binary and real variables, and Y = fy : y satis�es (3.2.5), (3.2.6), and (3.2.8)g

is the set of constraints involving the real variables only. It is well known

that the set Xn+1 (the ATSP polytope on n + 1 nodes) is characterized by (i)

assignment constraints and (ii) subtour elimination constraints. In the formula-

tion (3.2.2)-(3.2.8), the latter were omitted because they are implied by (3.2.4)

which can be viewed as time-based subtour elimination constraints.

We are interested in the polyhedral structure of PA = conv(SA), the

convex hull of SA. We have n(n + 1) binary variables (xjk's), and mn + 1

nonnegative real variables (yij's and Cmax) giving a total of N = n(n + m +

1) + 1 variables. Note that once a feasible incidence vector x 2 Xn+1 has been

determined, that is, once a given sequence is known, the computation of the

associated y 2 Rmn+1 that minimizes the makespan can be done recursively in

O(mn) operations.

The following proposition will be used for the main theorem which shows

that PA is full-dimensional.

Proposition 4.1 Let � be a positive real number, y0 2 Rt be a vector given by

y0 = � (1; 2; : : : ; t � 1; t)T , and yu 2 Rt be given by yu = y0 + eu, where eu is

the u-th unit vector in Rt. Then, the vectors in the set fy0; y1; y2; : : : ; ytg are

a�nely independent.

Proof: For �0; �1; : : : ; �p 2 R, we prove that the following system of

linear equations

tX
u=0

�uy
u = 0 (4.1)

tX
u=0

�u = 0 (4.2)

implies �u = 0 for all u = 0; : : : ; t.
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From (4.1) we have

tX
u=0

�uy
u = 0 ) �0y

0 +
tX

u=1

�u(y
0 + eu) = 0

)
tX

u=0

�uy
0 +

tX
u=1

�ue
u = 0

) y0
tX

u=0

�u +
tX

u=1

�ue
u = 0

From (4.2), we now have

tX
u=1

�ue
u = 0

so �1 = �2 = : : : = �n = 0 and hence �0 = 0, which completes the proof.

We now state and prove the theorem de�ning the dimension of PA.

Theorem 4.1 Let PA = conv(SA) be the convex hull of SA. Then dim(PA) =

n(n+m� 1)

Proof: The proof consists of two parts.

(a) It is known that one of the 2(n+ 1) assignment constraints (3.2.2)-(3.2.3)

is redundant. This implies that rank(A=; b=) � 2n + 1, where (A=; b=) is

the equality set of PA. It follows from Lemma B.1 that

dim(PA) � N � (2n + 1)

= n(n+m+ 1) + 1 � (2n+ 1)

= n(n+m� 1)

(b) To prove dim(PA) � n(n + m � 1) we will show that there exists a set

of n(n + m � 1) + 1 a�nely independent vectors in RN . In this regard,

consider the subspace Xn+1 of PA. The dimension of the ATSP polyhedron

on n+ 1 vertices is n2�n�1 (e.g., see [27]). This implies that there exists
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a set of K = n2�n a�nely independent vectors x1; : : : ; xK in Rn(n+1), each

being the incident vector of a tour. Also note that for any given xt 2 Xn+1,

there exists a corresponding in�nite number of feasible assignments of the

time variables for PA. For each xt, t = 2; : : : ;K, let yt 2 Rmn+1 be

any corresponding feasible assignment of the time variables on PA. Here,

yt includes the mn time variables yij, and the makespan variable Cmax.

Hence, the set S1 given by

S1 =

( 
x2

y2

!
; : : : ;

 
xK

yK

!)

is a set of feasible (and a�nely independent) vectors in RN , with jS1j =

K � 1 = n2 � n� 1.

For x1 we construct the corresponding y1 as follows. Assume for simplicity

that x1 de�nes the job schedule (1; 2; : : : ; n); that is, xj;j+1 = 1 for all

j = 0; 1; : : : ; n (indices 0 and n + 1 are the same), and xjk = 0 otherwise.

Assume also that the mn+ 1 components of y1 are given in the order

y1 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

y111
...

y1m1

y112
...

y1m2
...

y11n

y1mn

Cmax

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

That is, all the time variables associated with job 1 come �rst, then those

for job 2, and so on, up to job n (the last in the sequence). The makespan

variable comes at the end. Now, it is possible to select a large enough

number � such that the following yields a feasible solution for PA:
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0
BBBBBBBBBBBBBBBBBBBBBBB@

y111

y121
...

y1m1
...

y11n
...

y1mn

Cmax

1
CCCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBBBB@

�

2�
...

m�
...

((n� 1)m+ 1)�
...

mn�

(mn+ 1)�

1
CCCCCCCCCCCCCCCCCCCCCCCA

Let eu be the u-th unit vector in Rmn+1, for all u = 1; : : : ;mn + 1, and

denote the vector y1 + eu by y1;u. By choosing � as

� = max
ijk
fpij + sijkg+ 1

we ensure not only the feasibility of y1 but the feasibility of y1;u for

all u = 1; : : : ;mn + 1, as well. Using Proposition 4.1 with t = mn +

1 and y1 as the base vector, we conclude that the mn + 2 vectors in

fy1; y1;1; y1;2; : : : ; y1;mn+1g are a�nely independent in Rmn+1, which in turn

implies a�ne independence in RN for the points in the set

S2 =

( 
x1

y1

!
;

 
x1

y1;1

!
;

 
x1

y1;2

!
; : : : ;

 
x1

y1;mn+1

!)

with jS2j = mn+ 2.

It is left to show that the vectors in S1 [ S2 are a�nely independent. Let

�t; �u be real numbers for t 2 J1 = f1; : : : ;Kg, and u 2 J2 = f1; : : : ;mn+

1g such that

X
t2J1

�t

 
xt

yt

!
+
X
u2J2

�u

 
x1

y1;u

!
= 0 (4.3)
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X
t2J1

�t +
X
u2J2

�u = 0 (4.4)

This is a linear system of equations for (�t; �u). We now prove that this

system has a unique zero solution. We distinguish three cases:

Case 1: �t = 0 for all t 2 J1

System (4.3)-(4.4) reduces to

X
u2J2

�u

 
x1

y1;u

!
= 0

X
u2J2

�u = 0

Due to the a�ne independence of S2, it follows that �u = 0 for

u 2 J2. Hence, an all-zero solution for (�t; �u) is obtained.

Case 2: �u = 0 for all u 2 J2

The linear system (4.3)-(4.4) becomes

X
t2J1

�t

 
xt

yt

!
= 0

X
t2J1

�t = 0

which leads to �t = 0 for t 2 J1 due to the a�ne independence of

the vectors in S1.

Case 3: There exists I1; I2 6= ; such that �t 6= 0 for all t 2 I1 � J1 and

�u 6= 0 for all u 2 I2 � J2. Here we have �t = 0 for all t 2 J1 n I1

and �u = 0 for all u 2 J2 n I2. We show that Case 3 cannot occur.

The corresponding linear system is

X
t2I1

�t

 
xt

yt

!
+
X
u2I2

�u

 
x1

y1;u

!
= 0
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X
t2I1

�t +
X
u2I2

�u = 0

which can be rewritten as

X
t2I1

�tx
t + x1

X
u2I2

�u = 0 (4.5)

X
t2I1

�ty
t +

X
u2I2

�uy
1;u = 0 (4.6)

X
t2I1

�t +
X
u2I2

�u = 0 (4.7)

We �rst note that �0 �
P

u2I2 �u 6= 0. Otherwise (4.5) and (4.7)

would become

X
t2I1

�tx
t = 0

X
t2I1

�t = 0

which implies, due to the a�ne independence of fxtg, that jI1j =

0. This is clearly a contradiction.

Now consider the following two subcases:

Case 3a: 1 =2 I1

Equations (4.5) and (4.7) become

�0x1 +
X
t2I1

�tx
t = 0

�0 +
X
t2I1

�t = 0

However, this contradicts the a�ne independence of

fxtg.

Case 3b: 1 2 I1

System (4.5)-(4.7) is rewritten as
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(�1 + �0)x1 +
X

t2I1nf1g

�tx
t = 0 (4.8)

X
t2I1

�ty
t +

X
u2I2

�uy
1;u = 0 (4.9)

(�1 + �0) +
X

t2I1nf1g

�t = 0 (4.10)

Equations (4.8) and (4.10), and the a�ne independence

of fxtg imply that I1nf1g = ;; that is, I1 = f1g consists

only of one index. Thus eqs. (4.9) and (4.10) become

�1y
1 +

X
u2I2

�uy
1;u = 0

�1 +
X
u2I2

�u = 0

which contradicts the a�ne independence of fy1; y1;ug

(by Proposition 4.1).

This proves that Case 3 cannot occur.

The results from Cases 1 and 2 prove that S1 [S2 is an a�ne independent

set in RN , the size of set being n(n + m � 1) + 1. We conclude that

dim(PA) � n(n+m� 1).

Thus dim(PA) = n(n +m� 1).

Corollary 4.1 The equality set of PA is given by the assignment constraints

(3.2.2)-(3.2.3); that is,

(A=; b=) = ((A=
ATSP; 0); b=)

where A=
ATSP is the equality set of the associated ATSP on n+ 1 vertices.
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Proof: Lemma B.1 and Theorem 4.1 imply that rank(A=; b=) = 2n+1,

which is the rank of the equality set de�ned by the assignment constraints.

When a proper face F of PA is found to have dimension dim(F ) =

n(n + m � 1) � 1, Theorem 4.1 implies that F is a facet of PA. We now

establish the following relationship between facets of conv(Xn+1) (the ATSP

polytope on n+ 1 nodes) and facets of PA.

Theorem 4.2 Let FATSP = fx 2 P : �x = �0g be a facet of conv(Xn+1).

Then

FA = f(x; y) 2 PA : (�; 0)(x; y)T = �0g

is a facet of PA.

Proof: Let FATSP be a facet of conv(Xn+1). Then dim(FATSP) =

dim(Tn+1)� 1, or, expressed in terms of the rank of its equality set,

rank

  
A=
ATSP

�

!
;

 
b=

�0

!!
= rank(A=

ATSP; b
=) + 1

= 2n + 2

That is, (�; �0) is linearly independent of the rows of (A=
ATSP; b

=). Note that

((�; 0); �0) is a valid inequality for PA and a nonempty face of PA. Let (A=; b=)

be the equality set of PA. Then rank(A=; b=) = 2n+ 1. The equality set of FA

is then given by

(A=
F ; b

=
F ) =

  
A=

�0

!
;

 
b=

�0

!!

where �0 = (�; 0). The rank of this equality set either stays the same at (2n+1)

or increases by one to (2n + 2). Assume the former; i.e., that rank(A=
F ; b

=
F ) =

2n + 1. This would imply that

rank

0
@
0
@ A=

ATSP 0

� 0

1
A ;

 
b=

�0

!1A = 2n+ 1
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yielding

rank

  
A=
ATSP

�

!
;

 
b=

�0

!!
= 2n + 1;

which is a contradiction. Therefore, rank(A=
F ; b

=
F ) = 2n + 2, which gives

dim(FA) = dim(PA)� 1; i.e., FA is a facet of PA.

This result is very important in the sense that any known facet of

conv(Xn+1) can be easily transformed into a facet of PA by just adding the

corresponding zero vector (0 2 Rnm+1) to the inequality de�ning the facet in

Rn(n+1). The identi�cation of such facets would be at the core of any B&C

scheme devised to solve the SDST 
owshop problem.

4.1.2 Lower Bound Mixed-Integer Cuts

For the purpose of developing cuts, we rewrite eqs. (3.2.4) and (3.2.8) as follows:

yij � yik + (Ai + �ijk)xjk � Ai i 2 I; j; k 2 J (4.11)

Bij � yij i 2 I; j 2 J (4.12)

where �ijk = pij + sijk accounts for both the processing and setup times on

machine i. Let zij = yij �Bij, so that 0 � zij and de�ne �ijk = (Ai + �ijk)xjk.

Substituting into (4.11) gives

zij � zik + �ijk � Ai �Bij +Bik (4.13)

Now, we apply Proposition B.1 with N+ = fij; ijkg, N� = fikg, C = fijg,

and L = ;. If C is a dependent set; that is, if � = �ijk + Bij � Bik > 0,

then (4.13) gives rise to the valid inequality

�ijk + (Ai �Bij +Bik)
+(1� xjk) � Ai �Bij +Bik + zik (4.14)

Assuming (Ai �Bij +Bik)+ > 0, (4.14) becomes

�ijk � (Ai �Bij +Bik)xjk � zik or

(pij + sijk +Bij �Bik)xjk � yik � �Bik (4.15)
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which is the desired result. Inequality (4.15) will have an e�ect only if (pij +

sijk + Bij � Bik) > 0; that is, if C, as chosen, is a dependent set. Note that

when xjk = 1, (4.15) becomes Bij + pij + sijk � yik as expected and when

xjk = 0, it reduces to Bik � yik, the default bound. We call this inequality a

lower bound mixed-integer cut (LBMIC).

4.1.3 Upper Bound Mixed-Integer Cuts

Let zbest be the objective function value of the best known feasible schedule,

i.e., a known upper bound on the optimal makespan. Then

Cmj � zbest j 2 J

Let Ui denote an upper bound on the completion time of machine i and let

pimin = min
j
fpijg i 2 I

By letting Um = zbest, Ui can be recursively be computed as:

Ui�1 = Ui � p
i
min i = m;m� 1; : : : ; 2

Then, inequality 3.2.4 can be strengthened by

yij + pij + sijk � yik + (Ui + sijk)(1 � xjk)

Note that when xjk = 1, the inequality will hold as expected, and when xjk = 0

the inequality reduces to

yij + pij � yik + Ui

which will be redundant for all jobs (i; j; k) such that

Cij = yij + pij � Ui

and will exclude schedules that have Cij > Ui. This is �ne, since this implies

that schedule is suboptimal.

The Ui's are updated every time a new primal feasible solution is found.

We called this inequalities the upper bound mixed-integer cut (UBMIC).



33

4.2 Polyhedral Results for Model B

Now consider the MIP model of the SDST 
owshop given by (3.3.1)-(3.3.7).

Let S = fSig, for i = 1; 2; : : : ; n!, be the set of all feasible schedules. For

every schedule Si 2 S there exists an incidence vector xi 2 Bn(n�1)=2. Let

X̂n = fx 2 Bn(n�1)=2 : x is the incidence vector of a scheduleg.

Paralleling the notation in the previous section, let

SB = f(x; y) 2 Bn(n�1)=2 �Rmn+1 : (x; y) satis�es (3.3.2)-(3.3.7)g:

Again, the y vector includes the mn time variables (3.3.7) plus the makespan

variable Cmax. The set SB can be represented as follows: SB = f(x; y) : x 2

X̂n; (x; y) 2 CB; y 2 Y g, where X̂n is the set of constraints involving the

binary variables only, CB = f(x; y) : (x; y) satis�es (3.3.2)-(3.3.3)g is the set

of coupling constraints involving both binary and real variables, and Y = fy :

y satis�es (3.3.4), (3.3.5), and (3.3.7)g is the set of constraints involving the

real variables only. Note that this set Y is the same as de�ned in the previous

section.

We are interested in the polyhedral structure of PB = conv(SB), the

convex hull of SB. Of particular interest is conv(X̂n), the convex hull of X̂n

and its relationship to PB. In contrast with formulation A, and the related

polytope conv(Xn+1), the corresponding subspace X̂n in formulation B has yet

to be unexplored. In this section we �rst provide a more detailed study of the

scheduling polyhedron conv(X̂n). Subsequently, we give some results that link

conv(X̂n) with PB, which in a sense, parallel those that allowed us to extend

the polyhedral structure of conv(Xn+1) to PA in the previous section.

4.2.1 The conv(X̂n) Polyhedron

Throughout this section, we assume that the components of a feasible x 2 X̂n

are stored columnwise; i.e., in the following order:
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x = (x12; x13; x23; : : : ; x1;n�1; x2;n�1; : : : ; xn�2;n�1; x1;n; x2;n; : : : ; xn�1;n)T

so x 2 Bn(n�1)=2.

Lemma 4.1 Conv(X̂n) is full-dimensional; i.e., dim(X̂n) = n(n�1)
2

.

Proof: By induction on n. For n = 2 there are only two schedules,

S1 = (1; 2) and S2 = (2; 1), with corresponding incidence one-dimensional

vectors x1 = (1) and x2 = (0), respectively. Hence, conv(X̂2) is given by

conv(X̂2) = fx 2 R : 0 � x � 1g. Clearly, x = 1=2 is an interior point of

conv(X̂2). It follows from Corollary B.1 that X̂2 is full-dimensional.

Now assume the induction hypothesis; that is, that conv(X̂n) is full-

dimensional. By implication there exists a set of N + 1 a�nely independent

points fx1; : : : ; xN ; xN+1g, where N = dim(X̂n) = n(n�1)
2 and each xi 2 X̂n in

the set is the incidence vector of a schedule. We need to prove that conv(X̂n+1)

is full-dimensional.

In X̂n+1 there is an extra job to be scheduled (job n + 1). The corre-

sponding points have n additional coordinates with respect to the points in X̂n

given by the variables x1;n+1; x2;n+1; : : : ; xn;n+1. Note that for any xi 2 X̂n, the

assignment xi1;n+1 = xi2;n+1 = : : : = xin;n+1 = 0 (which correspond to scheduling

job n+ 1 at the beginning of Si) yields a feasible schedule for X̂n+1 so

( 
x1

0

!
;

 
x2

0

!
; : : : ;

 
xN+1

0

!)
� X̂n+1 � conv(X̂n+1):

Moreover, these vectors are a�nely independent.

For a given xi 2 Xn, say x1, we build n vectors in Xn+1 as follows.

Taking x1 2 Xn as a common base, we append the n-dimensional vector vj =

(xj1;n+1; : : : ; x
j
n;n+1)

T , such that (x1; vj)T 2 X̂n+1, for j = 1; : : : ; n. Here, the

components of vj are determined when job n + 1 is scheduled right after the
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j-th scheduled job in S1, for j = 1; : : : ; n. For instance, assuming for simplicity

that x1 is the incidence vector of S1 = (1; 2; : : : ; n), then

Insert n+ 1 after 1 ) (1; n + 1; 2; : : : ; n) ) v1 = (1; 0; : : : ; 0)

Insert n+ 1 after 2 ) (1; 2; n + 1; 3; : : : ; n) ) v2 = (1; 1; 0; : : : ; 0)
...

Insert n+ 1 after n ) (1; : : : ; n; n+ 1) ) vn = (1; 1; : : : ; 1):

Note that the vectors in fvjg are linearly independent. The set

( 
x1

0

!
; : : : ;

 
xN+1

0

!
;

 
x1

v1

!
; : : : ;

 
x1

vn

!)

has dimensionN+1+n = n(n�1)=2+1+n = (n+1)n=2+1 = dim(X̂n+1)+1. It

remains to prove that these N+1+n vectors are a�nely independent. To do so,

consider the following system of linear equations in (�i; �j), for i = 1; : : : ; N+1,

j = 1; : : : ; n:

X
i

�i

 
xi

0

!
+
X
j

�j

 
x1

vj

!
= 0

X
i

�i +
X
j

�j = 0

This system can be rewritten as

X
i

�ix
i +

X
j

�jx
1 = 0 (4.16)

X
j

�jv
j = 0 (4.17)

X
i

�i +
X
j

�j = 0: (4.18)

Equation (4.17) and the fact that fvjg are linearly independent imply �j = 0

for all j. Thus (4.16)-(4.18) reduces to

X
i

�ix
i = 0
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X
i

�i = 0

It follows from the a�ne independence of fxig that �i = 0 for all i. Therefore,

the (n + 1)n=2 + 1 vectors are a�nely independent so dim(conv(X̂n+1)) =

(n+ 1)n=2 implying that conv(X̂n+1) is full-dimensional.

4.2.2 Facets of conv(X̂n)

We observe that X̂n has certain symmetry in the sense that if x 2 X̂n then

�x 2 X̂n, where �x = (1� x12; : : : ; 1� x1n; : : : ; 1� xn�1;n) is the componentwise

complement of x. This leads to the following lemma.

Lemma 4.2 F = fx 2 conv(X̂n) : �x = �0g is a facet of conv(X̂n) if and

only if �F = fx 2 conv(X̂n) : ��x = �0 �
P

jk �jkg is a facet of conv(X̂n),

where
P

jk �jk is the sum of all components of vector �.

Proof: Since F is a facet of conv(X̂n), dim(F ) = dim(conv(X̂n)) � 1

(by Lemma B.1). Hence, there exists K = dim(conv(X̂n)) a�ne independent

vectors xi 2 F . Consider the vectors f�xig. It is easy to verify that �xi 2 �F .

Furthermore, all the �xi are a�nely independent as well, as shown below.

X
i

�i�x
i = 0 and

X
i

�i = 0 )
X
i

�i(1� x
i) = 0 and

X
i

�i = 0

) 1
X
i

�i �
X
i

�ix
i = 0 and

X
i

�i = 0

)
X
i

�ix
i = 0 and

X
i

�i = 0

) �i = 0 for all i

due to the a�ne independence of the xi vectors, where 1 is a vector with each

component equal to 1. It follows that dim( �F ) = K � 1 and that �F is a facet of

conv(X̂n). The converse is shown similarly.
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Basically, Lemma 4.2 establishes that for every facet of conv(X̂n) there

is a symmetric counterpart which is also a facet of conv(X̂n) and tells us how

to �nd it.

Proposition 4.2 The nonnegativity constraints

xjk � 0 j; k 2 J; j < k

give facets of conv(Xn) for n � 2.

Proof: Let j; k 2 J; j < k. Let �x � 0 represent the constraint �xjk �

0, that is, � = (0; : : : ; 0;�1; 0; : : : ; 0) and �0 = 0 where the -1 component in �

corresponds to �jk. Note that

(a) �x � �0 is a valid inequality of conv(X̂n), so F = fx 2 conv(X̂n) : �x =

�0g is a face of conv(Xn).

(b) F is a proper face since �x � �0 is satis�ed at equality by some xi 2 X̂n

and is a strict inequality for some other xi 2 X̂n. In fact, any schedule Si

where job j is after (before) job k satis�es �x � 0 as an equality (strict

inequality).

We prove the result by showing that conditions of Theorem B.1 hold.

Here �x � �0 represents a nonnegativity constraint, the equality set (A=; b=)

does not exist since conv(Xn) is full-dimensional, and we are concerned with

solutions to the linear system

�xi = �0; (4.19)

where xi is the incidence vector of schedule Si (with components stored row-

wise) and fSig is the set of schedules that satisfy �xi = �0. Hence, it su�ces
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to demonstrate that all solutions (�; �0) to (4.19) for all i are of the form

� = ��; �0 = ��0 for some � 2 R.

Because fSig is the set of schedules satisfying �xi = �0, that is xijk = 0,

then fSig contains all schedules where job k is scheduled before job j. In

particular, S0 = (n; n � 1; : : : ; k; : : : ; j; : : : ; 2; 1) 2 fSig and x0 = 0 2 B
n(n�1)

2 .

Thus

�x0 = �0 , � � 0 = �0 , �0 = 0

so system (4.19) reduces to �x = 0. To determine the solution

� = (�12; �13; : : : ; �1n; : : : ; �n�1;n) 2 R
n(n�1)

2

we proceed as follows. From S0 we obtain S1 by swapping jobs 2 and 1 such

that

S1 = (n; n� 1; : : : ; k; : : : ; j; : : : ; 3; 1; 2) 2 fSig

with corresponding incidence vector x1 = (1; 0; : : : ; 0). Thus

�x1 = 0, �12 = 0:

Similarly, we obtain S2 by swapping jobs 3 and 1:

S2 = (n; n� 1; : : : ; k; : : : ; j; : : : ; 4; 1; 3; 2) 2 fSig

with x2 = (1; 1; 0; : : : ; 0). Thus

�x1 = 0, �13 = 0

because we already have found that �12 = 0.

Observe that every time we swap two adjacent jobs u; v, the corre-

sponding incidence vectors are equal except for the component associated with

these jobs xuv. Also, as long as jobs j and k are not swapped, the result-

ing schedule remains feasible and satis�es �x = �0. Therefore, by swap-

ping job 1 with jobs 4; 5; : : : ; n (one at a time), we arrive at the schedule
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Sn�1 = (1; n; n � 1; : : : ; k; : : : ; j; : : : ; 3; 2), �nding along the way that �14 =

: : : = �1n = 0; that is, �1q = 0 for all q = 2; : : : ; n.

Proceeding similarly with jobs 2; 3; : : : ; j � 1, and evaluating (4.19) for

each generated xi, we �nd �pq = 0 for all p = 1; : : : ; j � 1 and q = p+ 1; : : : ; n.

After the �nal swap, we have

Sl = (1; 2; : : : ; j � 2; j � 1; n; n� 1; : : : ; k; : : : ; j)

for some l.

By shifting one at a time the jobs in S0 scheduled after job j, and by

substituting the corresponding xi in system (4.19), we have recursively found

that �pq = 0 for all p; q such that p < j. If instead of shifting the jobs at the

end of the schedule (after job j), we carry out the same procedure starting

with the jobs at the beginning of the schedule (before job k) we arrive at the

conclusion that �pq = 0 for all p; q such that q > k. That is, given Sl, swap

jobs n and n� 1 to get

Sl+1 = (1; : : : ; j � 1; n� 1; n; n � 2; : : : ; k; : : : ; j)

Then, �xl+1 = 0 implies �n�1;n = 0. Keep on swapping job n with each

of the jobs n � 2; n � 3; : : : ; j one at a time to obtain �n�2;n = �n�3;n =

: : : = �j+1;n; �j;n = 0. After the last exchange, we have the schedule Sl+n�j =

(1; : : : ; j � 1; n� 1; n� 2; : : : ; k; : : : ; j; n). Repeat recursively this shifting pro-

cedure for jobs n � 1; n � 2; : : : ; k + 1, to obtain �pq = 0 for all p; q such that

q = n; n � 1; : : : ; k + 1, with �nal schedule Sr = (1; : : : ; j � 1; k; k � 1; : : : ; j +

1; j; k + 1; k + 2; : : : ; n� 1; n), for some r.

It remains to determine �pq for all p; q such that p = j; j + 1; : : : ; k � 1

and q = p+ 1; : : : ; k. However, by applying the same reasoning, we swap job k

and k � 1 to get �k�1;k = 0. Then we swap job k with k � 2 and so on up to

job j+1. This leads to �k�2;k = �k�3;k = : : : ; �j+1;k = 0 with the corresponding
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schedule Sr+k�j = (: : : ; k � 1; k � 2; k � 3; : : : ; j + 1; k; j; k � 1; : : :). Repeating

these operations for job k � 2; k � 3; : : : ; j + 1, but shifting all the way up to

job j, we �nd �pq = 0 for all remaining (p; q) pairs except (j; k). The resulting

schedule is Ss = (1; : : : ; j � 1; k; j; j + 1; : : : ; k � 1; k + 1; : : : ; n), for some s.

Therefore, �pq = 0 for all (p; q) 6= (j; k).

Hence, a solution for (4.19) is given by (�; 0), where

� = (0; : : : ; 0; �jk; 0; : : : ; 0):

It is straightforward to check that � = ��jk satis�es

� = �� and �0 = ��0

as was to be shown.

Corollary 4.2 The inequalities

xjk � 1 j; k 2 J; j < k

give facets of conv(Xn) for all n � 2.

Proof: Follows from Proposition 4.2 and Lemma 4.2.

In contrast with Xn+1 in model A, it is not possible to identify analogous

ATSP valid inequalities such as subtour elimination constraints, comb inequal-

ities, and D+
k , D�

k inequalities for model B. One set of valid inequalities that

we can identify, though, corresponds to precedence violations for a sequence

of jobs. Table 4.1 shows the valid inequalities that eliminate \cycles" (in the

precedence sense) for any 3-job subsequence. We call these inequalities, for a

subsequence of size t, the t-subsequence elimination constraint (or t-SEC). For

t = 3 we show below that the 3-SEC are facets of conv(X̂n).
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Sequence Constraint

j ! k ! l ) j ! l xjk + xkl � 1 + xjl

j ! l ! k ) j ! k xjl + (1 � xkl) � 1 + xjk

Table 4.1: 3-SECs for conv(X̂n)

Lemma 4.3 The inequalities (3-subsequence elimination constraints)

xjk � xjl + xkl � 0 j; k; l 2 J; j < k < l (4.20)

give facets of conv(X̂n) for all n � 2.

Proof: Each inequality in (4.20) represents a proper face of conv(X̂n)

since it is satis�ed as an equality by some schedule (e.g., S = (l; k; j; : : :)) and

as a strict inequality for some other schedule (e.g., S = (l; j; k; : : :)).

Again we prove the result by showing the conditions of Theorem B.1.

Here, �x � �0 is given by � = (0; : : : ; 0; �jk; 0; : : : ; 0; �jl; 0; : : : ; 0; �kl; 0; : : : ; 0)

and �0 = 0, where �jk = �jl = �1 and �kl = 1. Note that because conv(X̂n) is

full-dimensional, there is no equality set (A=; b=).

Let fSig be the set of schedules that satisfy �xi = �0, for all i. We are

concerned with solutions to the linear system

�xi = �0 (4.21)

where xi is the incidence vector corresponding to schedule Si. It su�ces to

demonstrate that all solutions (�; �0) to (4.21) are of the form � = ��; �0 = ��0

for some � 2 R.

Equation �x = �0 (that is, xjk � xjl + xkl = 0) is satis�ed if one of the

following three cases occur:

(i) xjk = xjl = xkl = 0, which corresponds to Si = (: : : ; l; : : : ; k; : : : ; j; : : :).
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(ii) xjk = 0; xjl = xkl = 1 which corresponds to Si = (: : : ; k; : : : ; j; : : : ; l; : : :).

(iii) xjk = xjl = 1; xkl = 0, which corresponds to Si = (: : : ; j; : : : ; l; : : : ; k; : : :).

Since S0 = (n; n� 1; : : : ; 2; 1) 2 fSig (case (i)), then

�x0 = �0 , � � 0 = �0 , �0 = 0:

By performing the same job shifting procedure we used in the proof of Propo-

sition 4.2 for the schedules associated with case (i), we �nd �pq = 0 for all

(p; q) 62 f(j; k); (j; l); (k; l)g. Thus, (4.21) becomes

�jkxjk + �jlxjl + �klxkl = 0:

Case (ii) and (iii) imply

�jl + �kl = 0

�jk + �jl = 0

which is a 2 � 3 system with solution �jl = �; �jk = �kl = �� for any � 2 R.

Hence, by taking � = �, (�; �0) is given by (�; �0) = (��; ��0). This completes

the proof.

Lemma 4.4 The inequalities

xjk � xjl + xkl � 1 j; k; l 2 J; j < k < l

give facets of conv(X̂n) for all n � 2.

Proof: Follows from Lemma 4.3 and Lemma 4.2.

All 4-SECs are shown in Table 4.2 for all j; k; l;m 2 J; j < k < l < m.

These valid inequalities, however, do not de�ne facets of conv(X̂n). In fact,

because dim(X̂n) = n(n � 1)2 and each 4-SEC can be expressed as the inter-

section of two of the previously developed facets of conv(X̂n) (i.e., combinations

of xjk � 0; xjk � 1, and 3-SEC), they de�ne faces of dimension n(n� 1)=2� 2.
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Sequence Constraint

j ! k! l ! m ) j ! m xjk + xkl + xlm � 2 + xjm

j ! k! m! l ) j ! l xjk + xkm + (1� xlm) � 2 + xjl

j ! l! k ! m ) j ! m xjl + (1� xkl) + xkm � 2 + xjm

j ! l! m! k ) j ! k xjl + xlm + (1� xkm) � 2 + xjk

j ! m! k! l ) j ! l xjm + (1� xkm) + xkl � 2 + xjl

j ! m! l! k ) j ! k xjm + (1� xlm) + (1� xkl) � 2 + xjk

Table 4.2: 4-SECs for conv(X̂n)

The conv(X̂n) polytope can be used to model other scheduling prob-

lems, such as single-machine and permutation 
owshops problems, where ev-

ery schedule is feasible. When real variables are introduced in the scheduling

model, it remains to be determined whether the valid inequalities discussed

above de�ne facets of the complete polyhedron. In the next section we prove

that this is the case for the SDST 
owshop polyhedron.

4.2.3 The PB Polyhedron

We now state and prove the theorem de�ning the dimension of PB. The proof

is very similar to the proof of Theorem 4.1 because a point x 2 X̂n de�nes a

given feasible sequence for PB just as x 2 Xn+1 de�nes a feasible sequence for

PA; moreover, the de�nition of y 2 Rmn+1 is the same for both polyhedrons.

Theorem 4.3 Let PB = conv(SB) be the convex hull of SB. Then PB is full-

dimensional; i.e., dim(PB) = n(n� 1)=2 +mn+ 1

Proof: Let N = n(n � 1)=2 +mn + 1. We will show that there exists

a set of N + 1 a�nely independent vectors in RN .

Consider the subspace X̂n of PB. We proved in Lemma 4.1 that conv(X̂n)

is full-dimensional. This implies that there exists a set of K = n(n� 1)=2 + 1
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a�nely independent vectors x1; : : : ; xK in Rn(n+1), each being the incidence

vector of a schedule. Also note that for any given xt 2 X̂n, there exists a

corresponding in�nite number of feasible assignments of the time variables for

PB.

From this point on the rest of the proof follows that of Theorem 4.1,

part (b). We will just sketch the arguments. From the set fx1; : : : ; xKg we

build two disjoint sets S1; S2 � RN given by

S1 =

( 
x2

y2

!
; : : : ;

 
xK

yK

!)

S2 =

( 
x1

y1

!
;

 
x1

y1;1

!
;

 
x1

y1;2

!
; : : : ;

 
x1

y1;mn+1

!)

where S1 and S2 are sets of feasible (and a�nely independent) vectors in RN ,

with jS1j = K � 1 = n(n � 1)=2 and jS2j = mn + 2, so that jS1 [ S2j =

n(n� 1)=2 +mn+ 2. We then can prove that the points in S1 [S2 are a�nely

independent by showing that the linear system

X
t2J1

�t

 
xt

yt

!
+
X
u2J2

�u

 
x1

y1;u

!
= 0

X
t2J1

�t +
X
u2J2

�u = 0

admits the unique solution �t = �u = 0 for t 2 J1 = f1; : : : ;Kg, and u 2 J2 =

f1; : : : ;mn+ 1g. This leads to conclude that dim(PB) = n(n� 1)=2 +mn+ 1.

We now establish the following relationship between facets of conv(X̂n)

and facets of PB.

Theorem 4.4 Let FX = fx 2 conv(X̂n) : �x = �0g be a facet of conv(X̂n).

Then FB = f(x; y) 2 PB : (�; 0)(x; y)T = �0g is a facet of PB.
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Proof: Let FX be a facet of conv(X̂n). Let (�0; �0) represent the in-

equality �0z � �0 where �0 = (�; 0) 2 RN and z = (x; y) 2 PB. Hence FB

can be rewritten as FB = fz 2 PB : �0z = �0g. Given that FX is a facet of

conv(X̂n), it follows that FB is a proper face of PB.

We prove the result by showing that conditions of Theorem B.1 hold.

Here, the equality set (A=; b=) does not exist since PB is full-dimensional, and

we are concerned with solutions to the linear system

�z = �0 (4.22)

where z is any point in PB satisfying �0z = �0. Hence, it su�ces to demonstrate

that all solutions (�; �0) to (4.22) are of the form � = ��; �0 = ��0 for some

� 2 R.

Since z = (x; y) 2 PB, the system in (4.22) can be rewritten as

�xx+ �yy = �0: (4.23)

Let x1 2 FX . According to the procedure described in the proof of Theo-

rem 4.3, it is possible to construct mn+ 2 feasible a�nely independent points

y0; y1; : : : ; ymn+1, where yu = y0+ eu for all u = 1; : : : ;mn+1. Here eu denotes

the u-th unit vector in Rmn+1. It easy to see that zi = (x1; yi) 2 PB for all

i = 0; : : : ;mn + 1. Moreover, zi satis�es �0zi = �x1 = �0 for all i so that

zi 2 FB. Substituting these mn+ 2 points in system (4.22) we have

�xx
1 + �yy

0 = �0 (4.24)

�xx
1 + �yy

1 = �0 (4.25)
...

�xx
1 + �yy

mn+1 = �0 (4.26)

By subtracting (4.24) from all other eqs. (4.25)-(4.26), we obtain the following

system of order mn+ 1:
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�y(y
1 � y0) = 0
...

�y(y
mn+1 � y0) = 0

Since yi � y0 = ei it follows that �y = 0 2 Rmn+1. This reduces (4.22) to

�xx = �0

where x satis�es �x = �0. Given that FX is a facet, it follows that there

is � 2 R such that �x = ��; �0 = ��0. This implies that � = (�x; �y) =

(��; �0) = �(�; 0) = ��0 and the proof is complete.

4.2.4 Lower Bound Mixed-Integer Cuts

Note that inequalities (3.3.2) and (3.3.7) in model B have the same structure

as inequalities (3.2.4) and (3.2.8) in model A. Thus the valid inequality derived

from these equations for model A also applies for model B; that is,

(pij + sijk +Bij �Bik)xjk � yik � �Bik (4.27)

is a valid inequality for model B. Recall that (4.27) will have an e�ect only

if (pij + sijk + Bij � Bik) > 0. Note that when xjk = 1, (4.27) becomes

Bij + pij + sijk � yik as expected and when xjk = 0, it reduces to Bik � yik,

the default bound.

In a similar fashion, we use inequalities (3.3.3) and (3.3.7), a change of

variable x0jk = 1 � xjk in (3.3.3), and the same procedure to derive the valid

inequality

(pik + sikj +Bik �Bij)(1 � xjk)� yij � �Bij

for model B, where again we must have (pik + sikj + Bik � Bij) > 0 for the

inequality to be useful.
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4.2.5 Upper Bound Mixed-Integer Cuts

Following the development of UB MICs for model A (Section 4.1.3), it is also

possible to strengthen the representations of inequalities (3.3.2) and (3.3.3)

when a given upper bound Ui for completion of machine i is known. In that

section we showed how to compute Ui recursively from a given known upper

bound in the value of the makespan. Then the following inequalities can be

added to model B:

yij + pij + sijk � yik + (Ui + sijk)(1� xjk) (j; k) 2 Â; i 2 I (4.28)

yik + pik + sikj � yij + (Ui + sikj)xjk (j; k) 2 Â; i 2 I (4.29)

When xjk = 1, inequality (4.28) will hold and eq. (4.29) will reduce to

Cik = yik + pik � yij + Ui

which will be redundant for all schedules with Cik � Ui and will exclude those

schedules with Cik > Ui. When xjk = 0, the role of equations are reversed and

we obtain identical results.



Chapter 5

Polyhedral Computations

5.1 Summary of Valid Inequalities

What distinguishes B&C from traditional cutting plane methods is that the

inequalities generated are valid at each node of the search tree. In Chapter 4,

we developed several valid inequalities for formulations A and B. We now sum-

marize these results.

For model A, we showed that if fx 2 P : �x = �0g is a facet of P , where

P is the convex hull of the set of feasible solutions of a (n+ 1)-city ATSP, then

f(x; y) 2 PA : (�; 0)(x; y)T = �0g

is a facet of the convex hull of the set of feasible solutions of the SDST 
owshop,

where x 2 Bn(n+1) corresponds to an incidence vector of a tour in a (n+1)-city

ATSP, y 2 Rnm+1 is the vector of real-variables y in formulation A, and PA

denotes the convex hull of the set of feasible solutions of the SDST 
owshop

under formulation A. This result says that any of the facets developed for the

ATSP can be applied to the SDST 
owshop. In our work, we implemented sub-

tour elimination constrains (SECs) and D+
k and D�

k inequalities (e.g., see [27])

which are two of the most successful facets developed for the ATSP. Among

these, we found that the SECs were much more e�ective. The D+
k and D�

k

inequalities had little or no impact on improving the polyhedral representation

of the SDST 
owshop polyhedron.

48
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We also developed mixed-integer cuts (MICs) of the following form:

(LBMICs) (pij + sijk +Bij �Bik)xjk � yik � �Bik and

(UBMICs) (Ui + sijk)(1� xjk) + yik � yij � pij + sijk

where, Bij is a lower bound on yij as de�ned in Section 3.2, and Ui is an upper

bound on the completion time of machine i.

For model B, we developed 3-subsequence elimination constraints (3-

SECs), 4-subsequence elimination constraints (4-SECs), and both lower and

upper bound mixed-integer inequalities. The k-SEC are inequalities that elim-

inate \cycles" (in the precedence sense) for any k-job subsequence. These are

shown in Table 5.1, where Bij and Ui are de�ned as before.

Cut type Constraint

3-SECs xjk + xkl � 1 + xjl

xjl + (1� xkl) � 1 + xjk

4-SECs xjk + xkl + xlm � 2 + xjm

xjk + xkm + (1� xlm) � 2 + xjl

xjl + (1� xkl) + xkm � 2 + xjm

xjl + xlm + (1� xkm) � 2 + xjk

xjm + (1� xkm) + xkl � 2 + xjl

xjm + (1 � xlm) + (1� xkl) � 2 + xjk

Lower bound MICs (pij + sijk +Bij � Bik)xjk � yik � �Bik

(pik + sikj + Bik � Bij)(1� xjk)� yij � �Bij

Upper bound MICs (Ui + sijk)(1 � xjk) + yik � yij � pij + sijk

(Ui + sikj)xjk + yij � yik � pik + sikj

Table 5.1: Family of valid inequalities for model B

5.2 Separation Algorithms

For a given class of valid inequalities, the associated separation problem can

be stated as follows: Given a point �x 2 Rp satisfying a certain subset of con-

straints, and a family F of SDST 
owshop inequalities, �nd the most violated
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member of F , i.e., an inequality �x � �0 belonging to F and maximizing the

degree of violation ��x � �0. When this problem is solved optimally, we say

that we have an exact separation algorithm. However, sometimes the separa-

tion problem is as di�cult as the original problem so it is necessary to resort to

heuristics to identify violated inequalities. Below we describe the procedures

developed for models A and B.

5.2.1 Separation Procedures for SECs for Model A

Let (�x; �y) 2 RjAj�Rmn+1 be a point satisfying constraints (3.2.2)-(3.2.6). This

point is obtained by relaxing the integrality restriction on the binary variables

x and solving the corresponding LP. As stated in Section 5.1, any facet for

the ATSP is a facet for the SDST 
owshop, where only the binary variables

x are considered. Therefore, we drop the real variables y and are left with

the problem of �nding a violation of the classical TSP subtour elimination

constraint

X
(j;k)2A : j;k2W

�xjk � jW j � 1 (5.1)

for some W � J; 2 � jW j � n � 1, or prove that none exists. Note that (5.1)

is equivalent to

X
j2W

k2JnW

�xjk +
X

j2JnW
k2W

�xjk � 2 (5.2)

SECs for the ATSP are symmetric inequalities, that is, inequalities of the

form �x � �0 with �jk = �kj for all (j; k) 2 A. Symmetric inequalities for the

ATSP have a very important property. It has been shown [27] that there exists

a correspondence between valid inequalities for the ATSP and valid inequalities

for the symmetric TSP (STSP). If we de�ne the mapping f : RA ! RE (A is

the arc set of the complete digraph and E is the edge set of the corresponding

undirected graph) as follows: f(�x) = x̂, where x̂jk = �xjk+�xkj for all j 6= k, then
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we have f(P ) = Q, where P and Q are the polytopes of the ATSP and STSP,

respectively. In other words, every inequality
P

e2E �ex̂e � �0 for STSP can be

transformed into a valid ATSP inequality by simply replacing x̂e by xjk + xkj

for all e = (j; k) 2 E. This produces the symmetric inequality �x � �0, where

�jk = �kj for all j; k 2 J; j 6= k. Conversely, every symmetric ATSP inequality

�x � �0 corresponds to the valid STSP inequality
P

e2E �ex̂e � �0.

The above correspondence implies that every separation algorithm for

STSP can be used, as a black box, for ATSP as well. Therefore, given the

point �x, we �rst de�ne the symmetric counterpart x̂ of �x by the transformation

x̂jk = �xjk + �xkj for all j; k 2 J , and then apply a STSP separation algorithm

to x̂.

Now, let us de�ne the undirected support graph of x̂, denoted G(x̂), as

the graph formed by n + 1 vertices (n jobs plus a dummy job) and an edge

(j; k) of weight x̂jk for each x̂jk > 0. The problem of �nding a violated SEC for

STSP is equivalent to �nding a cut in G(x̂) that is less than 2. That is, given

x̂ 2 RE satisfying 0 � x̂jk � 1 for all (j; k) 2 E and the assignment constraints

(3.2.2)-(3.2.3), �nd a nonempty proper subset W of J such that

X
j2W

k2JnW

x̂jk < 2 (5.3)

holds, or prove that no such W � J exists, where (5.3) is the violated version

of (5.2) for the symmetric case.

Consequently, what we are interested in is �nding a minimum capacity

cut-set in the support graph G(x̂) where the capacities are given by the weights

x̂jk, (j; k) 2 E. If the minimum cut-set in G(x̂) has a capacity which is greater

than or equal to 2, then we conclude that there exists no SEC that is violated

by x̂. Otherwise a vertex set W given by a minimum capacity cut-set de�nes

a violated SEC.
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To solve the separation problem, we use the MINCUT algorithm devel-

oped by Padberg and Rinaldi [55]. This algorithm has a time complexity of

O(n4), which is the same complexity as the algorithm developed by Gomory

and Hu [26]. However, empirical evidence over a large class of graphs has

demonstrated the superiority of MINCUT over the Gomory-Hu procedure.

Example 5.1 Consider the following 7-job instance of F2jsijk; prmujCmax.

pij j = 1 2 3 4 5 6 7

i = 1 68 43 95 95 69 66 55

2 44 66 74 92 34 55 52

s1jk k = 1 2 3 4 5 6 7

j = 0 30 33 25 29 39 32 31

1 - 37 24 26 27 34 39

2 22 - 39 28 31 29 31

3 25 32 - 40 33 23 40

4 35 28 40 - 25 25 27

5 40 28 29 29 - 40 23

6 32 26 32 29 20 - 28

7 37 25 28 37 35 26 -

s2jk k = 1 2 3 4 5 6 7

j = 0 35 33 24 40 21 27 40

1 - 35 20 33 37 20 32

2 27 - 24 28 35 20 33

3 30 20 - 36 24 34 35

4 29 36 25 - 20 40 27

5 35 32 20 38 - 28 29

6 34 26 22 23 39 - 27

7 20 39 20 37 40 25 -

Suppose that at some node in the B&C search tree, the following frac-

tional solution is obtained (LP relaxation):

�x12 = 0:8540 �x40 = 1:0000 �y11 = 30 �y21 = 98
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�x13 = 0:1460 �x53 = 0:8540 �y12 = 33 �y22 = 76

�x25 = 0:9113 �x57 = 0:1460 �y13 = 25 �y23 = 120

�x27 = 0:0887 �x64 = 0:8723 �y14 = 29 �y24 = 124

�x31 = 0:6375 �x67 = 0:1278 �y15 = 39 �y25 = 108

�x32 = 0:0386 �x72 = 0:1074 �y16 = 32 �y26 = 98

�x34 = 0:1278 �x76 = 0:8926 �y17 = 31 �y27 = 164

�x35 = 0:0887 �x01 = 0:3625 �Cmax = 216

�x36 = 0:1074 �x07 = 0:6375

1

0

2

3

4

5

6

7 1

0

2

3

4

5

6

7

(a) (b)

Figure 5.1: The support graph of x̂

We transform �x into its corresponding symmetric counterpart x̂ using

the transformation x̂jk = �xjk + �xkj and then form G(x̂), its support graph

(depicted in Figure 5.1(a)). The edge weights are given by

Edge Weight Edge Weight

(0,1) 0.3625 (2,7) 0.1961

(0,4) 1.0000 (3,4) 0.1278

(0,7) 0.6375 (3,5) 0.9427

(1,2) 0.8540 (3,6) 0.1074

(1,3) 0.7835 (4,6) 0.8723

(2,3) 0.0386 (5,7) 0.1460

(2,5) 0.9113 (6,7) 1.0204
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By applying the MINCUT algorithm, we �nd that the minimum cut-set

is given by W = f1; 2; 3; 5g (shown in Figure 5.1(b)) with cut capacity equal

to x01 + x27 + x34 + x36 + x57 = 0:9398. Since 0:9398 < 2, the set W violates

the following SEC:

x12 + x13 + x15 + x21 + x23 + x25

+ x31 + x32 + x35 + x51 + x52 + x53 � 3 = jW j � 1

for the ATSP. 2

5.2.2 Separation Procedures for D+
k and D�

k Inequalities

i 3

i 2

i 1

i 4

i k-1

i k

2

1

Figure 5.2: The Support Multigraph of a D+
k inequality

The following inequalities were derived by Gr�otschel and Padberg [27]:

(D+
k ) xi1ik +

kX
h=2

xihih�1 + 2
k�1X
h=2

xi1ih +
k�1X
h=3

h�1X
j=2

xijih � k � 1 (5.4)

(D�
k ) xiki1 +

kX
h=2

xih�1ih + 2
k�1X
h=2

xihi1 +
k�1X
h=3

h�1X
j=2

xihij � k � 1 (5.5)
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where (i1: : : : ; ik) is any sequence of k 2 f3; : : : ; n � 1g distinct nodes. A

D+
k inequality for k = 6 is depicted in Figure 5.2, where arcs in dotted

and solid line have coe�cient 2 and 1, respectively. D+
k and D�

k inequali-

ties are facet-inducing for the ATSP polytope [24], and are obtained by lift-

ing the cycle inequality
P

(j;l)2C xjl � k � 1 associated with the circuit C =

f(i1; ik); (ik; ik�1); : : : ; (i2; i1)g and C = f(i1; i2); : : : ; (ik�1; ik); (ik; i1)g, respec-

tively.

The separation problem for D+
k inequalities consists of �nding a node

sequence (i1; : : : ; ik), 3 � k � n � 1, such that (5.4) is violated. An exact

enumeration scheme is proposed by Fischetti and Toth [25]. Here we use the

following procedure. We �rst attempt to �nd all cycles in G(�x). Although the

number of cycles in a complete graph may be large, usually G(�x) (coming from

the SDST 
owshop fractional solution) is relatively sparse, which allows us to

identify the cycles in a relatively short amount of time. Then, for each cycle

we attempt to �nd a violated D+
k and store the one with the largest degree of

violation.

As pointed out by Fischetti and Toth [25], the D�
k inequalities can be

thought of as derived from D+
k inequalities by swapping the coe�cient of the

two arcs (j; k) and (k; j) for all j; k 2 J , j < k. This is called a transposition

operation. They show how this transposition enables the use of the separa-

tion procedures designed for D+
k inequalities as a separation procedure for D�

k

inequalities.

After implementing the D+
k and D�

k separation procedures, we found

they had very little impact on the overall performance of our B&C algorithm.

Empirically, the SECs did a far better job in tightening the polyhedral rep-

resentation. In our computations, only a very small number of D+
k and D�

k

inequalities were identi�ed and, when added to the set of cuts, provided an

insigni�cant improvement in the value of the LP relaxation.
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Example 5.2 (Example 5.1 continued)

For the same fractional point (�x; �y), consider the following node sequence

(3; 5; 2; 1; 0; 4). Evaluating eq. (5.4) for k = 6 and (i1; : : : ; i6) = (3; 5; 2; 1; 0; 4),

we see that

�xi1i6 +
6X

h=2

�xihih�1 + 2
5X

h=2

xi1ih +
5X

h=3

h�1X
j=2

xijih = (�x34 + �x40 + �x01

+ �x12 + �x25 + �x53)

+ 2(�x35 + �x32 + �x31 + �x30)

+ (�x52 + �x51 + �x21

+ �x50 + �x20 + �x10)

= (4:1096) + 2(0:7648) + (0:0)

= 5:6392 > 5 = k � 1

is a violated D+
6 inequality at �x. 2

5.2.3 Separation Procedures for 3-SECs and 4-SECs for Model B

Given that there is a polynomial number (O(n3) and O(n4)) of 3-SECs and

4-SECs (see Table 5.1), the corresponding separation problem can be solved

optimally by simply looping over all indices for each type of 3-SECs (2 types)

and 4-SECs (6 types). Empirically we found that the implementation of 4-SECs

had very little or no impact at all on the performance of the B&C algorithm.

5.2.4 Separation Procedures for LBMICs and UBMICs

From Section 5.1 we can see that LBMICs for both models can be expressed

in the following form:

�ijkxjk � yik � �ijk

where �ijk and �ijk are constants depending on problem data for i 2 I and

(j; k) 2 A (Â) for model A (B). Thus given a point (�x; �y), by looping over all
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possible index values i; j; k, we �nd the inequality such that

�ijk�xjk � �yik � �ijk

is maximized. This can be done in O(mn2) time.

Similarly, the UBMICs for both models can be expressed as


ijkxjk + yik � yij � �ijk

where 
ijk; �ijk are constants that depend on problem data. Again, by looping

over all possible values of indices i; j; k the separation problem is solved exactly

in O(mn2) time.

5.3 The Branch-and-Cut Method

Branch and cut (B&C) was introduced by Crowder and Padberg [14] who

successfully solved large-scale instances of the well-known symmetric traveling

salesman problem. It is considered state-of-the-art for the exact optimization

of TSPs. The success of this method depends on the ability to �nd \strong"

valid inequalities of the convex hull of the set of feasible solutions for a given

mixed-integer program. This has been the case for the TSP, where many valid

inequalities have been developed over the past 20 years. The SDST 
owshop,

however, has not been studied from a polyhedral perspective so one of our aims

is to assess the e�ectiveness of B&C on this type of problem.

A typical B&B algorithm maintains a list of subproblems (nodes) whose

union of feasible solutions contains all feasible solutions of the original problem.

The list is initialized with the original problem itself. In each major iteration

the algorithm selects a current subproblem from the list of unevaluated nodes.

Typically in this subproblem, several of the binary variables have already been

�xed to either zero or one when the node was generated. The algorithm solves

the LP relaxation of this subproblem. This relaxation provides a lower bound
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(for a minimization problem) for the original problem. Depending on the value

of the solution, the node is either fathomed (e.g., if the relaxed LP is infeasible,

or if the lower bound value exceeds the value of the best known feasible solu-

tion), which means that no further processing of the node is necessary, or split

into new subproblems (children nodes) whose union of feasible solutions con-

tains all feasible solutions of the current subproblem. These newly generated

subproblems are added to the list of unevaluated subproblems.

Iterations are performed until the list of subproblems to be fathomed

is empty. The crucial part of a successful B&B algorithm is the computation

of the lower bounds. The better the LP-representation of the problem, the

tighter the lower bound. This has a tremendous impact on the computational

e�ort because it improves the chances that a node will be fathomed. Thus

the corresponding portions of the search tree will not have to be evaluated.

One way to improve the LP-representation of a given problem is by adding

valid inequalities (cutting planes or cuts). B&C is the procedure developed to

implement this idea.

Figure 5.3 shows a 
ow chart of our B&C algorithm which was coded

within MINTO [52] using many of its built-in features. To discuss the relevant

steps of the algorithm, the following notation is used: Zlp is the objective

function value of the current subproblem's LP relaxation, Zbest is the objective

function value of the best feasible solution known so far, and Zheur is the

objective function value of a feasible solution delivered by a heuristic.

Read data: Read problem data and initialize the best global feasible so-

lution value Zbest to in�nity.

Preprocess: After the data have been read in, this stage attempts to im-

prove the original formulation by removing redundant con-

straints and applying some probing techniques. The underly-

ing idea of probing [64] is to analyze each of the inequalities of
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the system of inequalities de�ning the feasible region in turn,

trying to establish whether the inequality forces the feasi-

ble region to be empty, whether the inequality is redundant,

whether the inequality can be used to improve the bounds

on the variables, whether the inequality can be strengthened

by modifying its coe�cients, or whether the inequality forces

some of the binary variables to either zero or one.

Select: A subproblem is chosen from the list of unevaluated can-

didates. Here we use a best-bound node selection strategy,

which chooses the subproblem with the smallest lower bound.

Solve LP: The LP relaxation of the current subproblem is solved. We

call its solution value Zlp. If the problem is inconsistent or

Zlp > Zbest the node is fathomed and we go back to the selec-

tion step. If the solution satis�es integrality and is feasible,

then we update the current best global feasible solution (if

Zlp < Zbest), fathom the node, and go back to the selection

step. Otherwise, we apply a heuristic in an attempt to �nd

an integer feasible solution.

Primal heuristic: A heuristic is applied to see if it is possible to convert the

current fractional solution to one that is integral. If success-

ful, we update the current best global feasible solution (if

Zheur < Zbest), fathom the node, and go back to the selection

step. In our implementation, we apply the SETUP heuristic

(discussed in [62]) to the root node to start with a good fea-

sible solution and use MINTO's built-in heuristic thereafter

(invoked every 25 nodes).

Generate cuts: An attempt is made to identify a violated valid inequality.

This is the most important component of the algorithm. The
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generated inequalities are SECs (facet-inducing), D+
k and

D�
k inequalities (facet-inducing), LBMICs, and UBMICs for

model A, and 3-SECs (facet-inducing), 4-SECs, UBMICs,

and LBMICs for model B. If successful, we add the gener-

ated constraints to the formulation of the current subproblem

and go back to solve the LP.

Branch: We need to specify how to partition (branch) the set of feasi-

ble solutions at the current node. For this type of formulation

we do 0-1 variable �xing. This is based on �xing the value of

a binary variable to either 0 or 1; i.e., two nodes are created.

The way we determine the branching variable is by selecting

the one with fractional value closest to 1
2
. The idea behind it

is that it �xes a variable whose value in the optimal solution

is hard to determine. The two newly created subproblems

are added to the list of unevaluated nodes.

Although the conceptual algorithm stops when the list of unevaluated

nodes is empty, we apply the following stopping criteria: (i) relative gap per-

centage; i.e., stop when a global integer feasible solution is within �% of opti-

mality, (ii) time limit, and (iii) number of evaluated nodes limit.

5.4 Computational Evaluation

For the purpose of evaluating the B&C approach, we embedded all algorith-

mic components discussed above in MINTO (Mixed INTeger Optimizer [52]).

MINTO is a shell that facilitates the development of implicit enumeration and

column generation optimization algorithms that rely on linear relaxations. The

user can enrich its basic features by providing a variety of specialized applica-

tion functions to achieve maximum e�ciency for a problem class. CPLEX [13]
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was used to solve the LP relaxations. Our functions were written in C++ and

linked to the MINTO 2.2 and CPLEX 4.0 libraries using the Sun compiler CC,

version 2.0.1, with the optimization 
ag set to -O. CPU times were obtained

through MINTO. The code was validated by solving several 100- and 150-job,

1-machine instances to optimality. Recall that the 1-machine problem is an

ATSP.

To conduct our experiments we used randomly generated data from

class D generator (see Appendix E),. It has been documented [30] that most

real-world instances have a setup/processing time ratio between 20% and 40%.

Class D tries to capture this behavior by randomly generating: pij 2 [20; 100]

and sijk 2 [20; 40].

5.4.1 Experiment 1: B&B vs. B&C

In the �rst experiment our aim was to compare B&B with B&C. While it is true

that B&C provides a stronger LP-representation, it also true that the size of the

linear programs to be solved grows with the number of added cuts. Thus if the

generated cuts are not especially e�ective, the resulting lower bound improve-

ment will be more than o�set by the corresponding increase in computational

e�ort. To make this comparison, we generated 5 class D instances for each

machine combination m 2 f2; 4; 6g and n 2 f7; 8g, with a stopping limit of 90

CPU minutes. In a preliminary experiment we determined the most e�ective

cuts for each model within the B&C framework. The best performance was

observed using SECs and UBMICs for model A, and 3-SECs and the UBMICs

for model B. The remaining computations were made with these cuts only.

Table 5.2 displays the results for models A and B for each machine

instance. The problem size is given by number of constraints (NC), number of

variables (NV), and number of nonzeros (NZ). The number of binary variables

is given in parenthesis (B). The average algorithmic performance over the �ve
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Instance size Average performance

m� n NC NV(B) NZ Model Method Nodes Cuts LP rows Time

2� 7 114 71(56) 392 A B&B 22687 0 114 10.1

A B&C 10091 129 236 6.7

98 36(21) 280 B B&B 11457 0 98 2.9

B B&C 7340 72 168 2.9

4� 7 212 85(56) 672 A B&B 21523 0 212 14.1

A B&C 9831 129 328 9.8

196 50(21) 560 B B&B 8392 0 196 3.6

B B&C 5261 73 266 3.4

6� 7 310 99(56) 952 A B&B 21635 0 310 20.2

A B&C 9864 132 435 14.1

294 64(21) 840 B B&B 9137 0 294 7.0

B B&C 5402 74 366 5.4

Table 5.2: Performance of B&B and B&C on 7-job class D instances for models

A and B

instances is shown in terms of number of evaluated nodes (nodes), number of

cuts added (cuts), maximum number of rows in the LP (LP rows), and CPU

time in minutes. All instances were solved to optimality.

As can be seen, even though the size of the LPs increases (LP rows),

the generated cuts are found to be e�ective on reducing the size of the feasible

region as the B&C evaluates far fewer nodes and runs signi�cantly faster. For

model A the average relative time savings with B&C are 51%, 44%, and 43%,

in the 2-, 4- and 6-machine instances, respectively. For model B, we observe

little di�erence for the 2-, and 4-machine instances. The B&C starts to have

an e�ect, however, as the size of the instance gets large. This can be seen in

the 6-machine instances where B&C results in a relative time savings of 31%.

For model B, when we increase the number of jobs, B&C has a more

pronounced impact. This can bee seen in Table 5.3 where the results for 8-

job instances under model B are displayed. The B&C runs on average 33%,
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Instance size Average performance

m� n NC NV(B) NZ Method Nodes Cuts LP rows Time

2� 8 128 45(28) 368 B&B 76096 0 128 61.4

B&C 45072 114 138 46.0

4� 8 256 61(28) 736 B&B 68579 0 256 68.6

B&C 39149 116 366 55.3

6� 8 384 77(28) 1104 B&B 59154 0 384 73.3

B&C 34818 116 493 63.5

Table 5.3: Comparison of B&B and B&C on 8-job class D instances for model

B

24%, and 15%, faster than the B&B on the 2-, 4-, and 6-machine instances,

respectively. Table 5.4 displays the results when model A was used. As can

be seen, the algorithm was unable to solve the problem (after 90 minutes)

under either B&B or B&C. However, the optimality gaps (shown in the last

column) are smaller under the latter. The relative optimality gap in MINTO

is computed as follows:

best upper bound � best lower bound
best upper bound � 100%

Instance size Average performance

m � n NC NV(B) NZ Method Nodes Cuts LP rows Time Gap (%)

2� 8 146 89(72) 512 B&B 50637 0 146 90.0 50.3

B&C 49090 276 354 90.0 38.3

4� 8 274 105(72) 880 B&B 45329 0 274 90.0 43.6

B&C 39825 289 487 90.0 37.5

6� 8 402 121(72) 1248 B&B 42719 0 402 90.0 39.6

B&C 32486 287 607 90.0 36.3

Table 5.4: Comparison of B&B and B&C on 8-job class D instances for model

A
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5.4.2 Experiment 2: Model A vs. Model B

In Section 3.5 we pointed out the trade-o� between models A and B. On one

hand, model A can bene�t from a better structured underlying TSP. In con-

trast, model B is smaller, using only about half the number of the binary

variables used by model A.

By looking at the B&C rows for models A and B in Table 5.2 we can

make a comparison of both models for 7-job instances. It can be seen that

the size of the model (especially in terms of the number of binary variables)

plays an important role. Computations are signi�cantly better when model

B is used. In fact, the e�ect is even more dramatic when we attempted to

solve 8-job instances. By using model B, we were able to solve 8-job instances

(Table 5.3) in an average of 46, 55.3, and 63.5 minutes of CPU for 2-, 4-, and

6-machines, respectively. When model A was used (Table 5.4), the algorithm

stopped after 90 minutes with average optimality gaps of 38%, 37%, and 36%,

respectively.

5.4.3 Experiment 3: Larger Instances

Instance size Average performance

m � n NC NV(B) NZ Nodes Cuts LP rows Gap (%)

2� 10 200 66(45) 580 26428 241 412 34.8

4� 10 400 86(45) 1160 20615 242 612 30.5

6� 10 600 106(45) 1740 16453 241 812 26.7

Table 5.5: Evaluation of B&C on 10-job class D instances for model B

The last experiment assesses the limited scope of the polyhedral ap-

proach. Table 5.5 shows the average performance of B&C on 10-job instances

with a 60-minute time limit for model B. We can see that the optimality gaps

are 26-34%.
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5.5 Conclusions

We provide empirical evidence that using model B with B&C yields better re-

sults on solving instances of the SDST 
owshop problem for class D instances.

The same results are observed when class A and C instances are used. However,

the fact that even with the development of valid inequalities we are still un-

able to solve instances with 10 or more jobs shows that LP-based enumeration

methods are wanting. The polyhedral representation of the problem is still not

strong enough. In fact, we made several attempts to improve the performance

of the B&C algorithm, such as changing branching strategies, �xing variables

in a preprocessing phase, and reduced cost �xing, but the improvements were

not signi�cant. This di�culty is inherent to the SDST 
owshop (2 or more

machines) since we were able to successfully solve 100- and 150-job instances

restricted to the 1-machine case. Recall that minimizing the makespan in SDST


owshop is equivalent to �nding the minimum length tour of an (n + 1)-city

ATSP when the number of machines is set equal to 1. It is evident that once we

start adding machines, the ATSP structure starts to weaken. One explanation

for this is that, unlike the ATSP where we are looking for a good sequence

of nodes, it is di�cult here to characterize fully what a good sequence of jobs

really is. What might be a good sequence for a certain machine, may be a bad

sequence for the others. This makes this problem extremely nasty.

The quality of the LP relaxation lower bound led us to develop more

e�cient non-LP-based lower bounding procedures, which gave rise to a more

e�ective enumeration scheme. This is the subject of Chapter 7.
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Figure 5.3: Flow chart of the B&C algorithm



Chapter 6

Heuristics

6.1 Preliminaries

In this chapter we present two heuristics for the SDST 
owshop. HYBRID()

is a deterministic heuristic that attempts to exploit the similarities between

our problem and the ATSP. We also develop a randomized algorithm called

GRASP(). Both heuristics are further enhanced by developing a family of local

neighborhoods and implementing a corresponding local search procedure. A

computational evaluation is given at the end of the chapter.

6.2 Hybrid Heuristic

6.2.1 ATSP-Based Heuristics

The best known heuristic for the SDST 
owshop is due to Simons [65]. The

main idea of his algorithm is �rst to transform an instance of the SDST 
owshop

into an instance of the ATSP by computing an appropriate cost matrix, and

then to solve this by applying a well-known heuristic for the ATSP.

In the �rst of two phases of Simons' heuristics, an instance of the ATSP

is built as follows. Every job is identi�ed with a \city." Procedure TOTAL

computes the entries in the distance (cost) matrix as the sum of both the pro-

cessing and setup times over all the machines. Procedure SETUP considers the

67
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sum of setup times only. In the second phase, a feasible tour is obtained by

invoking a heuristic for the ATSP. This heuristic uses the well-known Vogel's

approximation method (VAM) for obtaining good initial solutions to trans-

portation problems with a slight modi�cation to eliminate the possibility of

subtours. The ATSP solution maps back into a feasible schedule for the SDST


owshop.

Although this approach seems suitable, given the strong similarities be-

tween the SDST 
owshop and the ATSP, Simons' work was limited by the

following two drawbacks. First, the cost function that penalizes scheduling

two jobs together ignores completely the 
owshop aspect of the problem; that

is, there might be pairs of jobs that cause large amounts of blocking and/or

machine idle time when they are scheduled together even though their setup

times are small. In addition, no e�orts were made to improve the solution by

means of a local search procedure.

6.2.2 Description of Hybrid Heuristic

We attempt to improve Simons' idea by incorporating both the setup times

and schedule �tness criteria in a penalty function between any pair of jobs. Let

Cjk be the cost of scheduling job j right before job k. This measure can be

expressed as

Cjk = �Rjk + (1 � �)Sjk (6.1)

where � 2 [0; 1], and Rjk and Sjk are the costs of scheduling jobs j and k

together, from the 
owshop and the setup time perspective, respectively. The

setup cost component is simply

Sjk =
X
i2I

sijk

such that when � = 0, the cost measure is reduced to Simons' measure for his

SETUP heuristic.
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We now develop the cost Rjk. Here we follow an idea similar to the

one used by Stinson and Smith [68] for F jjCmax. Let tij denote the completion

of job j on machine i. Assume that job k immediately succeeds job j. The

completion time of job k on any machine can then be recursively determined

as follows:

tik = maxftij + sijk; ti�1;kg+ pik

The relationship between tij +sijk and ti�1;k plays a key role here. If tij +sijk >

ti�1;k, then job k will arrive at machine i before job j has released machine i;

hence job k will be blocked in the queue at machine i for tij + sijk � ti�1;k time

units. On the other hand, if tij + sijk < ti�1;k, then machine i will be idle

for ti�1;k � (tij + sijk) time units while waiting for job k to arrive. The ideal

situation, of course, will occur when tij + sijk = ti�1;k where neither a block to

job k nor idleness to machine i would result.

Now, let us take this rationale a step further by considering the set of

circumstances which would have to take place if tij + sijk were to ideally equal

ti�1;k for the entire period where both j and k are jointly in process in the

schedule. Clearly, this will occur when pij + sijk = si�1;jk + pi�1;k for every

machine i = 2; : : : ;m. Although we would seldom, if ever, expect such an

ideal set of circumstances in practice, we still may recognize that the closer we

can match the sets of pij + sijk and si�1;jk + pi�1;k values for all machines, the

smoother jobs j and k will tend to �t together within the schedule. We now

de�ne a residual, rijk as

rijk = pij + sijk � (si�1;jk + pi�1;k) i 2 I n f1g; j; k 2 J

For any pair (j; k), j 6= k, we may compute m � 1 such residuals. These

residuals are then heuristically combined to yield the overall cost, Rjk. The

following choices were considered
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Rule 1: Sum of the absolute residuals (R1)

R1
jk =

mX
i=2

jrijkj

Rule 2: Sum of positive residuals only (R2)

R2
jk =

mX
i=2

[rijk]
+

where [rijk]+ = rijk if rijk > 0, 0 otherwise.

Rule 3: Sum of negative residuals only (R3)

R3
jk =

mX
i=2

[rijk]
�

where [rijk]� = �rijk if rijk < 0, 0 otherwise.

Rule 4: Sum of absolute residuals with positive residuals weighted double

(R4)

R4
jk =

mX
i=2

2[rijk]
+ + [rijk]

�

Rule 5: Sum of absolute residuals with negative residuals weighted double

(R5)

R5
jk =

mX
i=2

[rijk]
+ + 2[rijk]

�

With R1 each residual, regardless of its direction of error, is equally

weighed. Rules R2 and R4 penalize more for positive residuals (blocking)

whereas R3 and R5 penalize more for negative residuals (idle time). It is im-

portant to note that the sign of each rijk value is signi�cant. A positive rijk

implies that a degree of blocking for job k at machine i is likely to occur. On

the other hand, a negative rijk implies idleness at machine i. This motivates the

choices for rules R2-R5. Preliminary computational experience has shown that
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rules R2 and R4 (which penalize more for positive residuals) are totally domi-

nated by the other rules. This indicates that it is more serious to incur machine

idleness than job blocking. One explanation for this is that a negative residual

at some machine i, has a carryover e�ect on other machines downstream of i.

As far as the weight � in eq. (6.1) is concerned, preliminary computa-

tional testing has shown that the best schedules are found when � 2 [0; 0:2].

Note that for a given value of � 2 [0; 0:2] and residual cost rule, there is an

associated cost matrix C. This suggests the following hybrid heuristic.

Procedure HYBRID phase1()

Input: An instance of the SDST 
owshop, a discretiza-

tion � of the weight range, and a set R of residual cost

functions.

Output: A feasible schedule S.

0: Initialize best schedule Sbest = ;

1: for each � 2 � do

2: for each Ri 2 R do

3: Compute (n + 1)� (n+ 1) cost matrix as

Cjk = �Ri
jk + (1� �)Sjk

4: Apply VAM to (Cjk) to obtain a tour S

5: If Cmax(S) < Cmax(Sbest) then Sbest  S

6: Output Sbest

7: Stop

Figure 6.1: Pseudocode of HYBRID() phase 1

Let � = f�1; : : : ; �pg be a (�nite) discretization of [0; 0:2], where p is the

size of the discretization, and let R = fR1; R3; R5g be the set of cost functions

(as de�ned above). The construction phase of procedure HYBRID() is shown in
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Figure 6.1. A local search phase is then applied to this schedule to attempt to

�nd a local optimum with respect to a determined neighborhood. Local search

procedures are discussed in Section 6.4.

Computational complexity: The computation of the cost matrix performed in

Step 3 takes O(mn2) time. The application of Voguel's method to a (n + 1)-

city problem is O(n2) and hence the overall procedure have worst-case com-

plexity of O(jRjj�jmn2). Since jRj = O(1) this brings the complexity down

to O(j�jmn2). Now, preliminary computational experience has convincingly

shown that any discretization with j�j > 3 provides no better solutions than

a discretization with j�j = 3. Hence, we take � = f0:0; 0:1; 0:2g and this

procedure has a time complexity of O(mn2).

6.3 GRASP

6.3.1 General Methodology

A greedy randomized adaptive search procedure (GRASP), is a heuristic ap-

proach to combinatorial optimization problems that combines greedy heuris-

tics, randomization and local search techniques. GRASP has been applied

successfully to set covering problems that arise from the incidence matrix of

Steiner triple systems (Feo and Resende [21]), airline 
ight scheduling and

maintenance base planning (Feo and Bard [18]), scheduling on parallel ma-

chines (Laguna and Gonz�alez-Velarde [43]), railroad hitch assignment (Feo and

Gonz�alez-Velarde [20]), p-hub location problems (Klincewicz [40]), single ma-

chine scheduling (Feo et al. [19]), maximum independent set problems (Feo et

al. [23]), quadratic assignment problems (Li et al. [45] and Mavridou et al. [48]),

graph planarization (Resende and Ribeiro [61]), and vehicle routing problems

with time windows (Kontoravdis and Bard [41]).

GRASP consists of two phases: a construction phase and a postpro-
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cessing phase. During the construction phase, a feasible solution is built, one

element (job) at a time. At each iteration, all feasible moves are ranked and

one is randomly selected from a restricted candidate list (RCL). The ranking is

done according to a greedy function that adaptively takes into account changes

in the current state.

One way to limit the RCL is by its cardinality where only the top

� elements are included. A di�erent approach is by considering only those

elements whose greedy function value is within a �xed percentage of the best

move. Sometimes both approaches are applied simultaneously; i.e., only the

top � elements whose greedy function value is within a given percentage � of

the value of the best move are considered. The choice of the parameters � and

� requires insight into the problem. A compromise has to be made between

being too restrictive or being too inclusive. If the criterion used to form the list

is too restrictive, only a few candidates will be available. The extreme case is

when only one element is allowed. This corresponds to a pure greedy approach

so the same solution will be obtained every time GRASP is executed. The

advantage of being restrictive in forming the candidate list is that the greedy

objective is not overly compromised; the disadvantage is that the optimum and

many very good solutions may be overlooked.

GRASP phase 1 is applied N times, using di�erent initial seed values

to generate a solution (schedule) to the problem. In general, a solution deliv-

ered in phase 1 is not guaranteed to be locally optimal with respect to simple

neighborhood de�nitions. Hence it is often bene�cial to apply a postprocessing

phase (phase 2) where a local search technique is used to improve the current

solution. In our implementation, we apply the local search every K = 10 iter-

ations to the best phase 1 solution in that subset. The procedure outputs the

best of the N=K local optimal solutions. Figure 6.2 shows a 
ow chart of our

implementation.
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L = EMPTY (list of schedules in working subset)

i = 0 (phase 1 counter)

Tbest = EMPTY (best schedule)

Makespan(Tbest) = INFINITY

i > N ?

|L| = K ?

Output Tbest
STOP

i + 1i Empty L

Makespan(T) < Makespan(Tbest) ?

TTbest
Replace Tbest with T

Phase 2:  Apply local search to 
best schedule in L to
obtain schedule T

Phase 1:  Construct feasible
schedule S(i)

L + S(i)

Initialization

L

K = subset size for phase 2

YesNo

Yes

Yes

No
No

Append S(i) to L

Assume N is multiple of K

N = number of phase 1 instances

Figure 6.2: Flow chart of complete GRASP algorithm

The fundamental di�erence between GRASP and other meta-heuristics

such as tabu search and simulated annealing is that GRASP relies on high

quality phase 1 solutions (due to the inherent worst-case complexity of the local

search) whereas the other methods do not depend on good feasible solutions.

They spend practically all of their time improving the incumbent solution and

attempting to overcome local optimality. For a GRASP tutorial, the reader is

referred to [22].
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6.3.2 GRASP for the SDST Flowshop

The best known heuristic for the general 
owshop scheduling problem with

makespan minimization is due to Nawaz et al. [51]. This procedure consists of

inserting a job into the best available position of a set of partially scheduled

jobs; that is, in the position that would cause the smallest increment on the

value of the makespan. The original worst-case complexity of the heuristic was

O(mn3). Later, Taillard [70] proposed a better way to perform the computa-

tions and came up with a complexity of O(mn2). Here, we use Taillard's idea

extending it to handle setup times appropriately within the GRASP frame.

GRASP() construction phase is described as follows. At each iteration of

the algorithm there is a partial schedule S. A job h is selected from a priority

list P of unscheduled jobs. Nawaz et al. suggest an LPT (largest processing

time) priority list; that is, a list where the jobs are ordered from largest to

smallest total processing time. The partial schedule S and the job h de�ne a

unique greedy function  (j) : f0; 1; : : : ; jSjg ! R, where  (j) is the makespan

of the new schedule S0 resulting from inserting job h at the j-th position (right

after the j-th job) in S. Here, position 0 means an insertion at the beginning

of the schedule.

In GRASP(), the positions available for insertion are sorted by nonde-

creasing values of  (j) and a restricted candidate list is formed with the best

� positions. Preliminary testing has shown that for this type of scheduling

problem, � = 2 works best. The probabilistic strategy of GRASP() selects one

of the positions in the RCL randomly with equal probability. The job h is

inserted at the selected position into the current partial schedule S and the

completion times Cij for all jobs in the schedule are updated. Figure 6.3 shows

the pseudocode of the procedure (phase 1).

In Step 1 of GRASP(), we form an LPT (largest processing time) priority

list with respect to the sum of the processing times of each job over all the
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Procedure GRASP phase1()

Input: An instance of the SDST 
owshop, a set P of

unscheduled jobs, and size � of the restricted candidate

list.

Output: A feasible schedule S.

0: Set S = ;

1: Sort the jobs in P to form an LPT priority list

2: while jP j > 0 do

2a: Remove h, the �rst job from P

2b: Compute  (j) for position j = 1; : : : ; jS + 1j

2c: Construct the RCL with the best � positions

2d: Choose randomly a position k from RCL

2e: Insert job h at position k in S

3: Output S

4: Stop

Figure 6.3: Pseudocode of GRASP() phase 1

machines. In Step 2b, we use a modi�cation of Taillard's [70] procedure. Our

modi�cation, which is described next, includes sequence-dependent setup times.

Computing the partial makespans: We now describe how to e�ciently compute

the greedy function  (j) given in Step 2b of GRASP() (Figure 6.3). Typi-

cally, a job within brackets [j] denotes the job in position j. Here, for sim-

plicity, we drop the brackets and assume that a current schedule is given by

S = (1; 2; : : : ; k � 1). Let h denote the job to be inserted. De�ne the following

parameters:

� eij = the earliest completion time of the j-th job on the i-th machine;
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Procedure Makespans()

Input: A partial schedule S = (1; 2; : : : ; k � 1) and job

k to be inserted.

Output: A vector  (j) with the value of the makespan

when job k is inserted in the j-th position of schedule

S.

1: Compute the earliest completion times eij

2: Compute the tails qij

3: Compute the relative completion times fij

4: Compute values of partial makespan  (j)

5: Output vector  (j)

6: Stop

Figure 6.4: Pseudocode of procedure for computing partial makespans

(i = 1; 2; : : : ;m) and (j = 1; 2; : : : ; k � 1). These parameters are recur-

sively computed as

ei0 = 0

e0j = rj

eij = maxfei�1;j; ei;j�1 + si;j�1;jg+ pij

where rj denotes the release time of job j. Here rj is assumed to be zero.

� qij = the duration between the starting time of the j-th job on the i-

th machine and the end of operations; (i = m;m � 1; : : : ; 1) and (j =

k � 1; k � 2; : : : ; 1).

qik = 0

qm+1;j = 0

qij = maxfqi+1;j; qi;j+1 + si;j;j+1g+ pij
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� fij = the earliest relative completion time on the i-th machine of job h

inserted at the j-th position; (i = 1; 2; : : : ;m) and (j = 1; 2; : : : ; k).

fi0 = 0

f0j = rh

fij = maxffi�1;j; ei;j�1 + si;j�1;hg+ pih

�  (j) = the value of the partial makespan when adding job h at the j-th

position; (j = 1; 2; : : : ; k).

 (j) = max
i=1;:::;m

ffij + sihj + qijg

where sihj = qij = 0 for j = k.

Figure 6.4 shows how these computations are performed in procedure

Makespans(). Steps 1, 2, and 3 of Makespans() take O(km) time each. Step 4

is O(k logm). Therefore, this procedure is executed in O(km) time. Figure 6.5

illustrates the procedure when job h is inserted at position 3 (between jobs 2

and 3) in a partial 4-job schedule.

Computational complexity: The complexity of Step 1 is O(n log n). At the k-th

iteration of Step 2 (k jobs already scheduled), Step 2a takes O(1), Step 2b

takes O(km), complexity of Step 2c is O(k log �), Step 2d can be done in

O(log �) time, and Step 2e in O(km). Thus the complexity of Step 2 at the

k-th iteration is O(km). This yields a time complexity of O(mn2) for one

execution of GRASP() phase 1. Therefore, the overall phase 1 time complexity

is O(Nmn2).

Example 6.1 (Example 3.1 continued)

We now illustrate the GRASP() construction phase with RCL cardinality limi-

tation � = 2.
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Figure 6.5: Illustration of partial makespan computation

Step 0: Initialize the set of scheduled jobs S = ;.

Step 1: Given the total processing time for each job

j 1 2 3 4P
i pij 8 5 6 3

form the LPT priority list as follows: P = (1; 3; 2; 4).

Step 2: (Iteration 1) Job 1 is selected (and removed) from P . Now

P = (3; 2; 4). Since there are no scheduled jobs, insert job 1
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into S = (1) and go to the next iteration.

(Iteration 2) Job 3 is selected (and removed) from P . Now

P = (2; 4), jSj = 1, and  (k) (makespan value when job 3

is inserted in position k in S) is computed as.

k 1 2

 (k) 13 18

Because � = 2, RCL = f1; 2g. One is selected at random,

say k = 1. Thus, job 3 is inserted in position k = 1 (at the

beginning of S). S = (3; 1).

(Iteration 3) Job 2 is selected (and removed) from P . Now

P = (4), jSj = 2, and  (k) is computed as follows

k 1 2 3

 (k) 22 20 23

Form RCL=f1; 2g and select one at random, say k = 1.

Job 2 is inserted in position k = 1 (at the beginning of S).

S = (2; 3; 1).

(Iteration 4) Job 4 is selected (and removed) from P . Now

P = ;. For jSj = 3,  (k) is computed as follows

k 1 2 3 4

 (k) 30 26 29 30

Form RCL = f2; 3g and select one at random, say k = 3.

Job 4 is inserted in position k = 3 (immediately succeeding

job 3). S = (2; 3; 4; 1).

Step 3: Output schedule S = (2; 3; 4; 1) with corresponding

Cmax(S) = 29.

Recall that the optimal schedule is S� = (3; 1; 2; 4) with Cmax(S
�) = 24. 2



81

6.4 Local Search Procedures

Neighborhoods can be de�ned in a number of di�erent ways, each having di�er-

ent computational implications. Consider, for instance, a 2-opt neighborhood

de�nition that consists of exchanging two edges in a given tour or sequence

of jobs. For this neighborhood, a move in a TSP takes O(1) time to evaluate

whereas a move in the SDST 
owshop takes O(mn2). One of the most common

neighborhoods for scheduling problems is the 2-job exchange which has been

used by Widmer and Hertz [75] and by Taillard [70] for F jjCmax. We considered

the 2-job exchange as well. In addition, we generalized the 1-job reinsertion

neighborhood proposed by Taillard [70] for F jjCmax to develop an L-job string

reinsertion procedure. This was motivated by the presence of the sequence-

dependent setup times, which suggest that subsets (or strings) of consecutive

jobs might �t together in a given schedule. We tried both procedures for our

problem and found that the string reinsertion uniformly outperformed the 2-

job exchange, just as Taillard found the 1-job reinsertion performed better than

the 2-job exchange for the regular 
owshop.

6.4.1 L-Job String Reinsertion

Given a feasible schedule S, let NL
S (j; k) be the schedule formed from S by

removing a string of L jobs starting at the j-th position and reinserting the

string at position k. The neighborhood of S is given by

N(�) =
n
NL
S (j; k) : 1 � j; k � n + 1� L

o

For a given value of L, N(S) is entirely de�ned by j and k. The size of N(S)

is

jN(S)j = (n� L)2

An example of a 2-job string reinsertion neighbor is shown in Figure 6.6.

The sequence on the right S' = N2
S(3; 1) is formed from S by removing the 2-
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job string starting at the 3-rd position (jobs 5 and 4) and reinserting it at

the position 1 (immediately preceding job 2). The evaluation of all makespans

can be executed in O(n2m), using the Makespans() procedure described in

Section 6.3.

SS’ = N   (3,1) = move 2-string at position 3 to position 12

S’ = (5, 4, 2, 3, 1)

0

2 3

5

41

2 3

5

41

0

Position 1

Position 3

S = (2, 3, 5, 4, 1)

Figure 6.6: Illustration of 2-job string reinsertion neighborhood

6.4.2 Implementation Considerations

A primary concern in the implementation of local search procedures is how to

move from the current feasible solution to a neighbor solution with a better

objective function value. There are three fundamental ways of doing this. The

�rst is to examine the whole neighborhood and then make a move to the \best"

neighbor. The second is to examine one neighbor at a time and make a move

as soon as a better solution is found. The trade-o� is that in the �rst case

we expect the incremental improvement in the objective value to be greater;

however, the computational e�ort is higher. The third option is to examine a

smaller neighborhood at the expense of the solution quality. This idea was used

by Reeves in [60] for the 1-job reinsertion local search on the 
owshop context.

Here, we use this idea in the following way. Given a string of L jobs (typically

L � 4), there are (n�L) possible sites where the string can be reinserted. We

observe that the evaluation of all these possible moves can be cleverly done in

O(mn2), which is the same complexity of evaluating just one move. Therefore,
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after making this evaluation, we make the move by reinserting the string in the

best of these (n� L) positions.

Heuristic String size NSC

HYBRID() 3 Lexicographic (last)

GRASP() 1 Lexicographic (�rst)

Table 6.1: Parameter selection for string reinsertion procedure

When the choice is to examine a smaller neighborhood (or subregion) as

described above, we must have a criterion for selecting the \next" subregion, or

in our case, how to select the next string of jobs. The neighbor selection criteria

(NSC) de�nes a way of choosing the next subregion to be examined. Typical

examples of NSC are a lexicographic strategy and a random strategy. In the

former, one sorts all unexamined subregions according to a given lexicographic

rule. A lexicographic �rst (last) rule selects the �rst (last) string of the sorted

list and removes it from the list of unexamined strings. In a random strategy,

the next string is chosen randomly among all unexamined candidates. We did a

preliminary computation designed to �ne-tune the local search procedure as a

function of both the NSC and string size. The best choices of these parameters

for a particular heuristic are shown in Table 6.1. As we can see, a string size

of 1 did better in GRASP(), as opposed to HYBRID(). An explanation of this is

that GRASP() is a heuristic that �nds a feasible solution by inserting one job

at a time. This produces a feasible schedule where the interrelationship among

strings of jobs may not be as strong as a feasible solution delivered by HYBRID()

which is a TSP-based heuristic. Thus, HYBRID() bene�ts better from a 3-job

string reinsertion.

In general the neighborhood de�nition is di�erent for each value of L;

that is, a local optima with respect to L = 1, for instance, may not be local

optima with respect to L = 2. Thus in practice, one can apply or combine

several of these neighborhoods for di�erent values of L, depending on the time
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available to improve the solution. For instance, HYBRID() is a deterministic

heuristic that runs very quickly. This makes a local search e�ort more a�ord-

able.

6.5 Experimental Evaluation

All procedures were written in C++ and run on a Sun Sparcstation 10 using

the CC compiler version 2.0.1, with the optimization 
ag set to -O. CPU times

were obtained through the C function clock().

To conduct our experiments we used randomly generated data drawn

from classes A, C, and D (described in Appendix E). Class D is most repre-

sentative of real world instances, having a setup/processing time ratio between

20% and 40%. Classes A and C, account for a smaller (0-10%) and a larger (0-

50%) ratio variation, respectively, and are intended to observe the algorithmic

performance in best- and worst-case scenarios.

6.5.1 Experiment 1: Fine-Tuning Local Search for HYBRID()

The purpose of this experiment was to �nd out which local search strategy

worked best within the HYBRID() heuristic frame. We used the L-job string

reinsertion procedure (LS) in four di�erent strategies, namely

S1: Apply LS(L = 1)

S2: Apply LS(L = 1) plus LS(L = 2)

S3: Apply LS(L = 1) plus LS(L = 2) plus LS(L = 3)

S4: Apply strategy 3 as many times as necessary

Strategy k, k = 1; 2; 3, will deliver a local optimum with respect to the Nk

neighborhood. Strategy 4 delivers a local optimum with respect to all three
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neighborhoods. The strategies are listed by increasing amount of computational

e�ort. The question we want to answer is whether or not the extra e�ort pays

o� in terms of quality of the solution.

Set D

m � n Statistic S1 S2 S3 S4

2� 20 Number of best 4 8 14 20

Average gap (%) 2.3 2.1 1.9 1.8

Average time (sec) 0.9 1.3 1.5 2.4

6� 20 Number of best 6 9 12 20

Average gap (%) 9.3 9.0 8.9 8.8

Average time (sec) 2.3 2.9 3.4 5.4

10� 20 Number of best 9 11 11 20

Average gap (%) 12.3 12.3 12.2 12.0

Average time (sec) 3.8 4.7 5.5 8.7

2� 50 Number of best 1 3 7 20

Average gap (%) 2.2 2.0 1.9 1.8

Average time (sec) 9.8 13.3 16.3 25.5

2� 100 Number of best 1 3 7 20

Average gap (%) 1.7 1.6 1.5 1.5

Average time (sec) 67.9 95.5 119.8 194.0

Table 6.2: Evaluation of local search strategy for HYBRID() on class D instances

For a given combination of (m�n) we apply the heuristic to 20 randomly

instances drawn from data classes A, C, and D. Results of this experiment are

shown in Tables 6.3 and 6.2. In each cell, the table gives the number of times

a given strategy found the best solution, average relative gap percentage with

respect to a lower bound (described in Section 7.3), and average CPU time.

The �rst thing to notice is that strategy S4 found in most cases more than

50% best solutions as those found by the other strategies. The performance of

S4 is even better for the larger instances (in terms of the number of jobs). In

terms of relative gap, the strategy 4 gives an average improvement of 0.1-0.2%.

Furthermore, the Friedman test (non-parametrical test equivalent to classical
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Set A Set C

m � n Statistic S1 S2 S3 S4 S1 S2 S3 S4

2� 20 Number of best 1 1 7 20 8 10 14 20

Average gap (%) 1.9 1.6 1.5 1.3 7.7 7.5 7.2 7.0

Average time (sec) 1.4 1.9 2.3 3.8 0.4 0.6 0.7 1.2

6� 20 Number of best 5 8 11 20 7 9 11 20

Average gap (%) 6.2 6.1 6.0 5.8 3.4 2.7 16.4 15.9

Average time (sec) 3.2 4.1 4.8 7.2 1.0 1.4 1.7 2.8

10� 20 Number of best 10 10 13 20 9 12 15 20

Average gap (%) 11.8 11.8 11.7 11.4 19.8 19.6 19.5 19.2

Average time (sec) 5.4 6.6 7.6 11.2 1.6 2.1 2.6 4.2

2� 50 Number of best 0 1 1 20 5 7 12 20

Average gap (%) 1.3 1.1 1.0 0.8 6.2 6.1 6.0 5.9

Average time (sec) 14.2 19.2 22.6 35.1 3.4 5.0 6.3 11.8

2� 100 Number of best 0 0 0 20 3 6 10 20

Average gap (%) 1.0 0.8 0.7 0.6 5.3 5.1 5.0 4.9

Average time (sec) 101.8 136.9 167.6 244.5 21.2 30.6 39.3 69.6

Table 6.3: Evaluation of local search strategy for HYBRID() on class A and C

instances

ANOVA [11]) applied to each cell �nds strategy 4 to be signi�cantly better

from the statistical stand point in terms of solution quality. This improvement

comes at a cost of about 50% resource usage as indicated by the CPU times.

The largest average CPU time came from the 2� 100 class A instances, taking

about 4 minutes, which is still relatively small.

6.5.2 Experiment 2: HYBRID() vs. GRASP()

The purpose of this experiment was to evaluate the performance of both heuris-

tics. HYBRID() local search strategy was set to S4 (see previous section). For

GRASP(), we assigned N = 100, K = 5, and � = 2. Under these settings,

both heuristics use about the same amount of CPU time (GRASP() still is more

expensive, but no more than 30% for most of the instances).
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Data Set A n = 20 n = 50 n = 100

m Statistic H vs G H vs G H vs G

2 Nbest 16 6 17 3 20 0

Average gap (%) 1.3 1.5 0.9 1.0 0.6 0.8

Wilcoxon test H best H best

4 Nbest 10 11 14 6 17 5

Average gap (%) 4.3 4.2 2.3 2.4 1.6 1.8

Wilcoxon test H best

6 Nbest 9 13 8 13 7 13

Average gap (%) 5.7 5.7 4.8 4.7 3.1 2.9

Wilcoxon test

8 Nbest 9 12 7 14 6 15

Average gap (%) 9.5 9.5 6.5 6.2 4.8 4.5

Wilcoxon test G best

10 Nbest 5 15 11 10 2 18

Average gap (%) 11.4 11.0 7.1 6.9 6.1 5.6

Wilcoxon test G best G best

Table 6.4: Heuristic evaluation for data class A

Tables 6.4, 6.5, and 6.6 displays the results for data classes A, D, and

C, respectively, in terms of the number of times a given heuristic found the

best solution (Nbest) and the average relative gap (Average gap). The third

line in each cell shows if any of the heuristics was found statistically better

after performing the Wilcoxon test (non-paramatric pairwise test [11]) with

con�dence level of 99%. If the test is not signi�cant (e.g., no heuristic is found

better than the other) the cell is empty. It is observed that, for a �xed value

of n, HYBRID() tends to do better when the number of machines is small.

However, as m gets larger, then GRASP() tends to dominate. For example, in

class D, when n = 50 we actually found HYBRID() to be statistically better than

GRASP() for m = 2; 4. Then, when m takes on the values 6, 8, the Wilcoxon

test does not �nd any heuristic better than the other one. When m = 10,

GRASP() takes over. A similar behavior is observed for data classes A and C.
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Data Set D n = 20 n = 50 n = 100

m Statistic H vs G H vs G H vs G

2 Nbest 13 8 20 0 20 0

Average gap (%) 1.8 1.9 1.7 2.3 1.5 2.3

Wilcoxon test H best H best

4 Nbest 8 13 14 6 19 1

Average gap (%) 6.2 5.9 4.0 4.2 3.9 4.3

Wilcoxon test H best H best

6 Nbest 8 12 11 11 18 3

Average gap (%) 8.7 8.6 6.9 6.9 5.7 6.0

Wilcoxon test H best

8 Nbest 11 9 9 11 15 5

Average gap (%) 10.3 10.5 7.6 7.6 7.0 7.2

Wilcoxon test H best

10 Nbest 11 9 5 16 14 6

Average gap (%) 11.7 11.9 10.2 9.9 8.4 8.6

Wilcoxon test G best

Table 6.5: Heuristic evaluation for data class D

When comparing the heuristic performance among the di�erent data

classes, it is observed that GRASP() tends to do better when setup times 
uc-

tuations are smaller. It is observed, for example, than in class A, GRASP() is

found statistically better in 3 cases, and HYBRID() in 3 cases. When class D

is considered, GRASP() is better in only one case, and HYBRID() in 6 cases.

Finally, in class C, HYBRID() is found better in 10 cases, clearly dominating

GRASP().

6.6 Conclusions

Our computational study revealed several interesting properties about the pro-

posed heuristics. First, it was observed that HYBRID() tends to perform better

than GRASP() when the number of machines is small. Another favorable sce-
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Data Set C n = 20 n = 50 n = 100

m Statistic H vs G H vs G H vs G

2 Nbest 15 5 20 0 20 0

Average gap (%) 6.9 7.4 5.8 7.6 4.7 7.3

Wilcoxon test H best H best

4 Nbest 10 10 19 1 20 0

Average gap (%) 12.3 12.5 13.1 14.6 11.8 14.4

Wilcoxon test H best H best

6 Nbest 11 9 16 4 20 0

Average gap (%) 16.5 16.6 16.2 16.9 15.7 17.7

Wilcoxon test H best H best

8 Nbest 9 11 17 3 20 0

Average gap (%) 17.7 17.6 19.1 19.8 18.3 20.3

Wilcoxon test H best H best

10 Nbest 13 8 17 3 20 0

Average gap (%) 19.1 19.2 20.8 21.6 20.6 21.9

Wilcoxon test H best H best

Table 6.6: Heuristic evaluation for data class C

nario for HYBRID() is when the setup time 
uctuations are large (data set C).

This stems from the fact that the fewer the number of machines and/or the

larger the magnitude of the setup times, the more the problem resembles an

ATSP so a TSP-based procedure should do well. Recall that in HYBRID() the

distance between jobs has a setup time cost component which is computed as

the sum of the setup times between jobs over all the machines. In the extreme

case where there is only one machine, the problem reduces entirely to an in-

stance of the ATSP. As more machines are added, the developed cost function

becomes less representative of the \distance" between the jobs.

How small does the number of machines have to be for HYBRID() to do

better than the insertion-based heuristics depends not only on the number of

jobs, but on the magnitude of the setup times as well. In data class A it was

observed a threshold value of m = 2 and 4 for the 50-, and 100-job instances,
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respectively. For class D, these threshold values increased to m = 4 and and

8, respectively. However, for data class C (larger setup times), HYBRID() was

found to outperform the others with respect to both makespan (especially for

the 50- and 100-job data sets) and CPU time. This implies a threshold value

of m > 10.

Another way to explain the better performance of HYBRID() on the

larger instances of data set C is as follows. An insertion-based heuristic (like

GRASP()) includes a makespan estimation routine that has the setup costs as

part of its performance measure; there is no other explicit treatment to the se-

tups in the heuristic. Since the job insertion decision is made one job at a time,

while the sequence-dependent setup time is dictated by the interrelationships

of an entire sequence of jobs, a TSP-based heuristic tends to do better than

this insertion-style method, specially when the number of machines is small

when the similarities between the SDST 
owshop and the ATSP are stronger.

An advantage of GRASP(), of course, is that by increasing the iteration

counter, more and perhaps better solutions can be found. This is a trade-o�

that the decision maker has to evaluate under speci�c time constraints. In our

work, we combine both heuristics into an upper bounding procedure in the

exact optimization schemes described in the next chapter.



Chapter 7

Branch and Bound

7.1 Preliminaries

The feasible set of solutions of the SDST 
owshop problem from a combinatorial

standpoint can be represented as X = fset of all possible n-job schedulesg.

This is a �nite set so an optimal solution can be obtained by a straightforward

method that enumerates all feasible solutions in X and then outputs the one

with the minimum objective value. However, complete enumeration is hardly

practical because the number of cases to be considered is usually enormous.

Thus any e�ective method must be able to detect dominated solutions so that

they can be excluded from explicit consideration.

A branch-and-bound (B&B) algorithm for a minimization problem has

the following general characteristics:

� a branching rule that de�nes partitions of the set of feasible solutions into

subsets

� a lower bounding rule that provides a lower bound on the value of each

solution in a subset generated by the branching rule

� a search strategy that selects a node from which to branch

Additional features such as dominance rules and upper bounding proceduresmay

91
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also be present, and if fully exploited, could lead to substantial improvements

in algorithmic performance.

A diagram representing this process is called an enumeration or search

tree. In this tree, each node represents a subproblem Pi. The number of edges

in the path to Pi is called the depth or level of Pi. The original problem P0 is

represented by the node at the top of the tree (root). In our case, the schedule

S0 associated with P0 is the empty schedule.

The essentials of B&B are contained in Appendix C. The fundamentals

of B&B can be found in Ibaraki [36, 37]. In this chapter we limit the discus-

sion to our proposed algorithm, BABAS() (Branch-and-Bound Algorithm for

Scheduling).

7.2 Branching Rule

The following branching rule is used in BABAS(). Nodes at level k of the search

tree correspond to initial partial sequences in which jobs in the �rst k positions

have been �xed. More formally, each node (subproblem) of the search tree can

be represented by Pk, with associated schedule Sk, where Sk = ([1]; : : : ; [k]) is

an initial partial sequence of k jobs. Let Uk denote the set of unscheduled jobs.

Then, for Uk 6= ;, an immediate successor of Pk has an associated schedule of

the form Sj = ([1]; : : : ; [k]; j), where j 2 Uk. Figure 7.1 illustrates this rule for

a 4-job instance. Node P1 represents a problem at level 1 of the enumeration

tree; where only one job has been scheduled; i.e., S1 = (3).

7.3 Lower Bounds

We now develop two lower bounding procedures that turned out to be more ef-

fective than the linear programming relaxation lower bound. These procedures

are based on machine completion times of partial schedules.
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Figure 7.1: Illustration of the branching rule for a 4-job instance

Given a partial schedule Si, let �Si denote a schedule formed by all un-

scheduled jobs. We shall now derive lower bounds on the value of the makespan

of all possible completions Si �Si of Si, where Si �Si represents the concatenation

of jobs in Si and �Si. We shall be particularly concerned with the trade-o�

between the sharpness of a lower bound and its computational requirements.

A stronger bound eliminates relatively more nodes of the search tree, but if its

computational requirements become excessive, it may become advantageous to

search through larger portions of the tree using a weaker bound that can be

computed quickly.

7.3.1 Generalized Lower Bounds

The basic idea here is to obtain lower bounds by relaxing the capacity con-

straints on some machines, i.e., by assuming a subset of the machines to

have in�nite capacity. The only solvable case among 
owshop problems is

the 2-machine regular (no setups) 
owshop (Johnson [39]). We know that any

problem involving three or more bottleneck machines is likely to be NP-hard.
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We therefore restrict ourselves to choosing at most two machines u and v,

1 � u < v � m, to be bottleneck machines. For any given pair (u; v) we now

develop a lower bound guv by relaxing the capacity constraints on all machines

except u and v. The development below shows how this lower bound can be

reduced to the 2-machine case.

Let the sequence of the �rst k jobs be Sk = ([1]; [2]; : : : ; [k]) and the

set of remaining n � k (unscheduled) jobs be Uk. Given Sk, the problem of

determining an optimal sequence for the remaining jobs is called a subproblem

of depth k and is represented by FS(Sk). Let �Sk = ([k + 1]; [k + 2]; : : : ; [n])

be an arbitrary sequence of jobs in Uk, and let pi(Uk) =
P

h2Uk
pih. Thus the

completion time Ci[n] of job [n] on machine i can be derived as follows.

C1[n] = C1[k] +
nX

h=k+1

s1[h�1][h] + p1(Uk)

C2[n] = max

8<
:C2[k] +

nX
h=k+1

s2[h�1][h] + p2(Uk); C1[k] + s1[k][k+1] + T12( �Sk)

9=
;

...

Cm[n] = max

(
Cm[k] +

nX
h=k+1

sm[h�1][h] + pm(Uk);

Cm�1[k] + sm�1[k][k+1] + Tm�1;m( �Sk);

: : : ; C1[k] + s1[k][k+1] + T1m( �Sk)

)
(7.1)

where Tuv( �Sk) is the elapsed time from the start of job [k + 1] on machine u

until the �nish of job [n] on machine v. Subproblem FS(Sk) is to determine

the sequence �Sk that minimizes Cmax(Sk �Sk) � Cm[n], the makespan of schedule

Sk �Sk.

The de�nition of Tuv( �Sk) is consistent with subsequences of �Sk, that

is, Tuv(([k + 1]; : : : ; [j])) is the elapsed time from the start of job [k + 1] on

machine u until the �nish of job [j] on machine v, for k + 1 � j � n. Thus
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Tuv(([k+ 1]; : : : ; [j])) can be recursively computed as follows: We �rst initialize

Tuu(([k + 1])) = pu[k+1]

and then compute

Tuw(([k + 1])) =
wX
i=u

pi[k+1]

for w = u+ 1; : : : ; v. Finally,

Tuu(([k + 1]; : : : ; [j])) = pu[k+1] +
jX

h=k+2

su[h�1][h] + pu[h]

Tuw(([k + 1]; : : : ; [j])) = max
n
Tuw(([k + 1]; : : : ; [j � 1])) + sw[j�1][j];

Tu;w�1(([k + 1]; : : : ; [j]))
o

+ pw[j]

for j = k + 1; : : : ; n and w = u+ 1; : : : ; v.

... ... ...

... ...

... ... ...

......

u[n]
p

p
i[j+1]

p
i[j]

s
i[j][j+1]

s
i+1,[j][j+1]

p
i+1,[j+1]

p
v[n]

p
i+1,[j]

p
u[k+2]

p
v[k+2]

p
u[k+1]

p
v[k+1]

s
v[k+1][k+2]

s
u[k+1][k+2]

... ...

......

...

...

...

...

Figure 7.2: Directed graph Guv for computation of Tuv in a SDST 
woshop
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There is an alternate way to look at this recursion. To help understand

the computations we introduce the following directed graph Guv (depicted in

Figure 7.2) which is constructed as follows: for each operation, say the process-

ing of job [j] on machine i, there is a node (i[j]) with a weight that is equal to

pi[j]. For each machine i, i 2 fu; u+ 1; : : : ; v � 1; vg, there is a node (i[k + 1])

that represents the initial or current state (job [k + 1] is the �rst job in �Sk).

The setup times si[j][j+1] are represented by an arc going from node (i[j]) to

node (i[j+1]) with a weight that is equal to si[j][j+1], for i = u; u+1; : : : ; v�1; v,

j = k + 1; : : : ; n� 1. Node (i[j]), i = u; u+ 1; : : : ; v � 1, j = k + 1; : : : ; n � 1,

also has an arc going to node (i + 1; [j]) with zero weight. Note that nodes

corresponding to machine v have only one outgoing arc, and that node (v[n])

(target) has no outgoing arcs. The following proposition establishes the rela-

tionship between Tuv( �Sk) and the critical path of Guv .

Proposition 7.1 Tuv( �Sk), with �Sk = ([k + 1]; : : : ; [n]), is determined by the

maximum length or critical path from node (u[k + 1]) to node (v[n]).

Proof: The proof is by induction on w + j (second machine index

and job index of last job in subsequence ([k + 1]; : : : ; [j]). The trivial case

w + j = u + k + 1 corresponds to w = u and j = k + 1 and is easily veri�ed

(only source node (u[k + 1]) involved with length Tuu(([k + 1]))).

The induction hypothesis assumes that Tuw(([k+1]; : : : ; [j])) is the max-

imum length path from node (u[k + 1]) to node (w[j]) holds for w + j < i+ l.

It remains to prove that this result holds for w + j = i+ l as well.

Consider Tui(([k + 1]; : : : ; [l])) given by

Tui(([k + 1]; : : : ; [l])) = max
n
Tui(([k + 1]; : : : ; [l� 1])) + si[l�1][l];

Tu;i�1(([k + 1]; : : : ; [l]))
o

+ pi[j]

Since each of the Tuv in the maximization above has w+j = i+ l�1 < i+1, by

the induction hypothesis, those represent maximum length paths from source
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node to node (i[l�1]) and (i�1; [l]), respectively. Since these are the only two

nodes preceding node (i[l]), it follows that Tui(([k+1]; : : : ; [l])) is the maximum

length path from the source to node (i[l]) and the result is established.

Given the structure of Guv, the length of the critical path from (u[k+1])

to (v[n]) (or equivalently, Tuv( �Sk)) is also given by

Tuv( �Sk) = max
k<tu�tu+1�:::�tv�1�tv�n

(
pu[k+1] +

tuX
h=k+2

(su[h�1][h] + pu[h])

+ pu+1[tu] +
tu+1X

h=tu+1

(su+1[h�1][h] + pu+1[h])

+ : : :

+ pv�1[tu] +
tvX

h=tv�1+1

(sv�1[h�1][h] + pv�1[h])

+ pv[tv] +
nX

h=tv+1

(sv[h�1][h] + pv[h])

)
(7.2)

for 1 � u < v � m, where
Pb

h=a(�) = 0 for b < a. Thus the maximization

in (7.2) consists of �nding the tu; tu+1; : : : ; tv�1; tv that de�ne the critical path

on Guv , where ti corresponds to the index of the job where the critical path

crosses from level i to level i+ 1 on Guv.

Recall that the maximization on the right-hand side of (7.2) is only

used to �nd the Tuv for a given sequence �Sk, but in fact, the main problem is

to �nd the subsequence �Sk in Uk that minimizes Cm[n] in (7.1). As can be seen

from (7.1), minimizing Tuv( �Sk) yields a lower bound on Cm[n].

The minimization of Tuv( �Sk) is as hard as the problem FS(Sk) (mini-

mizing Cm[n] in (7.1)), even for Tu;u+1( �Sk). Hence we consider the minimiza-

tion of the following lower bound of Tuv( �Sk) by considering the case where

k < tu = tu + 1 = : : : = tv�1 = tv = t � n and excluding all other terms in

Tuv( �Sk) (note that this is a valid lower bound since this special case corresponds

to a path with length less than or equal to the length of the critical path), i.e.,
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Tuv( �Sk) � max
k<t�n

(
pu[k+1] +

tX
h=k+2

(su[h�1][h] + pu[h]) + pu+1[t] + : : :

+ pv�1[t] + pv[t] +
nX

h=tv+1

(sv[h�1][h] + pv[h])

)

= max
k<t�n

(
tX

h=k+1

pu[h] + pu+1[t] + : : :+ pv�1[t] +
nX
h=t

pv[h]

+
tX

h=k+2

su[h�1][h] +
nX

h=t+1

sv[h�1][h]

)

= max
k<t�n

(
tX

h=k+1

pu[h] +
tX

h=k+1

pu+1[h] + : : :+
tX

h=k+1

pv�1[h]

+
nX
h=t

pu+1[h] + : : :+
nX
h=t

pv�1[h] +
nX
h=t

pv[h]

�
nX

h=k+1

pu+1[h] � : : :�
nX

h=k+1

pv�1[h]

+
tX

h=k+2

su[h�1][h] +
nX

h=t+1

sv[h�1][h]

)

= max
k<t�n

(
tX

h=k+1

 
v�1X
i=u

pi[h]

!
+

nX
h=t

 
vX

i=u+1

pi[h]

!

+
tX

h=k+2

su[h�1][h] +
nX

h=t+1

sv[h�1][h]

)
�

v�1X
i=u+1

pi( �Sk)

� max
k<t�n

(
tX

h=k+1

 
v�1X
i=u

pi[h]

!
+

nX
h=t

 
vX

i=u+1

pi[h]

!)

+
nX

h=k+2

suv[h�1][h] �
v�1X
i=u+1

pi( �Sk)

where suv[h�1][h] = minfsu[h�1][h]; sv[h�1][h]g. Let

Zuv( �Sk) = max
k<t�n

(
tX

h=k+1

 
v�1X
i=u

pi[h]

!
+

nX
h=t

 
vX

i=u+1

pi[h]

!)

The problem of minimizing Zuv( �Sk) is reduced to a solvable 2-machine 
owshop
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(Johnson's algorithm) with processing times

p01j =
v�1X
i=u

pij

p02j =
vX

i=u+1

pij

Let Z�
uv( �Sk) be its minimum value.

The problem of minimizing
Pn

h=k+2 s
uv
[h�1][h] corresponds to �nding a

shortest tour of an ATSP on n � k vertices. Let S�
uv( �Sk) be a lower bound

for this ATSP. Then

Tuv( �Sk) � Z�
uv( �Sk) + S�

uv( �Sk)�
v�1X

i=u+1

pi( �Sk) 1 � u < v � m

Now note the following valid lower bounds for the starting time of

job [k + 1] on machine u

Cu[k] + min
h2Uk

n
su[k]h

o

Cu�1[k] + min
h2Uk

n
su�1[k]h + pu�1;h

o

Cu�2[k] + min
h2Uk

n
su�2[k]h + pu�2;h + pu�1;h

o
...

C1[k] + min
h2Uk

n
s1[k]h + p1h + : : : pu�1;h

o

Denote by Tmin
i;u�1 the minimum elapsed time (among all unscheduled jobs) from

the �nish of job [k] on machine i until the �nish time of job [k+1] on machine u�

1, for i = 1; : : : ; u, i.e.,

Tmin
i;u�1 = min

h2Uk

8<
:si[k]h +

u�1X
q=i

pqh

9=
;

where the case i = u corresponds to Tmin
u;u�1 = minh2Uk

n
su[k]h

o
. A lower bound

on the starting time of job [k + 1] on machine u is then given by



100

max
1�i�u

n
Ci[k] + Tmin

i;u�1

o

Note that once the last job [n] has �nished on machine v, the remain-

ing time until termination (assuming no idle time) is
Pm

i=v+1 pi[n]. This yields

the following lower bound for the elapsed time since the �nish of job [n] on

machine v until the �nish of job [n] on machine m:

min
h2Uk

8<
:

mX
i=v+1

pih

9=
;

We can thus establish the following generalized lower bound guv( �Sk) on Cmax

guv( �Sk) = max
1�i�u

n
Ci[k] + Tmin

i;u�1

o
+ Z�

uv( �Sk) + S�
uv( �Sk)

�
v�1X

i=u+1

pi( �Sk) + min
h2Uk

8<
:

mX
i=v+1

pih

9=
;

for any 1 � u < v � m. Note that the optimal sequence of the jobs in

the embedded 2-machine 
owshop (for given u; v) has to be determined only

once for FS(;), the original problem, since it does not change if some jobs are

removed nor it is in
uenced by the fact that machine v is not available until

Cv[k].

In summary, for a given pair of machines (u; v), we have derived a gener-

alized lower bound guv which may be computed for various machine pairs (u; v).

If W = f(u1; v1); : : : ; (uw; vw)g is a set of machine pairs, then the corresponding

overall lower bound GLB(W ) is de�ned by

GLB(W ) = maxfgu1 ;v1; : : : ; guw;vwg :

Note that there are m(m � 1)=2 possible pairs (u; v); however, the load for

computing GLB based on all pairs is too heavy. Therefore, we only consider
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the following subsets of machine pairs W0 = f(1; 2); (2; 3); : : : ; (m � 1;m)g,

W1 = f(1;m); (2;m); : : : ; (m�1;m)g, and W2 = W0[W1, which contains O(m)

pairs. Our empirical work (Section 7.8) has shown that GLB(W1) provides

better results than GLB(W0) and is faster to compute than GLB(W2).

7.3.2 Machine-Based Lower Bounds

In the previous section we developed a family of lower bounds guv for 1 � u <

v � m, based on a pair (u; v) of bottleneck machines. Consider now the case

u = v; that is, there is only one bottleneck machine and the capacity of all other

machines is relaxed. Thus it is possible to �nd m additional lower bounds gu,

1 � u � m.

Again, let the sequence of the �rst k jobs �xed be Sk = ([1]; [2]; : : : ; [k])

and the set of remaining = n � k (unscheduled) jobs be Uk. For an arbitrary

sequence of jobs in Uk, �Sk = ([k+ 1]; [k+ 2]; : : : ; [n]), let Tu( �Sk) be the elapsed

time from the starting time of job [k + 1] until the �nish time of job [n] on

machine u. Then Tu( �Sk) is given by

Tu( �Sk) = pu[k+1] +
nX

h=k+2

(su[h�1][h] + pu[h])

= pu( �Sk) +
nX

h=k+2

su[h�1][h]

Since pu( �Sk) is constant for any sequence, the problem of minimizing Tu( �Sk)

corresponds to �nding a sequence that minimizes
Pn

h=k+2 su[h�1][h], which is

equivalent to �nding the shortest tour in an ATSP on n � k vertices. Let

S�
u( �Sk) be a lower bound for this ATSP. Then

gu( �Sk) = max
1�i�u

n
Ci[k] + Tmin

i;u�1

o
+ S�

u( �Sk) + min
h2Uk

8<
:

mX
i=u+1

pih

9=
; (7.3)

for 1 � u � m is a valid lower bound on Cmax, where the �rst and last terms

on the right-hand side are a lower bound on the starting time of job [k+ 1] on
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machine u, and a lower bound on the elapsed time between the �nish of job [n]

on machine u and the �nish of job [n] on machine m, respectively, as developed

in the previous section.

The fact that the setup time between jobs [k] and [k + 1], su[k][k+1], is

not considered in the computation of Tu( �Sk) allows us to use the �rst term on

the right-hand side of (7.3) as a lower bound for the starting time of job [k+1]

on machine u. It might be advantageous, however, to include this setup time

(su[k][k+1]) in the computations to improve the lower bound S�
u of the related

ATSP. The trade-o� is that by doing so, we no longer can use the �rst term on

the right-hand side of (7.3). This alternate bound is expressed as

g0u( �Sk) = L0
u( �Sk) + min

h2Uk

8<
:

mX
i=u+1

pih

9=
;

where L0
u is valid lower bound on

Pn
h=k+1 su[h�1][h].

7.3.3 ATSP Lower Bounds

In deriving the GLB and MBLB, we have to deal with solving an ATSP at some

point. The ATSP itself is an NP-hard problem; however, since we are only

interested in a lower bound, any valid lower bound for the ATSP will su�ce.

In our work, we used the assignment problem (AP) lower bound, which

is obtained by relaxing the connectivity (subtour elimination) constraints for

the ATSP. It has been documented (Balas and Toth [4]) that the AP bound is

very sharp for the ATSP. (This is not necessarily true for the symmetric TSP.)

7.4 Search Strategy

The search strategy we use selects the subproblem with the best bound; e.g.,

the smallest lower bound in case of a minimization problem. This approach is

motivated by the observations that the subproblem with the best lower bound
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has to be evaluated anyway and that it is more likely to contain the optimal

solution than any other node. As shown in [36], this strategy has the charac-

teristic that, if other parts of a branch-and-bound algorithm are not changed,

the number of partial problems decomposed before termination is minimized.

Another well known strategy is depth-�rst search, which is mostly used

in situations where it is important to �nd feasible solutions quickly. However,

we do not consider it since feasibility is not an issue.

7.5 Dominance Rule

We now establish some conditions under which all completions of a partial

schedule Sk (associated with subproblem Pk) can be eliminated because a sched-

ule at least as good exists among the completions of another partial schedule

Sj (corresponding to subproblem Pj). Let J(Sj) and J(Sk) denote the index

sets of jobs corresponding to Sj and Sk, respectively; l(S) denote the index of

the last scheduled job in schedule S; and Ci(S) denote the completion time

of the last scheduled job in S on machine i. Then Pj dominates Pk if for

any completion Sk �Sk of Sk there exists a completion Sj �Sj of Sj such that

Cmax(Sj �Sj) � Cmax(Sk �Sk). This is stated formally in the following theorem.

Theorem 7.1 If J(Sj) = J(Sk), l(Sj) = l(Sk), and Ci(Sj) � Ci(Sk) for all

i 2 I, then Pj dominates Pk.

Proof: Let Q be a schedule and qi(Q) be the elapsed time between the

starting of the �rst job in Q on machine i and the end of operations. Then for

a partial schedule Sk, let Q be any schedule formed by the jobs in Uk (set of

unscheduled jobs). The makespan of SkQ can be computed as

Cmax(SkQ) = max
i2I

n
Ci(Sk) + si;l(Sk);h + qi(Q)

o
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where h is the job index of the �rst job in Q. Let Pj be a subproblem such that

J(Sj) = J(Sk) (its corresponding partial schedule Sj has the same job indices

as those of schedule Sk), l(Sj) = l(Sk) (have the same job scheduled last), and

Ci(Sj) < Ci(Sk) for i 2 I. Since the set of unscheduled jobs is the same for

both subproblems, SjQ is also a valid completion for Pj , and

si;l(Sj);h + qi(Q) = si;l(Sk);h + qi(Q) i 2 I

Therefore

Ci(Sj) � Ci(Sk) i 2 I ) Ci(Sj) + si;l(Sj);h + qi(Q)

� Ci(Sk) + si;l(Sk);h + qi(Q) i 2 I

) max
i2I

n
Ci(Sj) + si;l(Sj);h + qi(Q)

o
� max

i2I

n
Ci(Sk) + si;l(Sk);h + qi(Q)

o

) Cmax(SjQ) � Cmax(SkQ)

which shows that Pj dominates Pk.

A second dominance rule arises for the special case where there is no

idle time between a subsequence of any three particular jobs in a schedule.

This is presented in Lemma D.1 in Appendix D. Two other special cases, the

�rst related to reversing the job sequence and the second to the independence

of processing times and machines, are also discussed in Appendix D.

In terms of computational e�ort, determining whether a given subprob-

lem Pk is dominated implies: (a) searching for another subproblem (at the

same level), and (b) checking conditions of Theorem 7.1. Step (a) can be done

in O(log T ) time, where T = O(2d) is the size of search tree up to depth d (if

done e�ciently, there is no need to search the whole tree). Operation (b) takes

O(m) time. At level d, there are potentially O(2d) nodes, thus the worst-case
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complexity to determine whether a given subproblem (at depth d) is dominated

is O(md2d).

Despite this worst-case complexity, the implementation of this domi-

nance rule has had a strong positive impact in the performance of BABAS().

Computational results are provided in Section 7.8.

7.6 Upper Bounds

It is well known that branch-and-bound computations can be reduced by using

a heuristic to �nd a good solution to act as an upper bound prior to the appli-

cation of the enumeration algorithm, as well as at certain nodes of the search

tree. With this in mind we have adapted HYBRID() and GRASP() (described in

Chapter 6) to handle partial schedules.

In our basic algorithm, we apply both heuristics with extensive local

search at the root node to obtain a high quality feasible solution. Once the algo-

rithm is started, an attempt is made to �nd a better feasible solution every time

UPPER BOUND LOG nodes are generated, where UPPER BOUND LOG is

a user-speci�ed parameter. In our experiments, we set this parameter to 50. At

the intermediate stages, we do not do a full local search but try to balance the

computational load. Once BABAS() satis�es the stopping criteria, if the best

feasible solution is not optimal, we apply an extensive local search to ensure

that a local minimum has been obtained.

7.7 Partial Enumeration

Partial enumeration is a truncated branch-and-bound procedure similar to what

is called beam search [50]. Instead of waiting to discard a portion of the tree

that is guaranteed not to contain the optimum, we may discard parts of the

tree that are not likely to contain the optimum. One essential is to have a good
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measure of what \likely" means.

The way we handle the partial enumeration is as follows. During the

branching process, every potential child is evaluated with respect to a valuation

function h. Those potential subproblems whose valuation function do not meet

a certain pre-established criterion are discarded. We implemented this idea by

ranking the potential children by increasing value of h and then discarding the

worst �n nodes, where � 2 [0; 1] is a user-speci�ed parameter. The larger the

value of �, the more nodes that will be eliminated from consideration. The case

� = 0 coincides with regular branch and bound.

A Valuation Function

To develop a valuation function h we make use of the following cost function

Cjk for each pair of jobs j; k 2 J :

Cjk = �Rjk + (1 � �)Sjk

where � 2 [0; 1] is a weight factor, Rjk is a term that penalizes a \bad" �t

from the 
owshop perspective, and Sjk is a term that penalizes large setup

times. This cost measure was introduced in Section 6.2 where it was used to

develop the TSP-based HYBRID() heuristic for the SDST 
owshop with very

good results. A detailed description on how to estimate Rjk and Sjk is given

in that section.

Let Pj be the node from which branching is being considered with cor-

responding partial schedule Sj . Let l(Sj) be the index of the last scheduled job

in Sj . Then, for every k 2 Uj, we compute h(k) = Cl(Sj);k and then discard the

worst �n potential subproblems (in terms of h(k)).

Although it is likely that the nodes excluded by this procedure will not

be in an optimal solution, no theoretical guarantee can be established. We

should also point out the trade-o� between higher con�dence in the quality
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of the solution and smaller computational e�ort when � is set to smaller and

larger values, respectively.

7.8 Computational Experience

All routines were written in C++ and run on a Sun Sparcstation 10 using the

CC compiler version 2.0.1, with the optimization 
ag set to -O. CPU times

were obtained through the C function clock().

To conduct our experiments we used randomly generated data drawn

from classes A, D, and C (described in Appendix E. Recall that class D is

the most representative of real world instances, having a setup/processing time

ratio between 20% and 40%. Classes A and C account for a smaller (0-10%)

and a larger (0-50%) ratio variation, respectively, and are intended to gauge

algorithmic performance in the best- and worst-case scenarios.

7.8.1 Experiment 1: Lower Bounds

The lower bounding procedures developed in Section 7.3 were compared within

the branch-and-bound enumeration framework. In our �rst experiment, the

generalized lower bound (GLB) was evaluated for three di�erent subsets of

machine pairs.

W0 = f(1; 2); (2; 3); : : : ; (m� 1;m)g

W1 = f(1;m); (2;m); : : : ; (m� 1;m)g

W2 = W0 [W1

It is evident that GLB(W2) will dominate the other two; however, it requires

more computational e�ort.

Table 7.1 shows the average results for 10-job problems with machine

settings m = 4; 6. Note that when m = 2, W0 = W1 = W2 = f(1; 2)g. The
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m = 4 m = 6

W0 W1 W2 W0 W1 W2

Average relative gap (%) 0.8 0.3 0.3 1.3 0.3 0.4

Average number of evaluated nodes (1000) 10.1 9.2 8.7 11.0 9.3 9.0

Average CPU time (min) 10.8 9.2 9.3 15.0 11.8 12.1

Optimal solutions found (%) 60 60 60 20 70 60

Table 7.1: Evaluation of GLB for 10-job class D instances

averages are taken over 10 class D instances with a stopping limit of 15 CPU

minutes. The dominance rule is in e�ect as well. Each column shows the

statistics for GLB based on W0, W1, and W2, respectively. The relative gap is

computed as

best upper bound � best lower bound
best lower bound � 100%

As can be seen, the quality of GLB(W0) is inferior to the other two since

a larger number of nodes has to be evaluated, resulting in larger execution

times. In addition, under GLB(W0), fewer optimal solutions are found in the

allotted time (only 20% in the 6-machine instances as opposed to 60% using W1

and W2). When comparing GLB(W1) and GLB(W2), similar performance is

observed in almost every statistic. In fact, GLB(W1) was found to be slightly

better than GLB(W2). This implies that the extra e�ort used by GLB(W2)

(the dominant bound) is not paying o�.

We now compare GLB(W1) with MBLB (machine-based lower bound).

A stopping limit of 15 CPU minutes was similarly imposed. Table 7.2 shows

the average relative gap (Gap) at the start (root node) and at the end of the

algorithm, percentage of times a speci�c procedure delivered the best lower

bound (Best), and percentage of optimal solutions found (Solved) under a spe-

ci�c procedure, for 15-job instances of data class D. It can be seen from the

table that the GLB is actually better at the root node; however, as branching
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m = 2 m = 4 m = 6

GLB(W1) MBLB GLB(W1) MBLB GLB(W1) MBLB

Gap (root) (%) 2.7 6.6 6.4 12.1 8.8 14.8

Gap (end) (%) 2.2 3.1 4.1 2.9 5.3 3.1

Best (%) 40 60 30 80 0 100

Solved (%) 30 60 0 50 0 10

Table 7.2: Lower bound comparison for 15-job class D instances

takes place, the MBLB makes more progress providing, in almost all cases, a

tighter bound. There were even some instances that were solved to optimality

under the MBLB alone.

One possible explanation for this result is that the MBLB, for a given

machine, takes into account all the involved setup times, whereas the GLB, in

its attempt to reduce the problem to a 2-machine case, loses valuable setup time

information (recall that for a given machine pair (u; v), GLB uses minfsujk; svjkg

to represent the setup time between jobs j and k). Because the MBLB proce-

dure was uniformly better than the GLB scheme, we use it in the remainder of

the experiments.

7.8.2 Experiment 2: Dominance Elimination Criterion

m = 2 m = 4 m = 6

NDR DR NDR DR NDR DR

Average relative gap (%) 0.7 0.0 0.0 0.0 0.1 0.0

Average number of evaluated nodes 16063 8529 5074 2985 10879 7924

Average CPU time (min) 18.3 5.8 4.8 2.3 14.2 8.4

Optimal solutions found (%) 50 100 100 100 90 100

Table 7.3: Evaluation of dominance rule for 10-job class D instances

We now evaluate the e�ectiveness of the dominance rule. Table 7.3

shows the average statistics over 10 class D instances for machine sizes m =
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2; 4; 6. Each instance was run with a CPU time limit of 30 minutes and opti-

mality gap tolerance of 0.0. The results for the algorithm with and without the

dominance rule in e�ect are indicated by DR and NDR, respectively. As we

can see, the implementation of the dominance rule has a signi�cant impact on

the overall algorithmic performance resulting in a considerably smaller number

of nodes to be evaluated, and a factor of 2 reduction in CPU time. In fact,

when the dominance rule was in e�ect, the algorithm found optimal solutions

to all instances, as opposed to only 80% when the rule was not in e�ect.

7.8.3 Experiment 3: Partial Enumeration

� = 0 � = 0:5 � = 0:8

Instance UB Gap Time UB Gap Time UB Gap Time

fs6x20.1 2022 2.8 30 2020 1.8 30 2029 1.0 1

fs6x20.2 2108 4.4 30 2111 3.2 30 2114 1.0 1

fs6x20.3 2100 5.3 30 2093 4.1 30 2106 1.0 1

fs6x20.4 1967 5.5 30 1966 3.5 30 1972 1.0 1

fs6x20.5 2095 1.5 30 2094 1.0 10 2096 1.0 1

fs6x20.6 2058 6.5 30 2057 5.3 30 2070 1.0 2

fs6x20.7 2088 5.6 30 2082 3.9 30 2088 1.0 2

fs6x20.8 2129 8.1 30 2129 6.8 30 2124 1.0 8

fs6x20.9 2106 3.7 30 2106 2.3 30 2109 1.0 1

fs6x20.10 2142 6.1 30 2130 4.2 30 2144 1.0 2

Table 7.4: Partial enumeration evaluation for 6-machine, 20-job class D in-

stances

In this experiment, we illustrate the e�ect of doing partial versus com-

plete enumeration. We ran the partial search strategy for � = 0 (normal

enumeration), � = 0:5 (truncating 50% of the potential children), and � = 0:8

(truncating 80% of the potential children) for 10, 6� 20 instances of data class

D, with a stopping criterion of 30 minutes and relative gap fathoming tolerance

of 1.0%. The overall results are displayed in Table 7.4. Results for a particular
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instance are by row. For each value of � we tabulate upper bound (UB), relative

gap percentage (Gap) and CPU time (Time) rounded to the nearest minute. It

should be noted that the relative gap for the truncated versions (� 2 f0:5; 0:8g)

do not correspond to a true optimality gap, but to the best lower bound with-

out considering the truncated nodes. As can be seen, increasing the value of �

results in a larger number of truncated nodes, hence a quicker execution of the

procedure. We can also observe that the quality of the solution decreases with

the size of �. A good compromise seems to be around � = 0:5, but one must

keep in mind that once � assumes a value greater than zero, the algorithm can

no longer be guaranteed to provide an optimal solution to the original problem.

7.8.4 Experiment 4: BABAS() Overall Performance

Here we show the results when the full algorithm is applied to classes A, D and

C instances of the SDST 
owshop. We use the MBLB procedure, dominance

elimination rule, and a relative gap fathoming tolerance of 1%. Maximum CPU

time is set at 30 minutes.

Size Optimality gap (%) Time (sec) Instances

m � n best average worst best average worst solved (%)

2� 10 0.1 0.6 1.0 2 263 941 100

4 0.9 0.9 1.0 2 232 1197 100

6 0.8 0.9 1.0 3 99 529 100

2� 15 0.4 0.7 1.1 3 543 1800 90

4 0.7 1.5 3.2 6 1231 1800 40

6 0.7 3.0 7.5 20 1444 1800 20

2� 20 0.3 1.0 2.1 6 1083 1800 60

4 0.9 2.3 6.1 22 1473 1800 30

6 1.0 1.5 2.3 23 1445 1800 20

Table 7.5: Evaluation of BABAS() for class A instances

Tables 7.5, 7.6, and 7.7 display the summary statistics which were cal-
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Size Optimality gap (%) Time (sec) Instances

m � n best average worst best average worst solved (%)

2� 10 0.3 0.9 1.0 1 235 560 100

4 0.8 0.9 1.0 2 68 222 100

6 0.9 1.0 1.0 29 265 450 100

2� 15 0.0 1.0 2.6 3 725 1800 70

4 0.9 2.2 4.5 7 1074 1800 50

6 1.0 2.9 4.5 38 1624 1800 10

2� 20 0.5 1.0 1.6 7 1298 1800 30

4 2.4 4.2 5.1 1800 1800 1800 0

6 1.5 5.0 8.1 1800 1800 1800 0

Table 7.6: Evaluation of BABAS() for class D instances

culated from 10 problem instances for each m� n combination for class A, D,

and C, respectively. As can be seen, all 10-job instances were solved (within

1%) in an average time of less than 5 minutes, a notable improvement when

compared to previous published research on this problem, where the size of

the largest instances solved optimally was a 6-machine, 8-job problem. In fact,

BABAS() was able to solve 50%, 43%, and 20% of the 15-job instances of class

A, D, and C, respectively, and 37% and 23% of the 20-job instances of class

A and D, respectively. Most of the instances solved corresponded to the 2-

machine case. This is to be expected since the fathoming rules (lower bound

and dominance) become less powerful as the number of machines increases. It

was also observed that the larger the 
uctuation of the setup times, the harder

to solve the problem, as BABAS() was able to solve 62%, 56%, and 41% of all

class A, D, and C instances, respectively. This stems from the fact that the

setup time variation is smaller in class A, and thus �nding a good sequence of

jobs becomes less dependent on the setups.

Finally, Table 7.8 shows the algorithmic performance when BABAS() is

applied to 100-job instances, respectively. The table displays best (B), average
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Size Optimality gap (%) Time (sec) Instances

m � n best average worst best average worst solved (%)

2� 10 0.5 0.9 1.0 1 41 162 100

4 0.9 1.0 1.0 69 146 307 100

6 0.9 1.0 1.0 44 688 1800 100

2� 15 0.9 2.1 5.7 54 944 1800 60

4 3.8 5.5 7.2 1800 1800 1800 0

6 5.0 6.8 8.3 1800 1800 1800 0

2� 20 1.0 4.8 7.1 857 1706 1800 10

4 6.1 8.1 11.2 1800 1800 1800 0

6 8.3 10.9 12.2 1800 1800 1800 0

Table 7.7: Evaluation of BABAS() for class C instances

(A), and worst (W) optimality gaps at the start of the algorithm (root node)

and at the end. Average CPU time in minutes and percentage of instances

solved are shown as well. For the standard set (class D), 70% of the 2-machine

instances �nished with a relative gap of 1.3% or better, and the worst-case gap

observed was 2.1%. For the best-case scenario (class A), 70% of the 2-machine

instances were solved, and the rest had a relative gap of 1.4% or less. For

the worst-case scenario (class C), 80% of the 2-machine instances ended with a

relative gap of less than 5%. As expected, class C instances were harder to deal

with due to the larger setup time 
uctuation. In general, the average relative

gap from the start to the end of the algorithm on class D instances improved,

in absolute terms, by 2.0%, 0.9%, and 1.6% for the 2-, 4-, and 6-machine

instances, respectively. For class A, this improvement was of 4.8%, 1.3%, and

6.5%, respectively. For class C, the improvement was of 2.2%, 3.4%, and 2.5%,

respectively. We also observed that the lower bound and the dominance test

were less powerful than they were in the 20 or fewer job cases. Despite of this

BABAS() solved 70% and 20% of the 100-job class A instances with 2 and 4

machines, respectively, and 30% of the 2 � 100 class D instances.
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Gap at root (%) Gap at end (%) Average Instances

Class m� n B A W B A W time (min) solved (%)

A 2� 100 1.0 5.5 15.7 0.2 0.7 1.4 28.1 70

4 1.0 3.0 5.4 0.5 1.7 3.3 27.8 20

6 2.1 9.2 53.3 1.3 2.7 3.7 30.0 0

D 2� 100 1.2 3.4 8.4 0.6 1.4 2.1 28.1 30

4 3.3 5.1 6.5 2.3 4.2 5.7 30.0 0

6 5.0 7.6 9.4 4.3 6.0 7.2 30.0 0

C 2� 100 5.2 6.8 8.5 4.1 4.6 5.7 30.0 0

4 12.3 14.2 15.9 9.4 10.8 12.0 30.0 0

6 15.3 17.6 19.3 12.3 15.1 16.6 30.0 0

Table 7.8: Evaluation of BABAS() for 100-job instances

7.9 Summary

We have presented and evaluated a branch-and-bound scheme for the SDST


owshop scheduling problem. Our implementation includes both lower and

upper bounding procedures, and a dominance elimination criterion. The em-

pirical results indicate the positive impact of the machine-based lower bound

procedure and the dominance rule. Signi�cantly better performance over pre-

viously published work (LP-based methods) was also obtained. We were able

to solve (within 1% optimality gap) 100% of all 10-job instances tested, 50%,

43%, and 20% of the 15-job class A, D, and C instances, respectively, and 37%

and 23% of the 20-job class A and D instances, respectively. In addition, for

the 100-job instances, our algorithm delivered for class A instances average rel-

ative gaps of 0.7%, 1.7%, and 2.7% when applied to the 2-, 4-, and 6-machine

cases, respectively. For class D, these average relative gaps were 1.4%, 4.2%,

and 6.0%, respectively. BABAS() solved 70% and 20% of the 100-job class A

instances with 2 and 4 machines, respectively, and 30% of the 2 � 100 class D

instances.

In addition, a salient feature of our algorithm is that it permits partial
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enumeration search, which can be used to obtain approximate solutions with

relatively smaller computational e�ort.



Chapter 8

Conclusions

8.1 Summary of Research Contributions

In this work I have developed several methods to tackling one the most di�cult

problems in the area of machine scheduling optimization. From a practical

point of view, I developed two heuristics that were found very e�ective in

delivering high quality feasible solutions to the SDST 
owshop: HYBRID() and

GRASP(). HYBRID() attempts to exploit the embedded ATSP. To this end, it

was fundamental to develop a reasonable cost measure that would assess the

cost of scheduling two jobs together. The cost function I introduced accounted

for the two important factors: the setup times and schedule �tness from the


owshop perspective.

GRASP() is a randomized procedure based on job-insertion. This idea

was motivated by the fact that job-insertion heuristics had been very successful

for the regular 
owshop scheduling problem (no setups). I extended that idea

to this problem and developed it within a GRASP framework.

In addition, a local search procedure based on shifting an L-job subse-

quence was developed and used in both heuristics. Empirical evidence over a

large number of instances (ranging in size from from 2 machines and 20 jobs

up to 10 machines and 100 jobs) drawn from di�erent classes, showed the e�ec-

tiveness of both procedures, outperforming the best existing work previously

116
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published.

For the largest instances tested (100-job), HYBRID(), for example, deliv-

ered average optimality gaps of 0.6%, 1.5%, and 4.7% for 2-machine instances

in classes A, D, and C, respectively.

It was also observed that HYBRID() performed better than GRASP()

when the number of machines is small. Another favorable scenario for HYBRID()

is when the setup time 
uctuations are large. This stems from the fact that the

fewer the number of machines and/or the larger the magnitude of the setup

times, the more the problem resembles an ATSP so a TSP-based procedure

should do well. Recall that in HYBRID() the distance between jobs has a setup

time cost component which is computed as the sum of the setup times between

jobs over all the machines. In the extreme case where there is only one machine,

the problem reduces entirely to an instance of the ATSP. As more machines are

added, the developed cost function becomes less representative of the distance

between the jobs. How small does the number of machines have to be for

HYBRID() to do better than the insertion-based heuristics depends not only on

the number of jobs, but on the magnitude of the setup times as well. In data

classes A and D, we observe a threshold value of m = 2 or 3. However, for

data set C (larger setup times), HYBRID() was found to outperform the others

with respect to both makespan (especially for the 50- and 100-job data sets)

and CPU time. This implies a threshold value of m > 10.

Another way to explain the better performance of HYBRID() on the

larger instances of data set C is as follows. An insertion-based heuristic (like

GRASP()) includes a makespan estimation routine that has the setup costs as

part of its performance measure; there is no other explicit treatment to the se-

tups in the heuristic. Since the job insertion decision is made one job at a time,

while the sequence-dependent setup time is dictated by the interrelationships

of an entire sequence of jobs, a TSP-based heuristic tends to do better than
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this insertion-style method, especially when the number of machines is small

when the similarities between the SDST 
owshop and the ATSP are stronger.

An advantage of GRASP(), of course, is that by increasing the iteration

counter, more and perhaps better solutions can be found. This is a trade-o�

that the decision maker has to evaluate under a speci�c time budget. In our

work, we combine both heuristics into an upper bounding procedure within the

B&B enumeration scheme.

In attempting to solve the problem optimally, I investigated two di�er-

ent approaches. The �rst one was from the polyhedral perspective and was

motivated by the success that polyhedral-based methods (such as B&C) have

had on solving hard problems (in particular the TSP), and the strong con-

nection between the SDST 
owshop and the ATSP. I considered two di�erent

mathematical models. Model A is based in an ATSP formulation. Model B

uses fewer binary variables and constraints, but its polyhedral structure had

remained unexplored. I developed several polyhedral results concerning both

formulations that allowed me, in turn, to develop some families of valid in-

equalities and to prove facial properties on several of these inequalities, for

both models. These inequalities and the models were then evaluated within a

B&C framework.

I found empirical evidence that using model B with B&C yields bet-

ter results on solving instances of the SDST 
owshop problem. However, the

fact that even with the development of valid inequalities the algorithm is still

unable to solve instances with 10 or more jobs shows that LP-based enumer-

ation methods are wanting. This di�culty is inherent to the SDST 
owshop

(2 or more machines) since the algorithm was able to successfully solve 100-

and 150-job instances restricted to the 1-machine case. Recall that minimizing

the makespan in SDST 
owshop is equivalent to �nding the minimum length

tour of an (n + 1)-city ATSP when the number of machines is set equal to 1.
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It is evident that once we start adding machines, the ATSP structure starts

to weaken. One explanation for this is that, unlike the ATSP where we are

looking for a good sequence of nodes, it is di�cult here to characterize fully

what a good sequence of jobs really is. What might be a good sequence for

a certain machine, may be a bad sequence for the others. This makes this

problem extremely nasty.

The quality of the LP relaxation lower bound led me to develop more

e�cient non-LP-based lower bounding procedures, which gave rise to a more

e�ective enumeration scheme based on branch and bound, which was the �-

nal part of this research. This implementation included the development of

both lower and upper bounding procedures, and a dominance elimination cri-

terion. The empirical results indicate the e�ectiveness of the overall procedure

(BABAS()), especially the positive impact of the machine-based lower bound

procedure and the dominance rule. Signi�cantly better performance over pre-

viously published work (LP-based methods) was also obtained. BABAS() was

able to solve (within 1% optimality gap) 100% of all 10-job instances tested,

50%, 43%, and 20% of the 15-job class A, D, and C instances, respectively, and

37% and 23% of the 20-job class A and D instances, respectively. In addition,

for the 100-job instances, BABAS() solved 70% and 20% of the 100-job class A

instances with 2 and 4 machines, respectively, and 30% of the 2 � 100 class D

instances. For class A, the algorithm delivered average relative gaps of 0.7%,

1.7%, and 2.7% when applied to the 2-, 4-, and 6-machine cases, respectively.

For class D, the average relative gaps were 1.4%, 4.2%, and 6.0%, respectively.

For class C, the average gaps were 4.6%, 10.8%, and 15.1%, respectively, which

indicate how hard the problem becomes as the magnitude of the setup times

increases.

A salient feature of the algorithm is that it permits partial enumera-

tion search, which can be used to obtain approximate solutions with relatively

smaller computational e�ort.
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Another contribution of this work is the development of a random in-

stance generator for producing several classes of instances with real-world fea-

tures. This was the result of the input received from several colleagues with

industrial experience related to this type of problem. The data sets have been

made available to the scienti�c community at the Operations Research library

at London College, UK, maintained by Prof. Beasley.

8.2 Directions for Future Research

There exist several avenues for research in this area. Incorporating both ready

times and/or due dates/deadlines is a logical extension to the SDST 
owshop

that is worthwhile investigating. We should point out that most of the valid

inequalities developed in this work for the SDST 
owshop can actually be ap-

plied to other scheduling problems involving sequence-dependent setup times.

In fact, by introducing the ready times and due dates parameters, it might be

possible to develop better valid inequalities to strengthen the polyhedral set of

feasible solutions. A similar situation arises in the TSP when time windows

constraints are added to the model.

Another related problem is the mixed-model assembly line scheduling

problem (where setup times are present). This problem, although frequently

encountered in practice, has remained unexplored and presents several areas

of opportunity. From the practical point of view, the development of ad hoc

approximation algorithms for �nding good feasible schedules is essential. On

the other hand, I feel that signi�cant progress can be made toward optimality

by extending part of the research done on polyhedral theory for the SDST


owshop scheduling problem.

The SDST 
owshop remains one of the hardest optimization problems

in the machine scheduling �eld. Even though most of the medium and large

sized instances were not optimally solved, our work has provided a way to �nd
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feasible schedules with high quality, several of them with optimality gaps of

less that 2%.

I am con�dent that this work �lls the missing link between the regular


owshop manufacturing environments and all other 
owshops where the setup

times play an important role. While it is true that the nature of the setup

times (e.g, additive setups) or a slightly di�erent problem structure might lead

to the development of ad hoc procedures in related problems, it also true that

our work can certainly be applied as a �rst approach. I am also con�dent that

this work will be very helpful to both practitioners and researchers dealing with

the challenges of this type of machine scheduling problems and many others

like it.
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Appendix A

Notation

A scheduling problem can be represented by a triplet �j�j
. The � �eld de-

scribes the machine environment and contains a single entry. The � �eld pro-

vides details of processing characteristics and constraints and may contain no

entries, a single entry, or multiple entries. The 
 �eld contains the objective to

be minimized and usually contains a single entry. In Section A.2 we provide a

de�nition of possible entries in each �eld. But �rst, in Section A.1, we de�ne

data associated with jobs. Most of this section is adapted from Pinedo [57].

The number of jobs is denoted by n and the number of machines by m.

Both n and m are assumed to be �nite. Typically, the subscripts j and k refer

to jobs, whereas the subscript i refers to a machine.

A.1 Data Associated with Jobs

The following pieces of data are associated with job j.

� Processing time (pij). Processing time of job j on machine i. The sub-

script i is dropped if the processing time of job j does not depend on the

machine or if job j is only to be processed on one given machine.

� Release date (rj). The release date rj of job j may also be referred to as

the ready date. It is the time the job arrives at the system, that is, the
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earliest time at which job j can start its processing.

� Due date (dj). The due date dj of job j represents the committed shipping

or completion date (the date the job is promised to the customer). The

completion of a job after its due date is allowed, but a penalty is incurred.

When the due date absolutely must be met, it is referred to as a deadline.

� Weight (wj). The weight wj of job j is basically a priority factor, denoting

the importance of job j relative to the other jobs in the system.

A.2 Problem Description

In this section, we describe possible entries for each of the �elds in a triplet

�j�j
 of a scheduling problem.

Field �. This �eld describes the machine environment and contains a single

entry. The following examples are possible machine environments speci-

�ed in the � �eld.

� Single machine (1). The case of a single machine is the simplest of

all possible machine environments and is a special case of all other

more complicated machine environments.

� Flow shop (Fm). There are m machines in series. Each job has to

be processed on each one of the m machines. All jobs have the same

routing, that is, they have to be processed �rst on machine 1, then

on machine 2, and so on. After completion on one machine, a job

joins the queue at the next machine. Usually, all queues are assumed

to operate under the �rst-in-�rst-out (FIFO) discipline, that is, a

job cannot \pass" another while waiting in a queue. If the FIFO

discipline is in e�ect, the 
ow shop is referred to as a permutation


ow shop and the � �eld includes the entry prmu. Often, when
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a general m-machine case is considered, the m identi�er may be

dropped such that F jjCmax, for instance, refers to the m-machine


owshop with makespan minimization criteria.

Field �. This �eld provides details of processing characteristics and constraints

and may contain no entries, a single entry, or multiple entries. Possible

entries are:

� Release dates (rj). If this symbol is present in the � �eld, job j

may not start its processing before its release date rj. If rj does

not appear in the � �eld, the processing of job j may start at any

time. In contrast to the release dates, due dates are not speci�ed in

this �eld. The type of objective function gives su�cient indication

whether there are due dates or not.

� Sequence-dependent setup times (sjk). The sjk represent the setup

time between jobs j and k; s0k denotes the setup time for job k if

job k is �rst in the sequence and sj0 the clean-up time after job j if

job j is last in the sequence (of course, s0k and sj0 may be zero). If

the setup time between jobs j and k depends on the machine, then

the subscript i is included, that is, sijk. If no sjk appears in the �

�eld, all setup times are assumed to be zero or sequence independent,

in which case they can simply be added to the processing times.

� Preemptions (prmp). Preemptions imply that it is not necessary to

keep a job on a machine until completion. The scheduler is allowed

to interrupt the processing of a job (preempt) at any time and put a

di�erent job on the machine. The amount of processing a preempted

job already has received is not lost. When a preempted job is put

back on the machine (or on another machine, in the case of machines

in parallel), it only needs the machine for its remaining processing
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time. When prmp is not included in the � �eld, preemptions are

not allowed.

� Permutation (prmu). A constraint that may appear in the 
ow

shop environment is that the queues in from of each machine oper-

ate according to the FIFO discipline. This implies that the order

(or permutation) in which the jobs go through the �rst machine is

maintained throughout the system.

� No-wait (nwt). The no-wait requirement is another phenomenon

which may occur in 
ow shops. Jobs are not allowed to wait between

two successive machines. This implies that the starting time of a job

at the �rst machine has to be delayed to ensure that the job can go

through the 
ow shop without having to wait for any machine. An

example of such an operation is a steel-rolling mill in which a slab of

steel is not allowed to wait because it would cool o�. It is clear that

under no-wait the machines also operate under the FIFO discipline.

Field 
. This �eld contains the objective to be minimized and usually contains

a single entry. The objective is always a function of the completion times

of the jobs, which, of course, depend on the schedule. The time job j

exits the system (i.e., its completion time on the last machine on which

it requires processing) is denoted by Cj. The objective may also be a

function of the due dates. The lateness of job j is de�ned as

Lj = Cj � dj ; (A:1)

which is positive when job j is completed late and negative when it is

completed early. The tardiness of job j is de�ned as

Tj = max(Cj � dj ; 0) = max(Lj; 0) : (A:2)
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The di�erence between tardiness and lateness lies in the fact that tardi-

ness is never negative. The unit penalty of job j is de�ned as

Uj =

8<
: 1 if Cj > dj

0 otherwise.
(A:3)

Lateness, tardiness, and the unit penalty are the three basic due-date-

related penalty functions considered in this work.

� Makespan (Cmax). The makespan, de�ned as maxjfCjg, is equiv-

alent to the completion time of the last job to leave the system.

A minimum makespan usually implies a high utilization of the ma-

chine(s).

� Maximum lateness (Lmax). The maximum lateness, de�ned as

maxjfLjg;

measures the worst violation of the due dates.

� Total weighted completion time (
P
wjCj). The sum of the weighted

completion times of n jobs gives an indication of the total holding, or

inventory, costs incurred by the schedule. The sum of the completion

times is in the literature often referred to as the 
ow time. The total

weighted completion time is then referred to as the weighted 
ow

time.

� Total weighted tardiness (
P
wjTj). This is also a more general cost

function that the total weighted completion time.

� Weighted number of tardy jobs (
P
wjUj). This is not only a measure

of academic interest, it is often an objective in practice as it is a

measure that can be recorded very easily.
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Polyhedral Theory Basics

The following de�nitions and well known theoretical results (e.g., see [53]) are

used in the polyhedral study of this work (Chapter 4).

A polyhedron P � Rn is the set of points that satis�es a �nite number

of linear inequalities; i.e., P = fx 2 Rn : Ax � bg, where (A; b) is an

m� (n+1) matrix. A polyhedron P is of dimension k, denoted dim(P ) = k, if

the maximumnumber of a�nely independent points in P is k+1. A polyhedron

P � Rn is full-dimensional if dim(P ) = n. Let M = f1; 2; : : : ;mg;M= = fi 2

M : aix = bi for all x 2 Pg and letM� = fi 2M : aix < bi for some x 2 Pg =

M nM=. Let (A=; b=), (A�; b�) be the corresponding rows of (A; b), referred

as the equality and inequality sets of the representation (A; b) of P . A point

x 2 P is called an interior point of P is aix < bi for all i 2M .

Lemma B.1 Let P be a polyhedron and let (A=; b=) be its equality set. If

P � Rn, then dim(P ) + rank(A=; b=) = n.

Corollary B.1 A polyhedron P is full-dimensional if and only if it has an

interior point.

The inequality �x � �0 [or (�; �0)] is called a valid inequality for P

if it is satis�ed by all points in P . If (�; �0) is a valid inequality for P and

F = fx 2 P : �x = �0g, F is called a face of P , and we say that (�; �0)
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represents F . A face F is said to be proper if F 6= ; and F 6= P . A face F of

P is a facet of P if dim(F ) = dim(P )� 1.

Theorem B.1 Let (A=; b=) be the equality set of P � Rn and let F = fx 2

P : �x = �0g be a proper face of P , where � 2 Rn; �0 2 R. Then the following

two statements are equivalent:

(i) F is a facet of P .

(ii) If �x = �0 for all x 2 F then

(�; �0) = (�� + uA=; ��0 + ub=)

for some � 2 R and some u 2 RjM=j.

Lemma B.1 and Theorem B.1 provide two di�erent methods of char-

acterizing facets of a polyhedron. We will also make use use of the following

results on valid inequalities for variable upper-bound 
ow models to develop

mixed-integer cuts.

Let

T = fx 2 Bn; z 2 Rn
+ :

X
j2N+

zj �
X
j2N�

zj � b; zj � ajxj for j 2 Ng (B.1)

where N+ [ N� = N . Here aj 2 R+ for j 2 N and b 2 R. We say that

C � N+ is a dependent set if
P

j2C aj > b.

Proposition B.1 If C � N+ is a dependent set, � =
P

j2C aj � b, and L �

N�, then

X
j2C

[zj + (aj � �)+(1� xj)] � b+
X
j2L

�xj +
X

j2N�nL

zj (B.2)

is a valid inequality for T given by (B.1).
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Enumerative Methods

Part of the material in this appendix is taken from Ibaraki [36, 37].

C.1 Enumeration of Solutions

The feasible region S and/or the underlying space X of many of the combina-

torial optimization problems are �nite sets. In such a case, an optimal solution

can be obtained by a straightforward method that enumerates all feasible solu-

tions in S and then outputs the one with the minimum (or maximum) objective

value. This type of approach is called enumeration. A diagram representing

this enumeration is called an enumeration tree.

However, enumeration methods may hardly be practical because the

number of cases to be considered is usually enormous. Thus it becomes a ma-

jor concern how to detect dominated cases so that they can be excluded from

the explicit enumeration. If the exclusion is done e�ectively, the resulting al-

gorithm can be fast enough to solve practical problem instances. Enumerative

approaches such as branch and bound and dynamic programming are compu-

tational frameworks which make it easy to incorporate exclusion procedures.
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C.2 Terminology about Directed Trees

In a directed tree, there is exactly one path from the root to each vertex vi.

The number of edges in the path is called the depth of vi. The height of a

directed tree is the largest depth of the vertices therein. If there is an edge

(vi; vj), vj is a son of vi and vi is the parent of vj. Those vertices with the

same parent are called brothers. If there is a downward path from vi to vj, vj

is a descendant of vi and vi is an ancestor of vj. In particular vi is an ancestor

(and descendant) of itself. An ancestor (descendant) vj of vi, is called a proper

ancestor (descendant) if vi 6= vj. The vertices having no sons are called leaf

vertices.

C.3 A Branch-and-Bound Algorithm

Let P0 be the problem to be solved. The strategy is to decompose a P0 into a few

partial problems of smaller sizes, if the given problem is too di�cult or too large

to attack directly. The generated partial problems should have the property

that the original problem can be equivalently solved as a result of solving all of

the partial problems. This decomposition (also called branching operation) may

be repeatedly applied to the generated partial problems, resulting eventually

in a branch-and-bound enumeration algorithm.

The above scheme of decomposition is the �rst step of constructing a

branch-and-bound algorithm. With the branching operation only, however,

the obtained algorithm is nothing but a brute force enumeration algorithm.

To construct an algorithm that examines only a small portion of the entire

branching tree and is still possible to provide an exact optimal solution, the

following properties may be exploited.

1. If an optimal solution of a partial problem Pi is obtained by some means,

it is not necessary to decompose Pi any further.
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2. If it is concluded for some reason that a partial problem Pi (as well as

those obtainable from Pi by branching operations) does not provide an

optimal solution of P0, Pi is said to be fathomed and it is not necessary

to decompose Pi further.

Termination of partial problems Pi by property 1 or 2 is called the bound-

ing operation. There are two basic methods to actually implement bounding

operations, lower bound test and dominance test.

C.4 Branching Operations and Branching Structures

This section begins with an explanation, in a general mathematical setting, of

how a branching operation is performed. The branching structure resulting

from the branching operation is then de�ned.

C.4.1 Branching Operation

Let describe a partial problem Pi by

Pi : minimize f(x)

subject to x 2 Si;

where Si � Xi denotes a feasible region in the underlying space Xi.

Branching operations used in the real applications can mostly be re-

garded as a decomposition of set Xi into a �nite number of subsets Xi1 ; : : : ;Xik

such that

Xij � Xi j = 1; 2; : : : ; k
k[

j=1

Xij � Si: (C.1)
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This decomposition enables us to de�ne the following k partial problems Pij ,

j = 1; 2; : : : ; k, as follows

Pij : minimize f(x)

subject to x 2 Sij ;

where

Sij = Si
\
Xij :

In most cases, the above Xi1 ;Xi2 ; : : : ;Xik give a partition of Xi, i.e., Xij are

mutually disjoint and Xi =
Sk
j=1Xij .

C.4.2 Branching Structure

Denote the optimum value of a partial problem Pi by f(Pi). If Pi is infeasible

(i.e., Si = ;), f(Pi) =1 is assumed. Z(Pi) denotes the set of optimal solutions

of Pi. Generally speaking, Si 6= ; does not always imply the existence of f(Pi)

and Z(Pi) (e.g., the case of diverging to f(Pi) = �1). But such pathological

cases are very exceptional for combinatorial optimization problems, and hence

we shall always assume in the following discussion the existence of f(Pi) and

Z(Pi) if Si 6= ;.

When Pi is decomposed into Pi1; : : : ; Pik , by a branching operation,

Si =
k[

j=1

Sij

follows from condition (C.1). Thus any feasible solution x 2 Si belongs to some

Sij and conversely any x 2 Sij belongs to Si. hence

f(Pi) = min
1�j�k

f(Pij )

Z(Pi) =
k[

j=1

n
Z(Pij ) : f(Pij ) = f(Pi)

o
(C.2)
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hold, implying that Pi can be equivalently solved by solving Pi1 ; : : : ; Pik . The

next property follows from (C.2) for any Pi and its sons Pij .

f(Pij ) � f(Pi) j = 1; : : : ; k

This implies the following for any Pi.

f(Pi) � f(P0):

If branching operations are applied to all generated partial problems

unless it becomes meaningless, a branching tree results. A branching tree is

a directed tree B = (P; E), where P is a set of vertices and E is a set of

arcs, with root P0 2 P. Each vertex represents a partial problem, and an arc

(Pi; Pj) 2 E shows that Pj is generated by a branching operation applied to Pi.

The direction of each arc, however, is not explicitly indicated in most cases.

The resulting system (B; Z; f) (or (B; f) sometimes) is called the branch-

ing structure of P0. Of course, such system is rarely given explicitly but is

implicitly de�ned by specifying P0 and a branching operation. Our goal is to

compute f(P0) and Z(P0) (or at least one solution in Z(P0)).

C.5 Lower Bounding Functions

C.5.1 General De�nition

Denote a lower bound on the optimum value f(Pi) of a partial problem Pi by

g(Pi), i.e.,

g(Pi) � f(Pi) for Pi 2 P: (C.3)

When viewed as a function from P to R (real numbers), g is called a lower

bounding function. Although f(Pi) are usually not known, g(Pi) are explicitly
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computed for all generated Pi. Thus the time required for computing g(Pi) is

a crucial factor determining the algorithm e�ciency. It is desirable to have a g

which can be e�ciently computed and yet provides an accurate lower bound.

Such g can become available only when the structure inherent to the given

problem is fully exploited.

For a partial problem Pi, a relaxation �Pi is de�ned by

�Pi : minimize g(x)

subject to x 2 �Si;

where

Si � �Si � Xi

g(x) � f(x) for x 2 Si:

�Pi has a relaxed constraint and an objective function that never exceeds the

original vale f(x). Thus the optimal objective value of �Pi, denoted by g(Pi),

satis�es (C.3).

The following properties are also obvious.

1. Pi is infeasible if so is �Pi.

2. Assume that the objective function g(x) is set equal to f(x). In this case,

if an optimal solution of �Pi is feasible in Pi, it is also an optimal solution

of Pi.

In either case, Pi can be immediately terminated. The set of partial

problems satisfying (1) or (2) is denoted by G. In other words, G is the set of

partial problems that are solved in the course of computing lower bound g.
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C.5.2 Conditions on g and G

The following �ve conditions are assumed throughout this thesis as general

properties of g and G.

(A) g(Pi) � f(Pi); Pi 2 P.

(B) g(Pi) = f(Pi); Pi 2 G.

(C) g(Pi) � g(Pj) for (Pi; Pj) 2 E.

(D) G � L, where L is the set of leaf vertices in B.

(E) Pi 2 G implies Pj 2 G for (Pi; Pj) 2 E.

If �Pi is infeasible, it is assumed by convention that g(Pi) = f(Pi) =1.

Properties (A) and (B) follow from the de�nition of g and G. (C) and (E)

re
ect the fact that Pj is easier to handle that Pi of Pj is obtained from Pi by

a decomposition. Finally, (D) comes from the fact that each leaf vertex in B is

trivially solvable.

C.6 Upper Bounding Functions

It is sometimes easy to obtain feasible solutions to Pi, even if exact optimal

solutions are di�cult to compute. So-called approximate algorithms or heuristic

algorithms are used for this purpose. For a minimization problem Pi, such a

feasible solution provides an upper bound u(Pi) on f(Pi). Throughout this

thesis, the following properties are assumed.

(i) u(Pi) � f(Pi); Pi 2 P.

(ii) u(Pi) = f(Pi); Pi 2 G.
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Condition (ii) is reasonable since any Pi 2 G is solved, i.e., either an

optimal solution is obtained or it is concluded that Pi is infeasible. In the

latter case, u(Pi) = 1 may be used for convenience. In case of u(Pi) < 1,

it is assumed that a feasible solution of Pi realizing the upper bound u(Pi) is

available as a result of computing u(Pi).

Upper bounds u(Pi) are used to update the incumbent vale z. If good

upper bounds are generated in the early stage of branch-and-bound computa-

tion, and z is thereby set to relatively small values, the lower bound test would

become powerful.

It is not always assumed that u(Pi) is computed for all generated Pi.

u(Pi) is set to 1 if the computation is not attempted or a good bound is not

found within the allotted computation time. The following notations are used

for convenience.

u =1; the computation of u(Pi) is not attempted for any Pi

u = u(P0); u(Pi) is computed only for the initial problem P0.

Note here that condition (ii) of u(Pi) is always assumed even in these cases.

C.7 Dominance Relations

C.7.1 General De�nition

The dominance test is another important source of bounding operations that

can be as powerful as the lower bound test in some cases. It is based on a

dominance relation D, a binary relation de�ned over the set of partial problems.

If PiDPj (i.e., relation D holds for an ordered pair Pi and Pj), it is said that

Pi dominates Pj. The following properties are assumed on D.

(i) D is a partial order de�ned over P.
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(ii) PiDPj implies f(Pi) � f(Pj).

(iii) PiDPj and Pi 6= Pj imply that, for each descendant P 0
j of Pj, there exists

a descendant P 0
i of Pi such that P 0

iDP
0
j .

(iv) During the branch-and-bound computation, no set of (k+1) partial prob-

lems Pi1 ; : : : ; Pik+1 ; k � 2, satisfying the following conditions is generated.

1. All Pij are di�erent except that Pi1 = Pik+1 .

2. For each j = 1; : : : ; k, either Pij+1 is a descendant of Pij , or Pij+1DPij

and f(Pij+1 ) = f(Pij ) hold.

A dominance relation is illustrated by broken arcs. Properties (iii) and

(iv) are introduced to prevent a deadlock in which all Pi satisfying f(Pi) =

f(P0) are terminated by the dominance test.

The partial order mentioned in condition (i) is a special binary relation

de�ned as follows. Let R be a binary relation de�ned over P. R is said to be

(A) re
exive if PiRPj holds for any Pi 2 P,

(B) symmetric if PiRPj implies PjRPi,

(C) transitive if PiRPj and PjRPk imply PiRPk ,

(D) antisymmetric if PiRPj and PjRPi imply Pi = Pj.

If R has properties (A) and (C), it is called a pseudo order. A pseudo order is

called a partial order if it additionally satis�es (D). Finally R is an equivalence

relation if it satis�es properties (A), (B), and (C).

Property (ii) is a key assumption that makes the dominance test pos-

sible, i.e., Pj can be terminated if PiDPj holds for some Pi that has already

been generated. This is because an optimal solution that will be obtained from
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Pi is not worse than that obtained from Pj. The dominance test is sometimes

useful to exploit the problem structure in such a way that is not possible by

the lower bound test.

If f(Pi) = f(Pj) is concluded for Pi 6= Pj , either PiDPj or PjDPi can

be used without violating properties (i)-(iv). But it is not possible to use both,

in order to ensure antisymmetry of D. In this case, if Pi is tested before Pj,

PiDPj is usually chosen for the dominance test.

C.8 Branch-and-Bound Procedure

So far we have introduced the following constituents of a branch-and-bound

procedure.

(B; Z; f): branching structure, where B = (P; E) is a branching tree, Z(Pi)

denotes the set of optimal solutions of Pi 2 P, and f(Pi) denotes the

optimum value of Pi. In particular, Po 2 P is the original minimization

problem we want to solve.

g: lower bounding function.

G: the set of partial problems Pi, solved in the course of computing g(Pi).

u: upper bounding function.

D: dominance relation.

A branch-and-bound procedure to obtain one of the optimal solutions

x 2 Z(P0) or all optimal solutions Z(P0) can be constructed from these. From

the practical point of view, the former is more important, whereas the latter

is often suitable for theoretical treatment. In this work, we are concerned with

the former.
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The construction of the above constituents is done as follows. Given

a problem we want to solve, how to perform branching operation, and how

to compute g, u, and D for the generated partial problems are �rst speci�ed.

These form the body of a branch-and-bound algorithm. Then for each instance

P0 of the problem, implicit application of the branching operation and compu-

tation schemes of g, u, D to all partial problems de�nes the above branching

structure (B; Z; f).

C.8.1 General Description of a Branch-and-Bound Procedure

During the branch-and-bound computation, partial problems are successively

generated and tested. Let N denote the set of partial problems currently

generated. Partial problems are sometimes referred to as vertices, as they are

represented by vertices in B. A vertex Pi 2 N that is neither decomposed nor

tested yet is called active. The set of active vertices is denoted by A. For each

tested vertex in N , its lower and upper bounds are computed. The smallest

upper bound obtained so far is called the incumbent value and denoted by

z. The solution realizing z is called the incumbent and stored in Z. Upon

termination, z = f(Po) holds and Z stores an optimal solution of P0.

Branch-and-bound computations proceed by repeating the test of active

vertices. The selection of an active vertex for the next test is done by a search

function s, such that

s(A) 2 A:

The search function s is also an important constituent that determines the

overall performance, and will be discussed later. A pseudocode of procedure

branch-and-bound() is shown in Figure C.1.

Under the assumption that branching tree B has a �nite number of

vertices and each of the steps requires �nite computation time, the enumeration

procedure terminates in �nite computation time. See [36] for a detailed proof.
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Procedure branch-and-bound()

Input: Problem P0.

Output: Optimal solution x with value z.

0: (initialization) A fP0g, N  fP0g, z  1,

and Z  ;

1: (search) If A = ;, go to Step 8. Otherwise,

select Pi  s(A) and go to Step 2.

2: (update) If u(Pi) < z, then z  u(Pi) and Z  fxg,

where x is a feasible solution of Pi realizing

u(Pi) = f(x). Go to Step 3.

3: (G-test) If Pi 2 G, go to Step 7. Otherwise go to Step 4.

4: (lower bound test) If g(Pi) � z, go to Step 7.

Otherwise go to Step 5.

5: (dominance test) If there exists a Pk(6= Pi) 2 N

such that PkDPi, go to Step 7. Otherwise go to Step 6.

6: (branch) Decompose Pi into Pi1 ; : : : ; Pik and set

A A
S
fPi1 ; : : : ; Pikg n fPig,

N  N
S
fPi1; : : : ; Pikg.

Return to Step 1.

7: (terminate Pi) Let A A n fPig and return to Step 1.

8: (termination) Output x 2 Z with z = f(x). Stop.

Figure C.1: Pseudocode of branch-and-bound procedure
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Special Cases

This appendix contains three lemmas which address special cases of the SDST


owshop. The �rst presents a dominance rule, the second discusses the re-

versibility of the schedule, and the third considers speci�c parameter relation-

ships. To simplify the presentation, the bracket notation for a given schedule

will be dropped and we will denote a schedule S by (1; : : : ; n) rather than

([1]; : : : ; [n]).

Lemma D.1 Let S = (1; 2; : : : ; n) be a feasible schedule of F jsijk; prmujCmax.

Let eij be the earliest completion time of job j on machine i

eij = maxfei�1;j; ei;j�1 + si;j�1;jg+ pij

for i = 1; 2; : : : ;m, j = 1; 2; : : : ; n, and ei0 = e0j = 0. Let qij be the minimum

remaining time from the start of job j on machine i to the end of operations

on the last machine

qij = maxfqi+1;j; qi;j+1 + si;j;j+1g+ pij

for i = m;m� 1; : : : ; 1, j = n; n� 1; : : : ; 1, and qi;n+1 = qm+1;j = 0. Let j and

j + 1 be any two adjacent jobs in S (j = 1; 2; :::; n� 1) and let

S 0 = (1; : : : ; j � 1; j + 1; j; j + 2; : : : ; n)
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be the schedule where jobs j and j + 1 are exchanged (with completion time e0ij

and remaining time q0ij).

If all of the following conditions hold for each i = 1; 2; : : : ;m

(a) eij = ei;j�1 + si;j�1;j + pij (there is no idle time between jobs j�1

and j in S)

(b) qi;j+1 = qi;j+2 + si;j+1;j+2 + pi;j+1 (there is no idle time between

jobs j + 1 and j + 2 in S)

(c) e0i;j+1 = e0i;j�1 + si;j�1;j+1 + pi;j+1 (there is no idle time between

jobs j � 1 and j + 1 in S0)

(d) q0i;j = q0i;j+2 + si;j;j+2 + pi;j (there is no idle time between jobs j

and j + 2 in S0)

(e) si;j�1;j + si;j;j+1 + si;j+1;j+2 > si;j�1;j+1 + si;j+1;j + si;j;j+2

then S0 has a lower makespan than S,

Cmax(S
0) < Cmax(S):

Proof: First notice that both S and S0 are identical sequences except

for jobs j and j + 1. This implies that eik = e0ik for all k = 1; 2; : : : ; j � 1 and

qik = q0ik for all k = j + 2; j + 3; : : : ; n. Thus, from (e) we obtain

ei;j�1 + si;j�1;j + pij + qi;j+2 + si;j+1;j+2 + pi;j+1 > e0i;j�1 + si;j�1;j+1 + pi;j+1

+ q0i;j+2 + si;j;j+2 + pij

for all i. Conditions (a)-(d) yield

eij + si;j;j+1 + qi;j+1 > e0i;j+1 + si;j+1;j + q0ij for all i
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In particular, this is valid for the maximum over i

max
i
feij + si;j;j+1 + qi;j+1g > max

i

n
e0i;j+1 + si;j+1;j + q0ij

o

But these expressions correspond to the makespan values of S and S0, respec-

tively. That is,

Cmax(S) > Cmax(S
0):

An appropriate data structure should keep track of both eij and qij for

all i and j. This would make it possible to check conditions (a)-(d) in O(m)

time.

As seen in Section 7.3, Proposition 7.1, Tuv( �Sk) (the elapsed time be-

tween the �rst job in �Sk on machine u and the last job in �Sk on machine v)

can be computed by �nding the critical path on graph Guv (Figure 7.2). Note

that T1m(S) is an equivalent form to express the makespan of schedule S, which

implies, by Proposition 7.1, that its makespan is given by the critical path from

node (1; 0) to node (m;n) in graph G1m.

An interesting property can be obtained when comparing two instances

of the SDST 
owshop with no initial setup times. Let FS be an instance of

F jsijk; prmujCmax with processing times pij and setup times sijk. Let us assume

that si0k = 0 for all i 2 I, and k 2 J . Let FS0 be another instance of the SDST


owshop with processing and setup times given by

p0ij = pm+1�i;j ; and

s0ijk = sm+1�i;k;j ;

respectively. This basically implies that the �rst machine in the FS0 is identical

to the last machine in FS; the second machine in FS0 is identical to machine

m� 1 in FS, and so on. The following lemma applies to these two 
owshops.
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Lemma D.2 Let S = (1; : : : ; n) be a sequence of jobs in FS with corresponding

makespan Cmax(S). If the jobs in FS 0 follow the sequence S0 = (n; n�1; : : : ; 1)

(with makespan C 0
max(S

0)), then

Cmax(S) = C 0
max(S

0):

Proof: Let S = (1; : : : ; n) be a feasible sequence in FS. Then its

makespan Cmax(S) is given by T1m(S), the length of the critical path in G1m.

Let G0
1m be the graph associated to FS0 under sequence S0 = (n; : : : ; 1). By

de�nition of FS0, G0
1m is obtained from G1m by reversing the sense of all the

arcs in G1m. Since the length of the critical path from does not change, it

follows that T1m(S) = T 0
1m(S0), where T 0

1m(S0) is the length of the critical path

in G0
1m, and the proof is complete.

Lemma D.2 states the following reversibility result: the makespan does

not change if the jobs go through the 
owshop in the opposite direction in the

reverse order.

Another special case of F jsijk; prmujCmax which is of interest is the so-

called proportionate 
owshop. In this 
owshop the processing times of job j

on each machine are equal to pj, that is, pij = pj, i = 1; : : : ;m. Minimizing

the makespan in a proportionate permutation 
owshop is denoted by F jpij =

pj ; prmujCmax. This problem has a very special property when all setup times

are equal to a constant sijk = s.

Lemma D.3 For F jpij = pj ; sijk = s; prmujCmax, the makespan is given by

Cmax =
nX
j=1

pj + ns+ (m� 1) max
j
fpjg

and is independent of the schedule.

Proof: From Figure 7.2 we can see that for any sequence of jobs S =

(1; 2; : : : ; n) the critical path starts at node (1; 0), stays on machine 1 until it



146

reaches node (1; k), where k = arg maxjfpjg, stays on job k until it reaches

node (m;k), and ends by reaching node (m;n).

Similar results on reversibility and proportionate 
owshops for F jjCmax

are discussed in [57].



Appendix E

Data Sets

E.1 Background

Although the SDST 
owshop scheduling problem has been studied in the liter-

ature using exact and heuristic methods, a common comparison base is missing.

This part of my research focuses on how to randomly generate instances with

real-world attributes.

According to literature, and researchers with experience with this type

of problem, one of the key issues is the relationship between the setup times

and the processing times. For most real-world instances this setup/processing

time ratio lies between 20% and 40% (class D below). In addition, we also

consider the extreme cases where the setup times are allowed both a smaller

(class A) and a larger variation (class C).

pij sijk

Class A [10; 100] [1; 10]

Class C [50; 100] [1; 50]

Class D [20; 100] [20; 40]

Table E.1: Data class attributes

Table E.1 shows the di�erent classes of data sets considered. Both

processing and setup times are randomly generated according to a uniform

distribution in the shown interval. As it was found in our research, solution
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attempts increase in di�culty with the magnitude of the setup times. Thus,

in a sense, class A (C) represent a best (worst) case scenario for our solution

procedures. Most of our work, tough, is based in class D, which is the most

representative of real data. Within, each data class, though, several combina-

tions of m � n were generated with m ranging from 2 to 10 machines, and n

from 10 to 100 jobs. The following sections in this chapter describe in detail

the SDST 
owshop random instance generator.

The code for the random generators and all data instances are available

at the following world-wide web sites:

� Operations Research library at the Imperial College, United Kingdom,

maintained by Prof. J. Beasley:

http://mscmga.ms.ic.ac.uk/info.html

� Author's personal site:

http://www.me.utexas.edu/~roger/Pro/

E.2 Uniform Pseudorandom Number Generator

The problem instances presented in this work are randomly generated according

to the congruential generator which is based on the recursive formula:

Xi+1 = (16807Xi) mod (231 � 1)

This random number generator is proposed in Bratley et al. [8] and

has been used by Taillard [71] to generate random instance of several multiple

machine scheduling problems such as 
ow shops, job shops, and open shops.

The implementation uses only 32-bit integers and provides a uniformly

distribution sequence of numbers in the (0,1) interval. A pseudocode of the

procedure is shown in Figure E.1.
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Procedure random()

Input: A seed value X0 (0 < X0 < 231 � 1).

Output: A random number in (0,1) and a modi�ed seed

value X1.

0: Initialize constants:

a = 16; 807, b = 127; 773, c = 2; 836, m = 231 � 1.

1: Modify seed:

k = bX0=bc

X1 = a(X0 mod b)� kc

if X1 < 0, then let X1 = X1 +m.

2: Output X1=m and X1

3: Stop

Figure E.1: Pseudocode of random number generator

Let X (0 < X < 1) be a random number generated by procedure

random() and let a and b be any two integer numbers. Then a pseudorandom

number in the interval [a; b] is obtained by

ba+X(b� a+ 1)c

and every integer between a and b has the \same" probability of being chosen.

E.3 Flow Shop Instance Generator

This is, in a sense, an attempt not only to create instances for testing our pro-

cedures but to provide a valid set of instances that can be used as benchmarks

for other researchers as well. Our random instance generator (written in C++)

is available upon request. Below is a description of the 
owshop generator and
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the input data �le that must be provided to the generator.

k m n

p1 lb p1 ub

: : :

pm lb pm ub

flag r r lb r ub

flag d d lb d ub

flag t1 t1 lb t1 ub

: : :

flag tm tm lb tm ub

seed 1 fname 1

: : :

seed k fname k

Figure E.2: Format of input �le to random instance generator

The format of the input �le to the generator is shown in Figure E.2.

The �rst line contains the number of instances to be generated (k), the number

of machines (m), and the number of jobs (n) in each instance. The lines that

follow are self-explanatory. They contain the range of the uniform distribution

(lower and upper bound) for the processing times, job ready times, job due

dates, and machine setup times.

Notice that the generator allows enough 
exibility so as to generate a

di�erent distribution for each machine for processing and the setup times. The

flag * parameters indicate whether such a feature should or should not be

included in the data set. A value of 0 for flag r, for instance, would indicate

that no job ready times are generated (in such a case the values r lb and
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r ub are not taken into account), whereas a value of 1 would indicate that job

ready times will be generated from a uniform distribution in the [r lb, r ub]

interval. Each of the last k lines, which correspond to each of the k instances to

be generated, show both an initial random seed and a �le name for the result

problem.

The pseudocode for the random instance generator is outlined in Fig-

ure E.3. The procedure basically generates the processing times, the job ready

times (if requested), the job due dates (if requested), and the machine setup

times (if requested).

The instance generator creates q problems, each stored in a �le (given

by fname k) with the following format:

� First line: random seed

� Second line: number of machines and number of jobs

� Third line: job release time 
ag, job due dates 
ag, and machine setup

time 
ag

� Next m lines: processing times

� Next line: job ready times (only if flag r = 1)

� Next line: job due dates (only if flag r = 1)

� Remaining lines: machine setup times. For each of the m machines there

are n+ 2 lines. The �rst one contains a machine index (0; 1; : : : ;m� 1),

the other n+ 1 lines contain a square matrix of order n+ 1, where entry

j; k is the corresponding processing time sijk. Here, the (n + 1)-th row

contains the initial setup times for each job and the (n + 1)-th column

contain the �nishing setup time for each job. A value of �1 appears along

the diagonal.
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See Figure E.4 for an example of a 2-machine, 3-job problem with due dates,

setup times, and no release times.
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Procedure random instance()

Input: An input �le as speci�ed in Figure E.2.

Output: q random instances as speci�ed in Figure E.4.

1: Read data

2: for k = 1 to q do

Generate processing times

for i = 1 to m do

generate pij in [pi lb, pi ub]

if (flag r = YES)

generate rj in [r lb, r ub]

if (flag d = YES)

generate dj in [d lb, d ub]

Generate setup times

for i = 1 to m do

if (flag ti = YES)

generate sijk in [ti lb, ti ub]

Output data to �le fname k

3: Stop

Figure E.3: Pseudocode of random instance generator
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2345671345

2 3

0 1 1

23 45 35

11 37 28

65 47 53

0

-1 14 23 00

16 -1 28 00

14 17 -1 00

09 21 19 -1

1

-1 24 03 00

26 -1 08 00

24 27 -1 00

19 01 29 -1

Figure E.4: Format of output �le to random instance generator



Bibliography

[1] E. Balas. The asymmetric assignment problem and some new facets of

the traveling salesman polytope on a directed graph. SIAM Journal on

Discrete Mathematics, 2(4):425{451, 1989.

[2] E. Balas and M. Fischetti. The �xed-outdegree 1-arborescence polytope.

Mathematics of Operations Research, 17(4):1001{1018, 1992.

[3] E. Balas and M. Fischetti. A lifting procedure for the asymmetric trav-

eling salesman polytope and a large new class of facets. Mathematical

Programming, 58(3):325{352, 1993.

[4] E. Balas and P. Toth. Branch and bound methods. In E. L. Lawler, J. K.

Lenstra, A. H. G. Rinnoy Kan, and D. B. Shmoys, editors, The Traveling

Salesman Problem: A Guided Tour of Combinatorial Optimization, pages

361{401. John Wiley & Sons, Chichester, 1990.

[5] L. Bianco, S. Ricciardelli, G. Rinaldi, and A. Sassano. Scheduling

tasks with sequence-dependent processing times. Naval Research Logis-

tics Quarterly, 35(2):177{184, 1988.

[6] J. Blazewicz, M. Dror, and J. Weglarz. Mathematical programming formu-

lations for machine scheduling: A survey. European Journal of Operational

Research, 51(3):283{300, 1991.

[7] J. Blazewicz, G. Finke, R. Haupt, and G. Schmidt. New trends in ma-

chine scheduling. European Journal of Operational Research, 37(3):303{

317, 1988.

155



156

[8] P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to Simulation. Springer-

Verlag, New York, 1983.

[9] H. G. Campbell, R. A. Dudek, and M. L. Smith. A heuristic algorithm

for the n job, m machine sequencing problem. Management Science,

16(10):B630{B637, 1970.

[10] J. Carlier and I. Rebai. Two branch and bound algorithms for the per-

mutation 
ow shop problem. European Journal of Operational Research,

90(2):238{251, 1996.

[11] W. Conover. Practical Nonparametric Statistics. John Wiley & Sons, New

York, 1980.

[12] B. D. Corwin and A. O. Esogbue. Two machine 
ow shop scheduling

problems with sequence dependent setup times: A dynamic programming

approach. Naval Research Logistics Quarterly, 21(3):515{524, 1974.

[13] CPLEX Optimization, Inc., Incline Village, NV. Using the CPLEX

Callable Library, Version 4.0, 1995.

[14] H. Crowder and M. W. Padberg. Solving large-scale asymmetric traveling

salesman problems to optimality. Management Science, 26(5):495{509,

1980.

[15] D. G. Dannenbring. An evaluation of 
ow shop sequencing heuristics.

Management Science, 23(11):1174{1175, 1977.

[16] R. D. Dear. The dynamic scheduling of aircraft in the near terminal area.

FTL Report R76-9, Massachussetts Institute of Technology, September

1976.



157

[17] F. Della Croce, V. Narayan, and R. Tadei. Two-machine total comple-

tion time 
ow shop problem. European Journal of Operational Research,

90(2):227{237, 1996.

[18] T. A. Feo and J. F. Bard. Flight scheduling and maintenance base plan-

ning. Management Science, 35(12):1415{1432, 1989.

[19] T. A. Feo, J. F. Bard, and K. Venkatraman. A GRASP for a di�cult

single machine scheduling problem. Computers & Operations Research,

18(8):635{643, 1991.

[20] T. A. Feo and J. L. Gonz�alez-Velarde. The intermodal assignment prob-

lem: Models, algorithms, and heuristics. Technical Report ORP90-10, Op-

erations Research Program, University of Texas at Austin, August 1990.

[21] T. A. Feo and M. G. C. Resende. A probabilistic heuristic for a com-

putationally di�cult set covering problem. Operations Research Letters,

8(2):67{71, 1989.

[22] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search

procedures. Journal of Global Optimization, 6:109{133, 1995.

[23] T. A. Feo, M. G. C. Resende, and S. H. Smith. A greedy randomized

adaptive search procedure for maximum independent sets. Operations

Research, 42(5):860{878, 1994.

[24] M. Fischetti. Facets of the asymmetric traveling salesman polytope. Math-

ematics of Operations Research, 16(1):42{56, 1991.

[25] M. Fischetti and P. Toth. A polyhedral approach for the exact solution of

hard ATSP instances. Management Science, 1997. Forthcoming.

[26] R. E. Gomory and T. C. Hu. Multi-terminal network 
ows. SIAM Journal

on Applied Mathematics, 9:551{570, 1961.



158

[27] N. Gr�otschell and M. W. Padberg. Polyhedral theory. In E. L. Lawler,

J. K. Lenstra, A. H. G. Rinnoy Kan, and D. B. Shmoys, editors, The Trav-

eling Salesman Problem: A Guided Tour of Combinatorial Optimization,

pages 251{305. John Wiley & Sons, Chichester, 1985.

[28] J. N. D. Gupta. A functional heuristic algorithm for the 
owshop schedul-

ing problem. Operational Research Quarterly, 22(1):39{47, 1971.

[29] J. N. D. Gupta. Flowshop schedules with sequence dependent setup times.

Journal of the Operations Research Society of Japan, 29(3):206{219, 1986.

[30] J. N. D. Gupta and W. P. Darrow. The two-machine sequence dependent


owshop scheduling problem. European Journal of Operational Research,

24(3):439{446, 1986.

[31] J. N. D. Gupta, J. C. Ho, and J. A. A. van der Veen. Single machine bi-

criteria scheduling with customer orders and multiple job classes. Working

Paper Series 1, The Netherlands Business School, Nijenrode University,

June 1994.

[32] S. K. Gupta. n jobs and m machines job-shop problems with sequence-

dependent set-up times. International Journal of Production Research,

20(5):643{656, 1982.

[33] K. W. Hansmann. Application of new heuristics to scheduling with

sequence-dependent setup times. INFORMS National Meeting, New Or-

leans, October 1995.

[34] J. C. Ho and Y.-L. Chang. A new heuristic for the n-job, m-machine 
ow-

shop problem. European Journal of Operational Research, 52(2):194{202,

1991.



159

[35] T. S. Hundal and J. Rajgopal. An extension of Palmer's heuristic for

the 
ow shop scheduling problem. International Journal of Production

Research, 26(6):1119{1124, 1988.

[36] T. Ibaraki. Enumerative approaches to combinatorial optimization: Part

I. Annals of Operations Research, 10(1{4):1{340, 1987.

[37] T. Ibaraki. Enumerative approaches to combinatorial optimization: Part

II. Annals of Operations Research, 11(1{4):341{602, 1987.

[38] E. Ignall and L. Schrage. Application of the branch and bound technique

to some 
ow-shop scheduling problems. Operations Research, 13(3):400{

412, 1965.

[39] S. M. Johnson. Optimal two- and three-stage production schedules with

setup times included. Naval Research Logistics Quarterly, 1(1):61{68,

1954.

[40] J. Klincewicz. Avoiding local optima in the p-hub location problem using

tabu search and grasp. Technical Report, AT&T Bell Laboratories, June

1989.

[41] G. Kontoravdis and J. F. Bard. A randomized adaptive search procedure

for the vehicle routing problem with time windows. ORSA Journal on

Computing, 7(1):10{23, 1995.

[42] B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan. A general bound-

ing scheme for the permutation 
ow-shop problem. Operations Research,

26(1):53{67, 1978.

[43] M. Laguna and J. L. Gonz�alez-Velarde. A search heuristic for just-in-

time scheduling in parallel machines. Journal of Intelligent Manufacturing,

2:253{260, 1991.



160

[44] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. Shmoys.

Sequencing and scheduling: Algorithms and complexity. In S. S. Graves,

A. H. G. Rinnooy Kan, and P. Zipkin, editors, Handbook in Operations

Research and Management Science, Vol. 4: Logistics of Production and

Inventory, pages 445{522. North-Holland, New York, 1993.

[45] Y. Li, P. M. Pardalos, and M. G. C. Resende. A greedy randomized

adaptive search procedure for the quadratic assignment problem. In P. M.

Pardalos and H. Wolkowicz, editors, Quadratic Assignment and Related

Problems, pages 237{261. American Mathematical Society, 1994.

[46] A. G. Lockett and A. P. Muhlemann. A scheduling problem involving

sequence dependent changeover times. Operations Research, 20(4):895{

902, 1972.

[47] Z. A. Lomnicki. A \branch-and-bound" algorithm for the exact solution

of the three-machine scheduling problem. Operational Research Quarterly,

16(1):89{100, 1965.

[48] T. Mavridou, P. M. Pardalos, L. S. Pitsoulis, and M. G. C. Resende. A

GRASP for the biquadratic assignment problem. Technical report, AT&T

Bell Laboratories, Murray Hill, NJ, 1995.

[49] K. Morizawa, H. Nagasawa, and N. Nishiyama. Complex random sample

scheduling and its application to an N=M=F=Fmax problem. Computers &

Industrial Engineering, 27(1{4):23{26, 1994.

[50] T. E. Morton and D. W. Pentico. Heuristic Scheduling Systems. John

Wiley & Sons, New York, 1993.

[51] M. Nawaz, E. E. Enscore Jr., and I. Ham. A heuristic algorithm for the m-

machine, n-job 
ow-shop sequencing problem. OMEGA The International

Journal of Management Science, 11(1):91{95, 1983.



161

[52] G. L. Nemhauser, M. W. P. Savelsbergh, and G. C. Sigismondi. MINTO,

a Mixed INTeger Optimizer. Operations Research Letters, 15:48{59, 1994.

[53] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimiza-

tion. John Wiley & Sons, New York, 1988.

[54] E. Nowicki and C. Smutnicki. A fast tabu search algorithm for the 
ow

shop problem. Report 8/94, Institute of Engineering Cybernetics, Tech-

nical University of Wroc law, 1994.

[55] M. Padberg and G. Rinaldi. An e�cient algorithm for the minimum ca-

pacity cut problem. Mathematical Programming, 47(1):19{36, 1990.

[56] D. S. Palmer. Sequencing jobs through a multi-stage process in the mini-

mum total time { a quick method of obtaining near optimum. Operational

Research Quarterly, 16(1):101{107, 1965.

[57] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall,

Englewood Cli�s, New Jersey, 1995.

[58] C. N. Potts. An adaptive branching rule for the permutation 
ow-shop

problem. European Journal of Operational Research, 5(1):19{25, 1980.

[59] M. Queyranne and Y. Wang. Symmetric inequalities and their composition

for asymmetric travelling salesman polytopes. Mathematics of Operations

Research, 20(4):838{863, 1995.

[60] C. R. Reeves. Improving the e�ciency of tabu search for machine sequenc-

ing problems. Journal of the Operational Research Society, 44(4):375{382,

1993.

[61] M. G. C. Resende and C. C. Ribeiro. A GRASP for graph planarization.

Technical report, AT&T Bell Laboratories, Murray Hill, NJ, 1995.



162

[62] R. Z. R��os-Mercado and J. F. Bard. Heuristics for the 
ow line prob-

lem with setup costs. European Journal of Operational Research, 1997.

Forthcoming.

[63] S. Sarin and M. Lefoka. Scheduling heuristics for the n-job m-machine


ow shop. OMEGA The International Journal of Management Science,

21(2):229{234, 1993.

[64] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed

integer programming problems. ORSA Journal on Computing, 6(4):445{

454, 1994.

[65] J. V. Simons Jr. Heuristics in 
ow shop scheduling with sequence de-

pendent setup times. OMEGA The International Journal of Management

Science, 20(2):215{225, 1992.

[66] B. N. Srikar and S. Ghosh. A MILP model for the n-job, m-stage 
owshop

with sequence dependent set-up times. International Journal of Produc-

tion Research, 24(6):1459{1474, 1986.

[67] E. F. Sta�ord and F. T. Tseng. On the Srikar-Ghosh MILP model for

the N �M SDST 
owshop problem. International Journal of Production

Research, 28(10):1817{1830, 1990.

[68] J. P. Stinson and A. W. Smith. A heuristic programming procedure for

sequencing the static 
owshop. International Journal of Production Re-

search, 20(6):753{764, 1982.

[69] W. Szwarc and J. N. D. Gupta. A 
ow-shop with sequence-dependent

additive setup times. Naval Research Logistics Quarterly, 34(5):619{627,

1987.

[70] E. Taillard. Some e�cient heuristic methods for the 
ow shop sequencing

problem. European Journal of Operational Research, 47(1):65{74, 1990.



163

[71] E. Taillard. Benchmarks for basic scheduling problems. European Journal

of Operational Research, 64(2):278{285, 1993.

[72] S. Turner and D. Booth. Comparison of heuristics for 
ow shop se-

quencing. OMEGA The International Journal of Management Science,

15(1):75{85, 1987.

[73] J. A. A. van der Veen and S. Zhang. A linear-time algorithm for sequenc-

ing jobs with a �xed number of job-classes. Working Paper TI 94-86,

Tinbergen Institute, Erasmus Universtity Rotterdam, The Netherlands,

July 1994.

[74] C. H. White and R. C. Wilson. Sequence dependent set-up times and job

sequencing. International Journal of Production Research, 15(2):191{202,

1977.

[75] M. Widmer and A. Hertz. A new heuristic method for the 
ow shop se-

quencing problem. European Journal of Operational Research, 41(2):186{

193, 1989.

[76] S. Zdrza lka. Preemptive scheduling with release dates, delivery times and

sequence independent setup times. European Journal of Operational Re-

search, 76(1):60{71, 1994.



Vita

Roger was born in Monterrey, Nuevo Le�on, M�exico on April 16, 1966, the

eldest son of Griselda Mercado and Rogelio R��os. He received a Licenciado in

Mathematics degree from Universidad Auton�oma de Nuevo Le�on in 1988. He

earned his M.S.E. and Ph.D. in Operations Research and Industrial Engineering

from the University of Texas at Austin in 1992 and 1997, respectively.

Before joining graduate school, he spent four years working at Vitro

Tec, a research and development �rm belonging to Vitro, Mexico's largest en-

terprise in the glass industry, where he conducted independent research on

mathematical models and algorithms for simulating glass-forming processes.

As a graduate student at UT-Austin, he worked as an assistant instructor and

as a teaching assistant in various graduate and undergraduate courses. In ad-

dition, he also worked as a graduate research assistant. His graduate research

has focused on optimization of 
ow line machine scheduling problems.

His professional duties include membership to Institute for Operations

Research and Management Science (INFORMS), Mathematical Programming

Society, Society for Industrial and Applied Mathematics, Sociedad Matem�ati-

ca Mexicana, American Mathematical Society, and Mathematical Association

of America. He has served as the UT-Austin Chapter President of the Omega

Rho Honor Society of INFORMS, and as a referee for the Journal of Heuristics.

His research work and academic achievements have won numerous awards.

On a more personal note, he has been very happily married to Ofelia

Rodr��guez since August 1992, and made his debut as a dad on March 14, 1996

164



165

when his son, Vandari Pavel, was born.

Permanent address: Caracas 238, Valle del Nogalar

San Nicol�as de los Garza, N.L. 66480

M�exico

This dissertation was typeset with LaTEXz by the author.

zLaTEX is a document preparation system developed by Leslie Lamport as a special version

of Donald Knuth's TEX Program.


