Copyright
by
Roger Zirahuén Rios Mercado
1997

OPTIMIZATION OF THE FLOWSHOP
SCHEDULING PROBLEM
WITH SETUP TIMES

by

ROGER ZIRAHUEN RiOS MERCADO, Lic., M.S.E.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
December 1997

OPTIMIZATION OF THE FLOWSHOP
SCHEDULING PROBLEM
WITH SETUP TIMES

APPROVED BY
DISSERTATION COMMITTEE:

Supervisor:

To my wife Ofelia,
to my son Vandari,
to my parents Griselda and Rogelio,
to my siblings Azucena, Netza, and Fidel,
to all my relatives,

and to all those I deeply love and care about.

Acknowledgements

[am deeply grateful to my dissertation supervisor, Prof. Jonathan F. Bard,
for his guidance and encouragement throughout this work, and for taking our

academic relationship to a more personal level.

I am grateful also to the members of my dissertation committee, Paul
Jensen, Leon Lasdon, Gang Yu, and David Morton, for their positive comments,

insights, and suggestions, that greatly improved the quality of this research.

I also want to express my sincere gratitude to Matthew Saltzman, Mat-
teo Fischetti, Paolo Toth, Manfred Padberg, and Giovanni Rinaldi, for kindly
allowing me to use their computer codes, and to all those fellow researchers

and people who have, in one way or another, contributed to this research.

[thank each of the faculty members (current and former) and fellow
graduate students of the Graduate Program in Operations Research and the
Graduate Program in Management Science and Information Systems at the
University of Texas at Austin, for all those unforgettable moments we had

both in and outside the classroom.

I am profoundly grateful to José Luis Gonzéalez Velarde, who played a

very important role on my decision of coming to UT-Austin.

Special thanks to our dearest friends in Austin, who made our lives
and our stay in this city such a joyful, cultural-rich, and truly exceptional
experience. [will never, ever, forget all those very special and exciting moments

my family and I shared with them.

Finally, my research work would have not been possible without the
following financial support: a grant for doctoral studies from the Mexican
National Council of Science and Technology (CONACYT), and an E. D. Farmer

Fellowship, a Continuing Fellowship, and a David Bruton Fellowship, all from
the University of Texas at Austin.

vi

OPTIMIZATION OF THE FLOWSHOP
SCHEDULING PROBLEM
WITH SETUP TIMES

Publication No.

Roger Zirahuén Rios Mercado, Ph.D.
The University of Texas at Austin, 1997

Supervisor: Jonathan F. Bard

This dissertation addresses the optimization of the flowshop scheduling
problem with sequence-dependent setup times. The goal of the decision-maker
is to provide a schedule that minimizes the time at which all jobs in the system
are processed. The goal of this work is to provide the decision-maker with
efficient ways of deriving such schedules. This type of problem arises in many
manufacturing environments. In the printing industry, for example, presses
must be cleaned and settings changed when ink color, paper size or receiving
medium differ from one job to the next. Setup times are strongly dependent on
the job order. In the container manufacturing industry machines must be ad-
justed whenever the dimensions of the containers are changed, while in printed
circuit board assembly, rearranging and restocking component inventories on
the magazine rack is required between batches. In each of these situations,
sequence-dependent setup times play a major role and must be considered ex-

plicitly when modeling the problem.

This research includes the implementation of heuristic approaches to

obtain feasible solutions of high quality, the development of lower bounding

vii

procedures, the study of the set of feasible solutions from the polyhedral per-
spective, and the integration of all of these components into exact optimization
schemes. The first is based on branch and cut and the second on branch and
bound. The proposed procedures are found to be very effective, providing
good approximations of the true optimal to a large class of data instances, and

optimal solutions in other cases.

Another contribution of this work is the development of a technique to

randomly generate data instances with real-world attributes.

viii

Table of Contents

Acknowledgements
Abstract

List of Tables

List of Figures

Chapter 1. Introduction

Chapter 2. Related Work

2.1 Minimizing Makespan on Regular Flowshops

2.1.1 Exact Optimization Schemes . .
2.1.2 Heuristics
2.2 Sequence-Dependent Setup Times . . .
2.2.1 Exact Optimization Schemes . .
2.2.2 Heuristics

Chapter 3. Mathematical Formulation
3.1 Statement of Problem
3.2 Notation
3.3 Model A
34 Model B
3.5 Model Comparison

Chapter 4. Polyhedral Theory

4.1 Polyhedral Results for Model A
4.1.1 The P4 Polyhedron
4.1.2 Lower Bound Mixed-Integer Cuts
4.1.3 Upper Bound Mixed-Integer Cuts

X

vil

x1il

XV

11
11
13
14
16
18

4.2 Polyhedral Results for Model B

4.2.1 The conv(X,) Polyhedron

4.2.2 TFacets of Conv(Xn)
4.2.3 The Pg Polyhedron
4.2.4 Lower Bound Mixed-Integer Cuts
4.2.5 Upper Bound Mixed-Integer Cuts

Chapter 5. Polyhedral Computations

5.1 Summary of Valid Inequalities

5.2 Separation Algorithmso oo oL
5.2.1 Separation Procedures for SECs for Model A
5.2.2 Separation Procedures for Di and Dy Inequalities
5.2.3 Separation Procedures for 3-SECs and 4-SECs for Model B
5.2.4 Separation Procedures for LBMICs and UBMICs

5.3 The Branch-and-Cut Method

5.4 Computational Evaluation,
5.4.1 Experiment 1: B&B vs. B&C
5.4.2 Experiment 2: Model A vs. Model B
5.4.3 Experiment 3: Larger Instances

5.5 Conclusions o e

Chapter 6. Heuristics

6.1 Preliminaries. Lo

6.2 Hybrid Heuristic.
6.2.1 ATSP-Based Heuristics
6.2.2 Description of Hybrid Heuristic

6.3 GRASP o
6.3.1 General Methodology
6.3.2 GRASP for the SDST Flowshop

6.4 Local Search Procedures
6.4.1 L-Job String Reinsertion
6.4.2 Implementation Considerations

6.5 Experimental Evaluation 0000000

48
48
49
30
o4
56
56
57
60
61
64
64
65

6.5.1 Experiment 1: Fine-Tuning Local Search for HYBRID() &84

6.5.2 Experiment 2: HYBRID() vs. GRASP() 36
6.6 Conclusions 88
Chapter 7. Branch and Bound 91
7.1 Preliminaries. e 91
7.2 Branching Rule 0 o oo 92
7.3 Lower Bounds 92
7.3.1 Generalized Lower Bounds 93
7.3.2 Machine-Based Lower Bounds 101
7.3.3 ATSP Lower Bounds 102
7.4 Search Strategyo o 102
7.5 Dominance Rule 103
7.6 Upper Bounds L 105
7.7 Partial Enumeration oL 105
7.8 Computational Experience 0oL 107
7.8.1 Experiment 1: Lower Bounds 107
7.8.2 Experiment 2: Dominance Elimination Criterion 109
7.8.3 Experiment 3: Partial Enumeration 110
7.8.4 Experiment 4: BABAS() Overall Performance 111
T.9 Summary.o 114
Chapter 8. Conclusions 116
8.1 Summary of Research Contributions 116
8.2 Directions for Future Research 120
Appendices
Appendix A. Notation 123
A.1 Data Associated with Jobs 123
A.2 Problem Description o 124
Appendix B. Polyhedral Theory Basics 128

xi

Appendix C. Enumerative Methods
C.1 Enumeration of Solutions
C.2 Terminology about Directed Trees
C.3 A Branch-and-Bound Algorithm
C.4 Branching Operations and Branching Structures
C.4.1 Branching Operation
C.4.2 Branching Structure oo
C.5 Lower Bounding Functions
C.5.1 General Definition L.,
C.5.2 Conditionsongand G,
C.6 Upper Bounding Functions
C.7 Dominance Relations0 oL
C.7.1 General Definition L.
C.8 Branch-and-Bound Procedure

C.8.1 General Description of a Branch-and-Bound Procedure
Appendix D. Special Cases

Appendix E. Data Sets
E.1 Background
E.2 Uniform Pseudorandom Number Generator

E.3 Flow Shop Instance Generator
Bibliography

Vita

xii

130
130
131
131
132
132
133
134
134
136
136
137
137
139
140

142

147
147
148
149

155

164

3.1
3.2

4.1
4.2

5.1
5.2

3.3

5.4

3.5

6.1
6.2

6.3

6.4
6.5
6.6

7.1
7.2
7.3
7.4

7.5
7.6

List of Tables

Problem size for models Aand B

Problem size examples for models Aand B

3-SECs for ConV(Xn)
4-SECs for ConV(Xn)

Family of valid inequalities for model B

Performance of B&B and B&C on 7-job class D instances for
models Aand B oo

Comparison of B&B and B&C on 8-job class D instances for
model B

Comparison of B&B and B&C on 8-job class D instances for
model A . . . L L

Evaluation of B&C on 10-job class D instances for model B . . .

Parameter selection for string reinsertion procedure

Evaluation of local search strategy for HYBRID() on class D in-
stances L e e e e

Evaluation of local search strategy for HYBRID() on class A and
Cinstances

Heuristic evaluation for data class A
Heuristic evaluation for data class D

Heuristic evaluation for data class C

Evaluation of GLB for 10-job class D instances
Lower bound comparison for 15-job class D instances
Evaluation of dominance rule for 10-job class D instances

Partial enumeration evaluation for 6-machine, 20-job class D in-
stances Lo L

Evaluation of BABAS() for class A instances
Evaluation of BABAS() for class D instances

x1il

7.7 Evaluation of BABAS() for class C instances
7.8 Evaluation of BABAS() for 100-job instances

E.1 Data class attributes

x1v

3.1
3.2
3.3

5.1
5.2
3.3

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2

C.1

E.1
E.2
E.3
E.4

List of Figures

Example of a 2 x 4 SDST flowshop 12
Graph representations for schedule (3,1,2) 20
Procedure to go from solution of A to solutionof B 21
The support graphof 53
The Support Multigraph of a D} inequality 54
Flow chart of the B&C algorithm 66
Pseudocode of HYBRID() phase 1 71
Flow chart of complete GRASP algorithm 74
Pseudocode of GRASP() phase 1 76
Pseudocode of procedure for computing partial makespans . . . 77
Mlustration of partial makespan computation 79
[lustration of 2-job string reinsertion neighborhood 82
[lustration of the branching rule for a 4-job instance 93

Directed graph G, for computation of T, in a SDST flwoshop 95

Pseudocode of branch-and-bound procedure 141
Pseudocode of random number generator 149
Format of input file to random instance generator 150
Pseudocode of random instance generator. 153
Format of output file to random instance generator 154

XV

Chapter 1

Introduction

In this dissertation, we address the problem of finding a permutation schedule
of n jobs in an m-machine flowshop environment that minimizes the maxi-
mum completion time Ch.x of all jobs, also known as the makespan. The
jobs are available at time zero and have sequence-dependent setup times on
each machine. All parameters, such as processing and setup times, are as-
sumed to be known with certainty. This problem is regarded in the scheduling
literature as the sequence-dependent setup time flowshop (SDST flowshop or
F|sijk, prmu|Cpayx using the scheduling notation described in Appendix A) and
is evidently A"P-hard since the case where m = 1 is simply a traveling salesman

problem (TSP).

Applications of sequence-dependent scheduling are commonly found in
most manufacturing environments. In the printing industry, for example,
presses must be cleaned and settings changed when ink color, paper size or
receiving medium differ from one job to the next. Setup times are strongly
dependent on the job order. In the container manufacturing industry machines
must be adjusted whenever the dimensions of the containers are changed, while
in printed circuit board assembly [46], rearranging and restocking component
inventories on the magazine rack is required between batches. In the chemi-
cal and pharmaceutical industry [5], the processing of different chemical com-

pounds in a specific machine may require some cleansing between process runs,

and the time to set up a machine for the next task may be strongly depen-
dent on the immediate predecessor. In the problem of scheduling an aircraft
approaching or leaving a terminal area [16], the time separations between suc-
cessive aircraft belonging to different categories are to be changed according
to their respective position. Thus sequence-dependent processing times must
be allowed for a more realistic description of the problem. brand will mingle
with the scent of the following brand unless the machine is cleaned thoroughly
and very carefully resulting in high setup times. In each of these situations,
sequence-dependent setup times play a major role and must be considered ex-

plicitly when modeling the problem.

The objective of this work is to provide effective methods to find exact
or high quality approximate solutions to this problem. This includes the im-
plementation of heuristics to obtain good feasible solutions, the development
of lower bounding procedures, the study of the set of feasible solutions from a
polyhedral theory perspective, and the integration of all of these elements into

exact optimization schemes.

As far as approximate solutions are concerned, we present an hybrid
heuristic that exploits the underlying asymmetric traveling salesman prob-
lem (ATSP) and a greedy randomized adaptive search procedure (GRASP).
GRASP is a heuristic approach to combinatorial optimization problems that
combines greedy heuristics, randomization, and local search techniques. Both
heuristics are found to be very effective on finding feasible solutions of high

quality.

Recent developments on the polyhedral structure of the ATSP and the
similarities between the ATSP and the SDST flowshop motivated our study on
the SDST flowshop polyhedron; i.e., the convex hull of incidence vectors of all
feasible solutions. In so doing, we consider two different models or formulations.

Model A is based on the asymmetric traveling salesman problem (ATSP) and

model B is based on a formulation due to Srikar and Ghosh [66]. In each case,
two sets of variables are identified: a set of binary decision variables which
determines the sequence or ordering of the jobs, and a set of nonnegative real
variables which determines the times processing begins for each job. When the
time variables are ignored the binary variables give rise to a subspace of the
SDST flowshop consisting of the convex hull of incidence vectors of feasible
sequences. For model A, this subspace is the well known ATSP polytope; for
model B, the corresponding subspace (here, called the S-G polytope) has not
been previously studied. In our work, we show how any facet-defining inequality
(or facet) for either of these polytopes induces a facet for the SDST flowshop
polyhedron. We also investigate the facial structure of the S-G polytope and
develop several valid inequalities for the SDST flowshop polyhedron. We find
these valid inequalities to be effective when incorporated into a branch-and-cut
(B&C) exact optimization algorithm; however, this effectiveness was somehow
limited by the fact that the linear programming lower bound of the relaxed
subproblems was still not tight enough.

By relaxing some machine requirements rather than the integrality con-
ditions on the MIP formulations, alternate lower bounding procedures were de-
veloped. The generalized lower bound (GLB) is obtained by reducing the orig-
inal m-machine to a 2-machine problem, and the machine-based lower bound
(MBLB) is obtained by reducing to a single machine problem. Both procedures
were found to be marginally better than the LP-relaxation lower bound, with

the MBLB being more effective than the GLB.

Extending these lower bounding procedures to handle partial schedules
as well, enabled us to develop a branch-and-bound enumeration scheme. This
scheme included, in addition to the lower and upper bounding procedures, a
dominance elimination criterion and several searching strategies to provide us

with an intelligent way of searching for optimal solutions. This algorithm was

found extremely effective, providing optimal solutions to a large class of data

instances, and near-optimal solutions in other cases.

The dissertation is organized as follows. The most relevant work on this
area is presented in Chapter 2. In Chapter 3, we introduce the mathematical
models A and B, and discuss their basic differences and properties. Major
results relating the polyhedral structure of models A and B are given in Chap-
ter 4. Then, the effectiveness of the valid inequalities within a B&C framework
is assessed in Chapter 5 which includes a discussion of separation algorithms,
and a B&C code implementation. The heuristic procedures are described and
evaluated in Chapter 6. In Chapter 7, we present a full description and ex-
tensive computational experimentation of the branch-and-bound enumeration
algorithm, including a discussion of non-LP-based lower bounds and dominance
rules. We conclude with a discussion of the results and directions for future

research in Chapter 8.

Chapter 2

Related Work

In this section we highlight the main contributions to the flowshop schedul-
ing field. For a description of the notation, see Appendix A. Lawler et al. [44]
present an extensive survey, concentrating on the area of deterministic machine
scheduling. They review complexity results and optimization and approxima-
tion algorithms involving a single machine, parallel machines, open shops, flow
shops and job shops. They also pay attention to two extensions of this area:

resource-constrained project scheduling and stochastic machine scheduling.

Blazewicz et al. [7] present a review of a variety of deterministic machine
scheduling problems. They overview the existing results and present solution
strategies for resource-constrained scheduling, scheduling tasks that require
more than one machine at a time, scheduling with nonlinear speed-resource

alloted functions, and scheduling in flexible manufacturing systems.

Blazewicz et al. [6] present a survey that compiles a large number of
mathematical programming formulations for a variety of machine scheduling
problems. Their formulations include single machine scheduling, parallel ma-
chine nonpreemptive scheduling, parallel machine preemptive scheduling, job
shop scheduling, and parallel machine scheduling with nonlinear speed-resource

amount functions.

2.1 Minimizing Makespan on Regular Flowshops

The flowshop scheduling problem (with no setups) has been studied extensively
over the past 25 years. The pioneering work in flowshop scheduling dates back
to 1954 when Johnson [39] presented a simple decision rule for solving F2||Cipax
to optimality in polynomial time. He also discussed how to solve a special case
of F'3]|Cnax. Nevertheless, virtually all other cases of the flowshop problem are
hard problems.

2.1.1 Exact Optimization Schemes

Several exact optimization schemes, mostly based on branch and bound, have
been proposed for F'||Cpax including those of Lageweg et al. [42], Potts [58] and
Carlier and Rebai [10]. The 3-machine special case of this problem is considered

by Ignall and Schrage [38] and Lomnicki [47]. Della Croce et al. [17] present a

branch-and-bound approach for the 2-machine case.

2.1.2 Heuristics

Heuristic approaches for F||Cpax can be divided into (a) quick procedures [56,
9, 28, 15, 68, 51, 35, 34, 63, 49] and (b) extensive search procedures [75, 71, 54]
(including techniques such as tabu search). Several studies have shown (e.g.,
[72]) that the most effective quick procedure is the heuristic due to Nawaz et
al. [51]. In our work, we attempt to take advantage of this result and extend
their algorithm to the case where setup times are included within a randomized

algorithm. Our implementation, GRASP, is further described in Section 6.3.

2.2 Sequence-Dependent Setup Times
2.2.1 Exact Optimization Schemes

Multiple-machine case: The best efforts to solve the problem optimally have
been made by Srikar and Ghosh [66], and later by Stafford and Tseng [67] in
terms of solving MIP formulations. Srikar and Ghosh introduce a formulation
that uses half the number of binary variables in the TSP-based formulation.
They used this model and the SCICONIC/VM mixed integer programming
solver (based on branch and bound) to solve several randomly generated in-
stances of the SDST flowshop. The largest solved was a 6-machine, 6-job

problem, in about 22 minutes of CPU on a Prime 550 computer.

Later, Stafford and Tseng corrected an error in the S-G formulation and
using LINDO solved a 5 x 7 instance in about 6 hours of CPU time on a PC.
They also proposed three new MIP formulations of related flowshop problems
based on the 5S-G model.

To the best of our knowledge, there have been no better approaches to
solve the problem optimally. However, Gupta [32] presents a branch-and-bound
algorithm for the case where the objective is to minimize the total machine

setup time. No computational results are reported.

Two-machine case: Work on F2|s;;, prmu|Cpax includes Corwin and Esog-
bue [12], who consider a subclass of this problem that arises when one of the
machines has no setup times. After establishing the optimality of permutation
schedules, they develop an efficient dynamic programming formulation which
they show is comparable, from a computational standpoint, to the correspond-

ing formulation of the traveling salesman problem. No algorithm is developed.

Gupta [29] establishes some complexity results for special cases. After
showing the A"P-hardness of this problem he proposes a TSP formulation for

the case where jobs are processed continuously through the shop. He uses

these results to describe an approximate algorithm for the case where limited
or infinite intermediate storage space is available to hold partially completed

jobs.

Gupta and Darrow [30] establish the NP-hardness of the problem and
show that permutation schedules do not always minimize makespan. They
derive sufficient conditions for a permutation schedule to be optimal, and pro-
pose and evaluate empirically four heuristics. They observe that the procedures
perform quite well for problems where setup times are an order of magnitude
smaller than the processing times. However, when the magnitude of the setup
times was in the same range as the processing times, the performance of the

first two proposed algorithms decreased sharply.

Szwarc and Gupta [69] develop a polynomially bounded approximate
method for the special case where the sequence-dependent setup times are
additive. Their computational experiments show optimal results for the 2-

machine case.

1-Machine Case: Work on the single-machine case includes Lockett and Muh-
lemann [46], who address a special case where the setup takes the form of
number of tool changes from one job to the next. The jobs differ considerably
in their tool requirements and may need tools that are not presently on the
turret. The authors focus on minimizing the total number of tool changes.
This problems differs from the typical sequence-dependent setup time problem
in that the changeover for the next job depends not only on the previous job,
but on all preceding jobs, if some of the stations are empty. They describe
several heuristics based on the traveling salesman problem and report that the
TSP heuristic without backtracking gives the best results. They also derive a
branch-and-bound procedure, but it was found to be ineffective in all but the

smallest instances.

White and Wilson [74] developed a procedure that classifies setup oper-
ations and predicts the setup times for a single-machine problem. Then, based
on these predictions, they develop a heuristic based on the TSP to sequence

the jobs. No computational experience is reported.

Bianco et al. [5] propose a branch-and-bound algorithm for
Lrj, $jk|Cmax. After establishing some lower and upper bounding schemes
and dominance criteria rules, they test their algorithm on 10-, 15- and 20-job
instances with processing times randomly generated in [1, 10] and ready times
randomly distributed in the following three intervals [0, 25], [0,40], and [0, 50]
for the 10 and 15-job instances; and in [0, 100] for the 20-job instances. For the
[0,25] interval, the average CPU time for over 50 randomly generated instances
was 4.2 sec., and 26.2 sec. for the 10 and 15 job instances, respectively. For
the [0,50] interval, average CPU time was 20.6 sec. and 409.5 sec. for the 10
and 15 job instances. The 20-job instances took, in average, 115.3 sec. of CPU

time.

Gupta et al. [31] considered the single machine bi-criteria scheduling
problem where jobs are from multiple classes and where customer orders con-
sist of at least one job from each of the classes. A setup time is needed whenever
the machine is changed over from a job in one class to a job in another. One
objective is to minimize the makespan which is equivalent to minimize the total
setup time. The other objective is to minimize total carrying costs of the cus-
tomer orders. This cost is measured by the length of the time interval between
the completion times of the first job and the last job in the customer order.
They proposed polynomial-time algorithms for the two bi-criteria scheduling
problems in which one objective is to be optimized while holding the other

objective fixed at its optimal value.

Van der Veen and Zhang [73] considered a problem where n jobs are to

be processed on a single machine such that the total required change-over time

is minimized. They further assumed that the jobs can be divided into K classes
and that the change-over time between two consecutively scheduled jobs solely
depends on the job-classes that the two jobs belong to. They showed that this

problem is solvable in O(n) time for K fixed.

Zdrzalka [76] considered the single-machine scheduling problem in which
each job has a release date, a delivery time, and a sequence-independent setup
time. Preemption is permitted and the objective is to minimize the time by

which all jobs are delivered. He showed that the problem is AP-hard and

proposed an O(nlogn) heuristic with a tight worst-case performance bound of
3

o

Hansmann [33] presented several heuristics for the setup cost minimiza-
tion in a problem arising from a major cigarette company in Germany. His
threshold heuristic gave better results than his simulated annealing heuristic

in problems with up to 120 jobs.

2.2.2 Heuristics

The most relevant work on heuristics for F'|s;jr, prmu|Cpax is due to Simons
[65]. He describes four heuristics and compares them with three benchmarks
that represent generally practiced approaches to scheduling in this environment.
Experimental results for problems with up to 15 machines and 15 jobs are
presented. His findings indicate that two of the proposed heuristics (SETUP
and TOTAL) produce substantially better results than the other methods tested.
In this work, we provide an enhanced version of these heuristics by correcting
some of its shortcomings and by adding a local search phase. Full description

is given in Section 6.2.

10

Chapter 3

Mathematical Formulation

3.1 Statement of Problem

In the flowshop environment, a set of n jobs must be scheduled on a set of
m machines, where each job has the same routing. Therefore, without loss of
generality, we assume that the machines are ordered according to how they are
visited by each job. Although for a general flowshop the job sequence may not
be the same for every machine, here we assume a permutation schedule; i.e., a
subset of the feasible schedules that requires the same job sequence on every
machine. We suppose that each job is available at time zero and has no due
date. We also assume that there is a setup time which is sequence dependent
so that for every machine ¢ there is a setup time that must precede the start of
a given task that depends on both the job to be processed (k) and the job that
immediately precedes it (j). The setup time on machine ¢ is denoted by s,
and is assumed to be asymmetric; i.e., s;j5 # sig;. After the last job has been
processed on a given machine, the machine is brought back to an acceptable
“ending” state. We assume that this last operation takes zero time because
we are interested in job completion time rather than machine completion time.
Our objective is to minimize the time at which the last job in the sequence
finishes processing on the last machine, also known as makespan. This problem

is denoted by Fm/|s;jk, prmu|Cmax or SDST flowshop.

In modeling this problem as a mixed-integer program (MIP), we consider

11

12

two different formulations. In the first case, a set of the binary variables is used
to define whether or not one job is an immediate predecessor of another; in the
second case, the binary variables simply determine whether or not one job
precedes another. A set of nonnegative real variables is also included in the
formulations. In either case, they have the same definition and are used to

determine the starting time of each job on each machine.

Example 3.1 Consider the following instance of F2|s;;x, prmu|Cpax with four

jobs.
p” 3 4 Sljk‘ 3 4 52jk‘ 1 3 4
1 2 1 0 3 4 1 7 0 2 3 1 6
2 4 2 1 - 3 2 1 -1 3 5
2 5 - 3 1 2 4 - 3 1
3 2 1 - 5 3 3 4 - 1
4 3 2 5 - 4 7 4 -
A schedule S = (3,1,2,4) is shown in Figure 3.1. The corresponding
makespan is 24, which is optimal. a
[Setup time] Processing time
we| | s |] 1 | [2 []4

vl [= [[2 [4]

Time

Figure 3.1: Example of a 2 x 4 SDST flowshop

Triangle inequality: The triangle inequality for the setup times is stated as

follows:

Siik + Sikl = Siji el gkl el (3.1)

Throughout the sequel, we will assume that the triangle inequality holds. In
most operations (e.g., see [66, 67]), the time it takes to set up a machine from
job 7 to job [is less than the time it takes to set up a machine from j to another
job k, and then set up the machine from £ to [. Nevertheless, if there really
exists a machine ¢ and jobs j,k,[such that s;;; + suy < s;, we can always

replace s;;; with S;»ﬂ = 8k + sirs and force (3.1) to hold as an equality.

3.2 Notation

In the development of the mathematical programming model, we make use of

the following notation.

Indices and sets

m number of machines
n number of jobs
i machine index; ¢ € [={1,2,...,m}

J,k, 1 job indices; j, k,l € J ={1,2,... n}

Jo = JU {0} extended set of jobs, including a dummy job denoted by 0

Input data
pi; processing time of job j on machine¢; e €I, 5 € J
sy setup time on machine ¢ when job j is scheduled right before job £;

vel, g€ dy, ke

Computed parameters

13

A; upper bound on the time at which machine ¢ finishes processing its last

job; ¢ € 1,

Ai = Aisi+) pi; +ming Y filaJX{Sijk}a > m%X{Sijk}
jed jedo "€ ke 1870

where Ag =0

B;; lower bound on the starting time of job j on machine¢; e € 1,5 € J
Bi; = max{si;, Bi-1j+pi-1;} iel, jeld

where By; =0 for all y € J

Common variables
y;; nonnegative real variable equal to the starting time of job j on ma-
chineg;eel,jet

Cmax nonnegative real variable equal to the makespan;

Cmax — r?ea} {ym] —I_ pm]}

3.3 Model A

Let A ={(y,k) : j,k € Jo, 7 # k} be the set of arcs in a complete directed
graph induced by the node set J;. We define the decision variables as follows:

1 if job j is the immediate predecessor of job k; (j,k) € A
TR
" 0 otherwise

In the definition of x;, notice that xg; = 1 (x;0 = 1) implies that job j
is the first (last) job in the sequence for j € J. Also notice that s;o, denotes the
initial setup time on machine ¢ when job &k has no predecessor; that is, when
job k is scheduled first, for k£ € J. This variable definition yields what we call
a TSP-based formulation.

14

Minimize Chax (3.2.1)
subject to
Yo = 1 ke Jo (3.2.2)
J7€Jo
Yok = 1 j€do (3.2.3)
keJgy
Vi tpijt sk < yatA(leay) iel, jked (3.24)
Ymj + Pmj < Cmax] eJ
Yij T Pii S Yivrg i€ I\ {m},
je g (3.2.6)
zx € {0,1} (j,k) e A (3.2.7)
yi;, = By eI, jeJd (3.2.8)

Equations (3.2.2) and (3.2.3) state that every job must have a prede-
cessor and successor, respectively. Note that one of these 2n + 2 assignment
constraints is redundant in the description of the feasible set. Time-based sub-
tour elimination constraints are given by (3.2.4), and establish that if job j
precedes job k, then the starting time of job k& on machine ¢ must not exceed
the completion time of job j on machine ¢ (y;; + pi;) plus the corresponding
setup time. Here, A; is a large enough number (an upper bound on the com-
pletion time on machine ¢). Constraint (3.2.5) assures that the makespan is
greater than or equal to the completion time of all jobs on the last machine,
while (3.2.6) states that a job cannot start processing on one machine if it has
not finished processing on the previous one. A lower bound on the starting

time for each job on each machine is set in (3.2.8).

In formulation (3.2.1)-(3.2.8), we assume that s;;9, the time required to
bring machine ¢ to an acceptable end state when job 7 is processed last, is zero
for all « € I. Thus the makespan is governed by the completion times of the

jobs only. We are also assuming that all jobs need processing on all machines.

15

If this last condition were not true, then eq. (3.2.5) could be replaced by

yl]—l_plj < Cmax ZEI,]EJ

at the expense of increasing the number of makespan constraints from n to mn.
Note that it is possible to combine p;; + s;;1 in (3.2.4) into a single term
Lijk = pij + Siji, but that we still need to handle the processing times p;; sepa-

rately in constraints (3.2.5) and (3.2.6).

If the triangle inequality does not hold, constraint (3.2.8) must be re-
placed by

Bi; < oy + Ci(l Sag)) 1el, j€ed

where C; is a large enough number (an upper bound on the initial setup time

for machine 7).

3.4 Model B

Srikar and Ghosh (S-G) [66] proposed a second MIP formulation for the SDST
flowshop. Their formulation contained a slight error that was later corrected
by Stafford and Tseng [67]. The Srikar-Ghosh model does not consider the
initial setup time s;o; for the first job in the sequence, that is, it is assumed to

be zero. Our formulation includes this parameter.

Let A = {(j, k) : 5,k € J, j < k}. The decision variables are defined as

follows:

0 otherwise

{ 1 if job j is scheduled any time before job k; (j, k) € A
Tik =

The MIP formulation is

Minimize Chax (3.3.1)

16

subject to

Yij +pij s < ya+A(lexy) tel,(5,k) € A (3.3.2)
Yir + pix + sieg <y + Aian) e 1,(5,k) € A (3.3.3)
Ymj +Pmi < Chax jed (3.3.4)

Yij tPij = Yigi i eI\ {m},
jelJ (3.3.5)
e € {0,1} (j, k) e A (3.3.6)
v, = By e, 5] (3.3.7)

Constraints (3.3.2) and (3.3.3) ensure that time precedence is not vio-
lated. They also eliminate cycles. Equation (3.3.4) establishes the makespan
criterion. Equation (3.3.5) states that a job cannot start processing on one
machine if it has not finished processing on the previous machine. A lower

bound on the starting time of each job on each machine is set in (3.3.7).

Srikar and Ghosh point out that the triangle inequality must hold in or-
der for constraints (3.3.2)-(3.3.3) to hold. However, Stafford and Tseng provide

a stronger condition for constraints (3.3.2)-(3.3.3) to be valid; i.e.,
Sijk + Sikl + Pik = Siji iel, j kleld (3.4)

Note that (3.4) is stronger than the triangle inequality (3.1), and implies that
constraints (3.3.2)-(3.3.3) of the model hold, even if (3.1) does not hold for

setup times. They illustrate this by means of an example.

If the triangle inequality does not hold, constraints (3.3.2), (3.3.3) and
(3.3.7) are no longer valid. One possible replacement is
Yij +pij +sie <y + (0 + DAL &) + A [P(k) < P(5) 1]
Yij + pij +sije < ya+ (0 4+ DA + Ai[P(j) ©P(k) 1]

for ¢ € I, (j,k)EAand

Bir < oy + Ci[P(k) &1]

17

for ¢ € I, k € J, respectively, where C; is a large enough number (upper bound
on the starting processing time of all jobs on machine i), and P(j) represents
the position in the schedule of job j given by

P(j) = w4 (Lea,)+1 jel. (3.5)

p<J q>7

In addition, the following constraints must be added to the formulation:

P(j)+1
P(k)+1

P(k)+n(l ez (k) e A

<
< P(j) +na (j.k) € A

Thus, when the triangle inequality does not hold, the problem size increases

considerably.

3.5 Model Comparison

Model A Model B
Variables Binary n(n+1) | Binary %n(n -1
Real mn + 1 | Real mn + 1
Total n(n+1)+mn+1 | Total %n(n —D+mn+1
Constraints | (3.2.2) n+1](3.3.2) tmn(n —1)
(3.2.3) n+1|(3.3.3) tmn(n — 1)
(3.2.4) mn(n— 1)
(3.2.5) mn | (3.3.4) mn
(3.2.6) n(m—1) | (3.3.5) n(m—1)
Total mn? + mn +n +2 | Total mn? +mn —n
Nonzeros (3.2.2) n(n+1) | (3.3.2) %mn(n -1
(3.2.3) n(n+1) | (3.3.3) Smn(n —1)
(3.2.4) 3mn(n — 1)
(3.2.5) 2mn | (3.3.4) 2mn
(3.2.6) 2n(m—1) | (3.3.5) 2n(m —1)
Total 3mn? + 2n? + mn | Total 3mn? +mn —2n

Table 3.1: Problem size for models A and B

Table 3.1 shows the problem size in terms of number of variables, con-

straints, and nonzeros for either model. As can be seen, model B is considerably

smaller than model A in terms of both the number of constraints and the num-
ber of binary variables. This would appear to make it more attractive when
considering exact enumeration methods such as branch and bound (B&B) and
branch and cut (B&C). Nevertheless, the fact that much is known about the
ATSP polytope gives added weight to model A. Table 3.2 displays the number
of binary and real variables, number of constraints, number of nonzeros and

density of the matrix of constraints for several values of m and n.

mxn Model Binary Real Constraints Nonzeros Density
2 x 10 A 110 21 252 840 0.025
B 45 21 230 620 0.041
2 x 20 A 420 41 902 3280 0.008
B 190 41 860 2440 0.012
10 x 10 A 110 101 1212 3400 0.013
B 45 101 1190 3180 0.018
10 x 20 A 420 201 4422 13200 0.005
B 190 201 4380 12360 0.007

Table 3.2: Problem size examples for models A and B

To date, it has not been possible to tackle even moderate size instances of
the SDST flowshop with either of these formulations due mainly to the weakness
of their LP-relaxation lower bounds. LP-based enumeration procedures such
as B&B and B&C require good LP-relaxation lower bounds. For example,
Stafford and Tseng required about 6 hours of CPU time on a 80286-based PC
to optimally solve a 5 x 7 instance using LINDO with formulation B. To improve
the polyhedral representation of the relaxed feasible regions it is necessary to
generate valid inequalities, the strongest being facets. One way to achieve
this is by looking into the related subspaces: the ATSP polytope and the 5S-G
polytope for models A and B, respectively. Many facets have been developed
for the ATSP polytope over the last 20 years (e.g., see [1, 2, 3, 24, 59]). For
model B, though, the S-G polytope remains unexplored. As we show presently,

19

the facets of either of these polytopes can be extended to facets of the SDST
flowshop polyhedron.

(& Model A

(b) Model B

Figure 3.2: Graph representations for schedule (3,1,2)

When comparing the ATSP polytope with the 5S-G polytope fundamen-
tal differences can be observed. In the former, we have a clear picture of what a
feasible solution (also called a tour) looks like in a graph. This makes it easier to
visualize, for instance, when certain constraints, such as the subtour eliminate
constraints, may be violated. However, for model B, it is not a straightfor-
ward matter to identify in a graph a feasible solution from a given set of arcs.
Figure 3.2 shows the graph for a 3-job problem and the solution for schedule
S = (3,1,2) for both models. For model B, an undirected graph can be used
because z;; is only defined for j < k. The dotted lines represent all feasible
arcs (12 for model A and 3 for B); the solid lines identify the solution.

Figure 3.3 shows how a solution for model B can be built from a solution
for model A. Note that each arc é € A (Step 2) is visited just once so the
procedure is O(|A|) = O(n?). In Step 1, a node (job) within brackets ([j])
denotes the job scheduled in the j-th position.

20

Procedure A-to-B()

Input: An arc set T' (or directed tour, |T'| =n + 1) cor-
responding to a feasible schedule for the SDST flowshop
under model A.

QOutput: An arc set T corresponding to the equivalent

schedule under model B.

0: Initialize visited (e)=NO for ¢ € A and set T' = 0
1: Sort 1" as
T ={(0,1]), (1], [2]), ..., ([n &1],[n]), ([n],0)}

2: fory=1tondo

2a: Choose the j-th arc in T

2b: for each unvisited arc é € A incident to [5] do
2c: visited(e)=YES

2d: for each unvisited arc é € A incident from [5] do
2e: visited(e)=YES

21 T T + ¢

3: Output T

Figure 3.3: Procedure to go from solution of A to solution of B

Likewise, a solution for model A can be easily constructed from a feasible
solution for model B. Let 7' be an arc set representing a feasible schedule
under model B. Let & € B4l be its corresponding characteristic vector; that is,
zjp=1if (j,k) € T, and x;;, = 0 otherwise. For each job j, its position in the
schedule P(j) is determined by eq. (3.5) in n(n < 1) operations. The schedule
S is found by sorting the jobs by increasing value of P(j) and a feasible tour T'
is easily built from S in O(n) time so that the complete conversion takes O(n?)

time.

21

Chapter 4

Polyhedral Theory

Concepts and definitions relating basic polyhedral theory are contained in Ap-

pendix B.

4.1 Polyhedral Results for Model A
4.1.1 The P4 Polyhedron

Consider the MIP model of the SDST flowshop given by (3.2.1)-(3.2.8). We
are interested in the polyhedral description of the convex hull of the set of
feasible solutions. Let Gp1 = (Vig1, Any1) be a directed graph on n+ 1 nodes,
where each node in the set V1 is associated with a job in Jy. We assume
that G141 is complete. Thus [A,41] = n(n +1). Let X411 = {a € prnt1) .

z is the incidence vector of a tour in G, 41 }.

Let
Sa = {(z,y) € B R+ (1) is a feasible solution to (3.2.2)-(3.2.8)},

where the y vector includes the mn time variables (3.2.8) plus the makespan

variable Cac. Then S4 can be represented as follows:
SA = {(l',y) SRS Xn-l-lv (l',y) € CA7 yc Y}v

where X1, is the set of constraints involving the binary variables only, C4 =

{(x,y) : (x,y) satisfies (3.2.4)} is the set of coupling constraints involving both

22

binary and real variables, and Y = {y : y satisfies (3.2.5), (3.2.6), and (3.2.8)}
is the set of constraints involving the real variables only. It is well known
that the set X,,41 (the ATSP polytope on n + 1 nodes) is characterized by (i)
assignment constraints and (ii) subtour elimination constraints. In the formula-
tion (3.2.2)-(3.2.8), the latter were omitted because they are implied by (3.2.4)

which can be viewed as time-based subtour elimination constraints.

We are interested in the polyhedral structure of P4y = conv(S4), the
convex hull of S4. We have n(n + 1) binary variables (x;’s), and mn + 1
nonnegative real variables (y;;’s and Cpax) giving a total of N = n(n + m +
1)+ 1 variables. Note that once a feasible incidence vector @ € X, ;1 has been
determined, that is, once a given sequence is known, the computation of the
associated y € R™"*! that minimizes the makespan can be done recursively in

O(mn) operations.

The following proposition will be used for the main theorem which shows

that P4 is full-dimensional.

Proposition 4.1 Let 0 be a positive real number, y° € R' be a vector given by
y° =0(1,2,....t &1,)T, and y* € R be given by y* = y° + ¢*, where e* is
the u-th unit vector in R'. Then, the vectors in the set {y° y',y* y'} are
affinely independent.

Proof: For ag,aq,...,a, € R, we prove that the following system of

linear equations
t
Yooyt = 0 (4.1)
u=0

Zt:ozu = 0 (4.2)

implies o, = 0 for all u =10,... 1.

23

From (4.1) we have

t

t
Yoay'=0 = agy’+ Y auy’+e)=0

u=0 u=1
t t
= Zozuyo—l—Zozue“ =0
u=0 u=1
t t
= yOZozu—l—Zozue“ =0
u=0 u=1
From (4.2), we now have

¢
Z e’ =0
u=1

soa; =ag =...=a, =0 and hence ag = 0, which completes the proof. [|

We now state and prove the theorem defining the dimension of Py.

Theorem 4.1 Let Py = conv(Sa) be the convex hull of S4. Then dim(Py) =

n(n+m 1)
Proof: The proof consists of two parts.

(a) It is known that one of the 2(n + 1) assignment constraints (3.2.2)-(3.2.3)
is redundant. This implies that rank(A=,67) > 2n 4+ 1, where (A=, 57) is
the equality set of P4. It follows from Lemma B.1 that

dim(Py) < N&(2n41)
= nn+m+1)+1<2n+1)
= n(n+m&l)

(b) To prove dim(P4) > n(n + m <1) we will show that there exists a set
of n(n + m 1) + 1 affinely independent vectors in BY. In this regard,
consider the subspace X, 11 of P4. The dimension of the ATSP polyhedron

on n+ 1 vertices is n? &n <1 (e.g., see [27]). This implies that there exists

24

a set of K = n?&n affinely independent vectors z!, ..., % in R+ cach

being the incident vector of a tour. Also note that for any given 2* € X, 41,

there exists a corresponding infinite number of feasible assignments of the

time variables for P4. For each !, t = 2,..., K, let y' € R™*! be

any corresponding feasible assignment of the time variables on P4. Here,
t

y' includes the mn time variables y;;, and the makespan variable Ciyax.

Hence, the set Sy given by

s={(5) ()

is a set of feasible (and affinely independent) vectors in RY, with |S;| =
Kel=n*ensl.

For 2! we construct the corresponding y' as follows. Assume for simplicity
that a! defines the job schedule (1,2,...,n); that is, z;;41 = 1 for all

J=0,1,...,n (indices 0 and n + 1 are the same), and x;;, = 0 otherwise.

Assume also that the mn + 1 components of y! are given in the order
yh

1
Yma

1
Y12

1
ym?

1
yln

1
Ymn

Cmax

That is, all the time variables associated with job 1 come first, then those
for job 2, and so on, up to job n (the last in the sequence). The makespan
variable comes at the end. Now, it is possible to select a large enough

number # such that the following yields a feasible solution for Py4:

25

Y1 0
9%1 20
Yot mé
Yin ((n=1)m +1)0
Yien mnd
Cmax (mn —|— 1)0
Let ¢* be the u-th unit vector in R™ %!, for all u = 1,...,mn + 1, and

denote the vector y* + ¢* by y'*. By choosing 6 as
0 = max {pi; + sij} + 1
ij

we ensure not only the feasibility of y! but the feasibility of y!'** for
all w = 1,...,mn + 1, as well. Using Proposition 4.1 with ¢ = mn +
1 and y! as the base vector, we conclude that the mn + 2 vectors in
{yt, gt yt? oyt are affinely independent in R™"t! which in turn

implies affine independence in R" for the points in the set

wl wl wl wl
%= { (yl)’ (y“)’ (W) v (yl’m”“)}

with |Sz| = mn + 2.

It is left to show that the vectors in S; U S, are affinely independent. Let
ay, B, be real numbersfor t € J; = {1,...,K},andu € J, = {1,...,mn+
1} such that

() ma() - e

teJy u€Jy

26

27

dart Y B = 0 (4.4)

teJy u€Jy

This is a linear system of equations for (ay, 8,). We now prove that this

system has a unique zero solution. We distinguish three cases:

Case 1:

Case 2:

Case 3:

a; =0 forallt € J;

System (4.3)-(4.4) reduces to

Z ﬂu (yl,u) =0

uEJ2

> B =0

uEJ2

Due to the affine independence of S5, it follows that 3, = 0 for

u € Jy. Hence, an all-zero solution for (a4, 3,) is obtained.

By =0 for all u € J;

The linear system (4.3)-(4.4) becomes

13
Zat(xt) =0
teJq Yy
Z (o = 0

tEJl

which leads to «; = 0 for ¢ € J; due to the affine independence of

the vectors in 5.

There exists Iy, I, # () such that oy # 0 for all t € I} C J; and
B #£ 0 for all w € I, C Jy. Here we have ay = 0 for all t € J; \ 4
and 3, = 0 for all u € J;\ ;. We show that Case 3 cannot occur.
The corresponding linear system is

Sa(f)+ T a(n) - o

teh u€ls

Zat—l_Zﬂu = 0

teh u€ls

which can be rewritten as

Z azet + at Z B =0 (4.5)

teh u€ls

day'+ > Byt = 0 (4.6)
teh u€ls

St Y B = 0 (4.7)
teh u€ls

We first note that 8" = 3",c;, B # 0. Otherwise (4.5) and (4.7)

would become

Zozt:zjt =0

te[l

ZOét =0

te[l

which implies, due to the affine independence of {z'}, that |I;| =

0. This is clearly a contradiction.

Now consider the following two subcases:

Case 3a: 1 ¢ Iy
Equations (4.5) and (4.7) become

ﬂ’xl + Z et = 0

te[l

ﬁ/‘|‘205t = 0

te[l
However, this contradicts the affine independence of
{z'}.
Case 3b: 1€ 1,

System (4.5)-(4.7) is rewritten as

28

(n + 82"+ > au® = 0 (4.8)
te\{1}
doaw' 4+ Buy™t = 0 (4.9)
teh uElp
(aa+ 80+ > o =0 (4.10)
te\{1}

Equations (4.8) and (4.10), and the affine independence
of {z'} imply that I;\ {1} = 0; that is, I; = {1} consists
only of one index. Thus egs. (4.9) and (4.10) become

ary’ + Z Buy™ = 0

UGIQ

041-|-Zﬂu = 0

UGIQ

which contradicts the affine independence of {y',y*"}
(by Proposition 4.1).

This proves that Case 3 cannot occur.

The results from Cases 1 and 2 prove that 57 U S; is an affine independent
set 1n RN, the size of set being n(n + m <1) + 1. We conclude that
dim(P4) > n(n +m <1).

Thus dim(Pa) = n(n + m <1). n

Corollary 4.1 The equality set of Py is given by the assignment constraints
(3.2.2)-(3.2.3); that is,

(sz b:) = ((AXTSPv 0)7 b:)

where ASpgqp @5 the equality set of the associated ATSP on n + 1 vertices.

29

Proof: Lemma B.1 and Theorem 4.1 imply that rank(A=,67) = 2n+1,

which is the rank of the equality set defined by the assignment constraints. m

When a proper face F of P4 is found to have dimension dim(F') =
n(n + m 1) <1, Theorem 4.1 implies that F' is a facet of P4. We now
establish the following relationship between facets of conv(X,41) (the ATSP
polytope on n + 1 nodes) and facets of Pj4.

Theorem 4.2 Let Farsp = {& € P : wx = 7wo} be a facet of conv(X,11).
Then

Fy={(z,y) € Py : (7,0)(z,y)" =m0}

is a facet of Py.

Proof: Let Fyrsp be a facet of conv(X,41). Then dim(Farsp) =

dim(7,41) <1, or, expressed in terms of the rank of its equality set,
AR b=
rank ((ATSP), ()) = rank(Ajpep,b7) + 1
n o
= 2n4+2

That is, (7, 7o) is linearly independent of the rows of (AZygp,b~). Note that
((7,0),m) is a valid inequality for P4 and a nonempty face of P4. Let (A=, 57)
be the equality set of P4. Then rank(A=,67) = 2n + 1. The equality set of F4

(AT, bF) = ((f) (i:))

where 7’ = (7,0). The rank of this equality set either stays the same at (2n+1)

is then given by

or increases by one to (2n + 2). Assume the former; i.e., that rank(A%z, b%) =

2n + 1. This would imply that

AT 0 =
rank((ATSP),(b)):2n—|—1
T 0 o

30

yielding

rank ((AKTSP), (b_)) =2n + 1;
n o

which is a contradiction. Therefore, rank(A%,b%) = 2n + 2, which gives
dim(Fy) = dim(Pa) & 1; ie., Fy is a facet of Py.]

This result is very important in the sense that any known facet of
conv(X,4+1) can be easily transformed into a facet of P4 by just adding the
corresponding zero vector (0 € R™*t!) to the inequality defining the facet in
R+ The identification of such facets would be at the core of any B&C

scheme devised to solve the SDST flowshop problem.

4.1.2 Lower Bound Mixed-Integer Cuts

For the purpose of developing cuts, we rewrite eqs. (3.2.4) and (3.2.8) as follows:

A del, jked (4.11)
y;, 1e€l,5¢eld (4.12)

Yii Syie + (A + 7k ik

<
B; <

where 75 = pi;j + i accounts for both the processing and setup times on
machine 7. Let z;; = y;; < B,j, so that 0 < z;; and define &, = (A; + k)2 jk-
Substituting into (4.11) gives

zig ezt < A< Bij+ By (4.13)

Now, we apply Proposition B.1 with Nt = {ij,ijk}, N- = {ik}, C = {ij},
and L = 0. If C is a dependent set; that is, if A = 7,0 + B;; & By > 0,
then (4.13) gives rise to the valid inequality

Cijk + (Ai ©Bij + By)"(1 &) < AiSBij+ B4z (4.14)
Assuming (A; & B;; + Bi)t > 0, (4.14) becomes

&k < (A B + Bir)xjk

IA

Zik or

N

(pij + siji + By & Ba e Sy < B (4.15)

31

32

which is the desired result. Inequality (4.15) will have an effect only if (p;; +
sijk + Bij < Bi) > 0; that is, if €', as chosen, is a dependent set. Note that
when xj; = 1, (4.15) becomes B;; + pi; + sijk < yix as expected and when
xjr = 0, 1t reduces to By, <y, the default bound. We call this inequality a
lower bound mixed-integer cut (LBMIC).

4.1.3 Upper Bound Mixed-Integer Cuts

Let zpess be the objective function value of the best known feasible schedule,

i.e., a known upper bound on the optimal makespan. Then
Crj < zhest JE€J
Let U; denote an upper bound on the completion time of machine : and let
Prin = min{py} i€l

By letting U,, = zpest, U; can be recursively be computed as:

U = Uiep t=mym<el,...,2
Then, inequality 3.2.4 can be strengthened by

Yij + pij + siie < yie + (Ui 4+ si) (1 &)

Note that when 2, = 1, the inequality will hold as expected, and when z;;, = 0

the inequality reduces to
yij +pi; < yaxt+ Ui
which will be redundant for all jobs (¢, 7, k) such that
Cy=yij+p; < U
and will exclude schedules that have C;; > U;. This is fine, since this implies
that schedule is suboptimal.

The U;’s are updated every time a new primal feasible solution is found.

We called this inequalities the upper bound mixed-integer cut (UBMIC).

4.2 Polyhedral Results for Model B

Now consider the MIP model of the SDST flowshop given by (3.3.1)-(3.3.7).
Let S = {S;}, for « = 1,2,...,n!, be the set of all feasible schedules. For
every schedule S; € S there exists an incidence vector ' € B™"=1/2 Tet

X, = {z € B""1/2 . g is the incidence vector of a schedule}.

Paralleling the notation in the previous section, let
Sp = {(z,y) € B2 5 R (g, y) satisfies (3.3.2)-(3.3.7)}.

Again, the y vector includes the mn time variables (3.3.7) plus the makespan
variable Ciax. The set Sp can be represented as follows: Sp = {(x,y) : = €
X, (x,y) € Cp,y € Y}, where X, is the set of constraints involving the
binary variables only, Cg = {(x,y) : (x,y) satisfies (3.3.2)-(3.3.3)} is the set
of coupling constraints involving both binary and real variables, and ¥ = {y :
y satisfies (3.3.4), (3.3.5), and (3.3.7)} is the set of constraints involving the
real variables only. Note that this set Y is the same as defined in the previous

section.

We are interested in the polyhedral structure of Pg = conv(Sg), the
convex hull of Sg. Of particular interest is conv(f(n), the convex hull of Xn
and its relationship to Pg. In contrast with formulation A, and the related
polytope conv(X, 1), the corresponding subspace X, in formulation B has yet
to be unexplored. In this section we first provide a more detailed study of the

A

scheduling polyhedron conv(X,,). Subsequently, we give some results that link

conv(X,) with Pg, which in a sense, parallel those that allowed us to extend

the polyhedral structure of conv(X,41) to P4 in the previous section.

4.2.1 The conv(X,) Polyhedron

Throughout this section, we assume that the components of a feasible x € X,

are stored columnwise; i.e., in the following order:

33

34

T
T = (51?12, 13,2235 - - -y L1 n—1,L2n—15---5Ln—2n-1>L1,n,L2,ny-- -, 51?n—1,n)

so x € Brn=1)/2,

Lemma 4.1 Conv(f(n) is full-dimensional; i.e., dim(f(n) = n(n2_1).

Proof: By induction on n. For n = 2 there are only two schedules,
S1 = (1,2) and Sy = (2,1), with corresponding incidence one-dimensional
vectors ' = (1) and 2? = (0), respectively. Hence, COHV(XQ) is given by
conv(Xy) = {z € R : 0 <a <1}. Clearly, z = 1/2 is an interior point of

COHV(XQ). It follows from Corollary B.1 that Xz 1s full-dimensional.

A

Now assume the induction hypothesis; that is, that conv(X,,) is full-
dimensional. By implication there exists a set of N + 1 affinely independent

points {z!,..., 2", 2V +1} where N = dim(f(n) = @ and each 2 € X, in

the set is the incidence vector of a schedule. We need to prove that conv(X,,41)

is full-dimensional.

In Xn-l—l there is an extra job to be scheduled (job n 4+ 1). The corre-
sponding points have n additional coordinates with respect to the points in X,
given by the variables 1 441,22 041, - ., Tpnt1. Note that for any zt e Xn, the
assignment :I:Zim_l_l = xé,n-l—l =...= $;7n+1 = 0 (which correspond to scheduling

job n + 1 at the beginning of S;) yields a feasible schedule for Xn-l—l so

21 22 LN+ R)
{(0),(0),...,(0)} C X411 C conv(X, 11).

Moreover, these vectors are affinely independent.

For a given 2' € X,,, say z', we build n vectors in X, as follows.
Taking 2' € X,, as a common base, we append the n-dimensional vector v’ =
(x{,n-l—lv . .,xi7n+1)T such that (z!,0v7)T € Xn+1, for y = 1,...,n. Here, the

Y

components of v/ are determined when job n + 1 is scheduled right after the

35

J-th scheduled job in Sy, for 7 = 1,...,n. For instance, assuming for simplicity

that ! is the incidence vector of S; = (1,2,...,n), then

Insert n + 1 after 1 = (I,n+1,2,...,n)
Insert n + 1 after 2 = (1,2,n4+1,3,...,n)

o' = (1,0,...,0)
v? = (1,1,0,...,0)

=
=

Insert n + 1 after n = (1,...,n,n+1) = " =(1,1,...,1).
Note that the vectors in {v/} are linearly independent. The set

) Cop o))

has dimension N+14n = n(nel) /24140 = (n+1)n/241 = dim(X,41)+1. Tt
remains to prove that these N+1+4n vectors are affinely independent. To do so,
consider the following system of linear equations in (o, 3;), fori = 1,..., N+1,

g=1,...,n:
Salp)+sa(l) = o
i “ 0 J v -
Z%-I—Zﬂj = 0
4 J
This system can be rewritten as
Yair' +> Bzt = 0 (4.16)
4 J
Y Bl = 0 (4.17)
J
daitd B =0 (1.18)
4 J

Equation (4.17) and the fact that {v7} are linearly independent imply 3; = 0
for all j. Thus (4.16)-(4.18) reduces to

Zoq:z;i =0

Soi -
7

It follows from the affine independence of {z'} that a; = 0 for all 7. Therefore,
the (n 4+ 1)n/2 + 1 vectors are affinely independent so dim(conv(f(nﬂ)) =
(n+ 1)n/2 implying that ConV(Xn+1) is full-dimensional. |

4.2.2 Facets of conv(Xn)

We observe that X, has certain symmetry in the sense that if x € X, then
T e Xn, where = (1 ©a19,...,1 Sa1p,...,1 Sup_1,) is the componentwise

complement of x. This leads to the following lemma.

Lemma 4.2 I' = {z € conv(f(n) . wx = wo} is a facel of conv(Xn) if and
only if ' = {z € conv(f(n) Doemr = o &), Tk s a facel of conv(f(n),

where Y~ mix is the sum of all components of vector 7.

Proof: Since F' is a facet of conv(f(n), dim(F) = dim(conv(f(n)) &1
(by Lemma B.1). Hence, there exists K = dim(conv(f(n)) affine independent
vectors ' € F. Consider the vectors {z'}. It is easy to verify that z € F.

Furthermore, all the z' are affinely independent as well, as shown below.

Zozlx—() and ZOQ—O = Zoz21<:>:1;)—0 and ZOQ—O
= 12a2<:>20z2:1;—0 and ZOQ—O

7

= Zozlx —0 and ZOQ—O

= Z':() for all ¢

due to the affine independence of the z' vectors, where 1 is a vector with each
component equal to 1. Tt follows that dim(F) = K <1 and that F is a facet of

conv(X,). The converse is shown similarly. [|

36

37

Basically, Lemma 4.2 establishes that for every facet of Conv(Xn) there

is a symmetric counterpart which is also a facet of conv(X,) and tells us how

to find it.

Proposition 4.2 The nonnegativity constraints
l’]kZO j,kEJ,j<k

give facets of conv(X,) forn > 2.

Proof: Let j,k € J,j < k. Let 7z < 0 represent the constraint <z, <
0, that is, # = (0,...,0,<1,0,...,0) and 79 = 0 where the -1 component in x

corresponds to 7;;. Note that

A

(a) ma < mgis a valid inequality of conv(X,,), so F' = {z € Conv(Xn) g —

7o} is a face of conv(X,).

(b) F is a proper face since 7z < 7, is satisfied at equality by some z* € X,
and is a strict inequality for some other z' € X,. In fact, any schedule S;
where job j is after (before) job k satisfies 72 < 0 as an equality (strict
inequality).

We prove the result by showing that conditions of Theorem B.1 hold.
Here ma < 7o represents a nonnegativity constraint, the equality set (A=, %)
does not exist since conv(X,,) is full-dimensional, and we are concerned with

solutions to the linear system
Azt = Ao, (4.19)

where z* is the incidence vector of schedule S; (with components stored row-

wise) and {S;} is the set of schedules that satisfy w2z’ = 7. Hence, it suffices

to demonstrate that all solutions (A, Ag) to (4.19) for all ¢ are of the form

A = ar, \p = arg for some a € R.

Because {S;} is the set of schedules satisfying 7z* = 7o, that is l’;k =0,

then {S;} contains all schedules where job k is scheduled before job j. In

n(n—1)

particular, So = (n,n &1,.... k..., j,...,2,1) € {S;}and 2° =0€ B~ = .
Thus
)\1}0:)\0@)\'0:)\0@)\0:0

so system (4.19) reduces to Az = 0. To determine the solution

n(n—1
A= ()\127)\137---7)‘1717---7)‘7%—1,7%) S R

we proceed as follows. From Sy we obtain S; by swapping jobs 2 and 1 such
that
Si=mnel, koo g,.0.,3,1,2) € {S}

with corresponding incidence vector ' = (1,0,...,0). Thus
Al =0< A, =0.
Similarly, we obtain S5 by swapping jobs 3 and 1:
Se=(m,nel, koo, 4,1,3,2) € {5}
with 2% = (1,1,0,...,0). Thus
Ml =0< A\3=0

because we already have found that A3 = 0.

Observe that every time we swap two adjacent jobs w,v, the corre-
sponding incidence vectors are equal except for the component associated with
these jobs x,,. Also, as long as jobs j and k are not swapped, the result-
ing schedule remains feasible and satisfies 7@ = my. Therefore, by swap-

ping job 1 with jobs 4,5,...,n (one at a time), we arrive at the schedule

38

Snc1 = (Lnyn <1, 00k 00, 7,...,3,2), finding along the way that Ay =
... = A, =0; that is, Ay, =0forall ¢ =2,...,n.

Proceeding similarly with jobs 2,3,...,j <1, and evaluating (4.19) for
each generated ', we find \,, = 0forallp=1,...,j&land g=p+1,...,n.
After the final swap, we have

Si=(1,2,..., 52, 5&elnnel ko)

for some /.

By shifting one at a time the jobs in Sy scheduled after job j, and by
substituting the corresponding x' in system (4.19), we have recursively found
that A,;, = 0 for all p, ¢ such that p < j. If instead of shifting the jobs at the
end of the schedule (after job j), we carry out the same procedure starting
with the jobs at the beginning of the schedule (before job k) we arrive at the
conclusion that A,, = 0 for all p, ¢ such that ¢ > k. That is, given 5;, swap
jobs n and n &1 to get

Sp=,....5elnelnns2, . k...,7)

Then, Az'*' = 0 implies \,_1, = 0. Keep on swapping job n with each
of the jobs n &2,n &3,...,5 one at a time to obtain \,_5, = A,_3, =
oo = Ajg1n, Ay = 0. After the last exchange, we have the schedule Si4,,—; =
(I,...,5elnel,ne2,...k,...,j,n). Repeat recursively this shifting pro-
cedure for jobs n &1,n <2,... k+ 1, to obtain A,, = 0 for all p, ¢ such that
g=n,n<1,..., k+ 1, with final schedule S, = (1,...,7 &L,k ksl .. j+
L, k+1,k4+2,...,n<&1,n), for some r.

It remains to determine A, for all p, ¢ such that p=37,74+1,...,k &1
and g =p+1,..., k. However, by applying the same reasoning, we swap job k
and k£ <1 to get A\y_1 5 = 0. Then we swap job k with £ <2 and so on up to
job y+1. Thisleads to Ay_a 1 = Ap—szp = ..., Ajy15 = 0 with the corresponding

schedule Sy4—; = (..., kel k2, k<3, .., 7+ 1,k j,k<1,...). Repeating
these operations for job k 2. k<3,....7 + 1, but shifting all the way up to
job j, we find A,, = 0 for all remaining (p, ¢) pairs except (j, k). The resulting
schedule is S, = (1,...,5 <L,k 7+1,....; kel kE+1,...,n), for some s.
Therefore, A,, = 0 for all (p,q) # (4, k).

Hence, a solution for (4.19) is given by (X, 0), where
A=1(0,...,0,X%,0,...,0).
It is straightforward to check that o = &\ satisfies
A=ar and Ay = amg

as was to be shown.]

Corollary 4.2 The inequalities
v <1 g kedj<k

give facets of conv(X,) for all n > 2.

Proof: Follows from Proposition 4.2 and Lemma 4.2. []

In contrast with X, 11 in model A it is not possible to identify analogous
ATSP valid inequalities such as subtour elimination constraints, comb inequal-
ities, and Di, D; inequalities for model B. One set of valid inequalities that
we can identify, though, corresponds to precedence violations for a sequence
of jobs. Table 4.1 shows the valid inequalities that eliminate “cycles” (in the
precedence sense) for any 3-job subsequence. We call these inequalities, for a
subsequence of size ¢, the t-subsequence elimination constraint (or ¢-SEC). For

A

t = 3 we show below that the 3-SEC are facets of conv(X,,).

40

Sequence Constraint

j—k—1l=>j—1 Tik + Thi < 1—|—l‘jl

j—>l—>k‘:>_]—>k‘ l‘]’l—l—(l—l‘kl) < 1—|—l‘]’k

A

Table 4.1: 3-SECs for conv(X,,)
Lemma 4.3 The inequalities (3-subsequence elimination constraints)
TipSrgt+ay > 0 L kleld j<k<l (420)

give facets of conv(f(n) for all n > 2.

A

Proof: Each inequality in (4.20) represents a proper face of conv(X,)
since it is satisfied as an equality by some schedule (e.g., S = (I, k,4,...)) and
as a strict inequality for some other schedule (e.g., S = (I, J,k,...)).

Again we prove the result by showing the conditions of Theorem B.1.
Here, 7 < 7 is given by 7 = (0,...,0,7%,0,...,0,7;,0,...,0,7,0,...,0)
and mo = 0, where 7;;, = 7j; = ©l and 7 = 1. Note that because ConV(Xn) is

full-dimensional, there is no equality set (A=, 67).

Let {S;} be the set of schedules that satisfy mx! = 7, for all 7. We are

concerned with solutions to the linear system
At o= Ao (4.21)

where z° is the incidence vector corresponding to schedule S;. It suffices to
demonstrate that all solutions (A, Ag) to (4.21) are of the form A = arx, \g = amg

for some o € R.

Equation 7@ = 7 (that is, 2, <aj + @ = 0) is satisfied if one of the

following three cases occur:

(i) ajr = aj; = xk =0, which corresponds to S; = (..., [,... k... 7,...).

41

(ii) ajr = 0,2, = xp = 1 which corresponds to S; = (..., k,...,7,...

(iii) aj = xj = 1,25 = 0, which corresponds to S; = (..., j,...,1[,...

Since So = (n,n<1,...,2,1) € {S;} (case (i)), then
)\2}0:)\0@)\'0:)\0@)\0:0.

By performing the same job shifting procedure we used in the proof of Propo-

sition 4.2 for the schedules associated with case (i), we find A,, = 0 for all

(p,q) € {(5, %), (5,0), (k,1)}. Thus, (4.21) becomes
Niexie + Ajpa + Aga = 0.
Case (ii) and (iii) imply

XNi+ A = 0
)\jk‘l‘)\jl =0

which is a 2 x 3 system with solution A\;; = 3, A\;; = Ay = &8 for any € R.
Hence, by taking o = /3, (A, Ag) is given by (A, Ag) = (a7, ang). This completes
the proof. []

Lemma 4.4 The inequalities
TipSxgt+ag <1 gk led g <k<l

give facets of conv(f(n) for all n > 2.

Proof: Follows from Lemma 4.3 and Lemma 4.2.]

All 4-SECs are shown in Table 4.2 for all j,k,llm e J, j <k <[< m.

These valid inequalities, however, do not define facets of COHV(XH). In fact,

because dim(Xn) = n(n <1)2 and each 4-SEC can be expressed as the inter-

A

section of two of the previously developed facets of conv(X,,) (i.e., combinations

of ;5 > 0,2, < 1, and 3-SEC), they define faces of dimension n(n <1)/2 <2.

42

Sequence Constraint
j—k—1l—-m=j—m Tip+ T+ T < 24z,
j—k—m—l=j—1 i+ Chm + (1 —a2mm) < 2425
j—=l—k—m=j—m i+ (l—ap)+ 2em < 24 2jm
j—=l—m—k=j—k i+ Tim + (L —2pm) < 24 25
j—m—k—l=j—1 Tim+ (1 —2pm)+ 2,0 < 24 25
j—m—=l—k=>j—k zim+{1l—zm)+{1—-—rn) < 24z

A

Table 4.2: 4-SECs for conv(X,,)

A

The conv(X,,) polytope can be used to model other scheduling prob-
lems, such as single-machine and permutation flowshops problems, where ev-
ery schedule is feasible. When real variables are introduced in the scheduling
model, it remains to be determined whether the valid inequalities discussed
above define facets of the complete polyhedron. In the next section we prove

that this is the case for the SDST flowshop polyhedron.

4.2.3 The Pg Polyhedron

We now state and prove the theorem defining the dimension of Pg. The proof
is very similar to the proof of Theorem 4.1 because a point = € X, defines a
given feasible sequence for Pg just as @ € X, ;1 defines a feasible sequence for

P4; moreover, the definition of y € R™"*! is the same for both polyhedrons.

Theorem 4.3 Let Pg = conv(Sg) be the convex hull of Sg. Then Py is full-
dimensional; i.e., dim(Pg) =n(n <1)/2 +mn + 1

Proof: Let N =n(n <1)/2 4+ mn + 1. We will show that there exists
a set of N 4 1 affinely independent vectors in RV.

Consider the subspace Xn of Pg. We proved in Lemma 4.1 that Conv(Xn)
is full-dimensional. This implies that there exists a set of K =n(n <1)/2 4 1

43

affinely independent vectors z',..., 2% in R*"*D each being the incidence

vector of a schedule. Also note that for any given x' € Xn, there exists a
corresponding infinite number of feasible assignments of the time variables for

Pg.

From this point on the rest of the proof follows that of Theorem 4.1,
part (b). We will just sketch the arguments. From the set {z!,... 2%} we
build two disjoint sets Si,.5, C RV given by

) (o))
) () () (omen)y

where S; and S, are sets of feasible (and affinely independent) vectors in R,

with |S1] = K &1 = n(n <1)/2 and [S3] = mn + 2, so that |S; U Sy| =

St

S

n(n<1)/24 mn+ 2. We then can prove that the points in Sy U Sy are affinely
independent by showing that the linear system

Salf)+Safl) <o

teJy u€Jy

Zat‘l'Zﬂu = 0

teJy u€Jy

admits the unique solution oy, = 3, =0 fort € J; ={1,...,K},and v € J; =
{1,...,mn+1}. This leads to conclude that dim(Pg) = n(n <1)/2 +mn + 1.

A

We now establish the following relationship between facets of conv(X,,)

and facets of Pg.

A

Theorem 4.4 Let Fx = {x € conv(X,) : mx = 7w} be a facet of conv(f(n).
Then Fg = {(x,y) € Pg : (7,0)(x,y)T =m0} is a facet of Py.

44

A

Proof: Let Fyx be a facet of conv(X,). Let (', 7o) represent the in-
equality 7'z < 7o where #’ = (7,0) € RY and z = (z,y) € Pg. Hence I'p
can be rewritten as Fg = {z € Pg : 7'z = mp}. Given that Fx is a facet of

A

conv(X,), it follows that Fp is a proper face of Pg.

We prove the result by showing that conditions of Theorem B.1 hold.
Here, the equality set (A=, b67) does not exist since Pp is full-dimensional, and

we are concerned with solutions to the linear system
Az = Ao (4.22)

where z is any point in Pp satisfying #'z = 7. Hence, it suffices to demonstrate
that all solutions (A, Ag) to (4.22) are of the form A = am, A\ = awy for some
a € R.

Since z = (x,y) € Pg, the system in (4.22) can be rewritten as
AT+ Ay = Ao (4.23)

Let 2! € Fy. According to the procedure described in the proof of Theo-
rem 4.3, it is possible to construct mn 4+ 2 feasible affinely independent points

mntl wwhere y* = y® +e* forall u = 1,...,mn+1. Here e* denotes

vty
the u-th unit vector in R™*!. Tt easy to see that z' = (z!,y') € P for all
i = 0,...,mn + 1. Moreover, ' satisfies 7'2* = 72! = 7 for all ¢ so that

2t € F. Substituting these mn + 2 points in system (4.22) we have

At + 0,10 = Ao (4.24)
Aot F 000 = Ao (4.25)
Aot + Ay =) (4.26)

By subtracting (4.24) from all other eqs. (4.25)-(4.26), we obtain the following

system of order mn + 1:

45

)‘y(yl <:>y0) =0

)‘y(ymnH @yo) =0

Since y* ©y° = €' it follows that A\, = 0 € R™"*L. This reduces (4.22) to

where = satisfies ma = 7. Given that Fy is a facet, it follows that there
is @ € R such that A\, = ar, Ao = awg. This implies that A = (A, A,) =

(am,a0) = a(7,0) = ar’ and the proof is complete. [|

4.2.4 Lower Bound Mixed-Integer Cuts

Note that inequalities (3.3.2) and (3.3.7) in model B have the same structure
as inequalities (3.2.4) and (3.2.8) in model A. Thus the valid inequality derived

from these equations for model A also applies for model B; that is,
(pij + sijn + Bij ©Ba)wje Sy < B (4.27)

is a valid inequality for model B. Recall that (4.27) will have an effect only
if (pij + sijk + Bij < Bix) > 0. Note that when x;, = 1, (4.27) becomes
B + pij + sijr < yir as expected and when zj;, = 0, it reduces to By, < yi,
the default bound.

In a similar fashion, we use inequalities (3.3.3) and (3.3.7), a change of
variable 2% = 1 &z in (3.3.3), and the same procedure to derive the valid

inequality
(pir + sikj + Bix ©Bij) (1 ©ap) <y < By

for model B, where again we must have (pix + si; + Bir < Bij) > 0 for the

inequality to be useful.

46

4.2.5 Upper Bound Mixed-Integer Cuts

Following the development of UB MICs for model A (Section 4.1.3), it is also
possible to strengthen the representations of inequalities (3.3.2) and (3.3.3)
when a given upper bound U; for completion of machine 2 is known. In that
section we showed how to compute U; recursively from a given known upper

bound in the value of the makespan. Then the following inequalities can be

added to model B:

Yij + pij + Sijk ik + (Ui + sii)(L &) (k)€ Ajiel (4.28)
A .

<
< i+ (Us + sigg) e (J,k) €

Yik T Pik T Sikj
When x;, = 1, inequality (4.28) will hold and eq. (4.29) will reduce to
Cio =y +pir < yi; +U;

which will be redundant for all schedules with C;;, < U; and will exclude those
schedules with C; > U;. When zj;, = 0, the role of equations are reversed and

we obtain identical results.

47

Chapter 5

Polyhedral Computations

5.1 Summary of Valid Inequalities

What distinguishes B&C from traditional cutting plane methods is that the
inequalities generated are valid at each node of the search tree. In Chapter 4,
we developed several valid inequalities for formulations A and B. We now sum-

marize these results.

For model A, we showed that if { € P : ma = m} is a facet of P, where
P is the convex hull of the set of feasible solutions of a (n 4 1)-city ATSP, then

{(z.y) € P+ (7,0)(z,y)" = mo}

is a facet of the convex hull of the set of feasible solutions of the SDST flowshop,
where x € B*"t) corresponds to an incidence vector of a tour in a (n 4 1)-city
ATSP, y € R"™*! is the vector of real-variables y in formulation A, and Py
denotes the convex hull of the set of feasible solutions of the SDST flowshop
under formulation A. This result says that any of the facets developed for the
ATSP can be applied to the SDST flowshop. In our work, we implemented sub-
tour elimination constrains (SECs) and Df and Dj inequalities (e.g., see [27])
which are two of the most successful facets developed for the ATSP. Among
these, we found that the SECs were much more effective. The Di and Dj
inequalities had little or no impact on improving the polyhedral representation

of the SDST flowshop polyhedron.

48

We also developed mixed-integer cuts (MICs) of the following form:

(LBMICS) (pij + sik + B <:>Bik)l’]‘k = Yik By, and

<
(UBMICS) (UZ + Sijk)(l <:>$]‘k) + Yok SYi; >

Pij + Sijk
where, B;; is a lower bound on y;; as defined in Section 3.2, and U; is an upper

bound on the completion time of machine .

For model B, we developed 3-subsequence elimination constraints (3-
SECs), 4-subsequence elimination constraints (4-SECs), and both lower and
upper bound mixed-integer inequalities. The k-SEC are inequalities that elim-
inate “cycles” (in the precedence sense) for any k-job subsequence. These are

shown in Table 5.1, where B;; and U; are defined as before.

Cut type Constraint
3-SECs rirt+rn < l+agy
rii+(1—zr) < 14z
4-SECs Tip+xp+r;m < 241,
i+ Chm + (1 —a2mm) < 2425
i+ (1 —ap)+ 2em < 24 2jm
it 4 Tim + (L —2pm) < 24 25
Tim+ (L —2pm) 2 < 24 25
Tim+ (1 —2m)+ (1 —2p) < 24z
Lower bound MICs (pij + sije + Bij — Bar)%je — Yir < —Biy
(Pik + sikj + Bir — Bij)(1 —zj1) —vij < —Bij
Upper bound MICs (Ui +sij1) (X —xjn) Y yir — 45 > Py + Sije
(Us + sivj)xje + ¥ij — Y > Pik + Sikj

Table 5.1: Family of valid inequalities for model B

5.2 Separation Algorithms

For a given class of valid inequalities, the associated separation problem can
be stated as follows: Given a point & € RP satisfying a certain subset of con-

straints, and a family F' of SDST flowshop inequalities, find the most violated

49

member of F'| i.e., an inequality az < g belonging to ' and maximizing the
degree of violation az < «ap. When this problem is solved optimally, we say
that we have an exact separation algorithm. However, sometimes the separa-
tion problem is as difficult as the original problem so it is necessary to resort to

heuristics to identify violated inequalities. Below we describe the procedures

developed for models A and B.

5.2.1 Separation Procedures for SECs for Model A

Let (z,7) € R4 x R™"*! be a point satisfying constraints (3.2.2)-(3.2.6). This
point is obtained by relaxing the integrality restriction on the binary variables
x and solving the corresponding LP. As stated in Section 5.1, any facet for
the ATSP is a facet for the SDST flowshop, where only the binary variables
x are considered. Therefore, we drop the real variables y and are left with
the problem of finding a violation of the classical TSP subtour elimination
constraint

> i < |Wel (5.1)

(jk)EA : jkeW

for some W C J,2 < |W| < n <1, or prove that none exists. Note that (5.1)
is equivalent to

DTt D Tp 2 2 (5.2)

JEW JEI\W
keJ\W kew

SECs for the ATSP are symmetricinequalities, that is, inequalities of the
form ax < ag with aj, = ay; for all (j, k) € A. Symmetric inequalities for the
ATSP have a very important property. It has been shown [27] that there exists
a correspondence between valid inequalities for the ATSP and valid inequalities
for the symmetric TSP (STSP). If we define the mapping f : B* — RE (A is
the arc set of the complete digraph and F is the edge set of the corresponding
undirected graph) as follows: f(z) = &, where &;; = &+, for all j # k, then

30

we have f(P) = @, where P and @) are the polytopes of the ATSP and STSP,
respectively. In other words, every inequality > .cp a.2e < ag for STSP can be
transformed into a valid ATSP inequality by simply replacing &, by x5 + xy;
for all e = (j, k) € E. This produces the symmetric inequality ax < ag, where
aj = oy for all g, k € J, 7 # k. Conversely, every symmetric ATSP inequality
ar < aq corresponds to the valid STSP inequality Y .cp a2 < ag.

The above correspondence implies that every separation algorithm for
STSP can be used, as a black box, for ATSP as well. Therefore, given the
point &, we first define the symmetric counterpart & of @ by the transformation
T = 2, + Tx; for all j,k € J, and then apply a STSP separation algorithm

to z.

Now, let us define the undirected support graph of &, denoted G(1), as
the graph formed by n + 1 vertices (n jobs plus a dummy job) and an edge
(7, k) of weight &5 for each &, > 0. The problem of finding a violated SEC for
STSP is equivalent to finding a cut in G/(2) that is less than 2. That is, given
& € RY satisfying 0 < #;;, < 1 for all (j, k) € E and the assignment constraints
(3.2.2)-(3.2.3), find a nonempty proper subset W of .J such that

S o o< 2 (5.3)

JEW
EeJ\W

holds, or prove that no such W C .J exists, where (5.3) is the violated version

of (5.2) for the symmetric case.

Consequently, what we are interested in is finding a minimum capacity
cut-set in the support graph G(1) where the capacities are given by the weights
Tk, (J, k) € E. If the minimum cut-set in G(&) has a capacity which is greater
than or equal to 2, then we conclude that there exists no SEC that is violated

by z. Otherwise a vertex set W given by a minimum capacity cut-set defines

a violated SEC.

51

To solve the separation problem, we use the MINCUT algorithm devel-
oped by Padberg and Rinaldi [55]. This algorithm has a time complexity of
O(n*), which is the same complexity as the algorithm developed by Gomory
and Hu [26]. However, empirical evidence over a large class of graphs has

demonstrated the superiority of MINCUT over the Gomory-Hu procedure.

Example 5.1 Consider the following 7-job instance of F'2|s;, prmu|Cpax.

Dij _] =1 2 3 4 5 6 7
i=1 68 43 95 95 69 66 55
2 44 66 T4 92 34 55 52

sy | k=1 2 3 4 5 6 T
j= 30 33 25 29 39 32 31
1 - 37T 24 26 27 34 39
2| 22 - 39 28 31 29 31
3| 25 32 - 40 33 23 40
4| 35 28 40 - 25 25 27
5 40 28 29 29 - 40 23
6
7

3226 32 29 20 - 28
37 25 28 37 35 26 -
sojr | k=1 2 3 4 5 6 T
j= 35 33 24 40 21 27 40
1 - 35 20 33 37 20 32

27 - 24 28 35 20 33
30 20 - 36 24 34 35
36 25 - 20 40 27
35 32 20 38 - 28 29
34 26 22 23 39 - 27
20 39 20 37 40 25 -

-~ O Ot = W N
[\
©

Suppose that at some node in the B&C search tree, the following frac-

tional solution is obtained (LP relaxation):

i’lg — 08540 i’40 — 10000]jn — 30]jzl - 98

i’lg — 01460 i’53 — 08540 3]12 — 33 gzz - 76

Fas = 09113 Ts; = 0.1460 715 = 25 gy = 120
Tyr = 0.0887 Zes = 08723 iy = 29 gy = 124
F31 = 0.6375 Zer = 0.1278 s = 39 fps = 108
Z3 = 0.0386 Zry = 0.1074 e = 32§ = 98
Fag = 01278 ire = 08926 jir = 31 gpr = 164

Tas = 0.0887 Zoy = 0.3625 Cpay = 216
i’36 - 01074 i’o7 - 06375

@ (b)

Figure 5.1: The support graph of &

We transform x into its corresponding symmetric counterpart & using
the transformation ;. = #;; + &x; and then form G(&), its support graph

(depicted in Figure 5.1(a)). The edge weights are given by

Edge Weight Edge Weight

(0,1) 0.3625 (2,7) 0.1961
(0,4) 1.0000 (3,4) 0.1278
(0,7) 0.6375 (3,5) 0.9427
(1,2) 0.8540 (3,6) 0.1074
(1,3) 07835 (4,6) 0.8723
(2,3) 0.0386 (5,7) 0.1460
(2,5) 09113 (6,7) 1.0204

o4

By applying the MINCUT algorithm, we find that the minimum cut-set
is given by W = {1,2,3,5} (shown in Figure 5.1(b)) with cut capacity equal
to xo1 + wor + T34 + 136 + 57 = 0.9398. Since 0.9398 < 2, the set W violates
the following SEC:

T12 + T13+ T1s + T21 + X2z + Tos

+as F Tt asstasntaeetas < 3= |W| el

for the ATSP. O

5.2.2 Separation Procedures for D and D; Inequalities

—

[~
7,

/O
=
\O

Figure 5.2: The Support Multigraph of a Di inequality

The following inequalities were derived by Grotschel and Padberg [27]:

k—1h-1

(DF) iy, + Z Tipin_, +2 Z Tiiy 2> iy, < kel (54)

h=3 7=2
k—1 h—1

(k Ligiy + Z Lip_1in + 2 Z Lipiy + Z Z xlhh

h=3 7=2

IA

kel (5.5)

where (71....,4x) is any sequence of k € {3,...,n <1} distinct nodes. A
D} inequality for k& = 6 is depicted in Figure 5.2, where arcs in dotted
and solid line have coefficient 2 and 1, respectively. Di and D, inequali-
ties are facet-inducing for the ATSP polytope [24], and are obtained by lift-
ing the cycle inequality > nec xji < k <1 associated with the circuit ¢' =
{001, 0k)s (Pky the1)s - -+, (22,21)} and C = {(41,22),. .., (Tg—1, k), (1k, 1)}, respec-

tively.

The separation problem for Di inequalities consists of finding a node
sequence (i1,...,%), 3 < k < n <1, such that (5.4) is violated. An exact
enumeration scheme is proposed by Fischetti and Toth [25]. Here we use the
following procedure. We first attempt to find all cycles in G(&). Although the
number of cycles in a complete graph may be large, usually G(z) (coming from
the SDST flowshop fractional solution) is relatively sparse, which allows us to
identify the cycles in a relatively short amount of time. Then, for each cycle
we attempt to find a violated D} and store the one with the largest degree of

violation.

As pointed out by Fischetti and Toth [25], the Dy inequalities can be
thought of as derived from D} inequalities by swapping the coefficient of the
two arcs (j, k) and (k,y) for all j,k € J, j < k. This is called a transposition
operation. They show how this transposition enables the use of the separa-
tion procedures designed for D inequalities as a separation procedure for Dy

inequalities.

After implementing the Di and D separation procedures, we found
they had very little impact on the overall performance of our B&C algorithm.
Empirically, the SECs did a far better job in tightening the polyhedral rep-
resentation. In our computations, only a very small number of Di and Dj
inequalities were identified and, when added to the set of cuts, provided an

insignificant improvement in the value of the LP relaxation.

)

56

Example 5.2 (Example 5.1 continued)
For the same fractional point (Z,y), consider the following node sequence
(3,5,2,1,0,4). Evaluating eq. (5.4) for k =6 and (¢1,...,%) = (3,5,2,1,0,4),

we see that
6 5 5 h—1
Tiyig T+ Z Tipin_, T2 Z Tiyi, + Z Z Tii, = (ZTa4+ Tao+ Tor
h=2 h=2 h=3 j=2
+ T12 + Tas + Tss)
+ 2(Z35 + Ta2 + T31 + Ta0)
+ (Zs52 + Ts1 + T
+ Z50 + To0 + T10)
= (4.1096) 4 2(0.7648) + (0.0)

= 56392 >5 =%k &l

is a violated DJ inequality at z. a

5.2.3 Separation Procedures for 3-SECs and 4-SECs for Model B

Given that there is a polynomial number (O(n?) and O(n?)) of 3-SECs and
4-SECs (see Table 5.1), the corresponding separation problem can be solved
optimally by simply looping over all indices for each type of 3-SECs (2 types)
and 4-SECs (6 types). Empirically we found that the implementation of 4-SECs
had very little or no impact at all on the performance of the B&C algorithm.

5.2.4 Separation Procedures for LBMICs and UBMICs

From Section 5.1 we can see that LBMICs for both models can be expressed

in the following form:
i SYie < Bk

where oy, and (3, are constants depending on problem data for : € I and

A

(7, k) € A (A) for model A (B). Thus given a point (z,y), by looping over all

possible index values 1, 5, k, we find the inequality such that
QR ik SYin & Bijk
is maximized. This can be done in O(mn?) time.

Similarly, the UBMICs for both models can be expressed as
YiikTik T Yik SYi; = Oijk

where ~;;1, 0,55 are constants that depend on problem data. Again, by looping
over all possible values of indices 7, j, k the separation problem is solved exactly

in O(mn?) time.

5.3 The Branch-and-Cut Method

Branch and cut (B&C) was introduced by Crowder and Padberg [14] who
successfully solved large-scale instances of the well-known symmetric traveling
salesman problem. It is considered state-of-the-art for the exact optimization
of TSPs. The success of this method depends on the ability to find “strong”
valid inequalities of the convex hull of the set of feasible solutions for a given
mixed-integer program. This has been the case for the TSP, where many valid
inequalities have been developed over the past 20 years. The SDST flowshop,
however, has not been studied from a polyhedral perspective so one of our aims

is to assess the effectiveness of B&C on this type of problem.

A typical B&B algorithm maintains a list of subproblems (nodes) whose
union of feasible solutions contains all feasible solutions of the original problem.
The list is initialized with the original problem itself. In each major iteration
the algorithm selects a current subproblem from the list of unevaluated nodes.
Typically in this subproblem, several of the binary variables have already been
fixed to either zero or one when the node was generated. The algorithm solves

the LP relaxation of this subproblem. This relaxation provides a lower bound

(for a minimization problem) for the original problem. Depending on the value
of the solution, the node is either fathomed (e.g., if the relaxed LP is infeasible,
or if the lower bound value exceeds the value of the best known feasible solu-
tion), which means that no further processing of the node is necessary, or split
into new subproblems (children nodes) whose union of feasible solutions con-
tains all feasible solutions of the current subproblem. These newly generated

subproblems are added to the list of unevaluated subproblems.

Iterations are performed until the list of subproblems to be fathomed
is empty. The crucial part of a successful B&B algorithm is the computation
of the lower bounds. The better the LP-representation of the problem, the
tighter the lower bound. This has a tremendous impact on the computational
effort because it improves the chances that a node will be fathomed. Thus
the corresponding portions of the search tree will not have to be evaluated.
One way to improve the LP-representation of a given problem is by adding
valid inequalities (cutting planes or cuts). B&C is the procedure developed to

implement this idea.

Figure 5.3 shows a flow chart of our B&C algorithm which was coded
within MINTO [52] using many of its built-in features. To discuss the relevant
steps of the algorithm, the following notation is used: Zj, is the objective
function value of the current subproblem’s LP relaxation, Zj.s is the objective
function value of the best feasible solution known so far, and Zj... is the

objective function value of a feasible solution delivered by a heuristic.

Read data: Read problem data and initialize the best global feasible so-

lution value Zj.4 to infinity.

Preprocess: After the data have been read in, this stage attempts to im-
prove the original formulation by removing redundant con-
straints and applying some probing techniques. The underly-

ing idea of probing [64] is to analyze each of the inequalities of

38

Select:

Solve LP:

Primal heuristic:

Generate cuts:

the system of inequalities defining the feasible region in turn,
trying to establish whether the inequality forces the feasi-
ble region to be empty, whether the inequality is redundant,
whether the inequality can be used to improve the bounds
on the variables, whether the inequality can be strengthened
by modifying its coefficients, or whether the inequality forces

some of the binary variables to either zero or one.

A subproblem is chosen from the list of unevaluated can-
didates. Here we use a best-bound node selection strategy,

which chooses the subproblem with the smallest lower bound.

The LP relaxation of the current subproblem is solved. We
call its solution value Z;,. If the problem is inconsistent or
Ziy, > Zpest the node is fathomed and we go back to the selec-
tion step. If the solution satisfies integrality and is feasible,
then we update the current best global feasible solution (if
Ziy < Zpest), fathom the node, and go back to the selection
step. Otherwise, we apply a heuristic in an attempt to find

an integer feasible solution.

A heuristic is applied to see if it is possible to convert the
current fractional solution to one that is integral. If success-
ful, we update the current best global feasible solution (if
Zhewr < Zest), fathom the node, and go back to the selection
step. In our implementation, we apply the SETUP heuristic
(discussed in [62]) to the root node to start with a good fea-
sible solution and use MINTO’s built-in heuristic thereafter

(invoked every 25 nodes).

An attempt is made to identify a violated valid inequality.

This is the most important component of the algorithm. The

39

Branch:

generated inequalities are SECs (facet-inducing), D and
Dy inequalities (facet-inducing), LBMICs, and UBMICs for
model A, and 3-SECs (facet-inducing), 4-SECs, UBMICs,
and LBMICs for model B. If successful, we add the gener-
ated constraints to the formulation of the current subproblem

and go back to solve the LP.

We need to specify how to partition (branch) the set of feasi-
ble solutions at the current node. For this type of formulation
we do 0-1 variable fixing. This is based on fixing the value of
a binary variable to either 0 or 1; i.e., two nodes are created.
The way we determine the branching variable is by selecting
the one with fractional value closest to % The idea behind it
is that it fixes a variable whose value in the optimal solution
is hard to determine. The two newly created subproblems

are added to the list of unevaluated nodes.

Although the conceptual algorithm stops when the list of unevaluated

nodes is empty, we apply the following stopping criteria: (i) relative gap per-

centage; i.e., stop when a global integer feasible solution is within p% of opti-

mality, (ii) time limit, and (iii) number of evaluated nodes limit.

5.4 Computational Evaluation

For the purpose of evaluating the B&C approach, we embedded all algorith-
mic components discussed above in MINTO (Mixed INTeger Optimizer [52]).

MINTO is a shell that facilitates the development of implicit enumeration and

column generation optimization algorithms that rely on linear relaxations. The

user can enrich its basic features by providing a variety of specialized applica-

tion functions to achieve maximum efficiency for a problem class. CPLEX [13]

60

was used to solve the LLP relaxations. Our functions were written in C+4 and
linked to the MINTO 2.2 and CPLEX 4.0 libraries using the Sun compiler CC,
version 2.0.1, with the optimization flag set to -O. CPU times were obtained
through MINTO. The code was validated by solving several 100- and 150-job,
I-machine instances to optimality. Recall that the 1-machine problem is an

ATSP.

To conduct our experiments we used randomly generated data from
class D generator (see Appendix E),. It has been documented [30] that most
real-world instances have a setup/processing time ratio between 20% and 40%.
Class D tries to capture this behavior by randomly generating: p;; € [20,100]
and s, € [20,40].

5.4.1 Experiment 1: B&B vs. B&C

In the first experiment our aim was to compare B&B with B&C. While it is true
that B&C provides a stronger LP-representation, it also true that the size of the
linear programs to be solved grows with the number of added cuts. Thus if the
generated cuts are not especially effective, the resulting lower bound improve-
ment will be more than offset by the corresponding increase in computational
effort. To make this comparison, we generated 5 class D instances for each
machine combination m € {2,4,6} and n € {7,8}, with a stopping limit of 90
CPU minutes. In a preliminary experiment we determined the most effective
cuts for each model within the B&C framework. The best performance was
observed using SECs and UBMICs for model A, and 3-SECs and the UBMICs

for model B. The remaining computations were made with these cuts only.

Table 5.2 displays the results for models A and B for each machine
instance. The problem size is given by number of constraints (NC), number of
variables (NV), and number of nonzeros (NZ). The number of binary variables

is given in parenthesis (B). The average algorithmic performance over the five

61

Instance size Average performance
mxn NC NV(B) NZ | Model Method | Nodes Cuts LP rows Time
2x7 114 71(56) 392 A B&B 22687 0 114 10.1

A B&C 10091 129 236 6.7

98 36(21) 280 B B&B 11457 0 98 2.9

B B&C 7340 72 168 2.9

4x7 212 85(56) 672 A B&B 21523 0 212 14.1
A B&C 9831 129 328 9.8

196 50(21) 560 B B&B 8392 0 196 3.6

B B&C 5261 73 266 3.4

6x7 310 99(56) 952 A B&B 21635 0 310 20.2
A B&C 9864 132 435 14.1

294 64(21) 840 B B&B 9137 0 294 7.0

B B&C 5402 74 366 5.4

Table 5.2: Performance of B&B and B&C on 7-job class D instances for models
A and B

instances is shown in terms of number of evaluated nodes (nodes), number of
cuts added (cuts), maximum number of rows in the LP (LP rows), and CPU

time in minutes. All instances were solved to optimality.

As can be seen, even though the size of the LPs increases (LP rows),
the generated cuts are found to be effective on reducing the size of the feasible
region as the B&C evaluates far fewer nodes and runs significantly faster. For
model A the average relative time savings with B&C are 51%, 44%), and 43%),
in the 2-, 4- and 6-machine instances, respectively. For model B, we observe
little difference for the 2-, and 4-machine instances. The B&C starts to have
an effect, however, as the size of the instance gets large. This can be seen in

the 6-machine instances where B&C results in a relative time savings of 31%.

For model B, when we increase the number of jobs, B&C has a more
pronounced impact. This can bee seen in Table 5.3 where the results for 8-

job instances under model B are displayed. The B&C runs on average 33%,

62

Instance size Average performance
mxn NC NV(B) NZ | Method | Nodes Cuts LP rows Time
2x8 128 45(28) 368 | B&B 76096 0 128 61.4

B&C 45072 114 138 46.0
4%x8 256 61(28) 736 | B&B 68579 0 256 68.6
B&C 39149 116 366 55.3
6x8 384 T7(28) 1104 | B&B 59154 0 384 73.3
B&C 34818 116 493 63.5

Table 5.3: Comparison of B&B and B&C on 8-job class D instances for model

B

24%, and 15%, faster than the B&B on the 2-, 4-, and 6-machine instances,

respectively. Table 5.4 displays the results when model A was used. As can

be seen, the algorithm was unable to solve the problem (after 90 minutes)

under either B&B or B&C. However, the optimality gaps (shown in the last

column) are smaller under the latter. The relative optimality gap in MINTO

is computed as follows:

best upper bound & best lower bound

x 100%

best upper bound

Instance size Average performance

mxn NC NV(B) NZ | Method | Nodes Cuts LP rows Time Gap (%)

2x8 146 89(72) 512 | B&B 50637 0 146 90.0 50.3
B&C 49090 276 354 90.0 38.3

4x8 274 105(72) 880 | B&B 45329 0 274 90.0 43.6
B&C 39825 289 487 90.0 37.5

6x8 402 121(72) 1248 | B&B 42719 0 402 90.0 39.6
B&C 32486 287 607 90.0 36.3

Table 5.4: Comparison of B&B and B&C on 8-job class D instances for model

A

63

5.4.2 Experiment 2: Model A vs. Model B

In Section 3.5 we pointed out the trade-off between models A and B. On one
hand, model A can benefit from a better structured underlying TSP. In con-
trast, model B is smaller, using only about half the number of the binary

variables used by model A.

By looking at the B&C rows for models A and B in Table 5.2 we can
make a comparison of both models for 7-job instances. It can be seen that
the size of the model (especially in terms of the number of binary variables)
plays an important role. Computations are significantly better when model
B is used. In fact, the effect is even more dramatic when we attempted to
solve 8-job instances. By using model B, we were able to solve 8-job instances
(Table 5.3) in an average of 46, 55.3, and 63.5 minutes of CPU for 2-, 4-, and
6-machines, respectively. When model A was used (Table 5.4), the algorithm
stopped after 90 minutes with average optimality gaps of 38%, 37%, and 36%),

respectively.

5.4.3 Experiment 3: Larger Instances

Instance size Average performance
mxn NC NV(B) NZ | Nodes Cuts LProws Gap (%)
2x 10 200 66(45) 580 | 26428 241 412 34.8
4% 10 400 86(45) 1160 | 20615 242 612 30.5
6 x 10 600 106(45) 1740 | 16453 241 812 26.7

Table 5.5: Evaluation of B&C on 10-job class D instances for model B

The last experiment assesses the limited scope of the polyhedral ap-
proach. Table 5.5 shows the average performance of B&C on 10-job instances
with a 60-minute time limit for model B. We can see that the optimality gaps
are 26-34%.

64

5.5 Conclusions

We provide empirical evidence that using model B with B&C yields better re-
sults on solving instances of the SDST flowshop problem for class D instances.
The same results are observed when class A and C instances are used. However,
the fact that even with the development of valid inequalities we are still un-
able to solve instances with 10 or more jobs shows that LP-based enumeration
methods are wanting. The polyhedral representation of the problem is still not
strong enough. In fact, we made several attempts to improve the performance
of the B&C algorithm, such as changing branching strategies, fixing variables
in a preprocessing phase, and reduced cost fixing, but the improvements were
not significant. This difficulty is inherent to the SDST flowshop (2 or more
machines) since we were able to successfully solve 100- and 150-job instances
restricted to the 1-machine case. Recall that minimizing the makespan in SDST
flowshop is equivalent to finding the minimum length tour of an (n + 1)-city
ATSP when the number of machines is set equal to 1. It is evident that once we
start adding machines, the ATSP structure starts to weaken. One explanation
for this is that, unlike the ATSP where we are looking for a good sequence
of nodes, it is difficult here to characterize fully what a good sequence of jobs
really is. What might be a good sequence for a certain machine, may be a bad

sequence for the others. This makes this problem extremely nasty.

The quality of the LP relaxation lower bound led us to develop more
efficient non-LP-based lower bounding procedures, which gave rise to a more

effective enumeration scheme. This is the subject of Chapter 7.

65

Solve LP

Add cuts

Figure 5.3: Flow chart of the B&C algorithm

66

Chapter 6

Heuristics

6.1 Preliminaries

In this chapter we present two heuristics for the SDST flowshop. HYBRID()
is a deterministic heuristic that attempts to exploit the similarities between
our problem and the ATSP. We also develop a randomized algorithm called
GRASP(). Both heuristics are further enhanced by developing a family of local
neighborhoods and implementing a corresponding local search procedure. A

computational evaluation is given at the end of the chapter.

6.2 Hybrid Heuristic
6.2.1 ATSP-Based Heuristics

The best known heuristic for the SDST flowshop is due to Simons [65]. The
main idea of his algorithm is first to transform an instance of the SDST flowshop
into an instance of the ATSP by computing an appropriate cost matrix, and

then to solve this by applying a well-known heuristic for the ATSP.

In the first of two phases of Simons’ heuristics, an instance of the ATSP
is built as follows. Every job is identified with a “city.” Procedure TOTAL
computes the entries in the distance (cost) matrix as the sum of both the pro-

cessing and setup times over all the machines. Procedure SETUP considers the

67

sum of setup times only. In the second phase, a feasible tour is obtained by
invoking a heuristic for the ATSP. This heuristic uses the well-known Vogel’s
approximation method (VAM) for obtaining good initial solutions to trans-
portation problems with a slight modification to eliminate the possibility of
subtours. The ATSP solution maps back into a feasible schedule for the SDST
flowshop.

Although this approach seems suitable, given the strong similarities be-
tween the SDST flowshop and the ATSP, Simons’ work was limited by the
following two drawbacks. First, the cost function that penalizes scheduling
two jobs together ignores completely the flowshop aspect of the problem; that
is, there might be pairs of jobs that cause large amounts of blocking and/or
machine idle time when they are scheduled together even though their setup
times are small. In addition, no efforts were made to improve the solution by

means of a local search procedure.

6.2.2 Description of Hybrid Heuristic

We attempt to improve Simons’ idea by incorporating both the setup times
and schedule fitness criteria in a penalty function between any pair of jobs. Let
(' be the cost of scheduling job j right before job k. This measure can be

expressed as
C]‘k = (gRjk + (1 @G)S]k (61)

where § € [0,1], and Rj; and S;; are the costs of scheduling jobs j and k
together, from the flowshop and the setup time perspective, respectively. The
setup cost component is simply
Sik = > sk
€]
such that when 6 = 0, the cost measure is reduced to Simons’ measure for his

SETUP heuristic.

63

We now develop the cost R;;. Here we follow an idea similar to the
one used by Stinson and Smith [68] for F'||Cipax. Let #;; denote the completion
of job j on machine ¢. Assume that job & immediately succeeds job j. The
completion time of job k on any machine can then be recursively determined

as follows:
tie = max{ty; + Sijk,tic1k} + Pik

The relationship between ¢;; 4 s, and ¢,_1 ;, plays a key role here. If £;; +s;;, >
t;_1 %, then job £ will arrive at machine ¢ before job j has released machine ¢;
hence job k will be blocked in the queue at machine ¢ for ¢;; + s, <11 time
units. On the other hand, if ¢;; 4+ s;;x < #;_1 4, then machine ¢ will be idle
for t;_1 1 < (t;; + s;jk) time units while waiting for job k to arrive. The ideal
situation, of course, will occur when #;; 4 s;;1 = ¢;_1 » where neither a block to

job k nor idleness to machine ¢ would result.

Now, let us take this rationale a step further by considering the set of
circumstances which would have to take place if ¢;; 4 s;;; were to ideally equal
t;—1 for the entire period where both j and & are jointly in process in the
schedule. Clearly, this will occur when p;; + s;;5 = si—1,jk + pi—1,x for every
machine ¢« = 2,...,m. Although we would seldom, if ever, expect such an
ideal set of circumstances in practice, we still may recognize that the closer we
can match the sets of p;; + s, and s, ;1 + pi—1x values for all machines, the
smoother jobs j and k will tend to fit together within the schedule. We now

define a residual, r;;;, as
rik = Pij + sk S (sicige Fpicik) € I\{1}, g, ke J

For any pair (j,k), j # k, we may compute m <1 such residuals. These
residuals are then heuristically combined to yield the overall cost, R;;. The

following choices were considered

69

70

Rule 1: Sum of the absolute residuals (R1)
Ry = > |ril
1=2

Rule 2: Sum of positive residuals only (R2)

Ry = Y [t

=2

where [r;1]t = rijp if rijr > 0, 0 otherwise.

Rule 3: Sum of negative residuals only (R3)

m
Ry = D lril”
1=2
where [ri;x]” = Srij if rijp < 0, 0 otherwise.

Rule 4: Sum of absolute residuals with positive residuals weighted double

(R4)

Ry = > 2[rge]t + [rige]”
=2

Rule 5: Sum of absolute residuals with negative residuals weighted double
(R5)
Ry = > lraw]t + 2[ri]”
=2
With R1 each residual, regardless of its direction of error, is equally
weighed. Rules R2 and R4 penalize more for positive residuals (blocking)
whereas R3 and R5 penalize more for negative residuals (idle time). It is im-
portant to note that the sign of each r;; value is significant. A positive
implies that a degree of blocking for job k& at machine 2 is likely to occur. On
the other hand, a negative r;;; implies idleness at machine z. This motivates the

choices for rules R2-R5. Preliminary computational experience has shown that

rules R2 and R4 (which penalize more for positive residuals) are totally domi-
nated by the other rules. This indicates that it is more serious to incur machine
idleness than job blocking. One explanation for this is that a negative residual

at some machine ¢, has a carryover effect on other machines downstream of .

As far as the weight 6 in eq. (6.1) is concerned, preliminary computa-
tional testing has shown that the best schedules are found when 6 € [0,0.2].
Note that for a given value of # € [0,0.2] and residual cost rule, there is an

associated cost matrix (. This suggests the following hybrid heuristic.

Procedure HYBRID phasel ()
Input: An instance of the SDST flowshop, a discretiza-
tion O of the weight range, and a set R of residual cost

functions.

Qutput: A feasible schedule 5.

0: Initialize best schedule Sp.o = 0

1: for each # € © do

2: for each R € R do

3 Compute (n + 1) x (n 4+ 1) cost matrix as
Cir = 0R}, + (1 £0)5;
Apply VAM to (Cji) to obtain a tour S
If Crnax(S) < Cinax(Shest) then Speg — S

Output Spess

Stop

Figure 6.1: Pseudocode of HYBRID() phase 1

Let © = {64,...,0,} be a (finite) discretization of [0,0.2], where p is the
size of the discretization, and let R = {R', R*, R*} be the set of cost functions

(as defined above). The construction phase of procedure HYBRID() is shown in

71

Figure 6.1. A local search phase is then applied to this schedule to attempt to
find a local optimum with respect to a determined neighborhood. Local search

procedures are discussed in Section 6.4.

Computational complexity: The computation of the cost matrix performed in
Step 3 takes O(mn?) time. The application of Voguel’s method to a (n + 1)-
city problem is O(n?) and hence the overall procedure have worst-case com-
plexity of O(|R||@|mn?). Since |R| = O(1) this brings the complexity down
to O(|®|mn?). Now, preliminary computational experience has convincingly
shown that any discretization with |©| > 3 provides no better solutions than

a discretization with |©@| = 3. Hence, we take ©® = {0.0,0.1,0.2} and this

procedure has a time complexity of O(mn?).

6.3 GRASP
6.3.1 General Methodology

A greedy randomized adaptive search procedure (GRASP), is a heuristic ap-
proach to combinatorial optimization problems that combines greedy heuris-
tics, randomization and local search techniques. GRASP has been applied
successfully to set covering problems that arise from the incidence matrix of
Steiner triple systems (Feo and Resende [21]), airline flight scheduling and
maintenance base planning (Feo and Bard [18]), scheduling on parallel ma-
chines (Laguna and Gonzalez-Velarde [43]), railroad hitch assignment (Feo and
Gonzélez-Velarde [20]), p-hub location problems (Klincewicz [40]), single ma-
chine scheduling (Feo et al. [19]), maximum independent set problems (Feo et
al. [23]), quadratic assignment problems (Li et al. [45] and Mavridou et al. [48]),
graph planarization (Resende and Ribeiro [61]), and vehicle routing problems

with time windows (Kontoravdis and Bard [41]).

GRASP consists of two phases: a construction phase and a postpro-

72

cessing phase. During the construction phase, a feasible solution is built, one
element (job) at a time. At each iteration, all feasible moves are ranked and
one is randomly selected from a restricted candidate list (RCL). The ranking is
done according to a greedy function that adaptively takes into account changes

in the current state.

One way to limit the RCL is by its cardinality where only the top
A elements are included. A different approach is by considering only those
elements whose greedy function value is within a fixed percentage of the best
move. Sometimes both approaches are applied simultaneously; i.e., only the
top A elements whose greedy function value is within a given percentage p of
the value of the best move are considered. The choice of the parameters A and
p requires insight into the problem. A compromise has to be made between
being too restrictive or being too inclusive. If the criterion used to form the list
is too restrictive, only a few candidates will be available. The extreme case is
when only one element is allowed. This corresponds to a pure greedy approach
so the same solution will be obtained every time GRASP is executed. The
advantage of being restrictive in forming the candidate list is that the greedy
objective is not overly compromised; the disadvantage is that the optimum and

many very good solutions may be overlooked.

GRASP phase 1 is applied N times, using different initial seed values
to generate a solution (schedule) to the problem. In general, a solution deliv-
ered in phase 1 is not guaranteed to be locally optimal with respect to simple
neighborhood definitions. Hence it is often beneficial to apply a postprocessing
phase (phase 2) where a local search technique is used to improve the current
solution. In our implementation, we apply the local search every K = 10 iter-
ations to the best phase 1 solution in that subset. The procedure outputs the
best of the N/K local optimal solutions. Figure 6.2 shows a flow chart of our

implementation.

73

Assume N ismultiple of K
N = number of phase 1 instances
K = subset size for phase 2

Initiaization
L = EMPTY (list of schedulesin working subset)
i = 0 (phase 1 counter)
Thest = EMPTY (best schedule)
Makespan(Thest) = INFINITY

i=i+1
Replace Thest with T
Outg]l_Jé)‘}l;beﬁ Yes SN2 Thet = T
No

Makespan(T) < Makespan(Tbest) ?
Phase 1: Construct feasible espan(T) espan()

schedule S(i)
Append (i) to L Phase 2: Apply local search to
L = L+S() best schedulein L to
obtain schedule T
No Yes
LLI=K?

Figure 6.2: Flow chart of complete GRASP algorithm

The fundamental difference between GRASP and other meta-heuristics
such as tabu search and simulated annealing is that GRASP relies on high
quality phase 1 solutions (due to the inherent worst-case complexity of the local
search) whereas the other methods do not depend on good feasible solutions.
They spend practically all of their time improving the incumbent solution and

attempting to overcome local optimality. For a GRASP tutorial, the reader is

referred to [22].

74

6.3.2 GRASP for the SDST Flowshop

The best known heuristic for the general flowshop scheduling problem with
makespan minimization is due to Nawaz et al. [51]. This procedure consists of
inserting a job into the best available position of a set of partially scheduled
jobs; that is, in the position that would cause the smallest increment on the
value of the makespan. The original worst-case complexity of the heuristic was
O(mn?®). Later, Taillard [70] proposed a better way to perform the computa-
tions and came up with a complexity of O(mn?). Here, we use Taillard’s idea

extending it to handle setup times appropriately within the GRASP frame.

GRASP () construction phase is described as follows. At each iteration of
the algorithm there is a partial schedule S. A job h is selected from a priority
list P of unscheduled jobs. Nawaz et al. suggest an LPT (largest processing
time) priority list; that is, a list where the jobs are ordered from largest to
smallest total processing time. The partial schedule S and the job & define a
unique greedy function ¢(j): {0,1,...,]5]} — R, where (j) is the makespan
of the new schedule S’ resulting from inserting job h at the j-th position (right
after the j-th job) in S. Here, position 0 means an insertion at the beginning

of the schedule.

In GRASP(), the positions available for insertion are sorted by nonde-
creasing values of ¢(j) and a restricted candidate list is formed with the best
A positions. Preliminary testing has shown that for this type of scheduling
problem, A = 2 works best. The probabilistic strategy of GRASP() selects one
of the positions in the RCL randomly with equal probability. The job A is
inserted at the selected position into the current partial schedule S and the
completion times C; for all jobs in the schedule are updated. Figure 6.3 shows

the pseudocode of the procedure (phase 1).

In Step 1 of GRASP(), we form an LPT (largest processing time) priority

list with respect to the sum of the processing times of each job over all the

75

Procedure GRASP phasel()

Input: An instance of the SDST flowshop, a set P of
unscheduled jobs, and size A of the restricted candidate
list.

Qutput: A feasible schedule S.

0: Set S=10
1: Sort the jobs in P to form an LPT priority list
2: while |[P| >0 do

2a: Remove h, the first job from P
2b: Compute (y) for position j =1,...,]|5 + 1|
2c¢: Construct the RCL with the best A positions
2d: Choose randomly a position k£ from RCL
2e: Insert job h at position kin S

Output S
4: Stop

Figure 6.3: Pseudocode of GRASP() phase 1

machines. In Step 2b, we use a modification of Taillard’s [70] procedure. Our

modification, which is described next, includes sequence-dependent setup times.

Computing the partial makespans: We now describe how to efficiently compute
the greedy function ¢(j) given in Step 2b of GRASP() (Figure 6.3). Typi-
cally, a job within brackets [j] denotes the job in position j. Here, for sim-
plicity, we drop the brackets and assume that a current schedule is given by
S =(1,2,...,k<1). Let h denote the job to be inserted. Define the following

parameters:

o ¢;; = the earliest completion time of the j-th job on the i-th machine;

76

Procedure Makespans()

Input: A partial schedule S = (1,2,...,k <1) and job
k to be inserted.

Output: A vector 1(j) with the value of the makespan

when job k& is inserted in the j-th position of schedule
S.

Compute the earliest completion times e;;
Compute the tails ¢;;

Compute the relative completion times f;;
Compute values of partial makespan ()
Output vector ¥ ()

Stop

Figure 6.4: Pseudocode of procedure for computing partial makespans

(t=1,2,...,m)and (j =1,2,...,k<1). These parameters are recur-

sively computed as

co = 0
Coj = Ty
¢ij = max{ei—1;, €ijo1+ Sij-1} + i

where r; denotes the release time of job j. Here r; is assumed to be zero.

o ¢;; = the duration between the starting time of the j-th job on the i-
th machine and the end of operations; (i = m,m <1,...,1) and (j =

kel ke2,..0,1).

gr = 0
dm+15 — 0

¢i; = max{qiy1j, Gij41 + Sijj41} + Dij

77

o f;; = the earliest relative completion time on the i-th machine of job A

inserted at the j-th position; (: = 1,2,...,m) and (j = 1,2,..., k).

fio = 0
foj = T

fij = max{fi_1;, €ij—1+ Sij—1n} + pin

e ¢(j) = the value of the partial makespan when adding job A at the j-th
position; (3 = 1,2,..., k).

D(G) = max {fij+sinj +qij}

veey

where s;,; = ¢;; = 0 for 7 = k.

Figure 6.4 shows how these computations are performed in procedure
Makespans (). Steps 1, 2, and 3 of Makespans () take O(km) time each. Step 4
is O(klogm). Therefore, this procedure is executed in O(km) time. Figure 6.5
illustrates the procedure when job h is inserted at position 3 (between jobs 2

and 3) in a partial 4-job schedule.

Computational complexity: The complexity of Step 1 is O(nlogn). At the k-th
iteration of Step 2 (k jobs already scheduled), Step 2a takes O(1), Step 2b
takes O(km), complexity of Step 2c¢ is O(klogA), Step 2d can be done in
O(log A) time, and Step 2e in O(km). Thus the complexity of Step 2 at the
k-th iteration is O(km). This yields a time complexity of O(mn?) for one
execution of GRASP() phase 1. Therefore, the overall phase 1 time complexity
is O(Nmn?).

Example 6.1 (Example 3.1 continued)
We now illustrate the GRASP () construction phase with RCL cardinality limi-
tation A = 2.

M1

M2

M1

M2

M1

M2

[Setup time] Processing time
P
E N [s []4
L T[] s] 4
€2
€) Time

(b) Time

M Setup time to be added
f13 s

o] - - Il s [

L Tl e s[4

fas O3

(© Time

Figure 6.5: Hlustration of partial makespan computation

Step 0: Initialize the set of scheduled jobs S = ().

Step 1: Given the total processing time for each job

;o J1 2 3 4
2iPij |8 5 63
form the LPT priority list as follows: P = (1,3,2,4).

Step 2: (Iteration 1) Job 1 is selected (and removed) from P. Now

P =(3,2,4). Since there are no scheduled jobs, insert job 1

79

80

into S = (1) and go to the next iteration.

(Iteration 2) Job 3 is selected (and removed) from P. Now
P =(2,4), |S| =1, and ¢ (k) (makespan value when job 3

is inserted in position k in) is computed as.

k 1 2
(k) | 13 18
Because A = 2, RCL = {1,2}. One is selected at random,

say k = 1. Thus, job 3 is inserted in position k =1 (at the
beginning of S). S = (3,1).

(Iteration 3) Job 2 is selected (and removed) from P. Now
P =(4), |5 =2, and ¢ (k) is computed as follows

E|l1 2 3
k) |22 20 23

Form RCL={1,2} and select one at random, say k = 1.

Job 2 is inserted in position k =1 (at the beginning of 5).
S =(2,3,1).

(Iteration 4) Job 4 is selected (and removed) from P. Now
P =10. For |S| = 3, ¥(k) is computed as follows

k 12 3 4
S(k) 30 26 29 30
Form RCL = {2,3} and select one at random, say k = 3.

Job 4 is inserted in position k = 3 (immediately succeeding

job 3). S =(2,3,4,1).

Step 3: Output schedule S = (2,3,4,1) with corresponding
Cmax(S) = 29.

Recall that the optimal schedule is S* = (3, 1,2,4) with Ciax(5*) = 24. O

6.4 Local Search Procedures

Neighborhoods can be defined in a number of different ways, each having differ-
ent computational implications. Consider, for instance, a 2-opt neighborhood
definition that consists of exchanging two edges in a given tour or sequence
of jobs. For this neighborhood, a move in a TSP takes O(1) time to evaluate
whereas a move in the SDST flowshop takes O(mn?). One of the most common
neighborhoods for scheduling problems is the 2-job exchange which has been
used by Widmer and Hertz [75] and by Taillard [70] for F'||Ciax. We considered
the 2-job exchange as well. In addition, we generalized the 1-job reinsertion
neighborhood proposed by Taillard [70] for F||Cinax to develop an L-job string
reinsertion procedure. This was motivated by the presence of the sequence-
dependent setup times, which suggest that subsets (or strings) of consecutive
jobs might fit together in a given schedule. We tried both procedures for our
problem and found that the string reinsertion uniformly outperformed the 2-
job exchange, just as Taillard found the 1-job reinsertion performed better than

the 2-job exchange for the regular flowshop.

6.4.1 L-Job String Reinsertion

Given a feasible schedule S, let NL(j, k) be the schedule formed from S by
removing a string of L jobs starting at the j-th position and reinserting the

string at position k. The neighborhood of S is given by
N(o) = {NE(.k) : 1<jk<n+1eL}
For a given value of L, N(S) is entirely defined by j and k. The size of N(S)
is
IN(S)| = (nel)

An example of a 2-job string reinsertion neighbor is shown in Figure 6.6.

The sequence on the right S’ = N2(3,1) is formed from S by removing the 2-

81

82

job string starting at the 3-rd position (jobs 5 and 4) and reinserting it at
the position 1 (immediately preceding job 2). The evaluation of all makespans
can be executed in O(an), using the Makespans() procedure described in

Section 6.3.

Position 3

$=(2,3,541) S =N %(3,1) =move 2-string at position 3 to position 1
S =(54231)

Figure 6.6: Illustration of 2-job string reinsertion neighborhood

6.4.2 Implementation Considerations

A primary concern in the implementation of local search procedures is how to
move from the current feasible solution to a neighbor solution with a better
objective function value. There are three fundamental ways of doing this. The
first is to examine the whole neighborhood and then make a move to the “best”
neighbor. The second is to examine one neighbor at a time and make a move
as soon as a better solution is found. The trade-off is that in the first case
we expect the incremental improvement in the objective value to be greater;
however, the computational effort is higher. The third option is to examine a
smaller neighborhood at the expense of the solution quality. This idea was used
by Reeves in [60] for the 1-job reinsertion local search on the flowshop context.
Here, we use this idea in the following way. Given a string of L jobs (typically
L < 4), there are (n <L) possible sites where the string can be reinserted. We
observe that the evaluation of all these possible moves can be cleverly done in

O(mn?), which is the same complexity of evaluating just one move. Therefore,

after making this evaluation, we make the move by reinserting the string in the

best of these (n < L) positions.

‘ Heuristic ~ String size NSC ‘
HYBRID() 3 Lexicographic (last)
GRASP() 1 Lexicographic (first)

Table 6.1: Parameter selection for string reinsertion procedure

When the choice is to examine a smaller neighborhood (or subregion) as
described above, we must have a criterion for selecting the “next” subregion, or
in our case, how to select the next string of jobs. The neighbor selection criteria
(NSC) defines a way of choosing the next subregion to be examined. Typical
examples of NSC are a lexicographic strategy and a random strategy. In the
former, one sorts all unexamined subregions according to a given lexicographic
rule. A lexicographic first (last) rule selects the first (last) string of the sorted
list and removes it from the list of unexamined strings. In a random strategy,
the next string is chosen randomly among all unexamined candidates. We did a
preliminary computation designed to fine-tune the local search procedure as a
function of both the NSC and string size. The best choices of these parameters
for a particular heuristic are shown in Table 6.1. As we can see, a string size
of 1 did better in GRASP(), as opposed to HYBRID(). An explanation of this is
that GRASP() is a heuristic that finds a feasible solution by inserting one job
at a time. This produces a feasible schedule where the interrelationship among
strings of jobs may not be as strong as a feasible solution delivered by HYBRID ()
which is a TSP-based heuristic. Thus, HYBRID() benefits better from a 3-job

string reinsertion.

In general the neighborhood definition is different for each value of L;
that is, a local optima with respect to L = 1, for instance, may not be local
optima with respect to L = 2. Thus in practice, one can apply or combine

several of these neighborhoods for different values of L, depending on the time

83

available to improve the solution. For instance, HYBRID() is a deterministic

heuristic that runs very quickly. This makes a local search effort more afford-

able.

6.5 Experimental Evaluation

All procedures were written in C++ and run on a Sun Sparcstation 10 using
the CC compiler version 2.0.1, with the optimization flag set to -O. CPU times
were obtained through the C function clock().

To conduct our experiments we used randomly generated data drawn
from classes A, C, and D (described in Appendix E). Class D is most repre-
sentative of real world instances, having a setup/processing time ratio between
20% and 40%. Classes A and C, account for a smaller (0-10%) and a larger (0-
50%) ratio variation, respectively, and are intended to observe the algorithmic

performance in best- and worst-case scenarios.

6.5.1 Experiment 1: Fine-Tuning Local Search for HYBRID()

The purpose of this experiment was to find out which local search strategy
worked best within the HYBRID() heuristic frame. We used the L-job string

reinsertion procedure (LS) in four different strategies, namely
S1: Apply LS(L = 1)
S2: Apply LS(L = 1) plus LS(L = 2)
S3: Apply LS(L = 1) plus LS(L = 2) plus LS(L = 3)

S4: Apply strategy 3 as many times as necessary

Strategy k, k£ = 1,2,3, will deliver a local optimum with respect to the Ny
neighborhood. Strategy 4 delivers a local optimum with respect to all three

84

neighborhoods. The strategies are listed by increasing amount of computational
effort. The question we want to answer is whether or not the extra effort pays

off in terms of quality of the solution.

Set D
m xn Statistic S1 S2 S3 S4
2 x 20 Number of best 4 8 14 20

Average gap (%) 23 21 1.9 1.8

Average time (sec) | 0.9 1.3 1.5 2.4

6 x 20 Number of best 6 9 12 20
Average gap (%) 93 9.0 8.9 8.8

Average time (sec) | 2.3 2.9 3.4 5.4

10 x 20 Number of best 9 11 11 20
Average gap (%) 123 123 122 120

Average time (sec) | 3.8 4.7 5.5 8.7

2 x 50 Number of best 1 3 7 20
Average gap (%) 22 20 1.9 1.8

Average time (sec) | 9.8 13.3 163 255

2 x 100 Number of best 1 3 7 20
Average gap (%) 1.7 1.6 1.5 1.5

Average time (sec) | 67.9 95,5 119.8 194.0

Table 6.2: Evaluation of local search strategy for HYBRID () on class D instances

For a given combination of (m xn) we apply the heuristic to 20 randomly
instances drawn from data classes A, C, and D. Results of this experiment are
shown in Tables 6.3 and 6.2. In each cell, the table gives the number of times
a given strategy found the best solution, average relative gap percentage with
respect to a lower bound (described in Section 7.3), and average CPU time.
The first thing to notice is that strategy S4 found in most cases more than
50% best solutions as those found by the other strategies. The performance of
S4 is even better for the larger instances (in terms of the number of jobs). In
terms of relative gap, the strategy 4 gives an average improvement of 0.1-0.2%.

Furthermore, the Friedman test (non-parametrical test equivalent to classical

89

Set A Set C

m x n Statistic S1 S2 S3 S4 S1 S2 S3 S4

2 x 20 Number of best 1 1 7 20 8 10 14 20

Average gap (%) 1.9 1.6 1.5 1.3 77 75 72 7.0

Average time (sec) 1.4 1.9 2.3 381 04 06 07 1.2

6 x 20 Number of best 5 8 11 20 7 9 11 20

Average gap (%) 6.2 6.1 6.0 58 | 34 2.7 164 159

Average time (sec) 3.2 4.1 4.8 721 1.0 14 17 2.8

10 x 20 Number of best 10 10 13 20 9 12 15 20

Average gap (%) 11.8 11.8 11.7 11.4 1 19.8 19.6 19.5 19.2
Average time (sec) 5.4 6.6 76 112 16 21 26 4.2

2 x 50 Number of best 0 1 1 20 5 7 12 20
Average gap (%) 1.3 1.1 1.0 08| 62 6.1 6.0 59

Average time (sec) | 14.2 192 226 35.1| 34 50 63 11.8

2 x 100 Number of best 0 0 0 20 3 6 10 20
Average gap (%) 1.0 0.8 0.7 06| 53 51 50 4.9

Average time (sec) | 101.8 136.9 167.6 244.5 | 21.2 306 39.3 69.6

Table 6.3: Evaluation of local search strategy for HYBRID() on class A and C

instances

ANOVA [11]) applied to each cell finds strategy 4 to be significantly better
from the statistical stand point in terms of solution quality. This improvement
comes at a cost of about 50% resource usage as indicated by the CPU times.
The largest average CPU time came from the 2 x 100 class A instances, taking

about 4 minutes, which is still relatively small.

6.5.2 Experiment 2: HYBRID() vs. GRASP()

The purpose of this experiment was to evaluate the performance of both heuris-
tics. HYBRID() local search strategy was set to S4 (see previous section). For
GRASP(), we assigned N = 100, K = 5, and A = 2. Under these settings,
both heuristics use about the same amount of CPU time (GRASP() still is more

expensive, but no more than 30% for most of the instances).

86

Data Set A n =20 n =50 n = 100
m Statistic Hvs G Hvs G Hvs G
2 Nbest 16 6 17 3 20 0
Average gap (%) | 1.3 15 |09 1.0]|06 0.8
Wilcoxon test H best H best
4 Nbest 10 11 14 6 17 5
Average gap (%) | 43 42 |23 24|16 1.8
Wilcoxon test H best
6 Nbest 9 13 8 13 7T 13

Average gap (%) | 5.7 b7 |48 47|31 29

Wilcoxon test

8 Nbest 9 12 7T 14 6 15
Average gap (%) | 95 95 |65 62|48 4.5
Wilcoxon test G best

10 Nbest 5 15 11 10 2 18
Average gap (%) | 11.4 110 | 7.1 6.9 | 6.1 5.6
Wilcoxon test G best G best

Table 6.4: Heuristic evaluation for data class A

Tables 6.4, 6.5, and 6.6 displays the results for data classes A, D, and
C, respectively, in terms of the number of times a given heuristic found the
best solution (Nbest) and the average relative gap (Average gap). The third
line in each cell shows if any of the heuristics was found statistically better
after performing the Wilcoxon test (non-paramatric pairwise test [11]) with
confidence level of 99%. If the test is not significant (e.g., no heuristic is found
better than the other) the cell is empty. It is observed that, for a fixed value
of n, HYBRID() tends to do better when the number of machines is small.
However, as m gets larger, then GRASP() tends to dominate. For example, in
class D, when n = 50 we actually found HYBRID () to be statistically better than
GRASP() for m = 2,4. Then, when m takes on the values 6, 8, the Wilcoxon
test does not find any heuristic better than the other one. When m = 10,
GRASP () takes over. A similar behavior is observed for data classes A and C.

87

Data Set D n =20 n =50 n = 100
m Statistic Hvs G Hvs G Hvs G
2 Nbest 13 8 20 0 20 0
Average gap (%) | 1.8 1.9 1.7 23|15 23
Wilcoxon test H best H best
4 Nbest 13 14 6 19 1
Average gap (%) | 6.2 5.9 4.0 42|39 43
Wilcoxon test H best H best

6 Nbest 8 12 1 11 18 3

Average gap (%) | 8.7 8.6 6.9 6.9|57 6.0
Wilcoxon test H best
8 Nbest 11 9 9 11 15 5
Average gap (%) | 10.3 105 | 76 7.6 | 7.0 7.2
Wilcoxon test H best
10 Nbest 11 9 5 16 14 6
Average gap (%) | 11.7 11.9 | 10.2 9.9 | 84 8.6

G best

Wilcoxon test

Table 6.5: Heuristic evaluation for data class D

When comparing the heuristic performance among the different data
classes, it is observed that GRASP () tends to do better when setup times fluc-
tuations are smaller. It is observed, for example, than in class A, GRASP() is
found statistically better in 3 cases, and HYBRID() in 3 cases. When class D
is considered, GRASP() is better in only one case, and HYBRID() in 6 cases.
Finally, in class C, HYBRID() is found better in 10 cases, clearly dominating
GRASP().

6.6 Conclusions

Our computational study revealed several interesting properties about the pro-
posed heuristics. First, it was observed that HYBRID() tends to perform better

than GRASP() when the number of machines is small. Another favorable sce-

88

Data Set C n =20 n =50 n = 100
m Statistic Hvs G Hvs G Hvs G
2 Nbest 15 b 20 0 20 0
Average gap (%) | 6.9 74 58 7.6 4.7 7.3
Wilcoxon test H best H best
4 Nbest 10 10 19 1 20 0
Average gap (%) | 12.3 125 | 13.1 146 | 11.8 144
Wilcoxon test H best H best
6 Nbest 11 9 16 4 20 0
Average gap (%) | 16,5 16.6 | 16.2 16.9 | 15.7 17.7
Wilcoxon test H best H best
8 Nbest 9 11 17 3 20 0
Average gap (%) | 17.7 17.6 | 19.1 19.8 | 18.3 20.3
Wilcoxon test H best H best
10 Nbest 13 8 17 3 20 0
Average gap (%) | 19.1 19.2 | 20.8 21.6 | 20.6 21.9
Wilcoxon test H best H best

Table 6.6: Heuristic evaluation for data class C

nario for HYBRID() is when the setup time fluctuations are large (data set C).
This stems from the fact that the fewer the number of machines and/or the
larger the magnitude of the setup times, the more the problem resembles an
ATSP so a TSP-based procedure should do well. Recall that in HYBRID() the
distance between jobs has a setup time cost component which is computed as
the sum of the setup times between jobs over all the machines. In the extreme
case where there is only one machine, the problem reduces entirely to an in-
stance of the ATSP. As more machines are added, the developed cost function

becomes less representative of the “distance” between the jobs.

How small does the number of machines have to be for HYBRID () to do
better than the insertion-based heuristics depends not only on the number of
jobs, but on the magnitude of the setup times as well. In data class A it was

observed a threshold value of m = 2 and 4 for the 50-; and 100-job instances,

89

respectively. For class D, these threshold values increased to m = 4 and and
8, respectively. However, for data class C (larger setup times), HYBRID() was
found to outperform the others with respect to both makespan (especially for
the 50- and 100-job data sets) and CPU time. This implies a threshold value
of m > 10.

Another way to explain the better performance of HYBRID() on the
larger instances of data set C is as follows. An insertion-based heuristic (like
GRASP()) includes a makespan estimation routine that has the setup costs as
part of its performance measure; there is no other explicit treatment to the se-
tups in the heuristic. Since the job insertion decision is made one job at a time,
while the sequence-dependent setup time is dictated by the interrelationships
of an entire sequence of jobs, a TSP-based heuristic tends to do better than
this insertion-style method, specially when the number of machines is small

when the similarities between the SDST flowshop and the ATSP are stronger.

An advantage of GRASP(), of course, is that by increasing the iteration
counter, more and perhaps better solutions can be found. This is a trade-off
that the decision maker has to evaluate under specific time constraints. In our
work, we combine both heuristics into an upper bounding procedure in the

exact optimization schemes described in the next chapter.

90

Chapter 7

Branch and Bound

7.1 Preliminaries

The feasible set of solutions of the SDST flowshop problem from a combinatorial
standpoint can be represented as X = {set of all possible n-job schedules}.
This is a finite set so an optimal solution can be obtained by a straightforward
method that enumerates all feasible solutions in X and then outputs the one
with the minimum objective value. However, complete enumeration is hardly
practical because the number of cases to be considered is usually enormous.
Thus any effective method must be able to detect dominated solutions so that

they can be excluded from explicit consideration.

A branch-and-bound (B&B) algorithm for a minimization problem has

the following general characteristics:

e a branching rule that defines partitions of the set of feasible solutions into

subsets

o a lower bounding rule that provides a lower bound on the value of each

solution in a subset generated by the branching rule

e a search strategy that selects a node from which to branch

Additional features such as dominance rules and upper bounding procedures may

91

also be present, and if fully exploited, could lead to substantial improvements

in algorithmic performance.

A diagram representing this process is called an enumeration or search
tree. In this tree, each node represents a subproblem F;. The number of edges
in the path to P; is called the depth or level of P;. The original problem F is
represented by the node at the top of the tree (root). In our case, the schedule
Sp associated with Py is the empty schedule.

The essentials of B&B are contained in Appendix C. The fundamentals
of B&B can be found in Ibaraki [36, 37]. In this chapter we limit the discus-
sion to our proposed algorithm, BABAS() (Branch-and-Bound Algorithm for
Scheduling).

7.2 Branching Rule

The following branching rule is used in BABAS(). Nodes at level k of the search
tree correspond to initial partial sequences in which jobs in the first & positions
have been fixed. More formally, each node (subproblem) of the search tree can
be represented by Py, with associated schedule Sy, where S, = ([1],...,[k]) is
an initial partial sequence of k jobs. Let U denote the set of unscheduled jobs.
Then, for Uj, # 0, an immediate successor of P has an associated schedule of
the form S; = ([1],...,[k],7), where j € Uy. Figure 7.1 illustrates this rule for
a 4-job instance. Node P; represents a problem at level 1 of the enumeration

tree; where only one job has been scheduled; i.e., 57 = (3).

7.3 Lower Bounds

We now develop two lower bounding procedures that turned out to be more ef-
fective than the linear programming relaxation lower bound. These procedures

are based on machine completion times of partial schedules.

92

Up=1{L1 3,2 4}
50: (9)

>

S;=(3 U;={1,2 4}

S,=(3,1) S3=(3,2) S4=34)

Figure 7.1: Hlustration of the branching rule for a 4-job instance

Given a partial schedule S;, let S; denote a schedule formed by all un-
scheduled jobs. We shall now derive lower bounds on the value of the makespan
of all possible completions S;S; of S;, where S;S; represents the concatenation
of jobs in S; and S;. We shall be particularly concerned with the trade-off
between the sharpness of a lower bound and its computational requirements.
A stronger bound eliminates relatively more nodes of the search tree, but if its
computational requirements become excessive, it may become advantageous to
search through larger portions of the tree using a weaker bound that can be

computed quickly.

7.83.1 Generalized Lower Bounds

The basic idea here is to obtain lower bounds by relaxing the capacity con-
straints on some machines, i.e., by assuming a subset of the machines to
have infinite capacity. The only solvable case among flowshop problems is
the 2-machine regular (no setups) flowshop (Johnson [39]). We know that any

problem involving three or more bottleneck machines is likely to be A/P-hard.

93

We therefore restrict ourselves to choosing at most two machines u and v,
1 < u < v < m, to be bottleneck machines. For any given pair (u,v) we now
develop a lower bound g,, by relaxing the capacity constraints on all machines
except u and v. The development below shows how this lower bound can be

reduced to the 2-machine case.

Let the sequence of the first k jobs be S, = ([1],[2],...,[k]) and the
set of remaining n <k (unscheduled) jobs be Uy. Given S, the problem of
determining an optimal sequence for the remaining jobs is called a subproblem
of depth k and is represented by FS(Sy). Let Sy = ([k +1],[k +2],...,[n])
be an arbitrary sequence of jobs in Uy, and let p;(Uy) = 3jcp, pin- Thus the

completion time Cjp,) of job [rn] on machine i can be derived as follows.

Cipg) = gt D s + p(Ur)

h=k+1
Cz[n] = ax {Cz 32[h—1][h] + pz(Uk) Cl + S1[k|[k+1] T le(Sk)}
Cni) = maX{Cm mh=1]i6] + P (U),

—1[k] + Sm— 1[k][k+1] + Tm—l,m(sk)v

s Chr) + Siprrg) + Tlm(Sk)} (7.1)

where T,,(S)) is the elapsed time from the start of job [k + 1] on machine u
until the finish of job [n] on machine v. Subproblem FS(S}) is to determine

the sequence Sy, that minimizes CmaX(SkSk) = Cpu[n), the makespan of schedule
S5S.

The definition of Tw(gk) is consistent with subsequences of Sy, that
is, Tuo(([k + 1],...,[7])) is the elapsed time from the start of job [k + 1] on
machine v until the finish of job [j] on machine v, for £ +1 < j < n. Thus

94

Tw(([k+1],...,[j])) can be recursively computed as follows: We first initialize

Tw(([k+1])) = puprs

and then compute

Tl +11) = Ly

for w=wu+1,...,v. Finally,

Tuu(([k—l_l]vv[]])) = u[k+1] + Z —I_pu[]
h=k+2

Tool([k+ 1., [5]) = maX{Tuw(([k+1]7---7[3'@1]))+8w[j—1]ma
Towrr (k4 10, D)+ pugy

fory=Fk4+1,....nandw=u+1,...,v.
s
Uk+1][k+2]

‘ - ‘
‘ i+1, J][J+1]‘

‘%_’9— ."9_

V[k+1][k+2]

Figure 7.2: Directed graph G, for computation of T}, in a SDST flwoshop

95

There is an alternate way to look at this recursion. To help understand
the computations we introduce the following directed graph G, (depicted in
Figure 7.2) which is constructed as follows: for each operation, say the process-
ing of job [j] on machine ¢, there is a node (i[j]) with a weight that is equal to
pig;- For each machine ¢, ¢ € {u,u+1,...,v &1,v}, there is a node (i[k + 1])
that represents the initial or current state (job [k + 1] is the first job in Sy).
The setup times s;[;j;j41] are represented by an arc going from node (i[j]) to
node (2[j+1]) with a weight that is equal to s;pjjpj117, for i = v, u+1,...,v&1, v,
J=k+1,....n&1l. Node (i[j]), i =uv,u+1,...;,0&l, j=k+1,...,n <1,
also has an arc going to node (¢ + 1,[j]) with zero weight. Note that nodes
corresponding to machine v have only one outgoing arc, and that node (v[n])
(target) has no outgoing arcs. The following proposition establishes the rela-

tionship between T,,(S)) and the critical path of (..

Proposition 7.1 T,,(Sk), with Sy, = ([k +1],...,[n]), is determined by the
mazimum length or critical path from node (ulk + 1]) to node (v[n]).

Proof: The proof is by induction on w 4 j (second machine index
and job index of last job in subsequence ([k + 1],...,[j]). The trivial case
w+j =u+ k+1 corresponds to w = u and 7 = k + 1 and is easily verified
(only source node (u[k + 1]) involved with length T, (([k + 1]))).

The induction hypothesis assumes that Ty, (([k+1],...,[s])) is the max-
imum length path from node (u[k 4 1]) to node (wlj]) holds for w + 75 < i 4 1.
It remains to prove that this result holds for w4 57 = + [as well.

Consider T (([k 4+ 1],...,[l])) given by
Tul((k+1],, () = max{Tu(((k+1],...,[[<1]) + sig_a,
Tuica(([k+ 10, (0D} + pag

Since each of the T}, in the maximization above has w475 =14+[<1 <141, by

the induction hypothesis, those represent maximum length paths from source

96

node to node (¢[l <1]) and (¢ <1, [{]), respectively. Since these are the only two
nodes preceding node (¢[1]), it follows that T,;(([k+1],...,[l])) is the maximum
length path from the source to node (¢[/]) and the result is established. u

Given the structure of (G,,, the length of the critical path from (u[k+1])
to (v[n]) (or equivalently, T, (S)) is also given by

tu
Tu(Se) = k<tu§tu+1r£é§tv_1§tvsn {pu[kH] * h:zk;rz(su[h_l][h] +pa)
tutl
+ Putife,] + Z (Sugifp—1][a] + Pus1[p)
h=t,+1
+...
ty
+ Po—1fty] T Z (Su—l[h—l][h] + pu-1[h])
h=ty_1+1
trga+ D (Sup-um +pu[h])} (7.2)
h=ty,+1

for 1 < u < v < m, where Y0_ () = 0 for b < a. Thus the maximization
in (7.2) consists of finding the t,,fy41,...,%,—1,1, that define the critical path
on (Gy,, where t; corresponds to the index of the job where the critical path

crosses from level ¢ to level ¢ + 1 on (Gy,.

Recall that the maximization on the right-hand side of (7.2) is only
used to find the T, for a given sequence S;, but in fact, the main problem is
to find the subsequence S in Uy, that minimizes Cpafn] in (7.1). As can be seen

from (7.1), minimizing 7T,,(Sy) yields a lower bound on Crafn]-

The minimization of T,,(Sk) is as hard as the problem FS(S;) (mini-
mizing Chpy in (7.1)), even for Tywws1(Sk). Hence we consider the minimiza-
tion of the following lower bound of T,,(Sx) by considering the case where
E<t,=t,+1=...=1%t,41 =1, =1t <n and excluding all other terms in
Twu(Sk) (note that this is a valid lower bound since this special case corresponds

to a path with length less than or equal to the length of the critical path), i.e.,

97

t

Tw(Sk) > max {pu[k-l—l] + > (Supnyi] T Pup)) + Putag + - -
<t<n heki2

+ Po—1py] + Py + Z (Sufp—1)n) + pu[h])}
h=ty,+1

t
= max { Y pup F Putipg + oo F Dot + D Do
<t<n
h=k+1 h=t

t n
+ Z Sulh—1][r] T Z Su[h—l][h]}

h=k+2 h=t+1

t t t
= maX{ Z DPulr] + Z Putin] + -+ Z Pu—1[h)]

k<tsn | 50 h=k+1 h=k+1

+ Zpu-l—l[h] +...+ va—l[h] + va[h]
h=t h=t h=t

g Z Duti[p] & & Z Pu—1[n]

h=k+1 h=k+1
t n
+ Z Sulh—1][r] T Z Su[h—l][h]}
h=k+2 h=t+1
t v—1 n v
= ,ggfg{ > (Zpi[h]) +Z() Pi[h])
= h=k+1 \i=u h=t \i=u+l
t n v—1 B
+ > supem D Sv[h—l][h]}@ > pi(Sk)
h=k+2 h=t+1 i=u+1
t v—1 n v
> kma}{ > (Zpi[h]) + (> pi[h])}
IS Skt \i=u b=t \i=ut1
n v—1
+ 2 Shigm & D pilSk)
h=k+2 i=u+1

where i1 = min{sypn—1](a]s Soph—1]r) }- Let

Zuw(Sk) = maX{ Zt: (Uipi[h]) +hi(Z pz’[h])}

k<t<n (S04 \izu —t \i=ut1

The problem of minimizing Zw(gk) is reduced to a solvable 2-machine flowshop

98

(Johnson’s algorithm) with processing times
v—1
p/u = Zpij
plzj = Z Pij
i=u+1

Let Z7,(S%) be its minimum value.

uy

The problem of minimizing > 3_;., Sy corresponds to finding a
shortest tour of an ATSP on n <k vertices. Let S;U(Sk) be a lower bound
for this ATSP. Then

v—1
Tuv(gk) > Z::U(Sk) + S;:U(Sk) = Z pZ(Sk) 1 <u<ov<m

i=u+1
Now note the following valid lower bounds for the starting time of

job [k + 1] on machine u

Cue + min Su[k]h}

Cuz1 + }lzrelgi {Su—l[k]h + pu—1,h}

Cuzap + }lzrelgi {Su—Q[k]h + Pu—2,n t+ pu—1,h}

Cipn + }lzrelgi {31[k]h + pin+ .. -pu—1,h}

Denote by Tﬂ@l the minimum elapsed time (among all unscheduled jobs) from

the finish of job [k] on machine ¢ until the finish time of job [k+1] on machine u<

1, fore=1,...,u, ie.,
) u—1
TRy = min s+ 2 pa
’ hEUk 3
g=1
where the case 1 = u corresponds to 77" | = minyep, {Su[k]h}. A lower bound

on the starting time of job [k + 1] on machine u is then given by

99

max {Ci[k] T }

1<i<u t,u—1

Note that once the last job [n] has finished on machine v, the remain-
ing time until termination (assuming no idle time) is Y- 4 piry). This yields
the following lower bound for the elapsed time since the finish of job [n] on

machine v until the finish of job [r] on machine m:

f{ggi{’z pm}

1=v+1

We can thus establish the following generalized lower bound gw(Sk) on Chax

1<e<u

for any 1 < u < v < m. Note that the optimal sequence of the jobs in
the embedded 2-machine flowshop (for given u,v) has to be determined only
once for FS(0), the original problem, since it does not change if some jobs are

removed nor it is influenced by the fact that machine v is not available until

-

In summary, for a given pair of machines (u, v), we have derived a gener-
alized lower bound ¢,, which may be computed for various machine pairs (u, v).

W = {(u1,v1),...,(ty,vy)} is a set of machine pairs, then the corresponding

overall lower bound GLB(W) is defined by
GLB(W) = max{gu;vs--»> Juw.ww] -

Note that there are m(m <1)/2 possible pairs (u,v); however, the load for

computing GLB based on all pairs is too heavy. Therefore, we only consider

100

the following subsets of machine pairs Wy = {(1,2),(2,3),...,(m <1,m)},
Wi ={(1,m),(2,m),...,(mel,m)}, and Wy = WoUW, which contains O(m)
pairs. Our empirical work (Section 7.8) has shown that GLB(W;) provides
better results than GLB(W;) and is faster to compute than GLB(W3).

7.3.2 Machine-Based Lower Bounds

In the previous section we developed a family of lower bounds ¢,, for 1 <u <
v < m, based on a pair (u,v) of bottleneck machines. Consider now the case
u = v; that is, there is only one bottleneck machine and the capacity of all other
machines is relaxed. Thus it is possible to find m additional lower bounds g¢,,

1 <u<m.

Again, let the sequence of the first &k jobs fixed be Sy = ([1],[2],...,[k])
and the set of remaining = n <k (unscheduled) jobs be Uy. For an arbitrary
sequence of jobs in Uy, S = ([k+ 1], [k +2],...,[n]), let T\,(S}) be the elapsed
time from the starting time of job [k + 1] until the finish time of job [n] on
machine u. Then T,(Sy) is given by

Tu(Sk) = pupry + Z (1] + Puln)
h=k+2

= pu(Sk)‘|‘ Zn: S

h=k+2

Since p,(Sy) is constant for any sequence, the problem of minimizing 7, (S%)
corresponds to finding a sequence that minimizes 3 ;_; o Syr—1jn], Which is
equivalent to finding the shortest tour in an ATSP on n <k vertices. Let
5*(Sk) be a lower bound for this ATSP. Then

gu(Sk) = maX {Cz[k] + TZTZMI} + S* Sk —|— min { Z pm} (73)

1<e<u heUy,

for 1 < u < m is a valid lower bound on Cy,., Where the first and last terms

on the right-hand side are a lower bound on the starting time of job [k + 1] on

101

machine u, and a lower bound on the elapsed time between the finish of job [n]
on machine u and the finish of job [n] on machine m, respectively, as developed

in the previous section.

The fact that the setup time between jobs [k] and [k + 1], sypprta], is
not considered in the computation of Tu(Sk) allows us to use the first term on
the right-hand side of (7.3) as a lower bound for the starting time of job [k + 1]
on machine u. It might be advantageous, however, to include this setup time
(Su[ke+1]) In the computations to improve the lower bound S} of the related
ATSP. The trade-off is that by doing so, we no longer can use the first term on
the right-hand side of (7.3). This alternate bound is expressed as

hEUk

g5 = LiS) +mm{z pm}

where L/, is valid lower bound on 373_, .y Supn—1]-

7.3.3 ATSP Lower Bounds

In deriving the GLB and MBLB, we have to deal with solving an ATSP at some
point. The ATSP itself is an N P-hard problem; however, since we are only

interested in a lower bound, any valid lower bound for the ATSP will suffice.

In our work, we used the assignment problem (AP) lower bound, which
is obtained by relaxing the connectivity (subtour elimination) constraints for

the ATSP. It has been documented (Balas and Toth [4]) that the AP bound is
very sharp for the ATSP. (This is not necessarily true for the symmetric TSP.)

7.4 Search Strategy

The search strategy we use selects the subproblem with the best bound; e.g.,
the smallest lower bound in case of a minimization problem. This approach is

motivated by the observations that the subproblem with the best lower bound

102

has to be evaluated anyway and that it is more likely to contain the optimal
solution than any other node. As shown in [36], this strategy has the charac-
teristic that, if other parts of a branch-and-bound algorithm are not changed,

the number of partial problems decomposed before termination is minimized.

Another well known strategy is depth-first search, which is mostly used
in situations where it is important to find feasible solutions quickly. However,

we do not consider it since feasibility is not an issue.

7.5 Dominance Rule

We now establish some conditions under which all completions of a partial
schedule Sy (associated with subproblem Py) can be eliminated because a sched-
ule at least as good exists among the completions of another partial schedule
S; (corresponding to subproblem P;). Let J(S;) and J(Sk) denote the index
sets of jobs corresponding to S; and Sy, respectively; [(.S) denote the index of
the last scheduled job in schedule S; and C;(S) denote the completion time
of the last scheduled job in S on machine ¢«. Then P; dominates Pj if for
any completion S;,S; of S, there exists a completion S;5; of S; such that
CmaX(S]‘Sj) < Cmax(SkSk). This is stated formally in the following theorem.

Theorem 7.1 [f J(S]) = J(Sk), Z(S]) = Z(Sk), and CZ(S]) S CZ(Sk) f07“ all
v € I, then P; dominates Py.

Proof: Let () be a schedule and ¢;(Q) be the elapsed time between the
starting of the first job in) on machine ¢z and the end of operations. Then for
a partial schedule S, let) be any schedule formed by the jobs in Uy (set of
unscheduled jobs). The makespan of S;() can be computed as

Cmax(SKQ) = I?EaIX{Ci(Sk) + 8i0(S0),0 T Qi(Q)}

103

104

where h is the job index of the first job in (). Let P; be a subproblem such that
J(S;) = J(Sk) (its corresponding partial schedule S; has the same job indices
as those of schedule Sy), I(S;) = [(Sk) (have the same job scheduled last), and
Ci(S;) < Ci(Sk) for @ € I. Since the set of unscheduled jobs is the same for
both subproblems, 5;@) is also a valid completion for P;, and

Jo
sius)h T (@) = Siysn+ 6(Q) el

Therefore

Ci(S;) < Ci(S) i€l = ClS;) + sius,n + ¢:(Q)
S Ci(Sk) + siuson +4:(Q) €1

= maX{C)+ sius h‘|’q2(Q)}
< r?ealx{ci (Sk) + sii(s,)n + ql(Q)}

= CmaX(S]Q) S CmaX(SkQ)

which shows that P; dominates Pj. [

A second dominance rule arises for the special case where there is no
idle time between a subsequence of any three particular jobs in a schedule.
This is presented in Lemma D.1 in Appendix D. Two other special cases, the
first related to reversing the job sequence and the second to the independence

of processing times and machines, are also discussed in Appendix D.

In terms of computational effort, determining whether a given subprob-
lem Py is dominated implies: (a) searching for another subproblem (at the
same level), and (b) checking conditions of Theorem 7.1. Step (a) can be done
in O(log T) time, where T' = O(29) is the size of search tree up to depth d (if
done efficiently, there is no need to search the whole tree). Operation (b) takes

O(m) time. At level d, there are potentially O(2¢) nodes, thus the worst-case

105

complexity to determine whether a given subproblem (at depth d) is dominated
is O(md2?).
Despite this worst-case complexity, the implementation of this domi-

nance rule has had a strong positive impact in the performance of BABAS().

Computational results are provided in Section 7.8.

7.6 Upper Bounds

It is well known that branch-and-bound computations can be reduced by using
a heuristic to find a good solution to act as an upper bound prior to the appli-
cation of the enumeration algorithm, as well as at certain nodes of the search
tree. With this in mind we have adapted HYBRID() and GRASP() (described in
Chapter 6) to handle partial schedules.

In our basic algorithm, we apply both heuristics with extensive local
search at the root node to obtain a high quality feasible solution. Once the algo-
rithm is started, an attempt is made to find a better feasible solution every time
UPPER_BOUND_LOG nodes are generated, where UPPER_BOUND_LOG is
a user-specified parameter. In our experiments, we set this parameter to 50. At
the intermediate stages, we do not do a full local search but try to balance the
computational load. Once BABAS() satisfies the stopping criteria, if the best
feasible solution is not optimal, we apply an extensive local search to ensure

that a local minimum has been obtained.

7.7 Partial Enumeration

Partial enumeration is a truncated branch-and-bound procedure similar to what
is called beam search [50]. Instead of waiting to discard a portion of the tree
that is guaranteed not to contain the optimum, we may discard parts of the

tree that are not likely to contain the optimum. One essential is to have a good

measure of what “likely” means.

The way we handle the partial enumeration is as follows. During the
branching process, every potential child is evaluated with respect to a valuation
function h. Those potential subproblems whose valuation function do not meet
a certain pre-established criterion are discarded. We implemented this idea by
ranking the potential children by increasing value of A and then discarding the
worst pn nodes, where p € [0,1] is a user-specified parameter. The larger the
value of p, the more nodes that will be eliminated from consideration. The case

p = 0 coincides with regular branch and bound.

A Valuation Function

To develop a valuation function h we make use of the following cost function

Ci, for each pair of jobs j, k € J:
C]‘k = (gRjk + (1 @G)S]k

where 6 € [0,1] is a weight factor, R;; is a term that penalizes a “bad” fit
from the flowshop perspective, and S;; is a term that penalizes large setup
times. This cost measure was introduced in Section 6.2 where it was used to
develop the TSP-based HYBRID() heuristic for the SDST flowshop with very
good results. A detailed description on how to estimate [;; and S is given

in that section.

Let P; be the node from which branching is being considered with cor-
responding partial schedule S;. Let [(.S;) be the index of the last scheduled job
in S;. Then, for every k € U;, we compute h(k) = Cys,y, and then discard the
worst pn potential subproblems (in terms of A(k)).

Although it is likely that the nodes excluded by this procedure will not
be in an optimal solution, no theoretical guarantee can be established. We

should also point out the trade-off between higher confidence in the quality

106

of the solution and smaller computational effort when p is set to smaller and

larger values, respectively.

7.8 Computational Experience

All routines were written in C++ and run on a Sun Sparcstation 10 using the
CC compiler version 2.0.1, with the optimization flag set to -O. CPU times
were obtained through the C function clock().

To conduct our experiments we used randomly generated data drawn
from classes A, D, and C (described in Appendix E. Recall that class D is
the most representative of real world instances, having a setup/processing time
ratio between 20% and 40%. Classes A and C account for a smaller (0-10%)
and a larger (0-50%) ratio variation, respectively, and are intended to gauge

algorithmic performance in the best- and worst-case scenarios.

7.8.1 Experiment 1: Lower Bounds

The lower bounding procedures developed in Section 7.3 were compared within
the branch-and-bound enumeration framework. In our first experiment, the
generalized lower bound (GLB) was evaluated for three different subsets of

machine pairs.
Wo = {(1,2),(2,3),...,(m&1,m)}

Wy {(1,m),(2,m),...,(m&1,m)}
W2 — WO U W1

It is evident that GLB(W,) will dominate the other two; however, it requires

more computational effort.

Table 7.1 shows the average results for 10-job problems with machine

settings m = 4,6. Note that when m = 2, Wy = Wy = Wy = {(1,2)}. The

107

m=4 m=20
Wo Wha We | Wo Wi Wy
Average relative gap (%) 08 03 03] 1.3 03 04
Average number of evaluated nodes (1000) | 10.1 9.2 87| 11.0 93 9.0
Average CPU time (min) 108 92 93| 150 11.8 12.1
Optimal solutions found (%) 60 60 60 20 70 60

Table 7.1: Evaluation of GLB for 10-job class D instances

averages are taken over 10 class D instances with a stopping limit of 15 CPU
minutes. The dominance rule is in effect as well. Each column shows the
statistics for GLB based on Wy, Wy, and W5, respectively. The relative gap is

computed as

best upper bound < best lower bound
best lower bound x 100%

As can be seen, the quality of GLB(W;) is inferior to the other two since
a larger number of nodes has to be evaluated, resulting in larger execution
times. In addition, under GLB(Wj), fewer optimal solutions are found in the
allotted time (only 20% in the 6-machine instances as opposed to 60% using W
and W3). When comparing GLB(W;) and GLB(W3), similar performance is
observed in almost every statistic. In fact, GLB(W;) was found to be slightly
better than GLB(W;). This implies that the extra effort used by GLB(W3)
(the dominant bound) is not paying off.

We now compare GLB(W;) with MBLB (machine-based lower bound).
A stopping limit of 15 CPU minutes was similarly imposed. Table 7.2 shows
the average relative gap (Gap) at the start (root node) and at the end of the
algorithm, percentage of times a specific procedure delivered the best lower
bound (Best), and percentage of optimal solutions found (Solved) under a spe-
cific procedure, for 15-job instances of data class D. It can be seen from the

table that the GLB is actually better at the root node; however, as branching

108

m=2 m=4 m=26
GLB(W:) MBLB | GLB(W,) MBLB | GLB(W,) MBLB
Gap (root) (%) 2.7 6.6 6.4 12.1 8.8 14.8
Gap (end) (%) 2.9 3.1 4.1 2.9 5.3 3.1
Best (%) 40 60 30 80 0 100
Solved (%) 30 60 0 50 0 10

Table 7.2: Lower bound comparison for 15-job class D instances

takes place, the MBLB makes more progress providing, in almost all cases, a

tighter bound. There were even some instances that were solved to optimality

under the MBLB alone.

One possible explanation for this result is that the MBLB, for a given

machine, takes into account all the involved setup times, whereas the GLB, in

its attempt to reduce the problem to a 2-machine case, loses valuable setup time

109

information (recall that for a given machine pair (u, v), GLB uses min{ sk, s,k }

to represent the setup time between jobs j and k). Because the MBLB proce-

dure was uniformly better than the GLB scheme, we use it in the remainder of

the experiments.

7.8.2 Experiment 2: Dominance Elimination Criterion

m=2 m =4 m==6
NDR DR | NDR DR | NDR DR
Average relative gap (%) 0.7 0.0 0.0 0.0 0.1 0.0
Average number of evaluated nodes | 16063 8529 | 5074 2985 | 10879 7924
Average CPU time (min) 18.3 5.8 4.8 2.3 14.2 8.4
Optimal solutions found (%) 50 100 100 100 90 100

Table 7.3: Evaluation of dominance rule for 10-job class D instances

We now evaluate the effectiveness of the dominance rule.

Table 7.3

shows the average statistics over 10 class D instances for machine sizes m =

2,4,6. Each instance was run with a CPU time limit of 30 minutes and opti-
mality gap tolerance of 0.0. The results for the algorithm with and without the
dominance rule in effect are indicated by DR and NDR, respectively. As we
can see, the implementation of the dominance rule has a significant impact on
the overall algorithmic performance resulting in a considerably smaller number
of nodes to be evaluated, and a factor of 2 reduction in CPU time. In fact,
when the dominance rule was in effect, the algorithm found optimal solutions

to all instances, as opposed to only 80% when the rule was not in effect.

7.8.3 Experiment 3: Partial Enumeration

p=0 p=0.5 p=2038
Instance UB Gap Time | UB Gap Time | UB Gap Time
fs6x20.1 | 2022 2.8 30 2020 1.8 30 2029 1.0
fs6x20.2 | 2108 4.4 30 2111 3.2 30 2114 1.0
fs6x20.3 | 2100 5.3 30 2093 4.1 30 2106 1.0
fs6x20.4 | 1967 5.5 30 1966 3.5 30 1972 1.0
fs6x20.5 | 2095 1.5 30 2094 1.0 10 2096 1.0
fs6x20.6 | 2058 6.5 30 2057 5.3 30 2070 1.0
fs6x20.7 | 2088 5.6 30 2082 3.9 30 2088 1.0
fs6x20.8 | 2129 8.1 30 2129 6.8 30 2124 1.0
fs6x20.9 | 2106 3.7 30 2106 2.3 30 2109 1.0
fs6x20.10 | 2142 6.1 30 2130 4.2 30 2144 1.0

[N R N R N e e

Table 7.4: Partial enumeration evaluation for 6-machine, 20-job class D in-

stances

In this experiment, we illustrate the effect of doing partial versus com-
plete enumeration. We ran the partial search strategy for p = 0 (normal
enumeration), p = 0.5 (truncating 50% of the potential children), and p = 0.8
(truncating 80% of the potential children) for 10, 6 x 20 instances of data class
D, with a stopping criterion of 30 minutes and relative gap fathoming tolerance

of 1.0%. The overall results are displayed in Table 7.4. Results for a particular

110

instance are by row. For each value of p we tabulate upper bound (UB), relative
gap percentage (Gap) and CPU time (Time) rounded to the nearest minute. It
should be noted that the relative gap for the truncated versions (p € {0.5,0.8})
do not correspond to a true optimality gap, but to the best lower bound with-
out considering the truncated nodes. As can be seen, increasing the value of p
results in a larger number of truncated nodes, hence a quicker execution of the
procedure. We can also observe that the quality of the solution decreases with
the size of p. A good compromise seems to be around p = 0.5, but one must
keep in mind that once p assumes a value greater than zero, the algorithm can

no longer be guaranteed to provide an optimal solution to the original problem.

7.8.4 Experiment 4: BABAS() Overall Performance

Here we show the results when the full algorithm is applied to classes A, D and
C instances of the SDST flowshop. We use the MBLB procedure, dominance
elimination rule, and a relative gap fathoming tolerance of 1%. Maximum CPU

time is set at 30 minutes.

Size Optimality gap (%) Time (sec) Instances
m X n | best average worst | best average worst | solved (%)
2x10 | 0.1 0.6 1.0 2 263 941 100
4 0.9 0.9 1.0 2 232 1197 100
6 0.8 0.9 1.0 3 99 529 100
2x15 | 04 0.7 1.1 3 543 1800 90
4 0.7 1.5 3.2 6 1231 1800 40
6 0.7 3.0 7.5 20 1444 1800 20
2x20 1 0.3 1.0 2.1 6 1083 1800 60
4 0.9 2.3 6.1 22 1473 1800 30
6 1.0 1.5 2.3 23 1445 1800 20

Table 7.5: Evaluation of BABAS () for class A instances

Tables 7.5, 7.6, and 7.7 display the summary statistics which were cal-

111

Size Optimality gap (%) Time (sec) Instances
m X n | best average worst | best average worst | solved (%)
2x10 | 0.3 0.9 1.0 1 235 560 100

4 0.8 0.9 1.0 2 68 222 100

6 0.9 1.0 1.0 29 265 450 100
2x15 | 0.0 1.0 2.6 3 725 1800 70

4 0.9 2.2 4.5 7 1074 1800 50

6 1.0 2.9 4.5 38 1624 1800 10
2x20 1| 05 1.0 1.6 7 1298 1800 30

4 2.4 4.2 5.1 1800 1800 1800

6 1.5 5.0 8.1 1800 1800 1800 0

Table 7.6: Evaluation of BABAS() for class D instances

culated from 10 problem instances for each m x n combination for class A, D,
and C, respectively. As can be seen, all 10-job instances were solved (within
1%) in an average time of less than 5 minutes, a notable improvement when
compared to previous published research on this problem, where the size of
the largest instances solved optimally was a 6-machine, 8-job problem. In fact,
BABAS () was able to solve 50%, 43%, and 20% of the 15-job instances of class
A, D, and C, respectively, and 37% and 23% of the 20-job instances of class
A and D, respectively. Most of the instances solved corresponded to the 2-
machine case. This is to be expected since the fathoming rules (lower bound
and dominance) become less powerful as the number of machines increases. It
was also observed that the larger the fluctuation of the setup times, the harder
to solve the problem, as BABAS() was able to solve 62%, 56%, and 41% of all
class A, D, and C instances, respectively. This stems from the fact that the
setup time variation is smaller in class A, and thus finding a good sequence of

jobs becomes less dependent on the setups.

Finally, Table 7.8 shows the algorithmic performance when BABAS() is
applied to 100-job instances, respectively. The table displays best (B), average

112

Size Optimality gap (%) Time (sec) Instances
m X n | best average worst | best average worst | solved (%)
2 x 10 0.5 0.9 1.0 1 41 162 100

4 0.9 1.0 1.0 69 146 307 100

6 0.9 1.0 1.0 44 688 1800 100
2x15 0.9 2.1 5.7 54 944 1800 60

4 3.8 5.5 7.2 | 1800 1800 1800 0

6 5.0 6.8 8.3 | 1800 1800 1800

2 x 20 1.0 4.8 7.1 857 1706 1800 10

4 6.1 8.1 11.2 | 1800 1800 1800

6 8.3 10.9 12.2 | 1800 1800 1800 0

Table 7.7: Evaluation of BABAS() for class C instances

(A), and worst (W) optimality gaps at the start of the algorithm (root node)
and at the end. Average CPU time in minutes and percentage of instances
solved are shown as well. For the standard set (class D), 70% of the 2-machine
instances finished with a relative gap of 1.3% or better, and the worst-case gap
observed was 2.1%. For the best-case scenario (class A), 70% of the 2-machine
instances were solved, and the rest had a relative gap of 1.4% or less. For
the worst-case scenario (class C), 80% of the 2-machine instances ended with a
relative gap of less than 5%. As expected, class C instances were harder to deal
with due to the larger setup time fluctuation. In general, the average relative
gap from the start to the end of the algorithm on class D instances improved,
in absolute terms, by 2.0%, 0.9%, and 1.6% for the 2-, 4-, and 6-machine
instances, respectively. For class A, this improvement was of 4.8%, 1.3%, and
6.5%), respectively. For class C, the improvement was of 2.2%, 3.4%, and 2.5%,
respectively. We also observed that the lower bound and the dominance test
were less powerful than they were in the 20 or fewer job cases. Despite of this
BABAS () solved 70% and 20% of the 100-job class A instances with 2 and 4

machines, respectively, and 30% of the 2 x 100 class D instances.

113

114

Gap at root (%) Gap at end (%) Average Instances

Class | mx n B A W B A W | time (min) | solved (%)
A 2 x 100 1.0 55 15.7 0.2 0.7 1.4 28.1 70
4 1.0 3.0 5.4 0.5 1.7 3.3 27.8 20
6 2.1 9.2 533 1.3 2.7 3.7 30.0 0
D 2 x 100 1.2 3.4 8.4 0.6 1.4 2.1 28.1 30
4 3.3 5.1 6.5 2.3 4.2 5.7 30.0 0
6 5.0 7.6 9.4 4.3 6.0 7.2 30.0 0
C 2 x 100 5.2 6.8 8.5 4.1 4.6 5.7 30.0 0
4 12.3 142 159 94 10.8 12.0 30.0 0
6 153 176 19.3 | 12.3 151 16.6 30.0 0

Table 7.8: Evaluation of BABAS() for 100-job instances

7.9 Summary

We have presented and evaluated a branch-and-bound scheme for the SDST
flowshop scheduling problem. Our implementation includes both lower and
upper bounding procedures, and a dominance elimination criterion. The em-
pirical results indicate the positive impact of the machine-based lower bound
procedure and the dominance rule. Significantly better performance over pre-
viously published work (LP-based methods) was also obtained. We were able
to solve (within 1% optimality gap) 100% of all 10-job instances tested, 50%,
43%, and 20% of the 15-job class A, D, and C instances, respectively, and 37%
and 23% of the 20-job class A and D instances, respectively. In addition, for
the 100-job instances, our algorithm delivered for class A instances average rel-
ative gaps of 0.7%, 1.7%, and 2.7% when applied to the 2-, 4-, and 6-machine
cases, respectively. For class D, these average relative gaps were 1.4%, 4.2%,
and 6.0%), respectively. BABAS() solved 70% and 20% of the 100-job class A
instances with 2 and 4 machines, respectively, and 30% of the 2 x 100 class D

instances.

In addition, a salient feature of our algorithm is that it permits partial

115

enumeration search, which can be used to obtain approximate solutions with

relatively smaller computational effort.

Chapter 8

Conclusions

8.1 Summary of Research Contributions

In this work I have developed several methods to tackling one the most difficult
problems in the area of machine scheduling optimization. From a practical
point of view, I developed two heuristics that were found very effective in
delivering high quality feasible solutions to the SDST flowshop: HYBRID() and
GRASP(). HYBRID() attempts to exploit the embedded ATSP. To this end, it
was fundamental to develop a reasonable cost measure that would assess the
cost of scheduling two jobs together. The cost function I introduced accounted
for the two important factors: the setup times and schedule fitness from the

flowshop perspective.

GRASP() is a randomized procedure based on job-insertion. This idea
was motivated by the fact that job-insertion heuristics had been very successful
for the regular flowshop scheduling problem (no setups). I extended that idea
to this problem and developed it within a GRASP framework.

In addition, a local search procedure based on shifting an L-job subse-
quence was developed and used in both heuristics. Empirical evidence over a
large number of instances (ranging in size from from 2 machines and 20 jobs
up to 10 machines and 100 jobs) drawn from different classes, showed the effec-

tiveness of both procedures, outperforming the best existing work previously

116

published.

For the largest instances tested (100-job), HYBRID (), for example, deliv-
ered average optimality gaps of 0.6%, 1.5%, and 4.7% for 2-machine instances

in classes A, D, and C, respectively.

It was also observed that HYBRID() performed better than GRASP()
when the number of machinesis small. Another favorable scenario for HYBRID ()
is when the setup time fluctuations are large. This stems from the fact that the
fewer the number of machines and/or the larger the magnitude of the setup
times, the more the problem resembles an ATSP so a TSP-based procedure
should do well. Recall that in HYBRID() the distance between jobs has a setup
time cost component which is computed as the sum of the setup times between
jobs over all the machines. In the extreme case where there is only one machine,
the problem reduces entirely to an instance of the ATSP. As more machines are
added, the developed cost function becomes less representative of the distance
between the jobs. How small does the number of machines have to be for
HYBRID() to do better than the insertion-based heuristics depends not only on
the number of jobs, but on the magnitude of the setup times as well. In data
classes A and D, we observe a threshold value of m = 2 or 3. However, for
data set C (larger setup times), HYBRID() was found to outperform the others
with respect to both makespan (especially for the 50- and 100-job data sets)
and CPU time. This implies a threshold value of m > 10.

Another way to explain the better performance of HYBRID() on the
larger instances of data set C is as follows. An insertion-based heuristic (like
GRASP()) includes a makespan estimation routine that has the setup costs as
part of its performance measure; there is no other explicit treatment to the se-
tups in the heuristic. Since the job insertion decision is made one job at a time,
while the sequence-dependent setup time is dictated by the interrelationships

of an entire sequence of jobs, a TSP-based heuristic tends to do better than

117

this insertion-style method, especially when the number of machines is small

when the similarities between the SDST flowshop and the ATSP are stronger.

An advantage of GRASP(), of course, is that by increasing the iteration
counter, more and perhaps better solutions can be found. This is a trade-off
that the decision maker has to evaluate under a specific time budget. In our
work, we combine both heuristics into an upper bounding procedure within the

B&B enumeration scheme.

In attempting to solve the problem optimally, I investigated two differ-
ent approaches. The first one was from the polyhedral perspective and was
motivated by the success that polyhedral-based methods (such as B&C) have
had on solving hard problems (in particular the TSP), and the strong con-
nection between the SDST flowshop and the ATSP. I considered two different
mathematical models. Model A is based in an ATSP formulation. Model B
uses fewer binary variables and constraints, but its polyhedral structure had
remained unexplored. I developed several polyhedral results concerning both
formulations that allowed me, in turn, to develop some families of valid in-
equalities and to prove facial properties on several of these inequalities, for

both models. These inequalities and the models were then evaluated within a

B&C framework.

I found empirical evidence that using model B with B&C yields bet-
ter results on solving instances of the SDST flowshop problem. However, the
fact that even with the development of valid inequalities the algorithm is still
unable to solve instances with 10 or more jobs shows that LP-based enumer-
ation methods are wanting. This difficulty is inherent to the SDST flowshop
(2 or more machines) since the algorithm was able to successfully solve 100-
and 150-job instances restricted to the 1-machine case. Recall that minimizing
the makespan in SDST flowshop is equivalent to finding the minimum length
tour of an (n + 1)-city ATSP when the number of machines is set equal to 1.

118

It is evident that once we start adding machines, the ATSP structure starts
to weaken. One explanation for this is that, unlike the ATSP where we are
looking for a good sequence of nodes, it is difficult here to characterize fully
what a good sequence of jobs really is. What might be a good sequence for
a certain machine, may be a bad sequence for the others. This makes this

problem extremely nasty.

The quality of the LP relaxation lower bound led me to develop more
efficient non-LP-based lower bounding procedures, which gave rise to a more
effective enumeration scheme based on branch and bound, which was the fi-
nal part of this research. This implementation included the development of
both lower and upper bounding procedures, and a dominance elimination cri-
terion. The empirical results indicate the effectiveness of the overall procedure
(BABAS()), especially the positive impact of the machine-based lower bound
procedure and the dominance rule. Significantly better performance over pre-
viously published work (LP-based methods) was also obtained. BABAS() was
able to solve (within 1% optimality gap) 100% of all 10-job instances tested,
50%), 43%, and 20% of the 15-job class A, D, and C instances, respectively, and
37% and 23% of the 20-job class A and D instances, respectively. In addition,
for the 100-job instances, BABAS () solved 70% and 20% of the 100-job class A
instances with 2 and 4 machines, respectively, and 30% of the 2 x 100 class D
instances. For class A, the algorithm delivered average relative gaps of 0.7%,
1.7%, and 2.7% when applied to the 2-; 4-, and 6-machine cases, respectively.
For class D, the average relative gaps were 1.4%, 4.2%, and 6.0%), respectively.
For class C, the average gaps were 4.6%, 10.8%, and 15.1%), respectively, which
indicate how hard the problem becomes as the magnitude of the setup times

increases.

A salient feature of the algorithm is that it permits partial enumera-
tion search, which can be used to obtain approximate solutions with relatively

smaller computational effort.

119

Another contribution of this work is the development of a random in-
stance generator for producing several classes of instances with real-world fea-
tures. This was the result of the input received from several colleagues with
industrial experience related to this type of problem. The data sets have been
made available to the scientific community at the Operations Research library

at London College, UK, maintained by Prof. Beasley.

8.2 Directions for Future Research

There exist several avenues for research in this area. Incorporating both ready
times and/or due dates/deadlines is a logical extension to the SDST flowshop
that is worthwhile investigating. We should point out that most of the valid
inequalities developed in this work for the SDST flowshop can actually be ap-
plied to other scheduling problems involving sequence-dependent setup times.
In fact, by introducing the ready times and due dates parameters, it might be
possible to develop better valid inequalities to strengthen the polyhedral set of
feasible solutions. A similar situation arises in the TSP when time windows

constraints are added to the model.

Another related problem is the mixed-model assembly line scheduling
problem (where setup times are present). This problem, although frequently
encountered in practice, has remained unexplored and presents several areas
of opportunity. From the practical point of view, the development of ad hoc
approximation algorithms for finding good feasible schedules is essential. On
the other hand, I feel that significant progress can be made toward optimality
by extending part of the research done on polyhedral theory for the SDST
flowshop scheduling problem.

The SDST flowshop remains one of the hardest optimization problems
in the machine scheduling field. Even though most of the medium and large

sized instances were not optimally solved, our work has provided a way to find

120

121

feasible schedules with high quality, several of them with optimality gaps of
less that 2%.

I am confident that this work fills the missing link between the regular
flowshop manufacturing environments and all other flowshops where the setup
times play an important role. While it is true that the nature of the setup
times (e.g, additive setups) or a slightly different problem structure might lead
to the development of ad hoc procedures in related problems, it also true that
our work can certainly be applied as a first approach. I am also confident that
this work will be very helpful to both practitioners and researchers dealing with
the challenges of this type of machine scheduling problems and many others

like it.

Appendices

Appendix A

Notation

A scheduling problem can be represented by a triplet «|3|y. The « field de-
scribes the machine environment and contains a single entry. The j field pro-
vides details of processing characteristics and constraints and may contain no
entries, a single entry, or multiple entries. The v field contains the objective to
be minimized and usually contains a single entry. In Section A.2 we provide a
definition of possible entries in each field. But first, in Section A.1, we define

data associated with jobs. Most of this section is adapted from Pinedo [57].

The number of jobs is denoted by n and the number of machines by m.
Both n and m are assumed to be finite. Typically, the subscripts j and k refer

to jobs, whereas the subscript ¢ refers to a machine.

A.1 Data Associated with Jobs

The following pieces of data are associated with job j.

e Processing time (p;;). Processing time of job j on machine ¢. The sub-
script ¢ is dropped if the processing time of job j does not depend on the

machine or if job j is only to be processed on one given machine.

o Release date (r;). The release date r; of job j may also be referred to as

the ready date. It is the time the job arrives at the system, that is, the

123

earliest time at which job j can start its processing.

e Due date (d;). The due date d; of job j represents the committed shipping
or completion date (the date the job is promised to the customer). The
completion of a job after its due date is allowed, but a penalty is incurred.

When the due date absolutely must be met, it is referred to as a deadline.

o Weight (w;). The weight w; of job j is basically a priority factor, denoting

the importance of job j relative to the other jobs in the system.

A.2 Problem Description

In this section, we describe possible entries for each of the fields in a triplet

alfB)y of a scheduling problem.

Field a. This field describes the machine environment and contains a single

entry. The following examples are possible machine environments speci-

fied in the « field.

e Single machine (1). The case of a single machine is the simplest of
all possible machine environments and is a special case of all other

more complicated machine environments.

e Flow shop (Fm). There are m machines in series. Each job has to
be processed on each one of the m machines. All jobs have the same
routing, that is, they have to be processed first on machine 1, then
on machine 2, and so on. After completion on one machine, a job
joins the queue at the next machine. Usually, all queues are assumed
to operate under the first-in-first-out (FIFO) discipline, that is, a
job cannot “pass” another while waiting in a queue. If the FIFO
discipline is in effect, the flow shop is referred to as a permutation

flow shop and the f field includes the entry prmu. Often, when

124

125

a general m-machine case is considered, the m identifier may be
dropped such that F||Chay, for instance, refers to the m-machine

flowshop with makespan minimization criteria.

Field . This field provides details of processing characteristics and constraints
and may contain no entries, a single entry, or multiple entries. Possible

entries are:

e Release dates (r;). If this symbol is present in the 3 field, job j
may not start its processing before its release date r;. If r; does
not appear in the 3 field, the processing of job j may start at any
time. In contrast to the release dates, due dates are not specified in
this field. The type of objective function gives sufficient indication

whether there are due dates or not.

o Sequence-dependent setup times (sjz). The sj; represent the setup
time between jobs 7 and k; sgr denotes the setup time for job k if
job k is first in the sequence and sjq the clean-up time after job j if
job j is last in the sequence (of course, so; and sjo may be zero). If
the setup time between jobs 7 and k& depends on the machine, then
the subscript 2 is included, that is, s;;;. If no s;; appears in the
field, all setup times are assumed to be zero or sequence independent,

in which case they can simply be added to the processing times.

e Preemptions (prmp). Preemptions imply that it is not necessary to
keep a job on a machine until completion. The scheduler is allowed
to interrupt the processing of a job (preempt) at any time and put a
different job on the machine. The amount of processing a preempted
job already has received is not lost. When a preempted job is put
back on the machine (or on another machine, in the case of machines

in parallel), it only needs the machine for its remaining processing

time. When prmp is not included in the field, preemptions are

not allowed.

o Permutation (prmu). A constraint that may appear in the flow
shop environment is that the queues in from of each machine oper-
ate according to the FIFO discipline. This implies that the order
(or permutation) in which the jobs go through the first machine is

maintained throughout the system.

e No-wait (nwt). The no-wait requirement is another phenomenon
which may occur in flow shops. Jobs are not allowed to wait between
two successive machines. This implies that the starting time of a job
at the first machine has to be delayed to ensure that the job can go
through the flow shop without having to wait for any machine. An
example of such an operation is a steel-rolling mill in which a slab of
steel is not allowed to wait because it would cool off. It is clear that

under no-wait the machines also operate under the FIFO discipline.

Field ~. This field contains the objective to be minimized and usually contains
a single entry. The objective is always a function of the completion times
of the jobs, which, of course, depend on the schedule. The time job j
exits the system (i.e., its completion time on the last machine on which
it requires processing) is denoted by ;. The objective may also be a

function of the due dates. The lateness of job j is defined as
L]' = CJ‘ <:>d]', (Al)

which is positive when job j is completed late and negative when it is

completed early. The tardiness of job j is defined as

T; = max (C; <d;,0) = max ([L;,0). (A.2)

126

The difference between tardiness and lateness lies in the fact that tardi-

ness is never negative. The unit penalty of job j is defined as

]‘ _=

(A.3)

0 otherwise.

{1 it ¢ > d;

Lateness, tardiness, and the unit penalty are the three basic due-date-

related penalty functions considered in this work.

o Makespan (Cpax). The makespan, defined as max;{C;}, is equiv-
alent to the completion time of the last job to leave the system.

A minimum makespan usually implies a high utilization of the ma-

chine(s).

o Mazimum lateness (Lmax). The maximum lateness, defined as
max;{L;},

measures the worst violation of the due dates.

o Total weighted completion time (3 w,;C;). The sum of the weighted
completion times of n jobs gives an indication of the total holding, or
inventory, costs incurred by the schedule. The sum of the completion
times is in the literature often referred to as the flow time. The total
weighted completion time is then referred to as the weighted flow

time.

o Total weighted tardiness (3 w;T;). This is also a more general cost

function that the total weighted completion time.

o Weighted number of tardy jobs (3° w;U;). This is not only a measure
of academic interest, it is often an objective in practice as it is a

measure that can be recorded very easily.

127

Appendix B

Polyhedral Theory Basics

The following definitions and well known theoretical results (e.g., see [53]) are

used in the polyhedral study of this work (Chapter 4).

A polyhedron P C R™ is the set of points that satisfies a finite number
of linear inequalities; i.e., P = {& € R" : Az < b}, where (A,b) is an
m % (n+ 1) matrix. A polyhedron P is of dimension k, denoted dim(P) = k, if
the maximum number of affinely independent points in P is k4+1. A polyhedron
P C R" is full-dimensional if dim(P) =n. Let M = {1,2,...,m}, M= = {1 €
M :a'z =b;for all 2 € P} andlet M< = {is € M : a’x < b; for some z € P} =
M\ M=. Let (A=,67), (AS,b%) be the corresponding rows of (A, b), referred
as the equality and inequality sets of the representation (A, b) of P. A point
x € P is called an interior point of P is a'x < b; for all i € M.

Lemma B.1 Let P be a polyhedron and let (A=,b7) be its equality set. If
P C R", then dim(P) 4 rank(A=,67) = n.

Corollary B.1 A polyhedron P is full-dimensional if and only if it has an

interior point.

The inequality 7o < mo [or (7,m)] is called a valid inequality for P
if it is satisfied by all points in P. If (7, 7o) is a valid inequality for P and
F={{x¢e P : 7ax =mno}, Fiscalled a face of P, and we say that (7, 7o)

128

129

represents F'. A face F' is said to be proper if F' £ () and F' # P. A face F of
P is a facet of P if dim(F) = dim(P) < 1.

Theorem B.1 Let (A=,67) be the equality set of P C R" and let F = {x €
P : wa = wg} be a proper face of P, where 7 € R", 79 € R. Then the following

two statements are equivalent:

(i) F isa facet of P.
(i) If A& = Ao for all x € F then
(A o) = (ar + uA™, amg + ub™)

for some o € R and some u € RM~1,

Lemma B.1 and Theorem B.1 provide two different methods of char-
acterizing facets of a polyhedron. We will also make use use of the following
results on valid inequalities for variable upper-bound flow models to develop

mixed-integer cuts.
Let
T={xeB"zeR} : > z;&> z<b z;<ax; forjeN} (B.l)
jENT JEN-—
where Nt U N~ = N. Here a; € Ry for j € N and b € R. We say that
C' C N7 is a dependent set if Y- .cca; > b.

Proposition B.1 If C C N* is a dependent set, X = Y ;cca; <b, and L C
N~ then

Dlstla; e (Le)] < b+) A+ Y 3 (B.2)

JeC JEL JEN—\L

is a valid inequality for T given by (B.1).

Appendix C

Enumerative Methods

Part of the material in this appendix is taken from Ibaraki [36, 37].

C.1 Enumeration of Solutions

The feasible region S and/or the underlying space X of many of the combina-
torial optimization problems are finite sets. In such a case, an optimal solution
can be obtained by a straightforward method that enumerates all feasible solu-
tions in S and then outputs the one with the minimum (or maximum) objective
value. This type of approach is called enumeration. A diagram representing

this enumeration is called an enumeration tree.

However, enumeration methods may hardly be practical because the
number of cases to be considered is usually enormous. Thus it becomes a ma-
jor concern how to detect dominated cases so that they can be excluded from
the explicit enumeration. If the exclusion is done effectively, the resulting al-
gorithm can be fast enough to solve practical problem instances. Enumerative
approaches such as branch and bound and dynamic programming are compu-

tational frameworks which make it easy to incorporate exclusion procedures.

130

131
C.2 Terminology about Directed Trees

In a directed tree, there is exactly one path from the root to each vertex v,.
The number of edges in the path is called the depth of v;. The height of a
directed tree is the largest depth of the vertices therein. If there is an edge
(vi,vj), v; is a son of v; and v; is the parent of v;. Those vertices with the
same parent are called brothers. If there is a downward path from v; to v;, v;
is a descendant of v; and v; is an ancestor of v;. In particular v; is an ancestor
(and descendant) of itself. An ancestor (descendant) v; of v;, is called a proper
ancestor (descendant) if v; # v;. The vertices having no sons are called leaf

vertices.

C.3 A Branch-and-Bound Algorithm

Let Fy be the problem to be solved. The strategy is to decompose a F into a few
partial problems of smaller sizes, if the given problem is too difficult or too large
to attack directly. The generated partial problems should have the property
that the original problem can be equivalently solved as a result of solving all of
the partial problems. This decomposition (also called branching operation) may
be repeatedly applied to the generated partial problems, resulting eventually

in a branch-and-bound enumeration algorithm.

The above scheme of decomposition is the first step of constructing a
branch-and-bound algorithm. With the branching operation only, however,
the obtained algorithm is nothing but a brute force enumeration algorithm.
To construct an algorithm that examines only a small portion of the entire
branching tree and is still possible to provide an exact optimal solution, the

following properties may be exploited.

1. If an optimal solution of a partial problem P; is obtained by some means,

it is not necessary to decompose P, any further.

2. If it is concluded for some reason that a partial problem P; (as well as
those obtainable from P; by branching operations) does not provide an
optimal solution of Py, F; is said to be fathomed and it is not necessary

to decompose F; further.

Termination of partial problems P; by property 1 or 2 is called the bound-
ing operation. There are two basic methods to actually implement bounding

operations, lower bound test and dominance test.

C.4 Branching Operations and Branching Structures

This section begins with an explanation, in a general mathematical setting, of
how a branching operation is performed. The branching structure resulting

from the branching operation is then defined.

C.4.1 Branching Operation

Let describe a partial problem F; by

P;: minimize f(x)

subject to x € S,

where S; C X; denotes a feasible region in the underlying space X;.

Branching operations used in the real applications can mostly be re-
garded as a decomposition of set X; into a finite number of subsets X; ,..., X,

such that

X

v

k
UX, o s (C.1)

i=1

c X; j:1,2,...,k

132

This decomposition enables us to define the following £ partial problems P,

73 =1,2,...,k, as follows
P;, : minimize f(x)
subject to x € 5,
where
Sy =5 ﬂXij.
In most cases, the above X; , X;,,..., X; give a partition of Xj, i.e., X;, are
mutually disjoint and X; = Ule X,

C.4.2 Branching Structure

Denote the optimum value of a partial problem P; by f(F;). If P, is infeasible
(i.e., S; = 0), f(P) = oo is assumed. Z(FP;) denotes the set of optimal solutions
of P;. Generally speaking, S; # () does not always imply the existence of f(FP;)
and Z(P;) (e.g., the case of diverging to f(F;) = <o0). But such pathological
cases are very exceptional for combinatorial optimization problems, and hence
we shall always assume in the following discussion the existence of f(F;) and

Z(P)if S; # 0.

When F; is decomposed into F;,, . by a branching operation,

cey ik7

k
s = Us:
7=1

follows from condition (C.1). Thus any feasible solution x € S; belongs to some

S;; and conversely any x € \5;; belongs to S;. hence

1<j<k

2p) = ULz 1e) = 1(n)} (C.2)

133

hold, implying that P; can be equivalently solved by solving P, ,..., F;, . The
next property follows from (C.2) for any P; and its sons F;;.

f(Py) > f(P) j=1,...,k

This implies the following for any P;.
(7)) = f(R).

It branching operations are applied to all generated partial problems
unless it becomes meaningless, a branching tree results. A branching tree is
a directed tree B = (P,&), where P is a set of vertices and £ is a set of
arcs, with root Fy € P. Fach vertex represents a partial problem, and an arc
(P;, Pj) € € shows that P; is generated by a branching operation applied to P;.

The direction of each arc, however, is not explicitly indicated in most cases.

The resulting system (B, Z, f) (or (B, f) sometimes) is called the branch-
ing structure of FPy. Of course, such system is rarely given explicitly but is
implicitly defined by specifying P and a branching operation. Our goal is to
compute f(Fy) and Z(Fy) (or at least one solution in Z(F)).

C.5 Lower Bounding Functions
C.5.1 General Definition

Denote a lower bound on the optimum value f(F;) of a partial problem P; by
g(F;), i.e.,

g(P) < f(P) for P ePp. (C.3)

When viewed as a function from P to R (real numbers), ¢ is called a lower

bounding function. Although f(P;) are usually not known, ¢g(P;) are explicitly

134

135

computed for all generated P;. Thus the time required for computing ¢(F;) is
a crucial factor determining the algorithm efficiency. It is desirable to have a ¢
which can be efficiently computed and yet provides an accurate lower bound.
Such ¢ can become available only when the structure inherent to the given

problem is fully exploited.

For a partial problem P;, a relazation P; is defined by

P;: minimize g(x)

subject to x € S,
where

S; C SZ C X;
<

g(x) flz) for € 95;.

P; has a relaxed constraint and an objective function that never exceeds the
original vale f(z). Thus the optimal objective value of P;, denoted by g(F;),
satisfies (C.3).

The following properties are also obvious.

1. P is infeasible if so is P;.

2. Assume that the objective function g(x) is set equal to f(x). In this case,
if an optimal solution of P; is feasible in P, it is also an optimal solution

of PZ

In either case, P; can be immediately terminated. The set of partial
problems satisfying (1) or (2) is denoted by G. In other words, G is the set of

partial problems that are solved in the course of computing lower bound g.

C.5.2 Conditions on g and G

The following five conditions are assumed throughout this thesis as general

properties of ¢ and G.

(A) g(P) < f(P), P eP.

(B) g(F) = f(P), P € G.

(C) g(P) < g(F;) for (P, Pj) € €.

(D) G D L, where L is the set of leaf vertices in B.

(E) P, € G implies P; € G for (P, P;) € £.

If P, is infeasible, it is assumed by convention that g(P;) = f(F;) = co.

Properties (A) and (B) follow from the definition of ¢ and G. (C) and (E)
reflect the fact that P; is easier to handle that P; of P; is obtained from F; by

a decomposition. Finally, (D) comes from the fact that each leaf vertex in B is

trivially solvable.

C.6 Upper Bounding Functions

It is sometimes easy to obtain feasible solutions to F;, even if exact optimal
solutions are difficult to compute. So-called approzimate algorithms or heuristic
algorithms are used for this purpose. For a minimization problem F;, such a
feasible solution provides an upper bound u(F;) on f(F;). Throughout this

thesis, the following properties are assumed.

(i) u(P) > f(P), P eP.

(ii) u(P) = f(P), P € G.

136

Condition (ii) is reasonable since any P, € G is solved, i.e., either an
optimal solution is obtained or it is concluded that F; is infeasible. In the
latter case, u(P;) = oo may be used for convenience. In case of u(P;) < oo,
it is assumed that a feasible solution of P; realizing the upper bound u(F;) is

available as a result of computing u(F;).

Upper bounds u(F;) are used to update the incumbent vale z. If good
upper bounds are generated in the early stage of branch-and-bound computa-
tion, and z is thereby set to relatively small values, the lower bound test would

become powerful.

It is not always assumed that u(F;) is computed for all generated P;.
u(P;) is set to oo if the computation is not attempted or a good bound is not
found within the allotted computation time. The following notations are used

for convenience.

u = 00; the computation of u(F;) is not attempted for any P;

u = u(Fy); u(P;) is computed only for the initial problem F.

Note here that condition (ii) of u(FP;) is always assumed even in these cases.

C.7 Dominance Relations
C.7.1 General Definition

The dominance test is another important source of bounding operations that
can be as powerful as the lower bound test in some cases. It is based on a
dominance relation D, a binary relation defined over the set of partial problems.

If P,DP; (i.e., relation D holds for an ordered pair P; and P;), it is said that

P; dominates P;. The following properties are assumed on D.

(i) D is a partial order defined over P.

137

138
(if) P.DP; implies f(P) < f(P;).

iii) P, DP; and P, # P; imply that, for each descendant P! of P;, there exists
J J j J
a descendant P! of P; such that PZ»’DP](.

(iv) During the branch-and-bound computation, no set of (k+1) partial prob-
P,

Tgt19

lems P, k > 2, satisfying the following conditions is generated.

17

L. All P, are different except that P, =

Ty
2. Foreach j =1,...,k, either P,
and f(P; = f(F;,) hold.

41 1s adescendant of P, or P, DP;,

J+1)

A dominance relation is illustrated by broken arcs. Properties (iii) and
(iv) are introduced to prevent a deadlock in which all P; satisfying f(P;) =
f(Fy) are terminated by the dominance test.

The partial order mentioned in condition (i) is a special binary relation

defined as follows. Let R be a binary relation defined over P. R is said to be

(A) reflexive it P,RP; holds for any P; € P,
(B) symmetric it P,RP; implies P; RP;,
(C) transitive if P,RP; and P;RP; imply P,RP},
(D) antisymmetric if P,RP; and P;RP; imply P, = P;.
If R has properties (A) and (C), it is called a pseudo order. A pseudo order is

called a partial order if it additionally satisfies (D). Finally R is an equivalence
relation if it satisfies properties (A), (B), and (C).

Property (ii) is a key assumption that makes the dominance test pos-
sible, i.e., P; can be terminated if P;,DP; holds for some P; that has already

been generated. This is because an optimal solution that will be obtained from

P; is not worse than that obtained from P;. The dominance test is sometimes
useful to exploit the problem structure in such a way that is not possible by
the lower bound test.

If f(P;) = f(F;) is concluded for P; # P;, either P,DP; or P;DP; can
be used without violating properties (i)-(iv). But it is not possible to use both,
in order to ensure antisymmetry of D. In this case, if P; is tested before P;,

P;DP; is usually chosen for the dominance test.

C.8 Branch-and-Bound Procedure

So far we have introduced the following constituents of a branch-and-bound

procedure.

(B, Z, f): branching structure, where B = (P,€) is a branching tree, Z(F;)
denotes the set of optimal solutions of P, € P, and f(F,;) denotes the
optimum value of P;. In particular, P, € P is the original minimization

problem we want to solve.
g: lower bounding function.
G: the set of partial problems P;, solved in the course of computing ¢(F;).
u: upper bounding function.

D: dominance relation.

A branch-and-bound procedure to obtain one of the optimal solutions
x € Z(Py) or all optimal solutions Z(F) can be constructed from these. From
the practical point of view, the former is more important, whereas the latter
is often suitable for theoretical treatment. In this work, we are concerned with

the former.

139

The construction of the above constituents is done as follows. Given
a problem we want to solve, how to perform branching operation, and how
to compute ¢, u, and D for the generated partial problems are first specified.
These form the body of a branch-and-bound algorithm. Then for each instance
Py of the problem, implicit application of the branching operation and compu-
tation schemes of ¢, u, D to all partial problems defines the above branching

structure (B, 7, f).

C.8.1 General Description of a Branch-and-Bound Procedure

During the branch-and-bound computation, partial problems are successively
generated and tested. Let A denote the set of partial problems currently
generated. Partial problems are sometimes referred to as vertices, as they are
represented by vertices in B. A vertex P, € N that is neither decomposed nor
tested yet is called active. The set of active vertices is denoted by A. For each
tested vertex in N, its lower and upper bounds are computed. The smallest
upper bound obtained so far is called the incumbent value and denoted by
z. The solution realizing z is called the incumbent and stored in Z. Upon

termination, z = f(F,) holds and Z stores an optimal solution of Fj.

Branch-and-bound computations proceed by repeating the test of active
vertices. The selection of an active vertex for the next test is done by a search

function s, such that
s(A) € A

The search function s is also an important constituent that determines the
overall performance, and will be discussed later. A pseudocode of procedure

branch-and-bound () is shown in Figure C.1.

Under the assumption that branching tree B has a finite number of
vertices and each of the steps requires finite computation time, the enumeration

procedure terminates in finite computation time. See [36] for a detailed proof.

140

Procedure branch-and-bound()

Input: Problem F,.

Qutput: Optimal solution = with value z.

0:

(initialization) A — {Po}, N — { P}, z «+ oo,

and Z « 0

(search) If A =0, go to Step 8. Otherwise,

select P; «— s(A) and go to Step 2.

(update) If u(P;) < z, then z «— u(P;) and Z « {z},
where x is a feasible solution of P; realizing

u(P;) = f(x). Go to Step 3.

(G-test) If P, € G, go to Step 7. Otherwise go to Step 4.

(lower bound test) If g(P;) > z, go to Step 7.
Otherwise go to Step 5.
(dominance test) If there exists a Py(#£ P;) € N
such that P.DP;, go to Step 7. Otherwise go to Step 6.
(branch) Decompose P; into P, ..., P, and set

A= AN, ..., P\ B},

N —NUH{P,,....P,}.
Return to Step 1.
(terminate P;) Let A «— A\ {F;} and return to Step 1.
(termination) Output @ € Z with z = f(x). Stop.

Figure C.1: Pseudocode of branch-and-bound procedure

141

Appendix D

Special Cases

This appendix contains three lemmas which address special cases of the SDST
flowshop. The first presents a dominance rule, the second discusses the re-
versibility of the schedule, and the third considers specific parameter relation-
ships. To simplify the presentation, the bracket notation for a given schedule

will be dropped and we will denote a schedule S by (1,...,n) rather than

([, [n]).

Lemma D.1 Let S = (1,2,...,n) be a feasible schedule of F'|s;jr, prmu|Cmax.

Let e;; be the earliest completion time of job j on machine @

¢ij = max{ei_1j, €1+ Sij-15) + i

fori=1,2.....m, g =1,2.....n, and e;p = ¢g; = 0. Let q;; be the minimum
remaining time from the start of job j on machine v to the end of operations

on the last machine
¢i; = max {giy1,, Gij+1 + Sijj41} + Pij

fori=mm&l,. .. 1, j=nn&l,. .1, and ¢ipny1 = g1, = 0. Let j and
J+ 1 be any two adjacent jobs in S (j =1,2,...n<1) and let

S'=(1,....5el 5+ 1,5,7+2,...,n)

142

be the schedule where jobs j and j 41 are exchanged (with completion time e;

and remaining time q;;).

If all of the following conditions hold for each 1 = 1,2,...,m

(a) €;; =€ j_1+ Sij-1; + pij (there is no idle time between jobs j<l1
and j in S)

(b) Gij+1 = Gij+2 + Sij41.542 + Pij1 (there is no idle time between

jobs j+ 1 and j+2 in S)

(c) €yt = €y T Sijo1im T Pig (there is no idle time between

Jobs j &1 and j+1 in 5')

(d) Gi; = qliyo + sijjve + iy (there is no idle time between jobs j
and j+2 in S')

(€) sij-1i+ Sigger + Sijrrger > Sijoria + iy + Sijite
then S has a lower makespan than S,

Cinax(5") < Cinax(5).

Proof: First notice that both S and S’ are identical sequences except
for jobs j and j + 1. This implies that e;, = €/, for all k =1,2,...,5 <1 and
qir = qi for all k=354 2,5+3,...,n. Thus, from (e) we obtain

7
€ij—1 + Sij—1,; + Pij + Qij+2 + Sigri 42 T Pij+1 > €1 F Sij—15+1 T Pij+

+ Gy T Siggb2 + i
for all . Conditions (a)-(d) yield

7 7 N
€ij + Sijt1 + Giga1 > € g + Sije1y g foralle

143

In particular, this is valid for the maximum over ¢
! !
max {e;; + 041 + Gijer} > max{ely + i1+)}
K3 K3

But these expressions correspond to the makespan values of S and 57, respec-
tively. That is,
Crax(S) > Cax(S").

An appropriate data structure should keep track of both e;; and ¢;; for
all 7 and j. This would make it possible to check conditions (a)-(d) in O(m)

time.

As seen in Section 7.3, Proposition 7.1, T},(Sk) (the elapsed time be-
tween the first job in S on machine u and the last job in S; on machine v)
can be computed by finding the critical path on graph G, (Figure 7.2). Note
that T,,(.9) is an equivalent form to express the makespan of schedule S, which
implies, by Proposition 7.1, that its makespan is given by the critical path from
node (1,0) to node (m,n) in graph G1,,.

An interesting property can be obtained when comparing two instances
of the SDST flowshop with no initial setup times. Let FS be an instance of
Fsijk, prmu|Cumax with processing times p;; and setup times s;;,. Let us assume
that s;or = 0 for all: € I, and k € J. Let FS’ be another instance of the SDST

flowshop with processing and setup times given by

/ —_— ..
Pij = Pmt1-igs and

/ —_— . .
Sk = Sm4l-ik,j

respectively. This basically implies that the first machine in the FS’ is identical
to the last machine in F'S; the second machine in FS' is identical to machine

m <1 1in FS, and so on. The following lemma applies to these two flowshops.

144

Lemma D.2 Let S = (1,...,n) be a sequence of jobs in FS with corresponding
makespan Cpax(S). If the jobs in FS’ follow the sequence S" = (n,n<1,...,1)
(with makespan C! , (S")), then

Cinax(S) = Chax(5).

max

Proof: Let S = (1,...,n) be a feasible sequence in FS. Then its
makespan Chax(S) is given by T1,,(5), the length of the critical path in Gy,,.
Let G, be the graph associated to FS' under sequence S = (n,...,1). By
definition of FS', 7},, is obtained from (,, by reversing the sense of all the
arcs in Gy,,. Since the length of the critical path from does not change, it
follows that T1,,,(5) =T, (97), where T| (S’) is the length of the critical path
in (7

1ms and the proof is complete. []

Lemma D.2 states the following reversibility result: the makespan does
not change if the jobs go through the flowshop in the opposite direction in the

reverse order.

Another special case of F|s;ji, prmu|Cpax which is of interest is the so-
called proportionate flowshop. In this flowshop the processing times of job j
on each machine are equal to p;, that is, p;; = p;, + = 1,...,m. Minimizing
the makespan in a proportionate permutation flowshop is denoted by F|p;; =
p;y prmu|Cpax. This problem has a very special property when all setup times

are equal to a constant Sijk = S.
Lemma D.3 For Flp;; = p;, sijx = 8, prmu|Cnax, the makespan is given by
Cowe = Do pi-tns 4 (m &1 maxp;)
j=1
and is independent of the schedule.

Proof: From Figure 7.2 we can see that for any sequence of jobs S =

1 € Critica a starts at node stays on machine until 1
1,2,...,n) the critical path starts at node (1,0), stay hine 1 until it

145

146

reaches node (1, k), where k = arg max;{p;}, stays on job k until it reaches

node (m, k), and ends by reaching node (m,n). [|

Similar results on reversibility and proportionate flowshops for F||Cipax

are discussed in [57].

Appendix E

Data Sets

E.1 Background

Although the SDST flowshop scheduling problem has been studied in the liter-
ature using exact and heuristic methods, a common comparison base is missing.
This part of my research focuses on how to randomly generate instances with

real-world attributes.

According to literature, and researchers with experience with this type
of problem, one of the key issues is the relationship between the setup times
and the processing times. For most real-world instances this setup/processing
time ratio lies between 20% and 40% (class D below). In addition, we also
consider the extreme cases where the setup times are allowed both a smaller

(class A) and a larger variation (class C).

Dij Sijk
Class A [10,100] [1,10]
Class C [50,100] [1,50]
Class D [20,100] [20,40]

Table E.1: Data class attributes

Table E.1 shows the different classes of data sets considered. Both
processing and setup times are randomly generated according to a uniform

distribution in the shown interval. As it was found in our research, solution

147

148

attempts increase in difficulty with the magnitude of the setup times. Thus,
in a sense, class A (C) represent a best (worst) case scenario for our solution
procedures. Most of our work, tough, is based in class D, which is the most
representative of real data. Within, each data class, though, several combina-
tions of m x n were generated with m ranging from 2 to 10 machines, and n
from 10 to 100 jobs. The following sections in this chapter describe in detail

the SDST flowshop random instance generator.

The code for the random generators and all data instances are available

at the following world-wide web sites:

o Operations Research library at the Imperial College, United Kingdom,
maintained by Prof. J. Beasley:

http://mscmga.ms.ic.ac.uk/info.html

e Author’s personal site:

http://www.me.utexas.edu/ "roger/Pro/

E.2 Uniform Pseudorandom Number Generator

The problem instances presented in this work are randomly generated according

to the congruential generator which is based on the recursive formula:

Xiv1 = (16807X;) mod (2°! &1)

This random number generator is proposed in Bratley et al. [8] and
has been used by Taillard [71] to generate random instance of several multiple

machine scheduling problems such as flow shops, job shops, and open shops.

The implementation uses only 32-bit integers and provides a uniformly
distribution sequence of numbers in the (0,1) interval. A pseudocode of the

procedure is shown in Figure E.1.

Procedure random()
Input: A seed value X, (0 < Xo < 2% & 1).
Output: A random number in (0,1) and a modified seed

value X;.

0: Initialize constants:
a=16,807, b=127,773, c = 2,836, m = 2°1 &1.
1: Modify seed:
k=1Xo/b]
X1 = a(Xo mod b) ke
if X7 <0, then let X7 = X7 + m.
2: Output Xy/m and X
3: Stop

Figure E.1: Pseudocode of random number generator

Let X (0 < X < 1) be a random number generated by procedure
random() and let @ and b be any two integer numbers. Then a pseudorandom

number in the interval [, b] is obtained by
la+ X(bsa+1)]

and every integer between a and b has the “same” probability of being chosen.

E.3 Flow Shop Instance Generator

This is, in a sense, an attempt not only to create instances for testing our pro-
cedures but to provide a valid set of instances that can be used as benchmarks
for other researchers as well. Our random instance generator (written in C++)

is available upon request. Below is a description of the flowshop generator and

149

the input data file that must be provided to the generator.

pl1b pl_ub

pm_1b pm_ub
flagr r_1b r_ub
flagd d_1b d_ub

flag t1 t1_1b t1lub

flagtm tm_1b tm_ub

seed_1 fname_1

seed _k fname k

Figure E.2: Format of input file to random instance generator

The format of the input file to the generator is shown in Figure E.2.
The first line contains the number of instances to be generated (k), the number
of machines (m), and the number of jobs (n) in each instance. The lines that
follow are self-explanatory. They contain the range of the uniform distribution
(lower and upper bound) for the processing times, job ready times, job due

dates, and machine setup times.

Notice that the generator allows enough flexibility so as to generate a
different distribution for each machine for processing and the setup times. The
flag * parameters indicate whether such a feature should or should not be
included in the data set. A value of 0 for flag._r, for instance, would indicate

that no job ready times are generated (in such a case the values r_1b and

150

r_ub are not taken into account), whereas a value of 1 would indicate that job
ready times will be generated from a uniform distribution in the [r_1b, r_ub]
interval. Each of the last k lines, which correspond to each of the k instances to
be generated, show both an initial random seed and a file name for the result

problem.

The pseudocode for the random instance generator is outlined in Fig-
ure E.3. The procedure basically generates the processing times, the job ready
times (if requested), the job due dates (if requested), and the machine setup

times (if requested).

The instance generator creates q problems, each stored in a file (given

by fname k) with the following format:

e First line: random seed
e Second line: number of machines and number of jobs

e Third line: job release time flag, job due dates flag, and machine setup

time flag
o Next m lines: processing times
e Next line: job ready times (only if flag.r = 1)
e Next line: job due dates (only if flag.r = 1)

e Remaining lines: machine setup times. For each of the m machines there
are n + 2 lines. The first one contains a machine index (0,1,...,m <1),
the other n + 1 lines contain a square matrix of order n + 1, where entry
J, k is the corresponding processing time s;j;. Here, the (n 4 1)-th row
contains the initial setup times for each job and the (n + 1)-th column
contain the finishing setup time for each job. A value of <1 appears along

the diagonal.

151

152

See Figure E.4 for an example of a 2-machine, 3-job problem with due dates,

setup times, and no release times.

Procedure random_instance()
Input: An input file as specified in Figure E.2.

Qutput: g random instances as specified in Figure E.4.

1: Read data
2: for k=1 to ¢ do
Generate processing times
forz =1 to m do
generate p;; in [pi_lb, pi_ub]
if (flag_r = YES)
generate r; in [r_1b, r_ub]
if (flag.d = YES)
generate d; in [d-1b, d_ub]
Generate setup times
forz =1 to m do
if (flag-ti = YES)
generate s;; in [ti_lb, ti_ub]
Output data to file fname k
3: Stop

Figure E.3: Pseudocode of random instance generator

153

35
28
33

23
28

19

03
08

2345671345
2 3
0 1
23 45
11 37
65 47
0

-1 14
16 -1
14 17
09 21
1

-1 24
26 -1
24 27
19 01

29

00
00
00

00
00
00

Figure E.4: Format of output file to random instance generator

154

1]

Bibliography

E. Balas. The asymmetric assignment problem and some new facets of
the traveling salesman polytope on a directed graph. SIAM Journal on
Discrete Mathematics, 2(4):425-451, 1989.

E. Balas and M. Fischetti. The fixed-outdegree 1-arborescence polytope.
Mathematics of Operations Research, 17(4):1001-1018, 1992.

E. Balas and M. Fischetti. A lifting procedure for the asymmetric trav-
eling salesman polytope and a large new class of facets. Mathematical

Programming, 58(3):325-352, 1993.

E. Balas and P. Toth. Branch and bound methods. In E. L. Lawler, J. K.
Lenstra, A. H. G. Rinnoy Kan, and D. B. Shmoys, editors, The Traveling

Salesman Problem: A Guided Tour of Combinatorial Optimization, pages
361-401. John Wiley & Sons, Chichester, 1990.

L. Bianco, S. Ricciardelli, G. Rinaldi, and A. Sassano. Scheduling
tasks with sequence-dependent processing times. Naval Research Logis-

tics Quarterly, 35(2):177-184, 1988.

J. Blazewicz, M. Dror, and J. Weglarz. Mathematical programming formu-

lations for machine scheduling: A survey. Furopean Journal of Operational

Research, 51(3):283-300, 1991.

J. Blazewicz, G. Finke, R. Haupt, and G. Schmidt. New trends in ma-
chine scheduling. Furopean Journal of Operational Research, 37(3):303—
317, 1988.

155

[3]

[9]

[10]

[11]

[12]

[15]

[16]

P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to Simulation. Springer-
Verlag, New York, 1983.

H. G. Campbell, R. A. Dudek, and M. L. Smith. A heuristic algorithm
for the n job, m machine sequencing problem. Management Science,

16(10):B630-B637, 1970.

J. Carlier and 1. Rebai. Two branch and bound algorithms for the per-
mutation flow shop problem. Furopean Journal of Operational Research,

90(2):238-251, 1996.

W. Conover. Practical Nonparametric Statistics. John Wiley & Sons, New
York, 1980.

B. D. Corwin and A. O. Esogbue. Two machine flow shop scheduling
problems with sequence dependent setup times: A dynamic programming

approach. Naval Research Logistics Quarterly, 21(3):515-524, 1974.

CPLEX Optimization, Inc., Incline Village, NV. Using the CPLEX
Callable Library, Version 4.0, 1995.

H. Crowder and M. W. Padberg. Solving large-scale asymmetric traveling
salesman problems to optimality. Management Science, 26(5):495-509,
1980.

D. G. Dannenbring. An evaluation of flow shop sequencing heuristics.

Management Science, 23(11):1174-1175, 1977.

R. D. Dear. The dynamic scheduling of aircraft in the near terminal area.
FTL Report R76-9, Massachussetts Institute of Technology, September
1976.

156

[17]

[18]

[19]

[20]

[21]

[22]

23]

[26]

F. Della Croce, V. Narayan, and R. Tadei. Two-machine total comple-

tion time flow shop problem. Furopean Journal of Operational Research,

90(2):227-237, 1996.

T. A. Feo and J. F. Bard. Flight scheduling and maintenance base plan-
ning. Management Science, 35(12):1415-1432, 1989.

T. A. Feo, J. F. Bard, and K. Venkatraman. A GRASP for a difficult
single machine scheduling problem. Computers & Operations Research,

18(8):635-643, 1991.

T. A. Feo and J. L. Gonzalez-Velarde. The intermodal assignment prob-
lem: Models, algorithms, and heuristics. Technical Report ORP90-10, Op-

erations Research Program, University of Texas at Austin, August 1990.

T. A. Feo and M. G. C. Resende. A probabilistic heuristic for a com-
putationally difficult set covering problem. Operations Research Letters,

8(2):67-71, 1989.

T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6:109-133, 1995.

T. A. Feo, M. G. C. Resende, and 5. H. Smith. A greedy randomized
adaptive search procedure for maximum independent sets. Operations

Research, 42(5):860-878, 1994.

M. Fischetti. Facets of the asymmetric traveling salesman polytope. Math-
ematics of Operations Research, 16(1):42-56, 1991.

M. Fischetti and P. Toth. A polyhedral approach for the exact solution of
hard ATSP instances. Management Science, 1997. Forthcoming.

R. E. Gomory and T. C. Hu. Multi-terminal network flows. SIAM Journal
on Applied Mathematics, 9:551-570, 1961.

157

[27]

28]

[29]

30]

31]

33]

[34]

158

N. Grotschell and M. W. Padberg. Polyhedral theory. In E. L. Lawler,
J. K. Lenstra, A. H. G. Rinnoy Kan, and D. B. Shmoys, editors, The Trav-
eling Salesman Problem: A Guided Tour of Combinatorial Optimization,
pages 251-305. John Wiley & Sons, Chichester, 1985.

J. N. D. Gupta. A functional heuristic algorithm for the flowshop schedul-
ing problem. Operational Research Quarterly, 22(1):39-47, 1971.

J. N. D. Gupta. Flowshop schedules with sequence dependent setup times.
Journal of the Operations Research Society of Japan, 29(3):206-219, 1986.

J. N. D. Gupta and W. P. Darrow. The two-machine sequence dependent
flowshop scheduling problem. Furopean Journal of Operational Research,

24(3):439-446, 1986.

J. N. D. Gupta, J. C. Ho, and J. A. A. van der Veen. Single machine bi-
criteria scheduling with customer orders and multiple job classes. Working
Paper Series 1, The Netherlands Business School, Nijenrode University,
June 1994.

S. K. Gupta. n jobs and m machines job-shop problems with sequence-
dependent set-up times. [International Journal of Production Research,

20(5):643-656, 1982.

K. W. Hansmann. Application of new heuristics to scheduling with
sequence-dependent setup times. INFORMS National Meeting, New Or-
leans, October 1995.

J. C. Ho and Y.-L. Chang. A new heuristic for the n-job, m-machine flow-
shop problem. Furopean Journal of Operational Research, 52(2):194-202,
1991.

[35]

[36]

37]

38]

[39]

[41]

[42]

T. S. Hundal and J. Rajgopal. An extension of Palmer’s heuristic for
the flow shop scheduling problem. International Journal of Production

Research, 26(6):1119-1124, 1988.

T. Ibaraki. Enumerative approaches to combinatorial optimization: Part

[. Annals of Operations Research, 10(1-4):1-340, 1987.

T. Ibaraki. Enumerative approaches to combinatorial optimization: Part

II. Annals of Operations Research, 11(1-4):341-602, 1987.

E. Ignall and L. Schrage. Application of the branch and bound technique
to some flow-shop scheduling problems. Operations Research, 13(3):400—
412, 1965.

S. M. Johnson. Optimal two- and three-stage production schedules with
setup times included. Naval Research Logistics Quarterly, 1(1):61-68,
1954.

J. Klincewicz. Avoiding local optima in the p-hub location problem using
tabu search and grasp. Technical Report, AT&T Bell Laboratories, June
1989.

G. Kontoravdis and J. F. Bard. A randomized adaptive search procedure
for the vehicle routing problem with time windows. ORSA Journal on

Computing, 7(1):10-23, 1995.

B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan. A general bound-
ing scheme for the permutation flow-shop problem. Operations Research,

26(1):53-67, 1978.

M. Laguna and J. L. Gonzalez-Velarde. A search heuristic for just-in-
time scheduling in parallel machines. Journal of Intelligent Manufacturing,

2:253-260, 1991.

159

[44]

[45]

[46]

[48]

[49]

[50]

[51]

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. Shmoys.
Sequencing and scheduling: Algorithms and complexity. In S. S. Graves,
A. H. G. Rinnooy Kan, and P. Zipkin, editors, Handbook in Operations

Research and Management Science, Vol. J: Logistics of Production and
Inventory, pages 445-522. North-Holland, New York, 1993.

Y. Li, P. M. Pardalos, and M. G. C. Resende. A greedy randomized
adaptive search procedure for the quadratic assignment problem. In P. M.
Pardalos and H. Wolkowicz, editors, Quadratic Assignment and Related
Problems, pages 237-261. American Mathematical Society, 1994.

A. G. Lockett and A. P. Muhlemann. A scheduling problem involving
sequence dependent changeover times. Operations Research, 20(4):895—

902, 1972.

Z. A. Lomnicki. A “branch-and-bound” algorithm for the exact solution
of the three-machine scheduling problem. Operational Research Quarterly,
16(1):89-100, 1965.

T. Mavridou, P. M. Pardalos, L. S. Pitsoulis, and M. G. C. Resende. A
GRASP for the biquadratic assignment problem. Technical report, AT&T
Bell Laboratories, Murray Hill, NJ, 1995.

K. Morizawa, H. Nagasawa, and N. Nishiyama. Complex random sample
scheduling and its application to an N/M/F/F,ax problem. Computers &
Industrial Engineering, 27(1-4):23-26, 1994.

T. E. Morton and D. W. Pentico. Heuristic Scheduling Systems. John
Wiley & Sons, New York, 1993.

M. Nawaz, E. E. Enscore Jr., and I. Ham. A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem. OMFEGA The International
Journal of Management Science, 11(1):91-95, 1983.

160

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[60]

[61]

G. L. Nemhauser, M. W. P. Savelsbergh, and G. C. Sigismondi. MINTO,
a Mixed INTeger Optimizer. Operations Research Letters, 15:48-59, 1994.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimiza-
tion. John Wiley & Sons, New York, 1988.

E. Nowicki and C. Smutnicki. A fast tabu search algorithm for the flow
shop problem. Report 8/94, Institute of Engineering Cybernetics, Tech-
nical University of Wroctaw, 1994.

M. Padberg and G. Rinaldi. An efficient algorithm for the minimum ca-
pacity cut problem. Mathematical Programming, 47(1):19-36, 1990.

D. S. Palmer. Sequencing jobs through a multi-stage process in the mini-

mum total time — a quick method of obtaining near optimum. Operational

Research Quarterly, 16(1):101-107, 1965.

M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall,
Englewood Cliffs, New Jersey, 1995.

C. N. Potts. An adaptive branching rule for the permutation flow-shop
problem. European Journal of Operational Research, 5(1):19-25, 1980.

M. Queyranne and Y. Wang. Symmetricinequalities and their composition

for asymmetric travelling salesman polytopes. Mathematics of Operations

Research, 20(4):838-863, 1995.

C. R. Reeves. Improving the efficiency of tabu search for machine sequenc-
ing problems. Journal of the Operational Research Society, 44(4):375-382,
1993.

M. G. C. Resende and C. C. Ribeiro. A GRASP for graph planarization.
Technical report, AT&T Bell Laboratories, Murray Hill, NJ, 1995,

161

[62]

[63]

[64]

[66]

[67]

[69]

[70]

R. 7. Rios-Mercado and J. F. Bard. Heuristics for the flow line prob-
lem with setup costs. Furopean Journal of Operational Research, 1997.

Forthcoming.

S. Sarin and M. Lefoka. Scheduling heuristics for the n-job m-machine
flow shop. OMEGA The International Journal of Management Science,
21(2):229-234, 1993.

M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed
integer programming problems. ORSA Journal on Computing, 6(4):445—
454, 1994.

J. V. Simons Jr. Heuristics in flow shop scheduling with sequence de-
pendent setup times. OMEGA The International Journal of Management
Science, 20(2):215-225, 1992.

B. N. Srikar and 5. Ghosh. A MILP model for the n-job, m-stage flowshop
with sequence dependent set-up times. International Journal of Produc-

tion Research, 24(6):1459-1474, 1986.

E. F. Stafford and F. T. Tseng. On the Srikar-Ghosh MILP model for
the N x M SDST flowshop problem. International Journal of Production
Research, 28(10):1817-1830, 1990.

J. P. Stinson and A. W. Smith. A heuristic programming procedure for
sequencing the static flowshop. International Journal of Production Re-

search, 20(6):753-764, 1982.

W. Szwarc and J. N. D. Gupta. A flow-shop with sequence-dependent
additive setup times. Naval Research Logistics Quarterly, 34(5):619-627,
1987.

E. Taillard. Some efficient heuristic methods for the flow shop sequencing

problem. European Journal of Operational Research, 47(1):65-74, 1990.

162

[71] E. Taillard. Benchmarks for basic scheduling problems. European Journal

[72]

73]

[74]

of Operational Research, 64(2):278-285, 1993.

S. Turner and D. Booth. Comparison of heuristics for flow shop se-
quencing. OMEGA The International Journal of Management Science,
15(1):75-85, 1987.

J. A. A. van der Veen and S. Zhang. A linear-time algorithm for sequenc-
ing jobs with a fixed number of job-classes. Working Paper TI 94-86,
Tinbergen Institute, Erasmus Universtity Rotterdam, The Netherlands,
July 1994.

C. H. White and R. C. Wilson. Sequence dependent set-up times and job
sequencing. International Journal of Production Research, 15(2):191-202,
1977.

M. Widmer and A. Hertz. A new heuristic method for the flow shop se-
quencing problem. European Journal of Operational Research, 41(2):186—
193, 1989.

S. Zdrzatka. Preemptive scheduling with release dates, delivery times and

sequence independent setup times. Furopean Journal of Operational Re-

search, 76(1):60-71, 1994.

163

Vita

Roger was born in Monterrey, Nuevo Ledn, México on April 16, 1966, the
eldest son of Griselda Mercado and Rogelio Rios. He received a Licenciado in
Mathematics degree from Universidad Autonéma de Nuevo Ledén in 1988. He
earned his M.S.E. and Ph.D. in Operations Research and Industrial Engineering
from the University of Texas at Austin in 1992 and 1997, respectively.

Before joining graduate school, he spent four years working at Vitro
Tec, a research and development firm belonging to Vitro, Mexico’s largest en-
terprise in the glass industry, where he conducted independent research on
mathematical models and algorithms for simulating glass-forming processes.
As a graduate student at UT-Austin, he worked as an assistant instructor and
as a teaching assistant in various graduate and undergraduate courses. In ad-
dition, he also worked as a graduate research assistant. His graduate research

has focused on optimization of flow line machine scheduling problem:s.

His professional duties include membership to Institute for Operations
Research and Management Science (INFORMS), Mathematical Programming
Society, Society for Industrial and Applied Mathematics, Sociedad Matemdti-
ca Mezicana, American Mathematical Society, and Mathematical Association
of America. He has served as the UT-Austin Chapter President of the Omega
Rho Honor Society of INFORMS, and as a referee for the Journal of Heuristics.

His research work and academic achievements have won numerous awards.

On a more personal note, he has been very happily married to Ofelia

Rodriguez since August 1992, and made his debut as a dad on March 14, 1996

164

165

when his son, Vandari Pavel, was born.

Permanent address: Caracas 238, Valle del Nogalar
San Nicolas de los Garza, N.L. 66480

México

This dissertation was typeset with IATEX* by the author.

1IATEX is a document preparation system developed by Leslie Lamport as a special version

of Donald Knuth’s TEX Program.

