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Abstract

Kidney-paired donation programs assist patients in need of a kidney to swap their incompatible

donor with another incompatible patient-donor pair for a suitable kidney in return. The Kidney

Exchange Problem (KEP) is a combinatorial optimization problem that consists of finding the

maximum set of matches in a directed graph representing the pool of incompatible pairs. Depending

on the specific framework, these matches can come in the form of (bounded) directed cycles or

directed paths. This gives rise to a family of KEP models that have been studied over the past

dozen years. Several require an exponential number of constraints to eliminate cycles and chains

that exceed a given length. In this paper, we present enhancements to a subset of existing models

that exploit the connectivity properties of the underlying graphs. The first is based on the cycle-

only version of the KEP and the second is based on the cycle-and-chain version. An efficient

algorithm for detecting violated constraints is developed.

To assess the value of our enhanced models, an extensive computational study was performed

in which they were compared with existing formulations. The first observation is that the proposed

cyclic-version of the KEP is able to quickly solve instances of realistic size for low to medium density

graphs, outperforming the classical edge formulation. It was also observed that our second model

proved superior to the existing cycle-and-chain formulations in two out of the three comparisons,

and is competitive with the best approaches to date.

Keywords: Kidney exchange problem; integer programming; strongly connected components; health-

care.



1 Introduction

The kidney exchange problem (KEP) is a combinatorial optimization problem aimed at maximizing

the number of patient-donor matches as represented by cycles or chains in a directed graph. The

KEP has received increased attention over the past few years as several different versions have been

implemented through kidney paired donation programs world-wide. The need for such a program

in the U.S., for example, was outlined by Ross et al. [26] who cited four motivating factors: (a)

the high demand for kidneys among the population, (b) the relatively low number of cadaveric

(deceased) donors as compared to the demand, (c) growing wait lists, and (d) the very high cost of

kidney-related treatments such as hemodialysis. Several researchers have addressed each of these

factors from a clinical perspective [10]. Others have taken a prescriptive approach and developed

optimization models to aid decision-makers. The first such models are due to Roth et al. [27, 28, 29].

Subsequently, there has been a spate of research, from developing models to handle different versions

of the problem, to dealing with the uncertainty in demand, donor-patient matches, and the timing

of surgeries.

Depending on the specific application, matches can come in the form of directed cycles or di-

rected paths. A cyclic exchange is when a living donor, who is incompatible with the intended

recipient (this is called an incompatible patient-donor pair, PDP), offers a kidney to another pa-

tient as long as the donor’s intended recipient receives a compatible kidney from another person

(see Figure 1). Such exchanges are known as k-way cyclic exchanges, where k is the number of

incompatible PDPs involved in the cycle. In practice, due to obvious legal issues, the surgeries

in cyclic exchanges are conducted simultaneously. This requirement greatly increases the need for

available operating rooms and surgical teams at a specified time and date: 2k in each case for every

k-way cyclic exchange. For example, a 3-way cycle involves the simultaneous coordination of six

operating rooms and six surgical teams. Given this burden, cyclic exchanges with more than three

patient-donor pairs are rarely conducted [3].

Figure 1: Two-way cycle
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A path or chain exchange arises when a non-directed donor (NDD) (i.e., an altruistic person

who decides to donate without having an intended recipient) offers a kidney to a patient associated

with a particular PDP. The donor in this pair is then matched with a patient of another PDP and

so forth, forming a chain with the NDD and l recipients (see Figure 2), where the last PDP in

the chain donates to a patient on a waiting list. When a chain is initiated by an NDD, it can be

structured so that no donor in a pair has to donate a kidney before the corresponding patient has

received one, allowing the simultaneity requirement to be relaxed.

Figure 2: Length-3 chain

The maximum size of chains and cycles is determined by each kidney paired donation program.

A debate around chains is whether or not they should be performed simultaneously. Under the

domino-paired donation scheme [16], an NDD triggers a short simultaneous chain with the donor

in the last pair donating to a candidate on the waiting list for a cadaveric organ. The other

scheme is the non-simultaneous extended altruistic donor chain [4, 6, 11] under which the NDD

initiates a theoretically never ending-chain consisting of several short segments, each carried out

simultaneously. The last donor in each segment becomes a bridge donor who can initiate some

time later the next chain segment, unless he drops out. When the solution can be in the form of

unbounded chains or cycles, the KEP turns into the maximum weighted perfect matching problem

on a bipartite graph [1], which can be solved in polynomial time. When only 2-cycle exchanges

are allowed, the KEP is equivalent to the maximum matching problem, also solvable in polynomial

time with Edmonds’ maximum cardinality matching algorithm [14]. The general problem with

k-way cyclic exchanges is known to be strongly NP-hard for k ≥ 3 [1, 8].

Current work on solving the KEP is dominated by exact approaches based on integer program-

ming (IP) formulations. Some IP models use a considerably large number of constraints often

exponential in number. This limits the size of an instance that can be solved to optimality.

In this paper, we introduce three new models that extend several existing formulations. With

the help of special network connectivity properties, we show that many of the current models can be

significantly reduced in size without compromising their correctness. The improvements we realize
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are based on detecting strong connectivity in the underlying graphs, especially for large instances.

In particular, this is the case for the edge formulation proposed by Abraham et al. [1] and Roth

et al. [31], which is impractical even for small instances [1, 9, 19] as it requires O(mk) constraints

for graphs with m edges.

One of the primary contributions of our work is the identification of a special graph structure

that allows us to significantly reduce the number of constraints as well as the number of paths

needed in the edge formulation of the KEP. In addition, we propose a new set of constraints to

strengthen our enhanced formulations. A related contribution is the design and development of an

efficient algorithm for applying the proposed reduction and building the corresponding models.

Testing was done over a wide range of instances found in the literature. The performance of

our cycle-only and cycle-and-chain versions of the KEP is compared with the performance of the

most relevant models previously developed. The results indicate that our version of the cyclic

formulations is able to solve practical instances with low to medium density graphs in remarkably

less time than the classical edge formulation while finding many more optimal solutions. For the

cycle-and-chain formulations, the results show that our approach is superior with respect to two out

of the three existing formulations we tested, and competitive with the formulation that provided

the shortest runtimes and greatest number of optimal solutions.

The remainder of the paper is organized as follows. In Section 2, the general version of KEP

is defined and some special cases are identified. This is followed by a literature review in Section

3. In Section 4, three new formulations are introduced that take advantage of certain network

connectivity properties. The discussion includes a comparison of the linear programming relax-

ations of the corresponding models. In Section 6, we discuss the results from our computational

experiments, which compare the performance of the new and existing formulations. Conclusions

are drawn on the value of the research in Section 7. Appendix A contains the existing cycle-only

and cycle-and-chain versions of the KEP and Appendix B highlights some implementation issues

associated with the solution algorithms we developed for the KEP.

2 Problem Description

Given the list of NDDs and PDPs along with their compatibility information, it is possible to build

a compatibility graph that depicts the potential matches between donors and patients. PDP nodes

represent patient-donor pairs who are generally not biologically compatible, although compatible

pairs may also participate with the expectation that the patient will receive a better match. NDD

nodes, on the other hand, represent a bridge donor (i.e., a donor whose intended recipient has

received a kidney, and therefore binding him as a donor for a future exchange) or an altruist donor.

Both can trigger a chain.

In the graph, a directed edge or arc going from one node to another implies that the donor in the

first node is compatible with the patient in the next node whether she belongs to an incompatible

pair or is a non-directed donor. Thus, each arc represents a potential transplant and has an

associated weight that is determined by a medical board to distinguish the priority given to that
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candidate. For the chain only version of the KEP, the objective is to maximize the weighted sum of

edges [3, 19]. When all weights have unitary value, the objective is to maximize the total number of

exchanges [20]. In practice, the maximum cycle length k is established according to the capacity in

the transplant center conducting the operations. Chains, however, may or may not be constrained

[4, 6, 16]. When they are it is assumed that the maximum length l is also known in advance.

In the developments, let P be the set of patient-donor pairs and N be the set of non-directed

donors. We model the KEP on a directed graph G = (V,E) where the set of vertices V =

{1, . . . , |V |} is partitioned into P = {1, . . . , |P |} and N = {|P |+1, . . . , |P |+ |N |}. In the absence of

NDDs, as is the case with the cycle-only version, V = P . The set of directed edges (interchangeably

referred to as arcs) E contains edge (i, j) if and only if the donor at node i is compatible with patient

in pair j such that E = {(i, j) | i ∈ V, j ∈ P}. Note that {(i, j) | i ∈ V, j ∈ N} = ∅ since NDDs

do not have paired patients, and therefore they do not have incoming edges. The digraph has no

loops since we assume every PDP is incompatible. Each arc (i, j) ∈ E has a weight wij ∈ R+,

representing the priority given by the transplant center to that transplant. The weights are used

to capture various prioritization schemes and other value judgments. There is a maximum cycle

length limit given by k due to logistical issues. The largest chain length is constrained to l; however,

l may be long or even unbounded.

When only cycles are being considered, the KEP can be modeled as the cycle packing problem

on a directed graph [8]. Figure 3 depicts a compatibility graph and an optimal solution when cycles

of length at most k = 3 are allowed and there are not NDDs in the pool. The optimal assignment

is shown by the bold arcs, while the dashed edges represent original compatible arcs that are not

part of the optimal solution. Likewise, Figure 4 depicts the KEP instance presented in Figure 3

with NDDs, and its optimal solution when different values of wij are present.

Figure 3: Compatiblity graph of cycle-only KEP with |P | = 8, wij = 1 and k = 3; optimal solution
depicted by bold arcs
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Figure 4: Compatibility graph of cycle-and-chain KEP with |P | = 8, |N | = 2, k = 3 and l
unbounded; optimal solution is depicted in bold arcs

3 Literature Review

The concept of kidney exchange was due to Rapaport [23]. Later on, Ross et al. [26] and Ross

and Woodle [25] discussed its ethical aspects. Roth et al. [27] first proposed organizing kidney

exchanges on a large scale and applying operations research methods to solve the KEP (also see

Roth et al. [28, 30]). Abraham et al. [1] and Roth et al. [31] introduced the first two IP models

for the cycle-only version, which consisted of the cycle formulation and the edge formulation. The

former includes one binary decision variable for each feasible cycle. The latter includes one binary

decision variable for each arc in the graph for each compatible pair. In the cycle formulation,

the number of constraints is polynomial in the size of the input, but the number of variables is

exponential. In the edge formulation, the number of variables is polynomial while the number of

constraints is exponential. Abraham et al. [1] reported experimental results with simulated test

instances (as proposed by Saidman et al. [32]) with up to 10,000 incompatible pairs for the cycle

formulation. A branch-and-price algorithm was used for the computations.

The initial models proposed for kidney exchange programs have exponential numbers of con-

straints or variables. Constantino et al. [9] presented the first two compact IP formulations for the

cycles-only KEP that included the edge-assignment formulation and the extended edge formulation.

A compact formulation is polynomially bounded in both the number of variables and number of

constraints. For testing purposes, they randomly generated instances with correspondingly low,

medium, and high density graphs, the largest with 1000 incompatible patient-donor pairs. The

extended edge formulation was empirically effective in finding the optimal solution for high-density

graphs and cycles involving more than 3 pairs. It was seen to dominate the edge-assignment for-

mulation but was dominated by the cycle formulation.
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Mak-Hau [19] introduced a compact formulation (denoted by EE-MTZ) that integrates chains

and cycles by using the extended edge formulation to address cycles and a variant of the Miller-

Tucker-Zemlin inequalities for the traveling salesman problem (TSP) to model chains. They also

proposed an exponential version of the EE-MTZ that handles cycles the same way the edge formu-

lation does. The largest instance tackled consisted of 256 PDPs and 6 NDDs.

Anderson et al [4] introduced two formulations for the KEP with bounded cycle lengths and

unbounded chain lengths. The first is an edge-based model that uses binary variables to represent

the selection of edges. This leads to an exponential number of constraints to prevent cycle lengths

greater than k (cycle-cardinality constraints). The second uses an exponential number of binary

variables to represent cycles but also requires an exponential number of constraints. For the first

model, they presented a solution algorithm that relaxes the cycle-cardinality constraints (but not

the integrality constraints) and iteratively adds them back as needed, solving an IP at each iteration.

Their appoach could be called branch-and-bound-and-cut. For the second model, they implemented

a branch-and-cut algorithm. Testing was done using randomly generated instances based on data

from the National Kidney Registry and the Alliance for Paired Donation pool. The largest instances

they tried to solve contained up to 700 PDPs and 175 NDDs.

Dickerson et al. [12] presented three IP formulations that combined the extended edge formula-

tion with position-indexed variables used to eliminate subtours. They analyzed both real instances

obtained from the United Network for Organ Sharing (UNOS) in the U.S. and the U.K. kidney

exchange program (NLDKSS), and simulated data. On average, the UNOS instances contained 231

PDPs and 2 NDDs (UNOS runs the algorithm twice a week keeping the number of altruists small),

and the NLDKSS instances 201 PDPs and 7 NDDs. The simulated data was based on historical

UNOS data, and reflected the size of expected instances in the future, with up to 700 PDPs and

175 NDDs.

To avoid the need to keep the entire model in memory, several branch-and-price and branch-

and-cut algorithms have been proposed. The fastest algorithms to date use column generation to

find solutions to the cycle formulation of the KEP [1, 2, 12, 13, 17, 22]. The only approach that

we are aware of that uses constraint generation is due to Anderson et al. [4] as mentioned. For

a version of the edge formulation, they showed it to be effective for solving instances when the

cycle-length limit is 3 and chain lengths are unbounded. The algorithm, however, is uncompetitive

when compared to branch-and-price-based approaches where the chain size is constrained [22].

Alternative objectives to those of finding the maximum number of exchanges or the maximum

weighted sum of all exchanges, include maximizing the expected number of transplants [2, 13, 21]

and the lexicographic optimization of a hierarchy of objectives [17, 20]. Other variations of the

KEP consider multiple donors associated with a single patient where at most one is permitted to

be in the final solution [1]. Another version allows compatible pairs to participate in kidney paired

donation programs as long as the patient in that pair receives a “better” match than his current

donor [15]. The purpose of this requirement is to increase the potential number of matches in a

final solution that otherwise could not be reached without the inclusion of compatible pairs.

The actual objective depends on the organization administering the exchange program. In Eu-
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rope, most countries run these programs at the national level with matches being determined about

once every three months. In the U.S., the situation differs sharply. There are multi-transplant-

center exchanges, single-transplant-center exchanges, and the deceased donor waiting list. Many

hospitals such as the Mass General in Boston, Methodist in San Antonio and Johns Hopkins in

Baltimore, run their own programs and compete with each other. Nationwide exchanges include

UNOS, the National Kidney Registry, and the Alliance for Paired Donations. Note that cadaver

kidneys are viable for up to 24 hours, and so are not suitable for exchange programs.

One aspect of the KEP that has not been considered in the papers mentioned above is the

evolution of the pool over time. There are versions, however, that include dynamic pools as well

as compatibility-based preferences [35]. Finally, Awasthi and Sandholm [7] address the KEP as

an online problem where patient-donor pairs and altruistic donors appear and expire as their

circumstances change. For a more extensive survey on kidney exchange models, see the recent

work by Dickerson et al. [13].

4 New Edge-Based Formulations

In this section, we introduce three new formulations taking as reference the edge formulation

proposed by Abraham et al. [1] and Roth et al. [31]. See Appendix A.

4.1 Strong connectivity

From graph theory, we know that a graph G that is not a strongly connected component (SCC)

by itself, can be partitioned into a collection of vertex-disjoint and arc-disjoint strongly connected

subgraphs.

Definition 1. A strongly connected component of a directed graph G is a maximal subset of vertices

S ⊆ V such that for every pair of vertices u and v in S, we have both u  v and v  u; that is,

there is a directed path from u to v and a directed path from v to u.

One property of strong connectivity is that it partitions vertices so that each vertex belongs to

exactly one SCC, as stated in the following lemma.

Lemma 1. In a directed graph, each vertex belongs to exactly one SCC.

Proof. By contradiction. Let us suppose that there is a vertex v belonging to two different strongly

connected components in a directed graph G = (V,E), namely, S and S′. Since v ∈ S, for each

vertex u ∈ S, we have u  v  u. Similarly, since v ∈ S′, for each vertex w ∈ S′, we have

w  v  w. It follows that u w and w  v for every vertex u ∈ S and w ∈ S′, that is, S = S′,

which is a contradiction. Therefore, vertex v belongs to exactly one SCC. �

Note that if there exists arcs leaving one SCC S and entering another distinct S
′
, such arcs

will never be part of a cycle since G does not contain a path from S
′

to S that returns to S
′
;

otherwise S = S
′
. Figure 5 depicts a graph with 4 SCCs, 2 of which can actually form a cycle.
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In fact, the only component that represents an optimization problem is the one containing nodes

{1,2,3,4}, since nodes 6 and 7 clearly form part of the optimal solution for k ≥ 2. Therefore, arcs

(3,6), (4,5), (6,7), (7,6), (8,5), and (8,7) can be disregarded from any edge-based model without

affecting optimality.

Figure 5: Example of SCCs

There are several classical linear-time algorithms to find strongly connected components of a

digraph, for example, Tarjan’s algorithm [34] and Kosaraju-Sharir’s algorithm [33]. Depending on

the graph representation, both run in O(|V |+ |E|) time.

4.2 Partitioned edge formulation (*PE)

This formulation addresses the cycle version of the KEP. Let Q be the set of subgraphs induced

by the SCCs of G = (V,E) and let q be the number of non-trivial SCCs (i.e, subgraphs containing

nodes with degree greater than zero). Let Π be the set of all length-k paths in a graph. Each

of these paths is formed by k + 1 adjacent nodes or k edges, with no repetition of nodes. In the

context of KEP, a chain is also a path but we reserve the word ’chain’ to refer to the final solution

delivered by an algorithm.

Accordingly, we have q optimization subproblems, one for each SCC, whereQ = {Q1, ..., Qh, ...Qq}.
Also, let Gh = (Vh, Eh) be the h-th subgraph in Q and Λh be the full set of length-k paths in the

hth SCC. Now, for each arc (i, j) ∈ Eh we define a variable xij such that

xij =

{
1 if the donor in pair i gives a kidney to the patient in pair j

0 otherwise

The partitioned edge formulation (*PE) can be expressed as follows.

Maximize
∑

(i,j)∈Eh

wijxij (1)

subject to
∑

j:(i,j)∈Eh

xij =
∑

j:(j,i)∈Eh

xji i ∈ Vh (2)

∑
j:(i,j)∈Eh

xij ≤ 1 i ∈ Vh (3)
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∑
1≤p≤k

xipip+1 ≤ k − 1 (i1, ..., ik, ik+1) ∈ Λh (4)

xij ∈ {0, 1} (i, j) ∈ Eh (5)

The objective function (1) maximizes the weighted sum of matches. In case of unit weights,

it maximizes the total number of transplants. Constraints (2) guarantee that donor i provides a

kidney if and only if patient i receives one in return. Constraints (3) ensure that a person can only

donate a single kidney, and constraints (4) enforce the length of any cycle to be less than or equal

to k. Any feasible cycle will always contain a path with at most k − 1 edges (no repeating edges).

Therefore, if we preclude all length-k paths from being part of a cycle, cycles of length k + 1 or

greater are excluded from a feasible solution as well.

This model looks like the edge formulation (20)-(24), referred to as formulation E in Appendix

A, yet has significant differences. It is applied independently to each SCC in Q so optimizing over

G is reached by optimizing over each subgraph Gh. Note that Λh here represents a subset of the

k-length paths in Π in the edge formulation, and that the upper bound provided by the linear

relaxation of (1) - (5) is at least as good as that obtained by the E formulation (as shown in Section

4.5) This follows because the only non-redundant length-k paths are contained in Λh. In the edge

formulation set Π can be replaced by
⋃q
h=1 Λh without altering the correctness of the model.

4.3 Partitioned and reduced edge formulation (*PRE)

This formulation represents the cycle-only version of the KEP. The partitioned edge formulation

significantly reduces the number of constraints, but when the graph G is itself a SCC, it turns into

the edge formulation. In this section, we propose a new formulation for general graphs.

SCC-based search for length-k paths

The first important observation is that the number of paths of length k present under the edge

or reduced edge formulation is larger than the number of infeasible cycles to be ruled out. For

instance, assuming k = 3, for an infeasible cycle of length 4 formed by nodes C = (v1, v2, v3, v4),

there are four different directed paths of length 3 in Π, each starting at a different node in cycle C.

Evidently, three of them are redundant and therefore not needed in the formulation. Under this

reasoning, each infeasible cycle accounts for as many path constraints as the number of nodes in it.

Given the size this example one can easily identify the redundant paths, but this is not the case

in a large graph. The essence of our approach is to provide a clever way of identifying redundant

paths and keeping only those that are needed for ruling out infeasible cycles.

Algorithm 1 formally defines the process just described. The algorithm takes as input the

directed graph G, decompose it into each of its SCCs and finds Ωh, the set of length-k paths in

SCC h, where h = 1, . . . , q. Note that Λh is the full set of paths of length k for component h,

whereas Ωh is a subset of Λh such that the cardinality constraints over the cycles are satisfied.

Let StrCC(G) be a procedure that finds the non-trivial SCCs in a directed graph G. We used
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the Kosaraju-Sharir algorithm [33]. Let Pool be the set of connected components from which the

next strongest connected component T is chosen for decomposition. Every time the SCCs are

recomputed for a given component T , a new set of SCCs T
′

is obtained. Let Au be the set of edges

that are incident to u.

Additionally, let choose(T, g) be a procedure for finding a node in T to be removed depending

on the node selection strategy given by “g”, where g ∈ {in-degree, out-degree, total degree}; e.g.,

choose(T, out− degree) returns the node in T with highest out-degree. Ties are broken arbitrarily.

Let DepthFirstSearch(k, u, T ) be the well-known algorithm for traversing graph data structures

that starts at node u and traverses T in the search for paths of length k. Thus, it returns the

set of length-k paths starting at node u. Also, let Pool max(Pool) be a function that returns the

subgraph T = (V̄ , Ē) in Pool with the largest cardinality node set.

Algorithm 1 SCC-based search for finding length-k paths in a KEP graph.

Inupt: G = (V,E), k ∈ N ≥ 2

Output: Ωh ≡ set of length-k paths found in each SCC, Qh

1: Q = {Q1, . . . , Qq} ← StrCC(G)

2: Ωh ← ∅
3: for h = 1 to q do

4: Pool← {Qh}
5: T = (V̄ , Ē)← Pool max(Pool)

6: while ( ¯|V | ≥ k + 1) do

7: Pool← Pool \ T
8: u← choose(T, g)

9: Ωh ← Ωh ∪DepthFirstSearch(k, u, T )

10: V̄ ← V \ {u}
11: Ē ← E \Au

12: T
′ ← StrCC(T )

13: Pool← Pool ∪ T ′

14: T = (V̄ , Ē)← Pool max(Pool)

15: end while

16: return Ωh

17: end for

To illustrate the algorithm and its underlying concepts consider the graph in Figure 3 with

k = 3, that is, with only cycles of length k or less allowed. In edge-based models one way of

eliminating cycles of length k + 1 or more is to use path-based cycle-elimination constraints as in

(4). There, the authors establish that if a k-length path can only use k−1 edges, then there cannot

be cycles of length k+1 or more because adding an edge to the path to form a cycle would increase

its length from k − 1 to k. Such path-based cycle elimination constraints have been used before

[1, 31].
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In our example, there are nine infeasible cycles (of length 4 or more) given by {c1 = (1, 2, 3, 7, 1),

c2 = (1, 2, 3, 4, 7, 1), c3 = (1, 2, 3, 4, 5, 8, 7, 1, 4), c4 = (3, 7, 5, 4, 3), c5 = (3, 7, 8, 4, 3), c6 = (3, 7, 5, 6,

4, 3), c7 = (3, 7, 5, 8, 4, 3), c8 = (4, 7, 5, 6, 4), c9 = (4, 7, 5, 8, 4)}. In terms of using k-length paths for

cycle elimination, Table 1 displays the full set of length-3 paths. We now define two different types

of k-length paths: (i) A critical k-length path is a path that could lead to a cycle of length k + 1

if an arc is added, and (ii) a non-critical or redundant k-length path is the opposite, that is, one

where no cycle of length k + 1 or more can be formed by adding an arc to it. For instance, path

4 → 3 → 7 → 5 from Table 1 is a critical path because if arc (5, 4) is added a cycle of length 4

is formed. In contrast, path 4 → 3 → 7 → 1 is non-critical because no cycle of length 4 can be

formed from it by adding any arc.

The importance of distinguishing these type of paths is that to prevent cycles of length k + 1

or more, path-based cycle elimination constraints should be imposed over critical paths only. In

other words, path-based cycle elimination constraints imposed on non-critical paths are redundant.

In Table 1, the critical paths are shown with a star (*) at the end. Naturally, we do not know

in advance what the critical and redundant paths are, but the idea is to have or generate as few

path-based cycle elimination constraints as possible by keeping all the constraints associated to

critical paths and using as few constraints associated to redundant paths as possible.

Now, if we choose an arbitrary node, say, node 4, and identify all length-k constraints starting

at this node (this would eliminate all infeasible cycles associated with node 4), then any infeasible

cycle will not contain node 4. Therefore, we could remove node 4 from the graph and apply the

same reasoning to the remaining graph. By pursuing this strategy in an iterative way, one node

at a time, we end up generating constraints that prevent all infeasible cycles. This is precisely the

main idea of the algorithm.

Table 1: Full set of length-3 paths for Figure 3

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

1→2→3→4 2→3→4→5 3→4→5→6 4→3→7→1 5→4→3→7* 6→4→3→7 7→1→2→3* 8→4→3→7*
1→2→3→7* 2→3→4→7 3→4→5→8 4→3→7→5* 5→4→7→1 6→4→5→8 7→5→4→3* 8→4→5→6

2→3→7→1* 3→4→7→1 4→3→7→8 5→4→7→8 6→4→7→1 7→5→6→4* 8→4→7→1
2→3→7→5 3→4→7→5 4→5→8→7 5→6→4→3 6→4→7→5* 7→5→8→4* 8→4→7→5*
2→3→7→8 3→4→7→8 4→7→1→2 5→6→4→7* 6→4→7→8 7→8→4→3* 8→7→1→2

3→7→1→2* 4→7→5→6* 5→8→4→3 7→8→4→5 8→7→5→4*
3→7→5→4 4→7→5→8* 5→8→4→7* 8→7→5→6
3→7→5→6 5→8→7→1
3→7→5→8
3→7→8→4

Figure 6 shows the steps of the algorithm for this particular example. In quadrant I, node 4

is arbitrarily chosen giving rise to 7 length-3 paths (identified by different markers on the arcs).

In quadrant II, after removing node 4, two new SCCs remain (shaded areas). One of them is a

trivial single-node SCC and the other is s new subgraph. Quadrant III shows the next iteration

of the algorithm where an arbitrary node is chosen, node 7 in this case, and its length-3 paths

are generated (only one path in this case). In quadrant IV, after removing node 7, SCCs are
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recomputed, but this time we obtain 6 trivial components (one node each) because the nodes are

not mutually reachable from each other as stated in Definition 1.

At this point, the process ends because no more strongly connected components with more

than k nodes remain in the graph. Thus, we have found 8 length-3 paths, as identified in Table 2.

Observe that the selected nodes along with the ones contained in the remaining non-trivial strong

components (with at most k nodes), are included in any collection of feasible cycles in the graph.

As such, the process not only obtains a significant reduction in the number of length-k paths but

also finds an upper bound on the number of cycles in a solution as well as the nodes that are

necessarily included in them.

Figure 6: Sequentially removing a vertex from a strongly connected component

As shown in this example, one important aspect of the iterative process is to choose the node

u to be removed. In this regard, three different node-selection rules were tested; namely, choose

the node with (a) maximum in-degree, (b) maximum out-degree, and (c) maximum total degree.

It was found that, in general, the maximum in-degree rule produced the best results; that is, a

larger number of paths were eliminated under this rule when compared to the others. This can be

explained in part by noting that as the number of outgoing edges from the selected node u increases

so does the number of paths, at least empirically. When picking the node with highest in-degree
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Table 2: Set of length-3 paths using the SCC-based search for Figure 3

i = 4 i = 7

4→3→7→1 7→1→2→3
4→3→7→5
4→3→7→8
4→7→1→2
4→7→5→6
4→7→5→8
4→5→8→7

instead, the number of outgoing edges is generally smaller, and therefore fewer paths are obtained.

Thus, a large number of cycles is discarded by using a smaller number of paths.

New set of constraints

The length-k paths represent the left-hand side of the cardinality constraints for both the edge

formulation (23) in Appendix A and the partitioned edge formulation (4). In this section, we

strengthen these constraints giving our next contribution. Consider the following length-k path

and its associated constraint.

xi1i2 + xi2i3 + ...+ xikik+1
≤ k − 1 (6)

The well-known idea behind constraint (6) is to break a path with k + 1 nodes (k edges) such

that at most k − 1 of its edges are used to form a valid cycle. Otherwise, the path with k edges

would lead to an infeasible cycle. By using one or more edges not included in (6), alongside these

k − 1 edges, cycles with cardinality less or equal to k can be obtained. Note that a subset of the

nodes in path xi1i2 , xi2i3 , ..., xikik+1
can form several sub-paths if the corresponding edges exist in

the original graph, i.e., paths like xi2i5 , xi5i6 , ..., xikik+1
or xi1ik+1

may also exist. Also observe that

the flow-balance constraints (9) or (21) will allow only one such path or set of sub-paths. Because

all of them will collectively contain at most k− 1 edges, the following set of constraints is valid for

the KEP.

∑
1≤p≤k

xipip+1 +
∑

1≤p≤k−1

∑
e≤b≤k+1

xipib ≤ k − 1 (i1, ..., ik, ik+1) ∈ Λh (7)

where e = p+ 2 and k ≥ 3.

Only sub-paths flowing in one direction, e.g., from lower to higher node indices need be taken

into account to guarantee that the left-hand side of (7) only yields paths. We now replace constraints

(4) by the tighter set given in (7). To understand the value of these inequalities, consider again

the graph in Figure 3. In path 4 → 7 →5 → 6, there exists a sub-path 4 → 5 → 6. If k = 3, the
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new associated constraint is x47 + x75 + x56 + x45 ≤ 2. Now, consider the fractional solution x47 =

x45 = x75 = 0.5 and x56 = x64 = 1, which is feasible to constraints (4), namely, x47 +x75 +x56 ≤ 2,

but not to constraints (7), which cut off this fractional solution and rule out its infeasible cycle 4

→ 7 →5 → 6 → 4.

The partitioned and reduced edge (*PRE) formulation is then given as follows.

Maximize
∑

(i,j)∈Eh

wijxij (8)

subject to
∑

j:(i,j)∈Eh

xij =
∑

j:(j,i)∈Eh

xji i ∈ Vh (9)

∑
j:(i,j)∈Eh

xij ≤ 1 i ∈ Vh (10)

∑
1≤p≤k

xipip+1 +
∑

1≤p≤k−1

∑
e≤b≤k+1

xipib ≤ k − 1 (i1, ..., ik, ik+1) ∈ Λh (11)

xij ∈ {0, 1} (i, j) ∈ Eh (12)

4.4 The reduced exponential-sized SPLIT formulation (*ReSPLIT)

This formulation addresses the cycle-and-chain version of the KEP. A natural extension of the

exponential-size SPLIT formulation given in Section A.2.4 is to replace constraints (61) with con-

straints (11). By using Algorithm (1), we aim to find a small subset of k-paths instead of the full

set, while maintaining model correctness. When the graph is partitioned into its SCCs some edges

are removed, losing feasible paths and perhaps the optimal solution. Therefore, we cannot solve

each SCC separately because we now have to find a collection of node and arc disjoint paths.

The reduced exponential-sized SPLIT formulation (*ReSPLIT) is as follows:

Maximize
∑

(i,j)∈E′

wijxij +
∑

(i,j)∈E

wijzij (13)

subject to (49)− (50), (53)− (56), (62)− (63) (14)

replace xij with zij in (11) (15)

xij , zij ∈ {0, 1} (i, j) ∈ E (16)

4.5 Model Properties

Given two formulations F1 and F2 with the same objective function for an optimization problem,

we say that F1 dominates F2 if the feasible region of F1 is a subset of the feasible region of F2. The

strength of the linear programming (LP) relaxation is used as a performance measure in LP-based

solution methods such as branch and bound. In this section, we compare the upper bound provided

by the LP relaxations of the cycle-version models given in Sections A.1, 4.2, and 4.3.
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Lemma 2. The cycle formulation (17)-(19) dominates both the partitioned edge formulation (1)-(5)

and the partitioned and reduced edge formulation (8)-(12).

Lemma 3. The cycle formulation (17)-(19) dominates the extended edge formulation (25)-(31)

Lemma 4. No domination relationships exist among the extended edge formulation (25) - (31),

the edge formulation (20)-(24), the partitioned edge formulation (1)-(5) and the partitioned and

reduced edge formulation (8)-(12).

The same proof given with regard to the cycle and edge formulation in [1] can be used to prove

Lemma 2. The proofs for Lemmas 3 and 4 are given by Constantino et al. [9]. Although neither

the partitioned edge formulation nor the partitioned and reduced edge formulation are compared

explicitly in [9], the same reasoning applies as used in the other comparisons.

5 Solution Algorithms

All the existing and proposed formulations presented in Appendix A and the previous sections

were solved with CPLEX. However, there are some variations in the solution algorithms due to the

exponential number of cardinality constraints in some models. In this section, we provide details

about the solution algorithms for the new formulations. For the existing formulations, we refer the

reader to Appendix B.

5.1 The *PE formulation

The solution algorithm for the *PE formulation consists of two steps. First, the strongly connected

components with associated k-lenght paths are found, that is, subsets Λh for each h = 1, . . . , q are

identified. Then, the corresponding path-elimination constraints (4) are generated. The resulting

*PE model (1)-(5) is fed to the solver to obtain the optimal solution. There are several algorithms

in the literature for finding strong components and simple paths, several of which were mentioned

in Section 4.3. In this study, whenever it was necessary to find the strongly connected components

and the full set of length-k paths, we used the Kosaraju-Sharir algorithm [33] and a depth-first

search procedure, respectively.

5.2 The *PRE and *ReSPLIT formulations

After finding the cardinality constraints with Algorithm 1, the next step is to solve both the *PRE

and the *ReSPLIT models. For the former, there are as many subproblems as the number of

strongly connected components of G = (V,E), just as in the case of the *PE formulation. For the

latter, the entire instance is optimized using the length-k paths contained in Ω. Since the *ReSPLIT

formulation finds cycles and chains, it is not possible to solve each subproblem separately.

Before optimizing either model, we preprocess the graphs removing all length-k paths not leading

to a feasible cycle. In Section 4.3, we showed that some paths in a strongly connected component

may be part of a circuit and so there is no need to constraint them. Moreover, even if a path
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forms a simple cycle, it may be infeasible. If an arc belonging to a path in Ωh does not lead to a

feasible cycle, i.e., it is only part of a circuit or infeasible simple cycle, we remove the arc (this is

done for the cycle version only) and the path from Qh and Ωh, respectively. Finally, we recompute

the strongly connected components of Qh. If after doing so, we obtain new separate components,

we will have as many subproblems as the number of the new strong components instead of only

one represented by Qh. Recall from Section 4.2, that Qh, h = 1, . . . , q, are the original strongly

connected components of graph G. This increase in the number of subproblems resulting from the

decomposition is especially useful for hard-to-solve instances.

Now, we formally introduce the procedure outlined above. Let Gh = (Vh, Eh) be the subgraph

represented by Qh and let ωh be a path in Ωh. In addition, let Q
′

represent the set of new

components after removing redundant edges from Qh and let Ω
′

represent the updated set of

length-k paths after removing non-necessary paths. The procedure is shown in Algorithm 2 and

has complexity O(|V |k+1) [24]. After updating the number of subproblems and paths, we proceed

to solve both formulations.

Algorithm 2 Removing unnecessary edges and paths in subgraph Gh
Inupt: Gh = (Vh, Eh),Ωh, k ≥ 2

Output: Q
′

= set of new strong components obtained after decomposing Qh, Ω
′

= set of length-k

paths in Q
′

1: for ωh ∈ Ωh do

2: for e ∈ ωh do

3: if e /∈ Ch then

4: Ω
′ ← Ω

′ \ ωh

5: Eh ← Eh \ e
6: end if

7: end for

8: end for

9: Q
′ ← StrCC(Gh = (Vh, Eh))

10: return Ω
′
, Q

′

6 Computational Experiments

The instances used to test our new formulations were taken from Anderson et al. [4] who simulated

the National Kidney Registry (NKR) pool over a two year period from May 24, 2010 to May 24,

2012. The initial pool contained 63 patient-donor pairs while an additional 410 pairs registered

over the course of their study. The dataset also contained 75 altruistic donors. Compatibility

between donors and patients was determined primarily by blood type and human leukocyte antigen

compatibility rules, although some patient preferences were also taken into account.

To create representative snapshots of actual instances encountered by a kidney-paired donation

program they considered the fact that easy-to-match patients tend to wait only a short time before
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being selected, thus leaving the hard-to-match patients in the pool after each match run. Overall,

the graph density of these instances is low, being less than or equal to 20%. For full details, see

Anderson et al. [4] and Anderson [5].

In the remainder of this section, we discuss our computational experiments that were designed

to compare existing formulations with our new formulations with respect to runtime and solution

quality (when an optimal solution was not found). All models were either solved directly with

CPLEX 12.7 using Concert Technology or by a specialized method (as described in Appendix B)

on a PC with an Intel Core i7 processor running at 3.40 GHz, and with 8 Gb of RAM. In general,

all models were coded using C++ and a time limit of 1800 seconds was placed on all runs.

The computational analysis was performed as follows. First, 10 instances were grouped into

each trial set, sorted in non-decreasing order of the average number of PDPs for the cycle-variant

formulations and the cycle-and-chain formulations. The maximum cycle lengths considered were

k = {3, 4}, and no bound was placed on the length of chains. The original instances include NDDs

so to test the cycle-variant formulations we dropped nodes and edges associated with them. All

cycle-variant formulations were tested for all instances. For the cycle-and-chain formulations, we

first tested all instances with k = 3 and l =∞ and then took the two best performers and compared

them for k = 4 and l =∞. The objective function for all models was the weighted sum of edges.

Notation

Table 3 lists each formulation, its abbreviation, the reference, and the KEP variant. The IP

formulations in the literature that include chains and cycles, in general, do not include upper bounds

on chain lengths. Similarly, we did not consider unbounded chains. In the table the argument “i”

in *PRE(i) and *ReSPLIT(i) refers to the maximum in-degree node-selection strategy used by the

SCC-based search algorithm to find the length-k paths for each formulation. Since the maximum

out-degree and maximum degree strategies yielded a larger number of paths, we only present results

for the in-degree node-selection strategy discussed in Section 4.3.

Table 3: Notation used to reference KEP formulations

Formulation name Notation Authors KEP variant

Cycle formulation C Abraham et al. [1] and Roth et al. [31] C
Edge formulation E Abraham et al. [1] and Roth et al. [31] C
Reduced extended edge formulation rEE Constantino et al. [9] C
Partitioned edge formulation *PE This paper C
Partitioned and reduced edge formulation *PRE(i) This paper C
Anderson arc-based formulation AA Anderson et al. [4] C&C
PC-TSP-based formulation PC-TSP Anderson et al. [4] C&C
Polynomial-sized SPLIT formulation pSPLIT Mak-Hau [19] C&C
Exponential-sized SPLIT formulation eSPLIT Mak-Hau [19] C&C
Reduced Exponential-sized SPLIT formulation *ReSPLIT(i) This paper C&C

KEP variant: (C) Cycles, (C&C) Cycles and chains

When presenting the output statistics, we make use of the following notation.

• PDPsR: Range for the number of PDPs after grouping 10 instances in non-decreasing order
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of PDPs. This value is represented by an interval [b, u], written as b-u in the output tables,

where b (u) represents the smallest (largest) number of PDPs found in the specific subset.

• NDDsR: Interval for the number of NDDs after grouping the instances into sets of 10 in

non-decreasing order of PDPs. Again, this value is represented by an interval b-u, where b

(u) represents the smallest (largest) number of NDDs found in the specific subset.

• *PRE(i): Partitioned and reduced edge formulation when the node selection strategy for the

SCC-based search algorithm is the maximum in-degree.

• nf: Number of subproblems that failed to obtain a feasible solution, either because CPLEX

was unable to solve the initial LP relaxation after the time limit or because CPLEX displayed

an out-of-memory status before starting branching. Notation (s1/s2) indicates that there were

s1 and s2 instances in which no feasible solutions were found because of the former and latter

cases, respectively.

• aVars: Average number of variables in a formulation for a subset of instances.

• saVars: Relative decrease in the number of variables passing from the edge formulation to

the *PE or *PRE(i) formulations. The former is given by

1

n

n∑
j=1

nV arsE(j)− nV arsX(j)

nV arsE(j)
× 100,

where n stands for the total number of instances, e.g., n = 10, and nV arsE(j) (nV arsX(j)) is

the number of variables for instance j obtained by using the E (*PE or *PRE(i)) formulation.

• aCons: Average number of constraints for a set of instances. In the case of the AA and the

PC-TSP formulations the violated lazy constraints (see Appendix B) added throughout the

solution process are included.

• saCons: Relative decrease in the number of constraints passing from the edge formulation to

the *PE or *PRE(i) formulations. The former is given by

1

n

n∑
j=1

nConsE(j)− nConsX(j)

nConsE(j)
× 100,

where nConsE(j) (nConsX(j)) is the number of constraints for instance j obtained by using

the E (*PE or *PRE(i)) formulation.

• nSCC: Average number of strongly connected components (subproblems) in which the graphs

of each set of instances are split into their separate components

• SCCp(i): Average number of constraints for a set of instances of the *PRE(i) formulation

before preprocessing (discussed in Section 5.2), and using the maximum indegree strategy in

Algorithm 1.
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• sSCCp(i): Relative decrease in the number of constraints passing from the edge formulation

to the *PRE(i) formulation before preprocessing given by the expression

1

n

n∑
j=1

nConsE(j)− nConsPREb(j)
nConsE(j)

× 100,

where nConsPREb(j) is the number of constraints for instance j obtained by using the

*PRE(i) formulation before preprocessing.

• tc and tp: Time to find feasible cycles in order to determine the variables needed in the cycle

formulation, and the time to find length-k paths in each formulation, respectively. To search

for feasible cycles, we implemented an adaptation of Johnson’s algorithm [18].

• tsep: Average time needed to find and add all the violated lazy constraints to the AA and

PC-TSP formulations.

• tr: Average time needed to perform the preprocessing step (discussed in Section 5.2).

• time: Average runtime in seconds to reach the best feasible solution for a set of instances.

The runtime limit was set to 1800 seconds for all formulations. Note that the *PE and

PRE formulations split the original problem into independent subproblems. Thus, the times

reported for those formulations are the sum of times for all subproblems.

• opt: Number of instances solved to optimality. In all cases, the objective function is the

weighted edge sum. Whenever this column does not appear in the output tables, it is because

all instances were solved to optimality.

• gap: Average relative optimality gap associated with a formulation, defined by
(UB − LB)

LB
×100,

where UB is the upper bound provided by the linear relaxation of the formulation and LB is

either the best lower bound found or the optimal value when known. This column does not

appear when all instances were solved to optimality.

The solution algorithms for the proposed formulations are discussed in Section 5. Discussion

on how existing formulations were solved is given in Appendix B.

6.1 Assessment of cycle-variant formulations

In this subsection, results for cycle-only formulations are presented. Table 4 highlights the com-

parisons for 3-way cycles, that is, for k = 3. Each row represents average findings for a subset

of instances (as indicated in the first column). Although most instances turned out to be “easy”

for all the formulations tested, the C, rEE and *PRE(i) formulations show dominance over the E

and *PE formulations, since they were able to optimally solve all instances in less time on aver-

age. Summing the time for preprocessing, searching for paths, and then finding the solution, the

*PRE(i) formulation is comparable to the performance of the rEE formulation for most sets of
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instances. The increase in runtimes for the first and last set of instances is related to the number

of length-3 paths in some subproblems. In contrast, in any set of instances there are graphs that

can be partitioned into several subgraphs, giving an extra advantage to the *PE formulation over

the E formulation. Also note that the preprocessing procedure for the *PRE(i) formulation is not

computationally expensive. The E formulation performed fairly well, but memory ran out in two

instances in the last data set.

In Table 5 we show the results for 4-way cyclic exchanges. The dominance of the C, rEE

and *PRE(i) formulations is clear in terms of runtime and number of optimal solutions found in

comparison to the E and PE formulations. In the last set of instances, however, the *PRE(i)

formulation did not perform as well as the C and rEE formulations with respect to runtimes,

although they were still reasonable.

In Tables 6 and 7 the input size of instances is analyzed for all formulations, as well as the per-

centage reduction in the number of variables and constraints for the *PE and *PRE(i) formulations

before and after the reduction procedure given in Section 5. The first observation is that the input

size of the C formulation is the smallest for all sets of instances, which explains its outstanding

performance. The second is the huge reduction in the number of variables and constraints for the

*PE and *PRE(i) formulations. This was especially true for the latter, reaching savings of more

than 85% and 99% in the number of variables and paths, respectively. These results demonstrate

the benefits of using our approach for reducing the number of length-k paths for an edge-based

formulation when k = 3 and 4. For the instances tested, the number of paths of length k seem to

increase as k increases, and in some sets of instances as the number of PDPs increase as well.

It is worth noting, however, that the SSC-based search algorithm was particularly successful

because the compatibility graphs of the kidney exchange pool were sparse. If the graph is complete

and has n nodes, the time complexity of our algorithm is O(nk+1). For the instances tested, such

bound was significantly loose, since the number of paths of length k seem to increase linearly with

n for k = 3 (column SCCp in Table 6) and with n2 for k = 4 (column SCCp in Table 7).
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Table 4: Comparison of formulations for 3-way cyclic exchanges

PDPsR
C E rEE PE PRE(i)

tc time tp time opt gap nf tr time nSCC tp time opt gap nf nSCC tp tr time

114-216 0.02 0.03 1.57 180.86 9 0.57 0/0 0.06 0.24 1.20 0.52 180.21 9 0.01 0/0 1.30 0.05 0.04 32.38
221-236 0.03 0.03 2.59 21.34 10 0.00 0/0 0.12 0.07 1.50 0.13 1.60 10 0.00 0/0 1.50 0.04 0.02 1.01
241-285 0.03 0.03 3.23 248.35 9 0.09 0/0 0.16 0.07 1.60 0.12 5.85 10 0.00 0/0 1.60 0.04 0.02 0.12
289-317 0.05 0.03 3.95 6.87 10 0.00 0/0 0.24 0.06 1.50 0.16 0.99 10 0.00 0/0 1.90 0.06 0.02 0.13
324-343 0.05 0.03 4.85 360.37 8 0.68 0/0 0.30 0.11 1.10 1.28 183.14 9 0.00 0/0 1.20 0.07 0.02 1.25
345-348 0.04 0.02 0.56 0.35 10 0.00 0/0 0.28 0.07 1.00 0.13 0.13 10 0.00 0/0 1.00 0.05 0.02 0.07
349-368 0.08 0.02 4.15 1.81 10 0.00 0/0 0.36 0.07 1.20 0.23 0.42 10 0.00 0/0 1.20 0.06 0.02 0.07
371-474 0.29 0.05 26.41 12.66 8 0.00 0/2 0.90 0.90 1.30 5.58 200.57 9 0.03 1/0 1.30 0.20 0.07 82.29

Table 5: Comparison of formulations for 4-way cyclic exchanges

PDPsR
C E rEE PE PRE(i)

tc time tp time opt gap nf tr time nSCC tp time opt gap nf nSCC tp tr time opt gap nf

114-216 0.03 0.08 17.40 203.08 8 0.03 0/1 0.06 2.51 1.20 7.47 19.23 9 0.00 0/1 1.30 0.32 0.54 145.43 10 0.00 0/0
221-236 0.03 0.05 20.88 1.05 5 0.00 0/5 0.12 0.29 1.50 0.67 227.31 10 0.00 0/0 1.50 0.08 0.08 2.87 10 0.00 0/0
241-285 0.03 0.05 26.74 0.76 5 0.00 0/5 0.16 0.36 1.60 1.14 108.08 10 0.00 0/0 1.60 0.10 0.16 13.35 10 0.00 0/0
289-317 0.04 0.05 59.21 18.88 8 0.00 0/2 0.23 0.18 1.50 0.67 32.15 10 0.00 0/0 1.90 0.10 0.05 0.29 10 0.00 0/0
324-343 0.05 0.04 54.79 2.66 8 0.00 0/2 0.29 0.73 1.10 15.16 201.15 8 0.22 0/1 1.20 0.17 0.11 14.48 10 0.00 0/0
345-348 0.03 0.02 2.86 3.28 10 0.00 0/0 0.27 0.22 1.00 0.46 1.83 10 0.00 0/0 1.00 0.10 0.06 0.12 10 0.00 0/0
349-368 0.06 0.03 23.02 1.91 7 0.00 0/3 0.34 1.29 1.20 0.68 1.79 10 0.00 0/0 1.20 0.12 0.04 0.12 10 0.00 0/0
371-474 0.31 0.17 486.48 6.21 6 0.00 0/4 0.85 60.07 1.30 100.13 66.03 8 0.00 0/2 1.30 1.15 0.78 361.57 8 3.16 1/0

Table 6: Size of formulations for 3-way cyclic exchanges.

PDPsR
C E rEE PE PRE(i)

aVars aCons aVars aCons aVars aCons aVars aCons saVars saCons aVars aCons SCCp saVars saCons sSCCp

114-216 274.4 183.0 3,959.1 270,128.3 1,259.9 505.2 661.5 91,659.7 81.36 78.16 329.7 3,190.8 4,527.4 89.21 99.49 99.04
221-236 162.7 258.1 6,853.1 436,337.7 472.0 478.3 544.5 20,308.9 92.03 90.56 322.9 675.9 1,098.1 95.38 99.82 99.66
241-285 146.0 284.3 9,100.1 542,559.6 505.7 494.3 446.5 16,201.8 95.13 92.36 287.8 663.9 1,022.3 96.87 99.82 99.57
289-317 133.4 337.3 11,907.3 655,659.0 388.3 505.3 592.7 21,579.9 94.57 92.11 308.0 470.8 754.7 97.20 99.89 99.71
324-343 201.8 366.5 13,718.7 797,498.8 749.6 604.6 1,376.9 220,375.0 91.55 83.52 1,032.3 1,073.0 1,606.6 93.82 99.79 99.65
345-348 99.4 393.0 13,232.7 72,522.7 314.8 506.5 513.3 14,706.0 96.12 79.82 317.6 179.3 302.0 97.60 99.75 99.58
349-368 177.3 407.8 14,438.8 680,322.1 541.6 654.8 717.8 31,220.2 95.13 85.99 455.9 336.7 551.5 96.96 99.78 99.57
371-474 583.3 454.3 20,699.9 4’278,204.8 2,915.8 949.4 2,823.1 970,304.3 89.72 83.26 1,713.6 6,755.2 11,674.6 94.09 99.85 99.58
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Table 7: Size of formulations for 4-way cyclic exchanges.

PDPsR
C E rEE PE PRE(i)

aVars aCons aVars aCons aVars aCons aVars aCons saVars saCons aVars aCons SCCp saVars saCons sSCCp

114-216 2,343.8 183.0 3,959.1 2’943,510.1 6,832.3 1,476.8 661.5 1’288,998.0 81.36 80.08 544.3 45,395.8 46.392.5 85.17 99.50 99.39
221-236 688.4 258.1 6,853.1 3’493,639.8 1,614.9 793.1 544.5 11,400.5 92.03 94.68 433.4 4,169.0 4,426.6 93.74 99.92 99.90
241-285 665.6 284.3 9,100.1 4’446,489.6 1,856.1 793.5 446.5 97,454.9 95.13 93.65 370.4 4,182.1 4,515.1 95.96 99.84 99.76
289-317 557.3 337.3 11,907.3 4’531,846.7 1,604.3 820.4 592.7 105,970.4 94.57 92.62 401.6 2,210.6 2,506.5 96.41 99.91 99.87
324-343 1,055.0 366.5 13,718.7 8’457,243.3 3,753.4 1,171.5 1,376.9 2’562,561.2 91.55 85.37 987.9 8,360.5 9,375.2 93.88 99.88 99.83
345-348 279.5 393.0 13,232.7 367,287.3 1,058.6 710.9 513.3 65,936.0 96.12 82.20 409.4 465.3 698.0 96.91 99.87 99.81
349-368 467.9 407.8 14,438.8 3’650,121.7 6,815.2 3,583.8 717.8 101,708.4 95.13 89.09 520.0 626.3 999.5 96.46 99.92 99.88
371-474 6,018.8 454.3 20,699.9 71’420,196.5 18,276.9 2,192.9 2,823.1 13’400,718.5 89.72 85.95 1,750.4 121,542.4 140,506.0 93.77 99.91 99.82

22



6.2 Assessment of cycle-and-chain variant formulations

In this subsection, we evaluate the performance of the variants of the cycle-and-chain formulations.

The one exception is the eSPLIT formulation which is omitted because its cycle variant, the edge

formulation (E), exhibited the worst performance in the first set of experiments discussed in the

previous section. That is, it evidenced the largest runtimes and greatest number of failures due to

memory overload.

Table 8: Comparison of formulations for 3-way cyclic exchanges and unbounded chains

PDPsR NDDsR
AA PC-TSP pSPLIT ReSPLIT(i)

tsep time opt tsep time opt time opt gap time opt gap

114-216 3-22 1.13 550.49 7 1.18 720.21 6 369.95 8 11.73 373.4 8 11.73
221-236 22-34 3.92 900.10 5 3.01 900.26 5 900.09 5 13.47 900.11 5 13.31
241-285 6-39 4.63 964.65 5 3.57 1,210.16 4 906.06 5 11.04 906.14 5 11.38
289-317 6-39 4.46 1,081.13 4 4.57 1,084.57 4 631.63 7 21.53 656.05 7 21.53
324-343 6-46 3.16 778.65 7 3.56 1,350.3 2 219.82 9 1.30 222.06 9 1.30
345-348 46-46 5.36 1,303.48 3 3.23 1,675.25 1 110.52 10 0.00 105.31 10 0.00
349-368 39-49 2.75 547.13 7 1.99 713.16 7 219.89 9 5.60 214.65 9 5.60
371-474 47-50 1.73 362.02 8 2.34 362.61 8 368.53 8 6.60 546.23 7 7.60

Table 8 reports the results for 3-way cyclic exchanges and unbounded chains for the remain-

ing formulations. As can be seen, the KEP now becomes harder to solve. With respect to our

performance measures, the pSPLIT and the *ReSPLIT(i) formulations dominate the AA and the

PC-TSP formulations in terms of runtime and number of optimal solutions found. Except for the

last set of instances, the statistics for the pSPLIT and the *ReSPLIT(i) formulations are practically

the same.

Table 9: Comparison of instances in Anderson et al. [4] with 3-way cyclic exchanges and unbounded
chains

PDPs NDDs Edges
AA PC-TSP pSPLIT ReSPLIT(i)
time time time gap time gap

198 7 4,882 >1,800 >1,800 83.70 90.47
202 3 4,706 0.14 0.19 0.25 0.22
215 6 6,145 104.45 >1,800 12.05 12.27
261 6 8,915 547.98 >1,800 37.61 36.70
263 6 8,939 40.52 410.83 7.22 7.27
284 5 10,126 46.92 837.70 12.08 13.86
312 6 13,045 >1,800 >1,800 >1,800 25.06 >1,800 25.12
324 6 13,175 271.02 >1,800 22.74 39.47
328 6 13,711 264.59 >1,800 12.28 13.25
330 6 13,399 1,450.31 >1,800 79.02 79.94

The solution algorithm is fully described in Appendix B). Essentially, the exponential constraints

in Eq. (37) are initially dropped from the AA and PC-TSP models and only added back if they

are violated when B&B finds an integer solution. The model is then reoptimized in an iterative

fashion. Note that if after reaching the time limit, the integer solution found still violates some
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cardinality constraints, i.e., additional constraints are still needed, that solution is deemed to be

infeasible. Under this algorithm, the solutions for the AA and PC-TSP formulations are either

optimal or infeasible so the gap columns are omitted in Table 8.

Anderson et al. [4] compared the AA and the PC-TSP formulations using a lazy-constraint and

a branch-and-cut approach, respectively, on a set of “difficult” instances. Ten of those instances

are included in our eight data sets. In Table 9 we compare the results obtained in [4] with our two

cycle-and-chain variant formulations. As can be seen, the pSPLIT and the *ReSPLIT formulations,

which also use a lazy constraint approach, outperform the AA and the PC-TSP formulations. In

addition, a comparison of the results obtained from the pSPLIT and the *ReSPLIT formulations

show little difference with respect to runtimes, gaps, and number of optimal solutions found. The

AA formulation, on the other hand, is superior to the PC-TSP formulation for all instances tested,

identifying a greater number of optimal solutions in less time.

Table 10: Comparison of formulations for 4-way cyclic exchanges and unbounded chains.

PDPsR NDDsR
pSPLIT *ReSPLIT(i)

time opt gap time opt gap nf

114-216 3-22 365.24 8 4.82 365.68 8 5.20
221-236 22-34 900.07 5 10.12 900.12 5 10.10
241-285 6-39 722.61 7 7.93 18.24 7 7.90
289-317 6-39 550.87 7 8.74 562.88 7 8.74
324-343 6-46 205.47 9 0.60 231.01 9 1.10
345-348 46-46 91.51 10 0.00 81.64 10 0.00
349-368 39-49 209.51 9 2.50 205.46 9 2.50
371-474 47-50 421.53 8 5.80 720.67 6 7.30 2/0

In Table 10 we show the runtimes, gaps and number of optimal solutions reached by the pSPLIT

and *ReSPLIT formulations when k = 4 and l =∞. The performance of both formulations is again

very similar, except for the last set of instances where CPLEX could not find an integer solution

within the 1800-second time limit for two subproblems associated with one instance each under

the *ReSPLIT(i) formulation. This behavior can be explained, in part, by analyzing the statistics

in Tables 11 and 12. For both formulations, the size of the instances is roughly the same except

for the last data set where there is a sharp increase in the number of constraints for the *PRE(i)

formulation, especially when k = 4.

7 Summary and Conclusions

This paper presents three new formulations for the Kidney Exchange Problem, namely, (1) the

partitioned edge formulation (*PE), (2) the partitioned and reduced edge formulation (*PRE), and

(3) the reduced exponential-sized SPLIT formulation (*ReSPLIT), which are empirically shown to

be superior to the well-known edge formulation. An algorithm to reduce the number of paths of

length k is proposed and represents the first reported attempt to do so for an edge-based formu-

lation. Dominance proofs are provided for the cycle-variant formulations studied, and extensive
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Table 11: Size of formulations for 3-way cyclic exchanges and unbounded chains.

PDPsR NDDsR
AA PC-TSP pSPLIT *ReSPLIT(i)

aVars aCons aVars aCons aVars aCons aVars aCons

114-216 3-22 3,980.0 11,129.3 4,254.4 2,786.1 5,606.9 4,851.2 4,739.8 7,643.8
221-236 22-34 6,884.4 8,761.3 7,047.1 2,177.4 7,873.6 7,878.9 7,725.6 8,174.9
241-285 6-39 9,136.5 11,949.5 9,282.5 4,545.2 10,211.8 10,199.4 9,995.8 10,486.9
289-317 6-39 11,975.9 11,906.8 12,109.3 3,936.6 13,039.8 13,155.8 12,962.0 13,191.2
324-343 6-46 13,746.8 17,452.9 14,220.4 5,799.4 15,230.4 15,084.4 15,515.0 15,772.5
345-348 46-46 13,232.8 25,149.1 13,332.2 7,702.4 14,334.6 14,525.3 14,337.4 14,497.6
349-368 39-49 14,564.2 6,622.0 14,741.5 3,638.7 15,922.4 16,034.6 15,846.6 15,970.2
371-474 47-50 20,747.9 3,346.6 21,331.2 1,678.9 24,573.3 22,605.9 23,374.9 28,559.5

Table 12: Size of formulations for 4-way cyclic exchanges and unbounded chains.

PDPsR NDDsR
pSPLIT *ReSPLIT(i)

aVars aCons aVars aCons

114-216 3-22 11,179.3 5,822.8 4,891.3 49,842.9
221-236 22-34 9,016.5 8,193.7 7,835.1 11,544.7
241-285 6-39 11,562.2 10,498.6 10,076.7 13,735.8
289-317 6-39 14,255.8 13,470.9 13,053.4 14,199.2
324-343 6-46 18,234.2 15,651.3 15,468.8 22,880.8
345-348 46-46 15,078.4 14,729.7 14,429.2 14,781.9
349-368 39-49 22,196.0 18,963.6 15,902.1 16,208.7
371-474 47-50 39,934.4 23,849.4 23,408.0 142,726.6

computational tests are performed to compare the solution quality, runtimes, and related statistics

obtained for the existing and new formulations.

Regarding the cycle-variant formulations, computational results confirm that the cycle formu-

lation (C) is very effective for low-density graphs, outperforming the other cycle-variants we tested.

In contrast, the standard edge formulation is shown to be relatively ineffective for solving any in-

stances and gets substantially worse as k increases. The partitioned edge formulation outperforms

the edge formulation, but only when the graphs are not a unique strongly connected component.

The *PRE(i) formulation uses a new set of constraints and a small subset of the full set of

length-k paths that are included in the edge formulation. The reduction in the number of such

paths is greater than 98% for all instances tested. The performance of the *PRE(i) is very similar to

that of the extended edge formulation considering the reduction presented in Appendix B, although

the latter does better on the largest size instances as well as when k = 4.

With respect to the cycle-and-chain formulations, the extensions of the exponential-sized SPLIT

formulation (*ReSPLIT) outperformed Anderson’s arc-based formulation and the PC-TSP formula-

tion on all instances tested. In particular, when tested on the “difficult” instance set from Anderson

et al. [4], the proposed model (*ReSPLIT) provided the best results when compared to the AA and

PC-models solved by a lazy-constraint algorithm.

The most successful computational work for the KEP has been performed within a branch-and-

price framework since the edge formulations with an exponential number of constraints have proven
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unsolvable with commercial software even for small instances. As indicated in the literature review

section, there are two types of KEP models: those based on an exponential number of variables

and those based on an exponential number of constraints. For the former, column generation and

branch-and-pric approaches have been developed with a certain degree of success. For the latter,

existing models have again proven unsolvable with commercial software even for relatively small

instances.

The only constraint-generation approach [4] known to date remains competitive only when the

cycle length is 3 and the chain length is unbounded. Therefore, an interesting avenue of research

would involve the use of polyhedral theory to develop branch-and-cut algorithms for the partitioned

and reduced edge formulation. In this study, we proposed a heuristic to reduce the exponential

number of path elimination constraints while ensuring optimality. However, only “static” strategies

were considered when selecting the node. A deeper examination of the problem structure might

lead to more tailored strategies and strong valid inequalities that would improve the upper bound

provided by the LP relaxation.

The complexity and size of real instances in many countries are still manageable by the most

efficient methods reported in the literature. In the long run, though, if a trade-off exists between

losing optimality and achieving a greater number of transplants, heuristics may become the norm

for the KEP.
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Appendix A

In this appendix, we present the seven most relevant models in the literature that were used in this

work for comparison purposes. The formulations given in Sections A.1.2 and A.2.4) provided the

basis for the new models that were introduced in Section 4.

A.1 Cycle-variant formulations

A.1.1 The Cycle Formulation [1, 31]

Let Ck be the set of all cycles in G with length at most k and let V (c) be the set of vertices that

belong to cycle c ∈ Ck. Define a variable zc for each cycle c ∈ Ck.

zc =

{
1 if cycle c is selected for an exchange

0 otherwise

Define wc =
∑

(i,j)∈cwij . The cycle formulation (denoted by C) can be written as follows.
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Maximize
∑
c∈Ck

wczc (17)

subject to
∑

c:i∈V (c)

zc ≤ 1 i ∈ V (18)

zc ∈ {0, 1} c ∈ Ck (19)

The objective function (17) maximizes the weighted number of transplants. In the case of

unitary weights, wc equals the number of edges in c, i.e., the number of transplants associated with

cycle c. Constraints (18) ensure that every vertex is in at most one of the selected cycles since each

donor may donate and each patient may receive only one kidney.

A.1.2 Edge Formulation [1, 31]

Let Π be the set of all length-k paths in a graph formed by k + 1 nodes or k edges. In the edge

formulation (E), a variable xij is associated with each directed edge (i, j) ∈ E in the graph (V,E)

and is defined as follows.

xij =

{
1 if donor in pair i is compatible with patient in pair j

0 otherwise

The corresponding model takes the following form.

Maximize
∑

(i,j)∈E

wijxij (20)

subject to
∑

j:(i,j)∈E

xij =
∑

j:(j,i)∈E

xji i ∈ V (21)

∑
j:(i,j)∈E

xij ≤ 1 i ∈ V (22)

∑
1≤p≤k

xipip+1 ≤ k − 1 (i1, ..., ik, ik+1) ∈ Π (23)

xij ∈ {0, 1} (i, j) ∈ E (24)

The objective function (20) maximizes the weighted sum of matches. Constraints (21) guarantee

that donor i provides a kidney if and only if patient i receives one in return. Constraints (22) ensure

that a person can only donate a single kidney, and constraints (23) enforce the length of any cycle

to be less than or equal to k. Any feasible cycle will always contain a path with at most k−1 edges

(no repeating edges). Therefore, if we preclude all length-k paths from being part of a cycle, cycles

of length k + 1 or greater are excluded from a feasible solution.
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Prior to our work, no constraint reductions had been proposed so in previous implementations

all paths of length k are explicitly included in the model (see [1, 9, 19, 31]).

A.1.3 Extended Edge Formulation [9]

Let G = (V,E) be cloned into |V | copies, and let L = {1, . . . , |V |}. Note that L is an upper bound

on the number of cycles in a solution. In each copy ` at most k edges produce a cycle and each

node i ∈ V can belong to at most one cycle. This is enforced by adding cardinality constraints for

every copy. The model uses the following variables

x`ij =

{
1 if arc (i, j) is used in copy ` of the graph

0 otherwise

for the extended edge formulation (EE) given below.

Maximize
∑
`∈L

∑
(i,j)∈E

wijx
`
ij (25)

subject to
∑

j∈P :(i,j)∈E

x`ij =
∑

j∈P :(j,i)∈E

x`ji i ∈ V, ` ∈ L (26)

∑
`∈L

∑
j:(i,j)∈E

x`ij ≤ 1 i ∈ V (27)

∑
(i,j)∈E

x`ij ≤ k ` ∈ L (28)

∑
j:(i,j)∈E

x`ij ≤
∑

j:(i,j)∈E

x``j i > `, ` ∈ L (29)

∑
j:(i,j)∈E

x`ij = 0 i < `, ` ∈ L (30)

x`ij ∈ {0, 1} (i, j) ∈ E, ` ∈ L (31)

The objective function (25) similarly maximizes the weighted number of transplants. Con-

straints (26) ensure flow balance at each vertex, i.e., a paired donor will give a kidney to another

patient in the pool if and only if the patient in the first pair receives one in return. Constraints

(27) ensure that no more than one kidney transplant is involved for each PDP. Constraints (28)

guarantee that the cardinality of each cycle and copy is less than or equal to k. The extended edge

formulation has symmetry. Constraints (29) and (30) preclude multiplicity of solutions in the IP

model induced by a permutation of cycle indices. Symmetry elimination is achieved by restricting

the index of a cycle to be exactly the smallest numbered node, i.e., the smallest index among all

nodes included in the cycle.

A reduction of model (25) – (31) was also proposed by Constantino et al. [9]. For each copy,

the reduction was based on finding both the shortest path from the smallest index node to each of
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the other nodes and the shortest path in the reverse direction. A second step involved removing

nodes for which the sum of edges in both paths was greater than k. In such cases, no feasible cycles

exist. The reduced formulation is called the reduced extended edge formulation (rEE), for which

we show results in Section 6.

A.2 Cycle-and-chain Variant Formulations

In this subsection, we present some existing formulations of the KEP with non-directed donors.

A.2.1 The Arc-Based Formulation [4]

Continuing with the notation used in Section A.1.1, let C be the set of all cycles in G and let Ck

be the set of all cycles in G with length at most k. In addition, define fei and foi to be the flow

entering node i and the flow leaving node i, respectively. The flow variable xij is associated with

directed edge (i, j) ∈ E and is defined as follows.

xij =

{
1 if the patient in pair j receives a kidney from the donor in pair i

0 otherwise

In the model, this variable is used in the representation of both chains and cycles. The arc-based

formulation (AA), developed by Anderson et al. [4], is given by

Maximize
∑

(i,j)∈E

wijxij (32)

subject to
∑

(j,i)∈E

xji = fei i ∈ V (33)

∑
(i,j)∈E

xij = foi i ∈ V (34)

foi ≤ fei ≤ 1 i ∈ P (35)

foi ≤ 1 i ∈ N (36)∑
(i,j)∈c

xij ≤ |c| − 1 c ∈ C \ Ck (37)

xij ∈ {0, 1} (i, j) ∈ E (38)

Constraints (33) and (34) define the net flow entering and leaving node i, respectively. Con-

straints (35) say that PDP nodes may contribute a kidney as long as they have received one.

Constraints (36) limit NDD nodes to donating at most one kidney. Constraints (37) rule out cycles

of length greater than k. Because chains are considered unbounded, no related constraints are

needed.
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A.2.2 The PC-TSP-Based Formulation [4]

This model is motivated by an IP formulation of the so-called prize-collecting traveling salesman

problem (PC-TSP). Let S be a set of nodes, S ⊂ V , and let S̄ = V \ S. For each i ∈ V , let Ck(i)

be the set of cycles in Ck containing an edge incident to i. For this formulation, Anderson et al.

[4] split chain and cycle variables such that zc is a variable for every feasible cycle c and xij is a

variable for edges in unbounded chains; that is:

zc =

{
1 if the donor-patient pairs in cycle c are selected for an exchange

0 otherwise

xij =

{
1 if edge (i, j) is used in a chain

0 otherwise

The PC-TSP-based formulation is given below.

Maximize
∑

(i,j)∈E

wijxij +
∑
c∈Ck

wczc (39)

subject to
∑

(j,i)∈E

xji = fei i ∈ V (40)

∑
(i,j)∈E

xij = foi i ∈ V (41)

fov +
∑

c∈Ck(i)

zc ≤ fei +
∑

c∈Ck(i)

zc ≤ 1 i ∈ P (42)

foi ≤ 1 i ∈ N (43)∑
(j,m):j∈S̄,m∈S

xjm ≥ fei S ⊆ P, i ∈ S (44)

xij ∈ {0, 1} (i, j) ∈ E (45)

zc ∈ {0, 1} c ∈ Ck (46)

The objective function (39) maximizes the weighted sum of cycles and chains. The weights wij

and wc are input parameters. Constraints (40) and (41) keep track of flow into and out of each node

i ∈ V , respectively. Constraints (42) ensure that every patient-donor pair, if part of the solution,

must belong to either a cycle or a chain, and that the flow leaving any node i is at most equal to

the flow entering that node. Constraints (44) require that if a node i is to be included in any chain,

there must exist a flow entering S triggered by a NDD node. Note that if node i is part of some

solution, then fei = 1. If, additionally, we cut the graph such that only PDPs are in S, in order for

that solution to be a chain, there must exist flow going from S̄ to S for any cut set.
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A.2.3 The Polynomial-Sized SPLIT Formulation [19]

This model augments the extended edge formulation to allow for chains. To this end, an auxiliary

sink node τ is introduced to facilitate the implementation of subtour elimination constraints. In

particular the authors use the MTZ-constraints, which are often included in asymmetric TSP

formulations. The auxiliary node introduces some changes in our notation. Let E
′

= {(i, j) | i ∈
V, j ∈ P τ} where P τ = P ∪ {τ} and let G

′
as G

′
= (V ∪ {τ}, E′

).

The model has three types of variables: one set of continuous variables ti to set a time stamp

for node i should it be part of a chain, and two sets of decision variables defined as follows.

z`ij =

{
1 if arc (i, j) forms part of the `-th cycle

0 otherwise

xij =

{
1 if arc (i, j) forms part of a chain

0 otherwise

The polynomial-sized SPLIT formulation (pSPLIT) takes the form of a mixed-integer linear pro-

gram.

Maximize
∑

(i,j)∈E′

wijxij +
∑
l∈L

∑
(i,j)∈E

z`ijwij (47)

subject to
∑

j∈P :(i,j)∈E

z`ij =
∑

j∈P :(j,i)∈E

z`ji i ∈ P, ` ∈ L (48)

∑
j∈P τ :(i,j)∈E′

xij =
∑

j∈V :(j,i)∈E′

xji i ∈ P (49)

∑
j∈P τ :(i,j)∈E′

xij ≤ 1 i ∈ N (50)

∑
j∈P τ :(i,j)∈E′

xij ≤ 1−
∑
l∈L

∑
j∈P :(i,j)∈E

z`ij i ∈ P (51)

(28)− (30) in which x`ij is replaced with z`ij (52)

|P |+ 1 ≥ ti − tj + |P |xji + (|P |+ 2)xij i ∈ V, j ∈ P τ (53)

ti = 0 i ∈ N (54)

ti ≥ 0 i ∈ P τ (55)

tτ ≤ |P |+ 1 i ∈ P τ (56)

xij ∈ {0, 1} (i, j) ∈ E′
(57)

z`ij ∈ {0, 1} (i, j) ∈ E, ` ∈ L (58)

Constraints (48) and (49) ensure flow balance. The flow into node i must equal the flow out for

edges that belong to either a cycle or a chain; the flow out is at most one as assured by constraints

(50) and (51). Recall that τ is a sink node that can be reached by every node, thus guaranteeing
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that these constraints can be satisfied by chain variables as well. Again, constraints (50) say that

an NDD can donate at most a single kidney. Constraints (51) assure patient-donor pairs to be part

of either a chain or a cycle. Constraints (52) are borrowed from the extended edge formulation to

limit cycle lengths and to avoid symmetry issues. The MTZ constraints (53) prevent chain-edge

variables from creating cycles. Constraints (54) – (56) put bounds on the continuous variables.

A.2.4 The Exponential-Sized SPLIT Formulation [19]

Unlike the previous model, this one simply uses a binary variable zij for each (i, j) ∈ E to indicate

whether or not (i, j) is included in a cycle. In addition, the MTZ-constraints are replaced by a

stronger version of cardinality-infeasible-cycle elimination constraints; in particular, the length-k

path constraints as in (23).

The exponential-sized SPLIT formulation (eSPLIT) is given by

Maximize
∑

(i,j)∈E′

wijxij +
∑

(i,j)∈E

wijzij (59)

subject to (49)− (50), (53)− (56) (60)

(23) replacing xij by zij (61)∑
j∈P τ :(ij)∈E′

xij ≤ 1−
∑

j∈P :(i,j)∈E

zij i ∈ P (62)

∑
j∈P :(i,j)∈E

zij =
∑

j∈P :(j,i)∈E

zji i ∈ P (63)

xij , zij ∈ {0, 1} (i, j) ∈ E (64)

Constraints (60) and (61) transfer from the polynomial-sized SPLIT formulation and the edge

formulation, respectively. Constraints (62) limit each node to belong to either a cycle or a chain

while ensuring that the flow out of any node is at most one. Constraints (63) say that for each

PDP node i, flow in must equal the flow out.

Appendix B

In this appendix, we present a reduced EE formulation and a lazy-constrained procedure for the

AA and PC-TSP formulations.

Reduced EE formulation

In Constantino et al. [9], a reduced model was proposed and tested for the extended edge formula-

tion. Note that in the `th copy of the graph, if there is no cycle of size at most k containing both

node ` and node i, with i ≥ `, then node i and its adjacent edges can be removed from the model.

Note that the node with index ` is included in the `-th graph as explained above. Let G` = (V `, E`)
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be the `th copy of the graph and let di,j be the distance of the shortest path on G` from node i to

node j. The stay-in nodes and edges are:

V ` = {i ∈ V | i ≥ `, d``,i + d`i,` ≤ k}

E` = {(i, j) ∈ E | i, j ∈ V `, d``,i + 1 + d`j,` ≤ k}

After performing this reduction, we called CPLEX to find solutions.

Lazy-constraint procedure for the AA and the PC-TSP formulations

In many combinatorial optimization problems there are models with an exponential set of con-

straints that may yield a stronger LP relaxation when compared to the LP relaxation of the original

IP formulation that does not include them. For realistic size instances, such “difficult” constraints

cannot be explicitly written out and fed to an MILP solver, as is the case for Anderson’s arc-based

and PC-TSP-based formulations. As an alternative, it is possible to start with a relaxation obtained

by dropping the difficult constraints and then adding them back when they are violated.

To implement this idea, Anderson et al. [4] proposed an iterative procedure that uses branch

and bound and a lazy constraint generation scheme for the arc-based formulation and, a branch-

and-cut approach for the PC-TSP-based formulation. In this work we implemented our version of

that lazy constraint generation scheme within CPLEX to solve the above mentioned formulations;

for the remaining formulations, CPLEX was called directly.

In particular, by relaxing constraints (37) and (44), we obtain problem instances that can be

solved with a standard commercial optimizer. Integer solutions to this relaxation are checked for

cycles of length greater greater than k. We implemented a lazy-constraint callback in CPLEX 12.7

that solves the separation problem only for integer solutions. This involved recursively traversing

the solution and checking whether all the cycles were feasible. We then added as many violated

constraints as the number of infeasible cycles found and repeated the process.

When no more violations can be found the algorithm terminates and returns the optimal solu-

tion. This is true because the separation problem is solved exactly.

As an illustration, let k = 3 and consider the graph in Figure 7 which was obtained by solving

Anderson’s arc-based formulation without constraints 37. Applying the separation algorithm we

discover cycle 3→ 4→ 5→ 6→ 3, which is then eliminated by adding the constraint below to the

IP model and re-solving.

x34 + x45 + x56 + x63 ≤ 3

To prevent chain variables from forming cycles, we add the following constraints to the PC-TSP

formulation and re-solve.
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Figure 7: Example of cut set constraints for the PC-TSP model

y23 + y24 ≥ y63

y23 + y24 ≥ y34

y23 + y24 ≥ y45

y23 + y24 ≥ y56
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