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Abstract

This paper studies a districting problem arising in the recollection of waste of electrical and
electronic equipment (WEEE). Given a set of recollection bins, where users return end-of-life elec-
tronic goods, located across a region or country, the design problem consists of assigning these bins
to the companies who will be responsible for the recollection at a later stage. This assignment must
meet certain planning and legal requirements such as a fair household distribution according to
the market share of each company and a fair assignment based on the bin’s infrastructure quality.
According the the current WEEE II Directive, this assignment must be done in a such a way so
as to avoid, to the best possible extent, regional monopolies. This is achieved by maximizing a
dispersion function. A tabu search metaheuristic with advanced feature of strategic oscillation is
proposed for this NP-hard combinatorial optimization problem. In addition, a few upper bounding
schemes are developed and tested. The empirical work shows the effectiveness of the tabu search

and each of its components over a wide set of instances from the literature.

Keywords: Combinatorial optimization; Districting; WEEE Recollection; Metaheuristics; Tabu

search; Strategic oscillation.



1 Introduction

The production of electrical and electronic equipment is one of the markets of larger growth at
world-wide level. This entails that the number of equipment of this type that falls in disuse will
continue growing during the next decades. Rough estimates indicate that in the European Union
the amount of waste of electrical and electronic equipment (WEEE) will increase from 3% to 5%
per year.

Since 2003, given the WEEE directive, in the FEuropean Union recycling of electric home ap-
pliances is mandatory. Originally, the management of waste of electric and electronic equipment
was regulated by the WEEE Directive (Directive 2002/96/EC). In August 2012, the European
Union issued a revision of the WEEE Directive (Directive 2012/19/EU or, simply, the WEEE II
Directive.) Within this scheme of recycling, a diversity of problems that can be tackled by means
of operational research techniques has arisen; in particular this paper focuses in the design of the
recollection territories that will be assigned to each company. The European law establishes that
the original equipment manufacturers are responsible for WEEE recollection in a percentage that
is proportional to the volume of its sales in the market. The authorities have established harvesting
points where the users deposit the electric home appliances at the end of their useful life. The
problem at hand consists of finding the best possible way to group the harvesting points. Each
group, also called a territory, is in particular associated to a 3PL company that will be responsible
for the recycling of the equipment there collected.

As well, each point of harvesting has associated a certain number of potential users and a quality
level of infrastructure that can be good, mediocre or bad. In order to realize a right distribution
of the collecting points, it is important that the defined territories approximately contain the same
number of inhabitants and the same number of harvesting points of each quality level, that is to
say, it is desirable to obtain territories balanced with respect to these criteria.

Another important characteristic of the problem is the need for classifying the disposed equip-
ment into two different categories. The high toxicity of the freezing agents present in some electric
home appliances forces them to be transported separately; this entails a subdivision of the equip-
ment in each collection point. The assignment of a harvesting point to a territory is independent for
each category, so that, it may be the case that a collection point is assigned to different territories
for each category. Nevertheless, for reasons of efficiency the number of these cases is allowed only
to certain limits.

In some countries such as Germany and Spain the normative is applied in a way to prevent
monopolistic practices, this characteristic has motivated the use of a mathematical model that seeks
to maximize a dispersion measurement. Therefore, the problem consists of creating territories that
fulfill the different criteria of planning, and such that they are as disperse as possible.

Territorial design is already one of the classic problems within the field of operations research
that, although widely studied for more than thirty years, has not been exhausted due to its ver-
satility and capacity of adaptation to a rich variety of real situations. The nature of the problem

just described locates it within the area of territorial design, but at the same time it displays char-



acteristics that make it relevant. The desire to obtain territories balanced with respect to diverse
planning criteria turns it into a non-trivial problem. On the other hand, the need to maximize a
dispersion measurement, gives it a special place as a unique problem within the field of territory
design.

It is important to note that, in the review of specialized literature, except for the work carried
out by Ferndndez et al. [4], there are no articles that approach a problem of maximum dispersion
for territory design. This emphasizes the scientific contribution of this research. It is important to
mention that the motivation of the work developed here, is indeed the investigation of these authors.
In that work, the authors propose a constructive heuristic based on GRASP which contains a simple
local search phase. The idea is to contribute with a more sophisticated local search.

In this paper we present a Tabu Search (TS) metaheuristic for this combinatorial optimization
problem. The TS is further enhanced by a strategic oscillation component. Several neighborhoods
and search strategies are developed as well. In addition, we implement an upper bounding scheme
based on different relaxation strategies. Our experimental work fully assesses all different strategies
and components of the proposed TS. The trade-offs between the different local search strategies are
exposed. It was also observed the positive impact that strategic oscillation implementation has over
all instances tested in terms of solution quality and number of proven optimal solutions found. The
results indicated the overall efficiency of the algorithm, including significant improvements over the
best solutions reported by a previously presented heuristic based on GRASP.

The rest of the paper is organized as follows. The problem is described in Section 2, including a
combinatorial optimization formulation. Relevant work on this area is surveyed in Section 3. The
proposed TS metaheuristic is fully described in Section 4. Section 5 presents the empirical work,
assessing each of the algorithmic strategies and components. We wrap up in Section 6 with closing

remarks and conclusions.

2 Problem Description

This problem was formally introduced by Ferndndez et al. [4]. In that work, the problem and
modeling assumptions are fairly well described and motivated. In this work, we provide a summary
of the main assumptions and planning requirements and present a combinatorial optimization model
that will be used in the proposed solution procedure.

Let V = {1,...,n} be the set of basic units (BUs). In this case, a BU corresponds to a
recollection point. Let w; be the number of households of basic unit i € V and W =}, w; the
sum of all households. Each BU is further classified according to the quality of its infrastructure.
Denote by Vi, Vs, and V3 the set of BUs of good, medium, and low quality, respectively. We use
g € Q ={1,2,3} as an index for the respective quality sets and denote ¢; € @ the quality logistics
index of basic unit 7. Under this definition, it is clear that V;, = {i € V' : ¢; = ¢}, for ¢ € Q.
White goods are further subdivided into devices that have freezing capabilities and those that do
not (denoted as products of type 1 and type 2, respectively). This distinction is due to the toxic

cooling solvents contained in the former products that require a special treatment. Let d;; be the



distance between BUs i and j, i,j € V. We denote by C = {1,...,m} the set of corporations and
M ,f the market share of corporation k € C' for product p = 1,2. As the market shares may differ
for the two product types, it is allowed to split basic areas, i.e., for some basic areas the corporation
that collects products of type 1 may not be the same as the one that is responsible for the type
2 products. A BU whose company assignemnt is different for both product types is called a split
unit.

A solution is represented by a collection X = { X }reco with X C V. X}, represents the subset
of basic areas that define the territory of corporation k£ and X = X ,1 U X,f, where X,f denotes
the subset of basic areas assigned to k for product p = 1,2. If basic area i € V is non-split we
have i € X,% N X,f, for some k; otherwise, there exist ki, ko, k1 # ko, with ¢ € X,%l N X%Q. When
no splitting is allowed, we have X = X,i = X,%, for all k£ € C, so that X = {Xj}reo defines a
partition of V.

The following planning requirements are sought:

e For each type of product p € P, a BUs must be asigned to a company, that is for each product

p the assignment forms a p-partition of V.
e The numbre of split units is bounded by a user-specfied parameter o.

e The total number of households should be fairly assigned to companies based on their market

share for each product type.

e The number of recollection points of a specific quality index should be fairly assigned to

companies based on their market share for each product type.

What makes the problem different and interesting is that the plan must also satisfy the WEEE
Directive that establishes that regional monopolies must be avoided, that is, units allocated in
smaller subregions should be assigned to different companies. As shown by Fernéndez et al. [4],
this is accomplished by maximizing a dispersion measure (described below). This contrasts with
previous work on territory design and districting where usually territory compactness is desired,
that is, a dispersion measure is minimized.

Under the above assumptions, we present the following combinatorial optimization model ver-
sion of the MILP model introduced by Fernandez et al. [4]. This is called the Mazimun Dispersion
Territory Design Problem (MDTDP).

Sets
V ={1,...,n} Basic Units (BUs)

C=1{1,...,m} Territories
P={12} Product types
Q=1{1,2,3} Quality index (1=good, 2=medium, 3=low)

Vi Set of BUs with quality g € Q; V =VIuVv2u V3



Parameters

d;; Euclidean Distance between BUs ¢ and j; ¢,5 € V

w; Number of households in BU ;¢ € V

S, Market share of territoy k for product p; k€ C, pe P

7 Tolerance parameter with respect the number of households balance; 7 € (0, 1)
B Tolerance parameter respect to BU quality; 5 € (0,1)

o Maximum number of split BUs allowed

Computed Parameters

w(V) (= Z w;) Number of households in V C V
i€V
W (= w(V)) Total of households in V/

(V) (=|V NnVi|) Cardinality of V for quality index ¢; V C V, ¢ € Q

Decision Sets

X,f Set of BUs assigned to territory k for product p; k € C, p € P

X (= U X,f) Set of UBs assigned to territory k for at least one product; k € C
peEP

XP  (={X?,..., XB}) m-partitions of V for product p; p € P
XspPlit Set of split BUs, i € X®Plit « 3y, ky € C, ky # ko, such that i € X,il Ni € X,?Q
IT Set of all possible m-partition of the form X = (X!, X?) for V

MDTDP Model
Find |P| m-partitions of the form X = (X!, X?) € II, such that X optimize the model:



T 1
et sy, ) .

subject to: %w(X,f) <(1+71)SY keC,peP (2)
%w(X,f) > (1—7)S? keCpeP (3)

V1q|c<I(X,f) < (1+B8)S? GeQkeCpeP (4)

‘}ﬂcq(X;f) > (1-5)Sy qeQ,keCpeP (5)

| X <o (6)

As stated before and shown in [4], the objective function (1) that seeks to maximize territory
dispersion is compatible with avoiding regional monopolies. Constraints (2)-(3) assure that the
number of households is fairly distributed to companies based on their market share. Due to the
discrete nature of the problem, it is practically impossible to obtain a perfect balance. Therefore,
this balance is achieved by introducing a tolerance parameter 7 € (0, 1) that measures the deviation
from a perfect measure given by WS%. Similarly, constraints (4)-(5) assure that the good, medium
and low quality BUs are fairly allocated to companies based on their market share too. To this end,
a user-specified tolerance parameter 3 € (0, 1) is introduced for achieving this balance. These two
set of balancing constraints are referred to as the household and infrastructure quality balancing
constraints. Note that tolerance values of 7 = 3 = 0 corresponds to a perfect blance. Finally,
constraints (6) sets a limit on the number of split BUs allowed. In practice this is around 20 % of
the total number of BUs.

Computational complezity: The MDTDP is NP-hard [4]. By making C = {1,2},0 = 0,57 =
0.5,7 = 0,8 = 1, and d;; = 1, the Set Partiononiing Problem is polinomially reducible to the
MDTDP. The state of the art says that tractable instances of this problem, that is, instances that
can be solved exactly, have in the order of 20-30 BUS and 3-4 companies. Our target instances
have 100-300 BUs and 3-7 companies.

We now provide an example to illustrate a typical solution or design for the MDTDP.
Ezample: Figure 1 shows a graphical representation of a solution to MDTDP, where the left-
and right-half of each BU represents the assignment of product type 1 and 2, respectively. For
instance, we can see that BU 2 has been assigned to company/territory 3 and 1 for products 1 and
2, respectively. BUs 4, 8, and 9 are split too, that is, XPit = {2 4,8 9}. The solution sets are
given by: for product 1, X{ = {5,7,9}, X2 = {3,4,8,10}, and X3 = {1,2,6}; and for product 2,
X2 ={2,4,5,7}, X3 = {3,10}, and X3 = {1,6,8,9}. From the company perspective, we have:



‘ Company 1
‘ Company 2

’ ” ‘ ‘ Company 3
‘ 10

Figure 1: Graphical representation of a feasible solution to an MDTDP instance with 10 BUs, 3
territories, and 2 products.

4

X, ={2,4,5,7,9}, Xo = {3,4,8,10}, and X3 = {1,2,6,8,9}

3 Related Work

As far as general districting and territory design problems are concerned, we refer the reader to
the excellent surveys by Duque, Ramos, and Surinach [2], Kalcsics [11], and Ricca, Scozzari, and
Simeone [16]. In this section we review relevant works on WEEE recollection, and OR-related
studies.

Although there are several articles referring to WEEE collection, most of them are of a qual-
itative nature. Walther and Spengler [20], for example conduct an analysis aiming at predicting
what might be the impacts of new legal and economic developments on the treatment of discarded
electronic products. Some articles center on technological issues. He et al. [9] review the implemen-
tation of strategies of WEEE treatment and the recovery technologies of WEEE in China, focusing
on the attenuation of deteriorating effects of WEEE on the environment and the recovery of materi-
als that can be reused in them. On the managerial aspects, Georgiadis and Besiou [5] provide some
insight to the management of Closed Loop Supply Chains in order to attain either environmental
and economical sustainability. Tsai and Hung [19] propose a two-stage multi-objective decision
system, the first one involves the treatment of the collected material, in which a set of suppliers is
selected, the second phase refers to recycling the recovered material. A study examining the two
Swiss take-back and recycling systems one for computers, consumer electronics and telecommuni-
cation equipment, and one for household appliances in order to assess the environmental impact
of recycling is presented by Hischier, Wager, and Gauglhofer [10]. Their approach is based on
material flow analysis and life cycle assessment, they conclude that WEEE recycling proves to

be clearly advantageous from an environmental perspective when compared to incineration of all



WEEE and primary production of the raw materials Rudareanu [17] explores the relationships
among the agents that constitute waste management systems, the potential adverse health and
environmental consequences of incorrect handling and treatment of WEEE, and the logistics of
setting up and running a national WEEE management system. He discusses how his study impacts
the development of the WEEE management system in Spain, the benefits of EEE to the society,
and the potential effects of WEEE on health and environment. In a follow-up work, Rudéreanu [18]
present a study on how the regulation of the WEEE II Directive impacts the WEEE management
system in Romania.

There have been some technical papers from the OR perspective, Hammond and Beullens [8]
model a network consisting of manufacturers and consumer markets engaged in a Cournot pricing
game with perfect information, trying to attain equilibrium on volumes shipped and prices charged.
Queiruga et al. [15] present a methodology based on PROMETHEE, an outranking method devel-
oped to solve problems of decision making under several objectives. The purpose of the decision
is to select the most appropriate sites to locate WEEE recycling plants, and this methodology is
applied to the case of locating recycling plants in Spain.

Mar-Ortiz, Adenso-Diaz, and Gonzélez-Velarde [13] present a case study based on the design of
a network for WEEE collection in the northern autonomic community of Galicia, Spain, although
it is a case study they present methodological aspects of the design of reverse logistic networks
including the vehicle routing problems that arise when such networks are configurated. In a second
paper Mar-Ortiz, Gonzélez-Velarde, and Adenso-Diaz [14] expand the afore mentioned VRP and
introduce a new problem: vehicle routing with split loads and date windows, a characteristic that
seems to be typical in reverse logistics problems. Lee and Shih [12] present a study that attempts
to optimize end-of-life processes for electronic products based on a three-stage heuristic approach,
which simultaneously minimizes cost and environmental impact. The proposed heuristic approach
then assesses the most common disassembly and recycling processes by using the characteristics
of electronic product recycling. Next, the best process for this bi-criteria optimization problem is
identified by using the compromise programming method.

Ferndndez et al. [4] present a territory design where the territories should be as dispersed as
possible, since each will be assigned to a logistics provider, and monopolies in the service are to
be avoided. This seems to be the first and only article, to the best of our knowledge, in territory

design motivated by the WEEE European directive. Our work is a follow-up of this work.

4 Proposed Tabu Search with Strategic Oscillation

Tabu search [7] is an iterative local search-based metaheuristic most commonly used in combina-
torial optimization. Since its early inception Tabu Search (TS) has been successfully applied to
a number of very hard combinatorial optimization problems in many fields, including districting
problems [1]. Starting from an initial solution X°, TS moves at each iteration ¢ from a solution
X! to the best solution in its neighborhood N(X®~!), even if this causes a deterioration in the

value of the objective function. To prevent cycling, some solutions possessing particular attributes



are declared forbiden, or tabu for a given number of iterations. This number of iterations is refereed
to as tabu tenure. The search stops whenever a stopping criterion is satisfied. The method can be
improved through the incorporation of several features, some of which exploit the mathematical
structure of the specific problem. We now describe in detail each component of the proposed TS
for the MDTDP.

4.1 Neighborhoods and search strategies

The following three moves give rise to three different neigborhood structures.

e moveas (i, k): Reassign BU i from its current territory (denoted by k(i)) to a different territory
k, with k # k(7), for all the products.

e moveas(i, k,p): Reassign BU i from its current territory for product p (denoted by k(i,p))
to a different territory k, with k(i,p) # k.

e movep(i,j,p): Swap BUs i and j for product p, that is assign BU i for product p to territory
k(j,p) and assign BU j for product p to territory k(i,p).

Let Na1(X), Na2(X), and Np(X), be the corresponding neighborhoods of design X formed by all
solutions reachable from X by performing a move of type Al, A2, and B, respectively.

In the proposed method we explore two different search strategies made up of these neigh-
borhoods. Neighborhood Ngq(¢) or strategy C1 explores these neighborhoods sequentially as
Na1 — Njo — Np. That is, the search is done over Nap(-) for a given number of iterations,
then Naso(-) for a given number of iterations, and then Np(-). A second strategy C2 is to consider
a neighborhood made up of the union of the three, that is Noa(-) = Na1(-) U Naa(-) UNg(-), which
is explored through a given number of iterations. The stopping criteria is either local optimality
or a fixed maximum number of iterations reached. In addition, a global optimality criterion that
consists of a comparison with a previously computed dual bound is performed. In this last case,
the algorithm stops with a proven global optimal solution. More about these dual bounds will be

discussed in Section 4.7.

4.2 Recency-based memory and tabu tenure

Given the neighborhhods have polinomial size, a best found strategy is adopted, that is, the neigh-
boorhood is entirely explored and the best non-tabu move is taken. To prevent cycling, whenever
a move move1 (i, k) is performed we make BU i tabu so any move involving BU i is forbidden
for 6 iterations. Similarly, whenever a move moves(i, k, p) is performed, BU i and territory k are
declared tabu, and whenever a move moveg(i,j,p) is performed, BUs i and j are declared tabu.
A dynamic tabu tenure strategy is used, where every time 6 is randomly drawn from the interval
[@min, Omax). This idea practically removes the probability of cycling provided iy and €pax are

large enough. Fine-tuning of these limits is carrried out.



4.3 Merit function

It is common tu use a merit function to guide the search towards better solutions. In this case,
since some of the constraints are being relaxed, the merit function is composed by the original
objective function and some penalized terms in the objective function that measure the degree of
insatisfaction of the relaxed constraints. The merit function maximized throughout the search is

given by:

F(X) = f(X)=0:f-(X)—0pfs(X) — b5 fs(X), (7)

where f(X) is the normalized objective function (1). The terms f,(X), with » € {r, 8,0} are
functions that measure the degree of relative violation of the balancing constraints with respect to
the number of households (2)-(3), balancing constraints with respect to the infrastructure quality
(4)-(5), and maximum number of split units allowed (6), respectively. The parameters J, are
self-adjusted multipliers. These multipliers are initially set to 1 and allowed to vary during the
search to account for the fact that any given solution X may be infeasible with respect to any of
these constraints. This is based in the concept of strategic oscillation and are further explained in
Section 4.4.

4.4 Strategic oscillation

The idea behind strategic oscillation [6] is to guide the search through both the feasible and infeasi-
ble space to gain more flexibility and reach portions of the solution space that would be impossible
to explore otherwise. To this end, some of the constraints are relaxed and moved into the objective
function with a self-adjustable penalty parameter. It is the self-adjustment mechanism of these
penalty parameters what allows to guide the search between the feasible and infeasible space. This
technique has proven successful in many combinatorial optimization problems, particularly in some
territory design applications. For instance, Bozkaya, Erkut, and Laporte [1] make use of this idea
for successfully handling some difficult constraints in a political districting problem. In our case,
the parameters A, in the merit function are initially set to 6,, and adjusted every p, iterations
according to the following rule: If all previous i, solutions were infeasible then §, = ~v4,; if all
of them were feasible then ¢, = %5,@ else 9, remains unchanged. The parameters u,, and fi, are

positive integers and v > 1.0 is a real number. These are user-controlled fixed parameters.

4.5 Aspiration criterion

The following aspiration criterion is incorporated into the TS procedure. If the objective function
value of the best neighbor found is better than the objective function value of the best solution

found so far, then the move is taken even if it is a tabu move.



4.6 Summary of the Proposed Tabu Search Algorithm

The proposed Tabu Search for the MDTDP (called TS_.MDTDP) is depicted in Pseudocode 1.
XPestrepresents the best solution found so far and ¢ is the iteration counter. T'(t) is the set of tabu
moves associated to iteration t and A is the set of solutions that satisfy the aspiration criterion
for the incumbent solution. The initial solution X, can be obtained by any of the construction
procedures described in Ferndndez et al. [4]. In this case, we use construction procedure H1. In the
process of choosing the best neighbor, X(-) represents any of the previously described neighborhoods,
whereas X satisfies F(X) > F(Y) for all Y € {RX(X;) \ T(¢)} U A.

A solution X; is considered to improve XP®%n any of the following cases:

e If feasibility has not been reached, X; improves Xt if X; decreases its value of total relative

infeasibility.
e Once feasibility has been achieved, X; improves X ot if f(X;) > f(XP*") and X; is feasible.

The local search continues until any of the following stopping criteria is met: (i) maximum
relative optimality gap with respect to a dual (upper) bound; (ii) maximum number of iterations;
(iii) maximum time limit. When stopping, the algorithm returns XP®  the best solution found.
Note that, if the maximum relative optimality gap in (i) is set to zero, and this criterion is met

when stopping, XP®tis a global optimum.
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Procedure 1 TS MDTDP( )
Input: An instance to the MDTDP
Output: : XPt A solution for the MDTDP

1: t+0

2: T(0) « 0

3: 6. < 6,7 €{1,B,0}

4: Obtain initial solution X

5. Xbest . Xo

6: while ( stopping criteria not met ) do
7: t—t+1

8: if (¢ mod p, =0 ) then

9: Update 9,

10: end if
11: Choose the best neighbor X € {RX(X;)\ T(t)} U A
12: X« X

13: Randomly choose 0 € [0in, Omax)
14: Update T'(t)
15: if ( X, is better than XP*") then
16: Xbest o X,

17: end if

18: end while

19: return XPest

4.7 Upper Bounding Schemes

The importance of dual bounds for optimization problems is well established. Among the benefits

of having a dual bound we have:

e It allows to compute relative optimality gaps of feasible solutions so we can measure the

quality of heuristic or primal solutions.
e As a consequence, global optimality can be proven if both primal and dual bounds are equal.

e A dual bound can sometimes be further improved by embbeding it within enumeration

schemes such as branch and bound or dynamic programming.

For this problem, it is possible to compute upper (dual) bounds with a relatively short com-
putational effort. Note first that if we relax constraints (6), the remaining (relaxed) problem is
simply a partitioning problem consisting of finding a node partition such that the given measure

for dispersion is maximized. We refer to this problem as the Unconstrained Maximum Dispersion

11



Problem (UMDP). Clearly, any valid relaxation or upper bound for UMDP is also valid for our
MDTDP.

In [3], Fernandez et al. developed an upper bound for the UMDP. This is roughly based on
the following idea. For any arbitrary subset of cardinality m 4+ 1 BUs, at least two of the BUs
must belong to the same territory. Let ¢ and j be these two BUs from set X belonging to the
same territory. Clearly, among all possible combinations, the worst case occurs when ¢ and j are as
far away from each other as possible. Therefore, UB(X) = max; jex{di;} is a valid upper bound
for the optimal solution to UMDP. Now, there exists ( i nt

m+1) = It D(n—(m+1))!
chosing subsets of size m + 1 from a set of size n. The main issue in computing the upper bound is

different ways of

to choose a subset X of m + 1 BUs in such a way that X gives the best (lowest) possible value of
the upper bound. Since it is not practical to generate all possible subsets X of size m + 1, the idea
is just to obtain an approximation by a smart choice of a few of those subsets. It can be easily seen
that if X' is a collection of subsets of V' of cardinality m + 1 each, then maxxex {UB(X)} is the
best possible upper bound on the optimal value of UMDP among the sets of this collection. The
authors propose a simple heuristic to obtain an attractive collection of subsets, by iterating over
each BU ¢ and then form its associated subset of size m + 1 by choosing the m nearest BUs to 1.
By iterating over each BU 14, a collection of n subsets is formed and an upper bound is computed.
See Pseudocode 2.

Procedure 2 UB_FKN( )
Input: An instance to the MDTDP

Output: UBP*': A valid upper bound for the MDTDP problem
1. UBP™ « oo
2: for (i=1,...,n ) do

3: X {Z}

4 X + X U{m closests nodes to i}
5 bound < max; rex {dji}

6: if ( bound < UBP*! ) then

7: UBP®* < bound

8: end if

9: end for

10: return UBPest

Now, based on this idea and recognizing the fact that there might be different ways of choosing
BUs “close to” BU i (Step 4 in Pseudocode 2), we propose three different strategies, each yieding

a different collection, and therefore a different bound.

UBI1: First, rather that using the complete distance matrix D, we use a truncated matrix consisting
of the 2m closest units to each node, that is, D;; is a matriz of dimension (n x 2m + 1) where

each row ¢ contains the 2m lowest values of d;; for all j = 1,...,n. Let A; the set of these
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2m BUs closest to i. The other important difference with respect to Pseudocode 2 is the
computation of Step 4. Rather than choosing the m closest units, we perform this procedure
iteratively, one unit at a time, taking into account not only node ¢ but the nodes that have
already been added to set X as follows. Suppose that for a fixed unit ¢+ and a partial set
X being formed in Step 4, we compute the “distance” of each unit ¢ € A; \ X to set X as
d(X,q) = max; e xuqy {djx}- This distance estimates the value of the upper bound if unit
q were to be added to set X. Then, unit ¢* = argmingec4,\ x {d(X, q)} is chosen and added
to X. We proceed this way until a set X of size m + 1 is formed. The rest of the procedure

remains the same.

Figures 2 illustrate the selection process. In this example X = {i,j} and A;\ X = {k,r}. Ac-
cording to the distances shown in the figures, d(X, k) = max{d;j, dix, dji.} = max{1.9,1.7,4.2} =
4.2 and d(X,r) = max{d;;, dir,d;r} = max{1.9,2.0,2.3} = 2.3. Therefore unit r is chosen
and added to X.

i j i j
‘ 1.9 . . 1.9 .

: 2.0, i12.3

: 42 :

k r k r

Figure 2: Computation of d(X, k) and d(X,r).

UB2: This is exactly the same procedure as UB1 with the exception than the original distance

matrix D is used instead of the truncated matrix D.

UB3: The idea behind UB3 is to attempt to avoid repetition of subsets that may occur when UB2
is applied. For instance, at iteration j, we fixed unit j in set X and then its first unit to be
added to set X is unit i. However, if it turns out that ¢ < j and in a previous iteration j was
the first unit added to set X = {i}, the rest of the procedure will choose the same subset. To
avoid this, we design UB3 that it is basically UB2, but restricting the choosing of the first
element to be added to set X = {j}, by a lexicographic rule, to only k > j. The rest of the

procedure remains the same.

Now, each of these three procedures runs in O(n) and produces a different bound. Thus, to have
the best possible bound, we basically apply all three procedures to build potentially 3n subsets and
then take the best bound among all 3n subsets. This is done very quickly.
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Upper Bound Computations

We now provide some preliminar computational testing on the upper bounding schemes. For this

purpose we use the 96-instance database (fully described in Section 5).

Table 1: Comparison of upper bounding schemes.

Gap

n UB1 UB2 UB3
100 0.36 0.35 0.36
150 040 040 041
200 0.37 0.37 0.37
250 0.15 0.16 0.16
300 0.07 0.07 0.07
Average 0.27 0.27 0.27

Table 1 shows the relative optimality obtained by each upper bounding scheme as a function of
the number of BUs. This optimality gap is computed by using the best known upper bound at this
point (the one obtained by the GRASP of Ferndndez et al. [4]). As can be seen, the best results are
obtained for the larger instances, obtaining average gaps of around 16% and 7% for the 250 and
300/BU instances, respectively. the results for the 100- to 200-BU instances. A typical behavior of
GRASP is that many times the best results are reached for larger size instances, thus this might

explain the behavior in the smaller instances.

Table 2: Running times for the upper bounding schemes.

Average time (sec.)

n UB1 UB2 UB3

100 0.01 0.01 0.01
150 0.01 0.02 0.02
200 0.02 0.03 0.02
250 0.03 0.04 0.04
300 0.04 0.04 0.06
Minimim 0.01 0.01  0.01
Average  0.02 0.02 0.03
Maximum 0.05 0.06 0.08

Table 2 display the average running times for each upper bounding scheme. As can be seen,
the procedures run rather quickly even for the largest instances. These are average times, but it
was found that no instance required more than 0.08 seconds of running time.

Non-parametric tests (Wilcoxon and Mann-Whitney) were applied confirming no statistical
difference exists among the behavior of the upper bounding schemes in terms of their quality. Due

to this and to their relatively low computational cost, it was decided that the best strategy for
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obtaining the best possible bound was to apply all three procedures, and take the best out all of
these, that is, UB = min { UB1, UB2, UB3 }. This is computed only once as a pre-processing
phase prior to the Tabu Search, and is used as stopping criterion, in addition to the number of
iterations.

Finally, Figure 3 shows a comparison between the UB computed this was and the best known
solution at this point (obtained by GRASP) for the 250- and 300-BU instances.

250 4.1
250 4 2 |
250 4 3

250 53 |
250 5 4 |
250 5.5 |
250 6.1 |
250 6.2 |
250 6.3 |
250 6.4 |
25065 |
250 7. 1
250 7 2 |
250 7.3 |
250 7 4 |
250 7.5 |
3004 1|
3004 2 |
3004 3 |
3004 4
30051 |
30052 |
30053 |
300_6_4

3007 1}
3007 2 |
3007 3 |
300_7_4

Instances

Figure 3: Comparison between best UB and LB obtained by GRASP [4] for 250- and 300-BU

instances.

5 Computational experiments

For the experiments, we used the data instances taken from Ferndndez et al. [4]. We build initial
solutions by using heuristic H1 from that work with parameters o = 0.2 and A = 0.5. The size of
these instances range from 100 to 300 BUs and 4 to 7 territories. For each of the 100- to 250-BU
instances there are 5 instances per size and for the 300-BU instances there 4 instances per size, for
a total of 96 tests instances.

The following notation is used to identify each instance: n_p_z, where n, p and = denote number
of BUs, number of territories, and instance ID number. For example, sufix 150_4_3 represents the
third instance with 150 BUs and 4 territories. Symbol () indicates that the best reported solution
did not reach feasibility, while symbol (*) denotes an optimal solution.

The relative optimality gap, or just gap, is computed as:
gap = (UB — LB)/LB,

where UB is the best found upper bound computed by the upper bounding schemes described in
Section 4.7, and LB is the heuristic solution by the corresponding heuristic.

Unless otherwise noticed, all experiments were carried out using 7 = 0.05, § = 0.20 and
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o = 0.20n. The following Tabu Search algorithmic parameters were found to give the best results
in preliminary testing and are therefore used throughout the experimentation: 6pax =15, Opin =5,
v = 1.5, yur = 10, &, = 3, 3000 move iteration limit for neighborhood Nzg, 1000 move iteration
limit for Ry (for each of (R4, Ny9, and Np), that are sequentially explored.)

All procedures and methods of the Tabu Search were coded in C++ and compiled with the
GNU C++ compiler (g++) under Ubunto 9.05 OS. A Gateway workstation with Intel Core 2 Duo
T6400 processor at 2.0 GHz with 4 GB of memory was used.

5.1 Experiment A: Neighborhood Assessment

The goal of this experiment is to compare the performance of neighborhoods Roy v R, decribed
in Section 4.1, within the TS scheme. It is important to note that for each of the neighborhoods
the TS found feasible instances in 100% of the instances tested. In each of the figures, Ro1 and
Neo are identified by C1 and C2, respectively.

Table 3: Comparison between N1 and Reo.

No1 Reo
Gap (average) 0.30 0.23
Time - average (sec.) 326.15  648.34
Time - minimum (sec.) 4.26 35.92
Time - maximum (sec.) 1830.63 2413.51
Number of optimal solutions found 7 7

Table 3 presents a summary of the average results for 96 instances tested. Figures 4 and 5 show
the behavior of objective function and running time, respectively, for all instances with 100 and
150 BUs. Figures 6 and 7 show the behavior of objective function and running time, respectively,
for the larger instances (200 to 300 BUs.)

As can be seen, the average running time for N9 is almost twice as much that the one employed
by N¢g1. The lowest average relative optimality gap was obtained under N¢oq, though. Given the
overall running times are not too high (around 10 minutes per instance), one could afford to use

N9 in future experiments.
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5.2 Experiment B: Assessment of Strategic Oscillation

As stated before, one of the advanced features implemented in our algorithm is that of strategic
oscillation. The goal of this experiment is to assess the benefit if this component within a TS
algorithmic framework. To this end, we applied the TS to all instances under two different strategies
following the neighborhood R(:) = N¢;. We run TS without the strategic oscillation component
(denoted by index NSO) and then run the TS with the strategic oscillation component (denoted
by subindex SO).

Tables 4-8 display all the results for each individual instance. The value of the objective function
is shown in columns Xngo and Xgo. The relative optimality gap is shown in the “gap” columns.
The term “na” indicates no gap was found because no feasible solution (lower bound) was found.
Time (time) is shown in CPU seconds. Table 9 summarized these results over all 96 instances in
terms of average relative optimality gap, running time, number of infeasible solutions delivered,

and number of optimal solutions found.

Table 4: Assessment of strategic oscillation for 100-BU instances.

Instance | Xnso gap time | Xgo gap time
100.4_1 1.99 0.56 41.64 | 3.39 0.25 40.78
10042 | 3.12 0.20 43.67 | 3.26 0.17 43.81
10043 | 5.64* 0.00 2.14 | 5.64* 0.00 37.63
10044 | 4.33 047 49.53 | 4.81 0.41 50.76
10045 | 3.87 039 33.24 | 5.04 0.20 36.04
10051 | 2.99 047 3892 3.39 0.40 37.49
10052 | 2.40 0.45 43.08 | 3.71 0.15 44.07
10053 | 5.09 0.11 39.02 | 5.09 0.11 36.71
10054 | 4.12 0.57 4783 | 530 0.45 49.42
10055 | 2.30 0.67 35.31 | 2.22 0.68 33.90
10061 | 4.13 0.38 41.01 | 4.11 0.39 39.39
10062 | 2.07 0.57 47.18 | 2.70 0.45 45.61
10063 | 4.73 0.34 39.65 | 4.66 0.35 43.64
10064 | 5.76 0.47 49.91 | 6.22 0.43 51.62
10065 | 5.83 0.26 33.83 | 5.83 0.26 35.44
10071 | 2.87 0.61 38.77 | 2.83 0.62 41.66
100-72 | 4447  na 4822 | 499 0.15 48.37
10073 | 6.61 0.08 40.85 | 5.85 0.19 41.86
10074 | 557 0.53 50.99 | 6.64 0.44 53.68
10075 | 2077 na 33.00 | 5.04 0.48 36.59
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Table 5: Assessment of strategic oscillation for 150-BU instances.
Instance | Xnso  gap time Xso gap time
15041 | 349 049 11337 | 5.12 0.25 106.86
15042 | 1.56 0.07 115.71 | 1.67* 0.00 6.93
15043 | 1.94 0.21 112.01 | 1.94 0.21 111.58
15044 2.85 0.13 102.9 | 3.29* 0.00 101.22
15045 | 532 0.26 110.49 | 5.51 0.24 108.91
150,51 | 4.55 0.51 104.70 | 6.38 0.31 110.78
15052 | 1.64 0.22 116.62 | 1.94 0.08 123.89
150.5_3 2.65 0.15 11281 | 2.51 0.19 113.51
15054 | 3.70 0.15 101.25 | 3.43 0.21 106.16
15055 | 5.65 0.30 108.41 | 5.76 0.29 107.66
150.6_1 | 3.89 0.65 104.03 | 4.50 0.60 103.27
150.6_2 1.5 0.32 117.36 | 2.19* 0.00 119.75
15063 | 2.22 0.34 106.04 | 2.13 0.36 107.97
15064 | 3.43 030 90.12 | 3.82 0.22 101.16
15065 | 4.52 0.53 102.86 | 6.15 0.36 110.41
150_.7-1 | 5.35 0.55 100.37 | 6.86 0.43 101.90
150_7_2 247 0.26 112.62 | 247 0.26 106.57
150.73 | 1.74 0.55 102.88 | 2.19 0.44 112.40
15074 | 354 040 9512 | 3.78 0.35 96.43
150.75 | 4.34 0.63 110.54 | 6.45 0.45 107.04

Table 6: Assessment of strategic oscillation for 200-BU instances.
Instance | Xnso gap time | Xgo gap  time
20041 | 2.15 0.21 240.62 | 2.15 0.21 247.30
20042 | 1.06 0.22 227.04 | 1.05 0.22 214.59
20043 | 2.23 0.53 211.21 | 3.24 0.31 222.22
20044 | 3.02 0.36 22242 | 3.24 0.31 203.92
20045 | 3.26 0.13 203.13 | 3.36 0.10 209.54
20051 | 212 0.31  241.47 | 2.72 0.11 242.91
20052 | 1.23 0.28 210.85 | 1.14 0.34 221.11
20053 | 4.63 0.12 198.16 | 5.28* 0.00 193.45
200,54 | 5.28* 0.00 127.84 | 4.80 0.09 188.66
20055 | 3.73  0.17 204.59 | 3.73 0.17 201.81
20061 | 2.17 0.42 242.38 | 2.86 0.23 225.82
20062 | 1.32 0.35 195.71 | 1.32 0.35 191.37
20063 | 5.28 0.12 192.85 | 5.93 0.01 191.55
20064 | 593 0.01 192.06 | 5.93 0.01 189.37
20065 | 2.72 0.46 215.06 | 3.91 0.23 198.82
20071 | 272 0.36 237.97 | 2.72 0.36 239.35
20072 | 1.24 0.42 206.59 | 1.27 0.41 205.36
200.7.3 | 6.13* 0.00 10.26 | 6.13* 0.00 206.16
200_74 | 6.13* 0.00 10.10 | 6.13* 0.00 10.16
200.75 | 433 0.24 197.88 | 3.75 0.34 189.50
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Table 7: Assessment of strategic oscillation for 250-BU instances.
Instance | Xngo gap time | Xgo gap  time
25041 1.33  0.22 434.28 | 1.38 0.19 394.01
25042 | 3.22 0.30 365.25 | 3.80 0.17 358.56
25043 | 3.79 0.36 453.12 | 4.25 0.28 478.03
25044 | 4.14 0.18 355.40 | 4.28 0.15 357.42
25045 | 440 0.37 368.60 | 6.06 0.13 375.46
250.5-1 145 0.27 407.72 | 1.70 0.14 343.95
25052 | 3.40 0.36 338.03 | 3.26 0.39 334.76
25053 | 499 0.17 44732 | 499 0.17 431.55
25054 | 3.38 0.44 327.83 | 4.08 0.32 340.29
25055 | 6.19 0.17 369.10 | 6.19 0.17 352.66
250.6_1 1.10 0.50 378.45 | 1.51 0.31 364.99
25062 | 3.0 0.54 312.04 | 3.11 0.53 317.46
25063 | 4.36 0.41 403.25 | 481 0.35 411.79
25064 | 490 0.38 319.47 | 5.27 0.33 322.72
25065 | 691 0.27 327.66 | 6.91 0.27 319.48
250_7_1 1.89 0.27 337.03 | 1.89 0.27 342.87
25072 | 574 0.22 297.54 | 543 0.27 293.90
25073 | 440 0.47 377.00 | 5.45 0.35 396.10
25074 | 555 0.35 327.08 | 6.20 0.28 312.16
25075 | 5.71 0.44 342.11 | 7.04 0.31 333.55

Table 8: Assessment of strategic oscillation for 300-BU instances.

Instance | Xnso  gap time Xso gap time

3004-1 3.43 0.32 762.94 | 4.09 0.19 764.95
30042 4.3 0.01 645.65 | 4.36* 0.00 660.01
300-4_3 2.01 0.10 696.44 | 2.01 0.10 695.31
30044 3.34 0.09 645.40 | 3.13 0.15 659.67
300.5_1 5.06 0.13 746.41 | 5.07 0.12 741.49
300.5_2 3.88 0.26 623.45 | 5.01 0.04 628.96
300.5_3 1.61 0.37 700.35| 2.08 0.19 711.23
30054 3.49 0.07 596.42 | 3.56 0.05 619.00
300.6_1 4.46 0.35 624.03 | 4.32 0.37 745.56
300.6_2 5.42 0.21 589.07 | 542 0.21 583.54
300.6_3 2.23 0.26 610.36 | 2.57 0.15 647.34
30064 4.25 0.19 573.51 | 4.25 0.19 579.05
300_7_1 4.68 0.40 582.63 | 4.50 0.43 567.60
300_7_2 4.10 0.41 553.07 | 6.27 0.10 571.73
300_7_3 2.90 0.09 594.38 | 2.94 0.08 632.68
300_74 4.69 0.19 583.93 | 5.26 0.10 598.92
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An important observation is that, under SO, all solutions found were feasible, while under NSO,
the TS failed in achieving feasibility in two instances. It can also be seen that the running times of
either stragey are around the same. One could expect that SO would take longer to run; however,

most of the runs stopped by iteration limit, so this explains the similarity on running times.

Table 9: Summary of strategic oscillation assessment.

gap time

n Xnso Xso | Xnso  Xso
100 0.40 0.33 | 39.89 4242
150 0.35 0.26 | 107.01 103.22
200 0.24 0.19 | 189.41 199.65
250 0.33 0.27 | 364.41 359.09
300 0.22 0.15 | 633.00 650.44
Average 0.31 0.24 | 251.48 255.15
Number of optimal solutions found 4 8

Number of infeasible solutions 2 0

As can be seen the use of SO yields a significant benefit in terms of solution quality. For
each groups of instances, the SO produced significant improvements in relative optimality gap. In
addition to this, under SO more proven optimal solutions were found (twice as much). This clearly

demonstrates the tremendous benefit of SO in this particular problem.

5.3 Experiment C: Impact of Tabu Search over Simple Local Search

One should expect that TS performs better than a simple local search. The purpose of this experi-
ment is to measure how much is gained by employing TS in terms of solution quality and feasibility

concerns. In other words, what is the impact that TS brings to the table.

Table 10: Asessment of benefit of TS over LS.

gap
n LS TS
100 0.38 0.26
150 0.45 0.26
200 0.32 0.19
250 0.39 0.29
300 0.40 0.17
Average gap 0.39 0.23
Number of optimal solutions found 3 7
Number of infeasible solutions 5 0

To this end, we apply the TS (using the SO strategy) and a simple local search, that is, applying

the same neighborhood in a hill-climbing manner, stopping when no better neighbor is found. The
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results are displayed in Table 10, where LS and TS indicate the average relative optimality gaps
found under the Local Search scheme and Tabu Search, respectively.

As we can see, the benefit of using TS is clear in all aspects. The quality of the solutions was
significantly better when T'S was employed achieving an average relative improvement of over 40%.
This difference is even more dramatic for the largest set of instances. It was also observed that
regular LS could not find feasible solutions to five instances, wheras TS was able to find feasibe
solutions for all instances tested. Finally, T'S was able to find more proven optimal solutions that
the ones found by LS.

5.4 Experiment D: Tabu Search Performance

For this last experiment, the goal is to asesss the benefit of the proposed T'S when compared to the
best heuristic from literature, the GRASP of Fernandez et al. [4]. Now, it is important to notice
that GRASP is in essence a construction heuristic that builds a solution from scratch, whereas
TS is a local search heuristic that takes a built solution as an input. Thus, the issue we want
to investigate is the degree of improvement (if any) of the TS local search heuristic over the best
solution built by GRASP. To this end, we first apply the GRASP with parameters o = 0.2, A = 0.5,
2000 iterations, heuristic H1 as constructive mechanism and local search LS2. We register the best
solution found by GRASP in every instance. It was first observed that GRASP obtained proven
optimal solutions to 9 of the 96 instances. Then, for the remaining 87 instances, we apply the TS
taking the best GRASP solution as input. It was observed that in 47 instances out of 87, T'S was
able to improve the solution quality.

Figures 8 and 9 show a comparison between the initial solution (X™) fed to the TS, and the
final solution found by TS (XPe) for 100- to 150-BU and 200- to 300-BU instances, respectively.

Table 11: Assessment of T'S.

gap Improvement
n X ni Xbest (%)
100 0.81 041 30
150 0.94 046 33
200 096 0.33 49
250 0.20 0.20 <1
300 0.10 0.10 <1
Average | 0.64  0.31 24

Table 11 presents a summary of the results, where the second and third columns show the
average relative optimality gaps computed at the start and end of the TS algorithm. The last
column, displays the average relative improvement (%) obtained by TS, computed as: ARI =
(Xbest o Xini)/Xini'
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Figure 9: Comparison between the initial solution (X™) and the TS solution X! for 200- to

300-BU instances.

It was clear from the start that a decrease in the relative optimality gap after applying TS

was expected; however, it can be observed that this improvemente was substantial, particularly
for the 100- to 200-BU instances. An explanation of this is that it is well known that in many

combinatorial optimization problems, GRASP tends to perform better as the size of the instance

grows. In these cases, the capacity of the TS to further improve the initial solution is more limited.

Finally, Figure 10 shows the behavior of the TS and its strategic oscillation component in a
single instance of size 300 BUs and 4 territories. Objective function value versus move iteration
within the TS is plotted. A circle denotes a feasible solution and a triangle denotes an infeasible

solution. As we can see, the TS starts with an infeasible solution and objective function value of
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around 2.83. Then, as the search goes on, a move to a worst objective (and still infeasible solution)
is made in iteration 2. Through iteration 11 the solution remains infeasible. Then, a feasible
solution is found (for the first time) in iteration 12 (with objective function value of around 2.79.)
Then the trajectory moves at iteration 15 to a worst solution (value of around 2.22) and remains
the same until iteration 27. At iteration 28, a better solution is found (but no better than 2.79), it
keeps going up and down for 6 more iterations. At iteration 35, a solution with a better objective
function value is found (at around 2.89); however, this is infeasible. Then the process finds a better
infeasible solution and then recovers feasibility at iteration 37 with an objective of around 2.96 (the
best solution so far). Thus, the plot beautifully illustrates both the typical TS behavior of going to
a worse solution before improving again, and the strategic oscillation of moving between infeasible

and feasible solutions. At the end, the best solution was found at iteration 70 with a value of 2.99.
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Figure 10: Behavior of TS in a single 300 x 4 instance.

6 Conclusions

In this paper we have presented an improved tabu search algorithm for a maximum dispersion
territory design problem arising in the recollection of waste electric and electronic equipment. The
proposed metaheuristic is enhanced with several algorithmic features. All components and strate-
gies were empirically evaluated obtaining excellent results. Particularly, the strategic oscillation
component proved extremely useful for further improving the quality of the solutions. The results
indicated the overall efficiency of the algorithm, including significant improvements over the best

solutions reported by a previously presented heuristic based on GRASP.
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