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Abstract

In this paper, a problem related to a specialized diagnostic service that requires costly equipment

in a segmented public healthcare system such as the one in Mexico is addressed. The aim is

to determine which hospitals could provide the service and their capacity levels, the allocation

of demand in each institution, and the reallocation of uncovered demand to other institutions

or private sector providers while minimizing total annual cost of investment and operating cost

required to satisfy all demand. A mixed integer linear programming model taking into account

different characteristics such as patient acuity level, types of equipment, and demand variation

through time is introduced. The model was empirically assessed to evaluate its impact in the

decision-making process. Good quality solutions were found for instances up to 90 facilities. A

sensitive analysis was performed to evaluate solution behavior for variations of critical parameters.

It was found that some values could generate an effect in the total costs for the service coverage

and in the efficiency of the service.

Keywords: Operations research in healthcare services; location-allocation model; public healthcare

planning; diagnostic services.



1 Introduction

Developing countries such as Mexico face important problems in public healthcare along with

economic and demographic issues. A segmented healthcare system such as the one prevailing in

Mexico causes unequal quality service and access to medical services. Under this scheme, each

institution decides how to distribute funds received from government, affiliated workers, donations,

or revenues (Gómez et al., 2011). This implies that the number of general and specialized hospitals,

workforce, technological resources, hospital beds, operating rooms, and medical services vary widely

from one institution to another (Secretaria de Salud de México, 2013). Moreover, economic barriers

keep off improvements in quality and coverage in public healthcare institutions; but also, for a large

portion of the population, it prevents the opportunity to receive healthcare from the private sector.

For these type of healthcare systems, it is desirable to establish a unified system, with the aim that

healthcare must be completely guaranteed and equitably distributed through a more efficient use

of resources (Chertorivski and Fajardo, 2012).

An important motivation for this research is the fact that Mexico will require, in the short-term,

a coordinated planning of resources that includes all public healthcare institutions and the inte-

gration of the private sector to ensure healthcare coverage. In the Mexican National Development

Plan 2013-2018, for instance, one of the strategies about ensuring effective access to healthcare

services is the promotion of an inter-institutional healthcare service network to improve early de-

tection, diagnosis and treatment of diseases. These strategies try to avoid inequality in access due

to social or employment status. In fact, this type of strategies have been already implemented in

some states, such as Sinaloa, Baja California Sur, and Tabasco, in which the three main public

healthcare institutions have established collaboration to provide service coverage when one of the

institutions does not have enough capacity to provide a service by itself.

Diagnostic medical services, such as radiology and imaging, are commonly required by many

areas in hospitals as part of preventive, curative, and rehabilitative treatments. Specialized equip-

ment such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission

tomographycomputed tomography (PET/CT), or digital mammography are very scarce in the pub-

lic sector, where in some cases only highly specialized hospitals have availability of these types of

technology. Access to these services is very complex and restricted, causing that a large number of

patients do not receive a timely and accurate diagnosis. Moreover, the increasing rate of cardiovas-

cular diseases, cancer, diabetes, and chronic lung diseases in Mexico and worldwide requires a better

decision making in the usage of resources. Because of this, an efficient infrastructure planning of

specialized healthcare service considering an inter-institutional coordination is required in order to

improve the ability to respond to future challenges. In this context, the Operation Research (OR)

field provides effective analytical methods to help make better decisions to these types of problems.

Although optimization problems in healthcare have received considerable attention in the last
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few years, many issues are becoming much more important and relevant now because of the growth

in ageing population and decreasing birth rates in nearly all of developing countries, and increasing

longevity globally (Rais and Viana, 2011). OR is not only used for equipment/hospital location

problems, but also, it is being employed much more in day-to-day problems of hospital manage-

ment, resource-constrained operations, and treatment planning activities (Royston, 2009). New

problem formulations take into account some issues, such as service planning, resource and staff

scheduling, logistics in emergency services, medical therapeutics, disease diagnostics, and treatment

or preventive care (Brandeau et al., 2004). A challenge in this investigation is to introduce a novel

model that could be used for a high variety of specialized healthcare services or even for other type

of problems that share similar characteristics.

The problem addressed in this paper is aimed to ensure the coverage of a specialized healthcare

service for all the demand of public healthcare institutions in a particular system, minimizing the

total investment and operating cost in an annual planning horizon. The decision is to determine in

which hospitals to install or to increase capacity, and it is directly associated with the number and

type of diagnostic equipment. Patients can be transferred to hospitals of other institutions, or to a

private provider of an specific network of suppliers when internal capacity of his/her institution is

not enough to provide the service.

In this paper, a deterministic optimization model that takes into account different levels of

patient acuity, types of equipment to provide the service, and the allocation of demand in periods

is proposed. An empirical evaluation of the model is performed with some test instances. The

branch and bound algorithm (B&B) is used to solve the problems. It is determined if the size

of the instance (number of facilities), level of patient acuity, and type of equipment produce a

significant change in the quality of solutions. A sensitivity analysis is performed to evaluate the

behavior of solutions and the performance of the B&B when the values of different parameters

change.

The paper is organized as follows. Relevant literature review is highlighted in Section 2. The

description of the problem and its mixed-integer programming model are presented in Section 3.

The full experiments are presented in Section 4. Conlusions and directions for future work are

discussed in Section 5.

2 Literature Review

Location, allocation and capacity planning issues have been studied for decades for a large amount

of application areas. The literature of location models is extensive, in Owen and Daskin (1998), an

overview of facility location literature for complex time and uncertainty characteristics of real-world

problem instances is presented. In ReVelle and Eiselt (2005) a synthesis and survey of important

problems in facility location is presented. In ReVelle et al. (2008), a bibliography of recent papers
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on discrete location theory and modeling is provided for the median and plant locations models,

and center and covering models. In Klose and Drexl (2005), facility location models from the

perspective of the distribution system design are presented. Another review is presented in Melo

et al. (2009) but in the context of supply chain management, and a more recent literature review

is presented in Arabani and Farahani (2012), but considering the involved dynamics of facility

location problems. A review of recent trends specifically in the context of public facility location

modeling is given by Marianov and Serra (2002).

The state of the art in healthcare facility location is vast. Papageorgiou (1978) presented one

of the earliest surveys of OR applied to problems in healthcare. A decade later, a literature review

was presented by Smith-Daniels et al. (1988) in which a classification and analysis of the literature

in capacity management in healthcare, facility acquisition, facility allocation, work-force acquisition

and allocation was made. In Daskin and Dean (2004) some models that can be considered the heart

of the models used in location planning in healthcare are presented. In Rahman and Smith (2000),

some location-allocation models for health service development planning in the developing nations

are presented. A recent literature review for research work in OR applied exclusively to problems

in healthcare is presented by Rais and Viana (2011).

One of the first models applied to location of hospital services was due to Ruth (1981), who

proposed a quantitative model to aid in planning hospital inpatient service among a hospital network

in a region. In a later work, McLafferty and Broe (1990) evaluated critical care services considering

two attributes: the geographical accessibility of services and the number of patients served by

each facility. In Stummer et al. (2004), a multi-objective combinatorial problem to determine the

location of medical departments within a hospital network was proposed. The planning of hospital

capacity taking into account multiple types of patients was proposed by Ayvaz and Huh (2010).

In Mahar et al. (2011), a nonlinear optimization model was proposed in order to prove how

hospital networks with multiple locations can leverage pooling benefits when deciding where to lo-

cate specialized services (e.g., MRI, CT scans, transplant, neonatal intensive care, etc.). The model

takes into account not only financial considerations but also patient service levels and determines

how many and which hospitals in a network should be set up with specialized capacity, the levels

of capacity to provide and a guidelines for which locations should serve the demand in the network.

In Coté et al. (2007), a location-allocation model for specialized traumatic brain injury treatment

services for the Department of Veterans Affairs (VA) was given. The model aimed at determining

the best location for treatment units between the VA medical centers and the allocation of admis-

sions to these units, while minimizing the sum of admission treatment cost, admission travel cost,

and the penalty cost associated with foregone treatment revenue and excess capacity utilization.

Later on, in Syam and Coté (2010) the same problem from a perspective of non-profit service or-

ganization was modeled. In Syam and Coté (2012), an extension of the model that minimizes the

total cost borne by the health system and its patients incorporating admission acuity levels, service
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proportion requirements, and admissions retention rates was proposed. Important findings suggest

that a decentralized system is costlier than a centralized one but also serves a higher proportion of

admissions. More recently, Mestre et al. (2015) dealt with uncertainty in location-allocation models

in the strategic planning of hospital networks. The presence of uncertainty is associated with the

demand and supply of hospital services considering several features relevant to many real-world

applications.

The characteristics and considerations of each model depends on the type of problem to be

addressed and the real system in which the model is based on. In our case, not all considerations

of previous problems are required since some of them are not applicable to our problem. For

example, the evaluation of lost demand and penalty cost are not considered because the objective

of the public healthcare institutions is to guarantee the full coverage of the services. The sharing

of capacity among institutions and the private providers are used to maximize the responsiveness

and to reduce costs. The evaluation of patient’s length stay was considered in many works, but in

our case, the provision of diagnostic services does not require the use of equipment for long periods,

regardless of the type of customer inpatient or outpatient. Novel features are considered in our

model that were not previously considered in similar works: the evaluation of different diagnostic

equipment for the same service, the coordination among different hospital networks (institutions) to

share the service, the incorporation of private entities to improve the capacity, and the transferring

of patient among hospitals to provide the service.

3 Problem Description and Model Formulation

In this section, an mixed-integer linear programming (MILP) model for location-allocation of a

specialized diagnostic service across a segmented hospital network in an annual planning horizon

is introduced. The aim is to minimize the total annual cost required to guarantee the service

coverage for a given demand. The hospital network is integrated by public institutions that can

share capacity among them or to request the service to a specific network of providers. The first

decision is to determine the location and capacity of the service in each institution and the second

decision is to allocate all demand. The demand must be allocated at a first stage within the

hospitals of each institution, and in a second stage the uncovered demand allocated in hospitals

with capacity of each institution could be reallocated to hospitals of other institutions with idle

capacity or outsourced to private providers. In Figure 1, an example of the allocation strategies

among hospitals and institutions is presented in order to illustrate the problem. The demand

is classified in levels of patient acuity, this is a measure of the intensity of care required for a

patient accomplished by a nurse, and it is related to the degree of severity of an illness. The model

considers the variation of demand in different periods within the annual planning horizon, different

levels of patient acuity are served with the same equipment and different types of equipment that
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only change capacity and cost. The evaluation of the service in periods is required, when demand

variation is significant among periods or presents trends or seasonality. The incorporation of types

of equipment is designed for services that present different alternatives of equipment among brands

while servicing the same type of demand.

Figure 1: Example of the allocation problem.

The objective function evaluates investment and operational costs required to satisfy all demand

of the service in an annual planning horizon. To evaluate both costs in the same scale the equivalent

annual cost over the equipment lifespan is used. The investment cost considers a fixed initial

cost that does not depend on the type and amount of the equipment in each hospital; and the

variable initial cost is related to the type and amount of this equipment. This cost must include all

infrastructure, fixed-term staff, supplies and periodic maintenance required to provide the service.

To evaluate operational costs, the unit cost per service is considered. This cost could be integrated

by additional staff, supplies, materials, and other expenses required to provide the service, and

depends on the level of patient acuity or specialization of the service according to the case. In

the evaluation of operational costs, the cost of transferring patients from a hospital to another in

order to receive service is also considered. An additional administrative cost is incurred when an

institution provides the service to patients from another institution. Each private service supplier

has its own fees and capacities designated to provide the service to public institutions. To establish

a minimum level of coverage, the problem considers a minimum percentage of capacity that each

institution has to ensure. To prevent saturation in hospitals, a policy to limit the number of

uncovered patients allocated at each hospital according to its capacity is incorporated. This avoids

to concentrate in few hospitals all internal unmet demand to be reallocated to other institutions

or private services. Finally, in order to control the percentage of demand reallocated to outsourced
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services, each institution determines the maximum annual percentage of outsourced demand. This

policy helps institutions to reach their goal of annual internal service coverage. Although the

capacity is considered the same in each period, if it is required to specify the capacity at each

period, the parameter could be considered with an additional index for each period.

The sets, parameters, and variables of the model are the following:

Sets

k ∈ K Set of institutions in the network.

u ∈ U Set of levels of patient acuity.

l ∈ L Set of types of equipment.

n ∈ N Set of time periods.

i, j ∈ I Set of hospitals in the network.

G ⊂ I Set of public hospitals in the network.

Gk ⊂ G Set of public hospitals of institution k.

Gi ⊂ G Set of public hospitals of institution to which hospital i belongs to.

P ⊂ I Set of private service providers.

kj ∈ K Institution to which hospital j belongs to.

Parameters

FCj Fixed annual service setup cost in hospital j; j ∈ G.

V Cl Variable annual setup cost for equipment of type l; l ∈ L.

OCu Operational cost for providing a service with patient acuity level u; u ∈ U .

TCu
ij Transfer cost for sending a patient that requires a service for a patient acuity level

u from hospital i to hospital j; i ∈ G, j ∈ I, u ∈ U .

ACu
k Additional charge that institution k requests to provide a service for a patient acuity

level u of other institutions; u ∈ U .

PCu
j Cost of provider j for a service for a patient acuity level u; j ∈ P , u ∈ U .

Du
in Demand (number of patients) with acuity level u in hospital i in period n; i ∈ G,

n ∈ N , u ∈ U .

ECl Maximum capacity of number of services of equipment of type l in each period;

l ∈ L.

CPjn Maximum capacity of number of services of provider j in period n; j ∈ P , n ∈ N .

Hjl Minimum number of required equipment of type l in hospital j; j ∈ G, l ∈ L.

δk Minimum percentage of annual demand to be internally covered by institution k;

k ∈ K.

σk Maximum demand in proportion to the capacity that each hospital of institution k

can allocate; k ∈ K.
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ωk Maximum percentage of annual demand that institution k is allowed to allocate to

outsourcing; k ∈ K.

M A very large positive value.

Variables

xuijn Number of patients with acuity level u from hospital i allocated to hospital j in

period n; i ∈ G, j ∈ I, u ∈ U, n ∈ N .

αu
jn Number of patients with acuity level u allocated in hospital j in period n unserved

by any hospital of institution to which the hospital j belongs; j ∈ G, u ∈ U, n ∈

N, l ∈ L.

βjn Capacity available in hospital j in period n unused by any hospital of institution to

which hospital j belongs; j ∈ G, n ∈ N .

sujn Service level for patient acuity level u in hospital j in period n; j ∈ G, u ∈ U, n ∈

N, l ∈ L.

tjl Number of equipment units of type l that are allocated to hospital j; j ∈ G, l ∈ L.

yj Binary variable equal to 1 if any service is set up in hospital j, and 0 otherwise;

j ∈ G.

The corresponding MILP model is given by:

Minimize
∑

j∈G

FCj · yj +
∑

j∈G

∑

l∈L

V Cl · tjl +
∑

j∈G

∑

u∈U

∑

n∈N

OCu · sujn

+
∑

k∈K

∑

u∈U

ACu
k ·

∑

n∈N

∑

i∈G\Gk

∑

j∈Gk

xuijn +
∑

i∈G

∑

j∈P

∑

u∈U

∑

n∈N

PCu
j · xuijn

+
∑

i∈I∗

∑

j∈I

∑

u∈U

∑

n∈N

TCu
ij · x

u
ijn (1)

subject to:
∑

j∈Gi

xuijn = Du
in i ∈ G, u ∈ U, n ∈ N (2)

∑

i∈Gj

∑

u∈U

xuijn −
∑

u∈U

αu
jn + βjn =

∑

l∈L

ECl · tjl j ∈ G, n ∈ N (3)

∑

i∈G

∑

u∈U

xuijn ≤ M · yj j ∈ G, n ∈ N (4)

αu
jn ≤

∑

i∈Gj

xuijn j ∈ G, u ∈ U, n ∈ N (5)

βjn ≤
∑

l∈L

ECl · tjl j ∈ G, n ∈ N (6)
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∑

j∈Gk

∑

l∈L

|N | · ECl · tjl ≥ δk ·
∑

i∈Gk∗

∑

u∈U

∑

n∈N

Du
in k ∈ K (7)

∑

i∈G

∑

u∈U

xuijn ≤ σkj ·
∑

l∈L

ECl · tjl j ∈ G, n ∈ N (8)

∑

i∈Gk

∑

j∈P

∑

u∈U

∑

n∈N

xuijn ≤ ωk ·
∑

i∈Gk∗

∑

u∈U

∑

n∈N

Du
in k ∈ K (9)

∑

j∈I\Gi

xuijn = αu
in i ∈ G, u ∈ U, n ∈ N (10)

∑

i∈G\Gj

∑

u∈U

xuijn ≤ βjn j ∈ G, n ∈ N (11)

∑

i∈G

xuijn − αu
jn = sujn j ∈ G, u ∈ U, n ∈ N (12)

∑

i∈G

∑

u∈U

xuijn ≤ CPjn j ∈ P, n ∈ N (13)

tjl ≤ M · yj j ∈ G, l ∈ L (14)

yj ≤
∑

l∈L

tjl j ∈ G (15)

tjl ≥ Hjl j ∈ G, l ∈ L (16)

xuijn ∈ N ∪ {0} i ∈ G, j ∈ I, u ∈ U, n ∈ N (17)

αu
jn, sujn ∈ N ∪ {0} j ∈ G, u ∈ U, n ∈ N, l ∈ L (18)

βjn ∈ N ∪ {0} j ∈ G, n ∈ N (19)

tjl ∈ N ∪ {0} j ∈ G, l ∈ L (20)

yj ∈ {0, 1} j ∈ G (21)

The objective function (1) minimizes the total equivalent annual cost to provide the service for

all the demand of the public hospitals in the network. The first and second terms represent fixed

and variable annual investment costs, respectively. The third term represents the total operational

costs of all provided services, the fourth term represents the inter-institutional fee for all services

sent to other institutions. The fifth term corresponds to the total outsourcing costs and the last

term represents the total transport cost for all types of patient acuity levels.

Constraints (2) ensure that all demand of each hospital is allocated within its own institution

in each period. Constraints (3) determine the demand from the same institution allocated to a

hospital according to its capacity in each period. If there is idle capacity, the variable βjn will have

a positive value, and if there is uncovered demand, some variables αu
jn will take positive values.

Constraints (4) prevent allocating demand to a hospital if there is not enough capacity. Constraints

(5) ensure that the variables for uncovered demand of a hospital only take values equal or lower

than total internal demand allocated to that hospital in the same period. Constraints (6) ensure
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that for each period an idle capacity variable takes values lower or equal than the capacity of the

hospital which it belongs to. Constraints (7) ensure a minimum percentage of annual capacity

according to the total annual demand of each institution defined by 0 ≤ δk ≤ 1. Constraints (8)

establish an upper bound for demand that can be allocated in a hospital in each period. This limit

must not exceed a percentage of its capacity defined by σk ≥ 1 by each institution.

Constraints (9) set the maximum percentage of total annual demand of an institution to be

reallocated to the private providers and it is defined by 0 ≤ ωk ≤ 1 by each institution. Constraints

(10) ensure that all internal uncovered demand of a hospital inside its institution will be reallocated

to another hospital of different institution with idle capacity or to private providers in each period.

Constraints (11) allow to allocate uncovered demand of other institutions to a hospital without

exceeding its idle capacity in each period. Constraints (12) is used to determine the service level

of each hospital for each patient acuity level in each period. Constraints (13) limit the demand

reallocated to each private provider according to its capacity in each period. Constraints (14)-(15)

relate the integer variables yj and tjl, respectively. Constraints (16) enforce to set up the service

with pre-determinated number of equipment units of each type in a hospital that already have

the service or it is mandatory to set up. Finally, the nature of the decision variables are given by

(17)-(20).

4 Empirical Assessment and Results

4.1 Design of experiments and instances

Given the inherent complexity of the problem and the exponential solution times of B&B, the

purpose of the first experiment is to determine the instance size and conditions for which B&B

finds optimal solutions or find out how far the solutions obtained are from optimality. The quality

of solutions, computational efforts, the effects of factors such as number of hospitals, patient acuity

levels, specialization levels and types of equipment in solutions are presented. A sensitivity analysis

was also performed in order to provide an insight of the behavior of solutions when some parameters

are subject to change.

The proposed scheme of joint resource planning is not yet implemented in Mexico due to the

lack of coordination among institutions and the lack of regulations. This is precisely one of the

motivations of the present work, that is, to present a model that can aid the decision makers make

a better resource planning based on scientific grounds; however, due to this, there is no sufficient

data instances publicly available for assessing the proposed model. To cope with this, random

instances were generated based on real-world data or reasonable distributions. Some decisions such

as instances size, the number of institutions, and private provider were fixed. Some parameters

related to the costs and capacities were randomly generated between reasonable current real-world
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values.

The instance size or network size (NS) was defined as the total number of hospitals and private

providers in the network. For this evaluation, instances of 30, 60, 90, 120, 180, 240, and 300 facilities

were generated; 30 samples for each instance size were created. The number of institutions was set

to 5 for all instances, the same number of hospitals were set for each institution and in the same

proportion for private providers. For example, for instances of 120 hospitals, there are 20 private

providers and for each institution there are 20 hospitals. The number of patient acuity levels,

specialization levels and types of equipment in each instance size were proportionally selected from

values of 1, 2 or 3. The equipment capacity, defined as the maximum number of services by period,

was randomly selected from some possible values.

Figure 2: Demand distribution of MRI service in hospitals of the SSA in Mexico 2012.

The demand of each hospital in each period was randomly generated according to a Weibull

probability distribution obtained from data of Mexico National Health Information System (SINAIS)

for MRI services in public hospitals in 2012, in Figure 2 the annual demand distribution of 652

health units of the Ministry of Health of Mexico (SSA) is illustrated. A Weibull distribution is

used to simulate demand behavior, this is a versatile distribution that can be used to model a wide

range of applications in engineering, medical research, quality control, finance, and climatology.

The experiments were performed in an Intel Core i7-2620M processor at 2.70 GHz with 16 GB

of RAM. Each instance was solved by the B&B method setting a CPU time limit at one hour. In

this case, CPLEX 12.6 was used.

4.2 Model evaluation with B&B

In Table 1 the relatives optimality gaps, CPU running times and number of optimal solutions (out

of 30 instances tested in each row) for each network size are presented. The relative gap represents

the percentage of the relative difference between the best integer solution found and the best lower

bound found by the B&B. The mean, standard deviation, the minimum, and maximum values of
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the relative gaps are shown for each network size. For the CPU time, a value of 3600 seconds was

used when an optimal solution was not found after 1 hour of computing.

NS
Relative gap (%) CPU time (s) No. of optimal

Mean St. Dev. Min Max Mean solutions (out of 30)

30 0.25 0.87 0.00 4.34 609 26
60 0.37 0.52 0.00 2.31 2,505 11
90 0.60 0.77 0.00 2.88 3,323 3
120 5.32 4.90 0.00 19.48 3,522 1
180 21.20 17.64 1.85 65.17 3,600 0
240 42.34 19.01 5.65 72.69 3,600 0
300 56.51 13.07 33.54 81.71 3,600 0

Table 1: Model assessment when applying B&B to instances of different size.

As can be seen, the results indicate that the model was difficult to solve for large instances,

while near optimal results for instances of 30, 60, and 90 facilities were found. In terms of finding

true optimal solutions (with a relative gap tolerance of 1× 10−4), it was observed that only a few

were found within 1 hr of CPU time. Optimal solutions were found for almost all instances of 30

facilities. B&B observed a success rate of 87.7%, 36.7%, 10.0%, and 3.3% for instances of 30, 60,

90, and 120 facilities, respectively. For instances of 180, 240, and 300 facilities no optimal solutions

were found. Overall, only 69 of 210 instances were optimally solved. In conclusion, the time limit

of one hour was not enough to find good quality solutions for large instances. The high relative

gaps for large instances suggest that even with an additional CPU time limit, good result are not

be expected. Nonetheless, the instances of size 30, 60, and 90 are still large enough to draw some

meaningful results as it will be shown in the following subsection.

Figure 3: Main effects plot for each factor.

The effect that instances size, patient acuity levels, and types of equipment have in solution

quality (measured by the relative optimality gap) is shown in Figure 3, the average value for each
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instance size is presented. To verify the results, all factor were evaluated with Mood’s median

test in order to identify significant statistical differences, these results are shown in Table 2. It

can be easily seen that the factor with the greatest impact was the instances size. There was

no significant difference in relative gaps between instances of 30, 60, 90, and 120 facilities. And

there was a significant difference in relative gaps from these instances and instances of 180, 240,

and 300 facilities. The patient acuity levels only produced a statistically difference in the relative

gaps between instances of levels 1 and 3. The types of equipment did not produce any statistical

difference in the relative gap between 1, 2 or 3 types of equipment.

Group
Network size Patient acuity level Type of equipment

30 60 90 120 180 240 300 1 2 3 1 2 3

I 1 1 1 1 1 1 1 1 1
II 1 1 1
III 1
IV 1

Table 2: Mood’s median test result for each factor of the model.

4.3 Sensitivity analysis

There are some important parameters that may affect the objective function values, namely, the way

in which demand is allocated, the number and type of equipment in the system, and the complexity

to solve the problem. Some of them must be decided by decision makers while others depend on

the type of medical diagnostic service. The purpose of this section is to present how the variation

of some parameters affect some characteristic in the solutions. In the present subsection some

sensitive analysis for the model using instances size of 30, 60, 90, and 120 facilities are presented

in detail (30 of each size, 120 in total).

Equipment capacity

Equipment capacity depends on the type of service and medical technology advances. The max-

imum number of services by period must be determined considering the required time to carry

out each procedure, the preparation time before and after providing the service, the availability

of staff, and all the inputs required. In the following experiment we considered different values

of the equipment capacity for each instance. The experiment was carried out by considering just

one type of equipment in all instances varying the equipment capacity to 100, 250, 500, 750, and

1000 services per period. The results are shown in Table 3. The second column corresponds to

the average number of equipment units required in the system. As expected, it was observed that

with equipment of high capacity a fewer number of units are required. In the third column, the

averages of the number of hospitals by each capacity level are presented. Results indicate that

with a high number of equipment units more hospitals are required to set up the service. The total
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cost displayed in the fourth column is expressed as a percentage of variation with respect to the

capacity of 100 services per period. We can see that when there are fewer hospitals that provide

the service the total cost is reduced. A decentralized system is more expensive than a centralized

one. The numbers of optimal solutions are presented in the fifth column (out of 120), equipment of

high capacity reach more optimal solutions in 1 hour of computing. This is because fewer number

of equipment units in the system are required and therefore the integer variables take a reduced

number of possible values reducing the number of branches in the algorithm. Finally, the capacity

utilization rates (CU Rate) are shown for each network size in the last four columns. This rate is

the percentage of the total capacity in public hospitals that is used. In the results, the equipment

of low capacity was found to have a higher utilization rate regardless the size of the network, but

equipment with high capacity is highly employed when the size of the network is greater.

Equipment Number of Number of Total cost
Optimal
solutions

CU Rate by NS (%)

Capacity
equipment

units
hospitals variation (%) (out of 120) 30 60 90 120

100 65 15.3 - 16 96.7 99.0 99.3 99.1
250 27 12.3 -43.6 32 87.5 97.5 98.4 98.4
500 15 9.6 -57.6 68 65.6 88.3 93.2 93.3
750 12 8.6 -61.1 85 48.8 75.5 80.9 85.0
1000 12 8.8 -61.4 93 37.7 61.3 67.7 71.3

Table 3: Results for different capacity values.

Reallocation of uncovered services in each institution

The inter-institutional and outsourcing allocation are strategies to improve the service efficiency,

reducing the total number of equipment required in the system and the total cost of the service. In

some periods, some institution could present high levels of demand and the internal capacity may

not be enough. Constraints (8) are used in the model to limit the percentage of patients that will be

reallocated in each hospital according to its capacity. This proportion is defined by the parameter

σk for each institution, which takes values starting from 1 (not additional demand beyond the

capacity is allowed in each hospital and no reallocation strategies are available) to infinite (the

allocation of additional demand is not constrained and reallocation strategies are permitted).

An experiment was conducted in order to identify how the variation in this parameter impacts

the solution. For these experiments, the value of σk was considered the same for all institutions

fixing its value at 1, 1.25, 1.5, 2, and infinite (that is, eliminating the constraint). For example, a

value of 1.25 represents that an additional 25% of services in relation to the capacity of a hospital

are allowed to be reallocated to other institutions or to outsourcing. The results are presented

in Table 4. All columns except CU Rate are compared with respect to σk equal to 1. When no

reallocation strategies are permitted (σk = 1), the CU Rate has an average of 86.7% and when
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they are permitted the CU Rate increases between 7.9% up to 9.3% in average. A reduction up

to 10.8% in public capacity and 5.5% in the total cost of the system can be reached considering

inter-institutional allocation and outsourcing for these test instances. The optimal percentage of

reallocation of services was 7.4%, 4.3% for inter-institutional allocation and 3.1 % for outsourcing.

This occurs when there was no constraint to control the percentage of reallocation (σk = infinite).

Since all the variations of σk in this analysis were higher than 1.074 (given the optimal percentage

of reallocations was 7.4%), the reduction in capacity and cost were significant. In conclusion, there

is less efficiency in the system and higher costs when the values of σk are closer or lower than the

optimal percentage of reallocation of services (this values are determined when the constraints (8)

are not used).

σk
CU rate Total Total cost Demand allocation (%)
(%) capacity (%) variation (%) Internal I-I Outsourcing

1.00 86.7 - - 100.0 0.0 0.0
1.25 94.6 -9.6 -5.0 95.5 2.2 2.4
1.50 95.7 -10.9 -5.3 94.0 3.2 2.8
2.00 96.2 -11.6 -5.4 93.2 3.8 3.0
Inf 96.0 -10.8 -5.5 92.6 4.3 3.1

Table 4: Experimental results for variation of parameter σk.

Allocation of private services

The use of outsourcing to assure coverage of some services is very frequent in public healthcare

institutions. In this model we make the assumption that a network of private service providers with

different cost and capacities was available. The allocation of this capacity was limited by constraint

(9) where parameter ωk controls the maximum proportion of internal demand that each institution

can send to outsourcing. For this analysis, different values of this parameter were evaluated: 0

(no outsourcing allowed), 0.05, 0.25, 0.75, and 1 (infinite outsourcing allowed limited only by the

capacity of providers). This values were tested in all instances considering the same values for all

institutions. Results are displayed in In Table 5. The cells show the values with respect to the case

ωk = 0. It can be observed that a reduction in total cost of 2.45% in average was reached when a 5%

of demand was outsourced and for the rest of values of ωk the increment was less significant. This

occurs because, as it can be seen in demand allocation, the optimal value of outsourced demand (ωk

= 1) is 3.25% and therefore higher values of ωk will not generate significant changes in total cost.

We conclude with this analysis that values of ωk higher than the optimal percentage of outsourced

demand (this value is determined when constraints (9) are not considered) could reduce the total

cost when the outsourcing is used.
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ωk
Total cost Demand allocation (%)

variation (%) Own capacity Outsourcing

0.00 - 100.00 0.00
0.05 -2.45 97.51 2.49
0.25 -2.55 96.78 3.22
0.75 -2.56 96.77 3.23
1.00 -2.56 96.75 3.25

Table 5: Experimental results for variation of parameter ωk.

Minimum internal capacity

In this section, the effects in the solutions for different values of parameter δk are presented. This

parameter is used in constraints (7) to establish a minimum level of capacity that each institution

requires to cover its own demand. The result of this analysis are presented in Table 6. The values

of parameter δk were fixed at 0 (unrestricted minimum capacity), 0.25, 0.5, 0.75, and 1.0 (required

enough capacity in the institution to satisfy all demand); the same value for all institutions in all

test instances is considered. In the second column of the table, it is observed that more instances

were optimally solved when the values of δk tended to 1. This was because the inter-institutional

and outsourcing allocations were less required and the number of variables and branches used in

the B&B were reduced. The results for CU rate and total capacity in the third and fourth column

of the table were compared with respect to values of δk equal to 0. The percentage of services

allocated for internal capacity (own capacity of each institution), inter-institutional allocation (I-I)

and outsourcing allocation are presented in the last three columns. When the capacity of each

institution was forced to cover all internal demand (δk=1), the total capacity increased up to 8.6%

and the total cost up to 4.2% for this test instances. The optimal percentage of services allocated

internally was 93.1% when δk was equal to zero. Therefore values of δk lower than 0.931 presented

less variation in the results. Even though, there was enough capacity to cover all demand in each

institution when δk was equal to 1, the inter-institutional allocation and outsourcing could still

be more convenient in some cases. In conclusion, when δk values are closer or greater than the

optimal percentage of services covered internally, the capacity and total cost could be increased

significantly.

δk
Optimal solutions CU rate Total Total cost Services allocation (%)

(out of 120) (%) capacity (%) variation (%) Internal I-I Outsourcing

0.00 35 96.8 - - 93.1 3.6 3.3
0.25 35 96.8 0.0 0.0 93.1 3.6 3.3
0.50 37 96.7 0.1 0.0 93.2 3.5 3.2
0.75 44 96.1 1.0 0.3 94.3 2.9 2.8
1.00 94 91.0 8.6 4.2 99.0 0.4 0.6

Table 6: Experimental results for variation of parameter δk.
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5 Conclusions and Future Work

In this research, we contribute to healthcare location literature by addressing a capacity plan-

ning problem for medical diagnostic services in a public healthcare system. We introduced a new

scheme of joint resource planning in public healthcare institutions together with a network of pri-

vate providers. The aim is to satisfy all demand without limited budget, in this sense, the problem

trying to minimize the annual required investment and operative cost to provide the service. There

are three alternatives to allocate demand: (1) internal allocation (inside a hospital of an institu-

tion), (2) inter-institutional allocation and (3) allocation to the private providers. A MILP model

incorporating patient acuity levels, different types of equipment and the evaluation of demand in

periods was introduced.

The test instances created for empirical evaluation offered good insights about the scope of the

B&B to solve the problems. Although, instances up to 90 facilities were solved with good relative

gaps, there was no significant difference in relative gaps for instances up to 120 facilities. The B&B

was not efficient for instances of 180, 240 and 300 facilities, which presented high relative gaps.

Overall, instances of 30, 60, and 90 facilities presented in average a relative gap of 0.41%, instances

of 120 facilities a relative gap of 5.32%, and instances of 180, 240, 300, and 300 facilities a relative

gap of 46.48%.

A sensitivity analysis was performed to understand the behavior of some important parameters.

We found out that the capacity of the equipment could affect the complexity of the problem. The

higher the number of equipment units are required in the system, the more complex to solve the

problem is. A similar effect is presented with the policy of minimum internal capacity in each

institution, when the policy is more flexible the problem is more difficult to solve. The values of

σk, ωk, and δk could affect the total cost and the efficiency of the service. The values of σk and ωk

must be high to avoid increasing the costs, and the values of δk must be low. For this reason, it

is required to identify the corresponding values of each parameter when the related constraints of

each one are not considered in the model, values outside of these boundaries will produce significant

changes in the solutions.

The presented problem minimize the total cost of providing the total coverage of a diagnostic

service. This assumption, in some cases, could not be very possible to consider because in some

countries or institution there is a limitation with the available budget in the planning of resources.

For this type of situations, it is required to modify the current formulation of the problem. Instead

of considering the minimization of the total cost, this could be considered as a constraint and

in the objective function could be considered the maximization of the coverage for instance. As

an alternative, the use of multi-objective optimization could be used to minimize operative costs

and maximize the coverage. Some additional opportunities are available to extend the research

adding new characteristics evaluated in recent researches like the uncertainty in demand or supply
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of services, the use of hierarchical hospital structure, multiple services evaluation, evaluation of lost

demand or patient dissatisfaction. Furthermore, the problem formulated is focused to help decision

makers to take strategic decisions about the infrastructure planning, but a second problem, that

is required to solve, is the one associated with the operative decisions. In this sense, it is required

a methodology to evaluate the best strategies for the programming of services which requires a

coordination between departments, staff and institutions.

As it was observed, solutions to large scale instances were far from optimal. The optimality gaps

found by B&B were very high. Therefore, this opens up the opportunity for developing specialized

heuristics that can find good quality solutions for larger scales instances. The structure of the

problem can be exploited to develop efficient heuristics by solving an appropriate easy associated

subproblem in an iterative procedure.
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