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Roger Z. Ŕıos-Mercado
Graduate Program in Systems Engineering,

Universidad Autónoma de Nuevo León, Av. Universidad s/n, Cd. Universitaria,
San Nicolás de los Garza, Mexico

Elena Fernández
Department of Statistics and Operations Research,
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Abstract

The Prize-collecting Rural Postman Problem, also known as the Privatized Rural Postman Problem,
is an arc-routing problem where each demand edge is associated with a profit, which is collected
once if the edge is served, independently of the number of traversals. Included edges incur in routing
costs proportionally to the number of traversals. In this paper, we introduce the Windy Privatized
Rural Postman Problem in which routing costs also depend on the direction of the traversals.
For this problem, we propose a solution heuristic based on ant-colony optimization. The proposed
method is capable of constructing profitable closed walks with low computational load. The quality
of the obtained solutions can be assessed comparing their values to the bounds.

Keywords: Edge routing; Price collecting; Windy; Ant-colony optimization.



1 Introduction

In Arc Routing Problems (ARPs) customer demand is represented by a subset of edges of a given
graph and it is usually assumed that all the customer demand has to be served. In Prize-Collecting
Arc Routing Problems (PARPs), however, demand edges are not necessarily served: there is a
profit associated with each demand edge and the profit from each served edge is collected once,
independently of the number of times it is traversed. The Prize-Collecting Rural Postman Problem
(PRPP) was introduced under the name of Privatized Rural Postman Problem in Aráoz et al.
[2006] and further studied by Aráoz et al. [2009b] who proposed an algorithm for solving it.

As shown by Aráoz et al. [2006], the PRPP is an extension of the well-known Rural Post-
man Problem, which is simply obtained by setting the profits of all demand edges sufficiently
large. A further PARP, which has recently been studied by Franquesa [2008] and Aráoz et al.
[2009a], Aráoz et al. [2013], is the Clustered Prize-Collecting Arc Routing Problem (CPARP). In
the CPARP, the connected components defined by demand edges are considered: if a demand edge
is served, then all the demand edges of its component are served. Other types of route-construction
problems with profits have been studied, for instance, by Feillet et al. [2005], by Archetti et al.
[2010], and more recently, by Arbib et al. [2014] who incorporate location decisions in the model.
For a more comprehensive review, the reader is referred to the work by Archetti and Speranza
[2014].

Many ARPs have been studied on windy graphs. Windy graphs are undirected graphs having
two non-negative values associated with each edge, representing the costs of traversing the edge
in either direction. Windy ARPs constitute an important class of problems, as the windy version
of an ARP is a generalization of its undirected, directed and mixed versions. A global overview
of the Windy General Routing Problem which contains most of the studied windy ARPs with a
single vehicle as particular cases is given by Corberán et al. [2008]. Recently, Benavent et al. [2014]
addressed a multi-vehicle WRPP. We only know, however, of three works — by Franquesa [2008],
by Corberán et al. [2011], and by Aráoz et al. [2013] — considering windy PARPs. In all of these
three cases the studied problem is the CPARP.

In this work we introduce the Windy Prize-Collecting Rural Postman Problem (WPRPP), which
is the asymmetric version of the PRPP, and present a heuristic for it. To the best of our knowledge
this is the first work on the WPRPP. The motivation for our study comes from the difficulty of the
WPRPP as well as from its potential applications. As mentioned by Aráoz et al. [2009a], typically
PARPs appear in the context of private companies looking to maximize operational profits, so that
demand edges will not be served unless they yield a profit for the company, and each demand
edge is served at most once. Applications of the WPRPP arise in the case of garbage collection,
collection of goods for recycling or street cleaning, among others.

We approach the problem with a heuristic inspired by ant-colony optimization [Dorigo and Birattari,
2010] and report experiments regarding the tuning of the few parameters (mostly related to
pheromone management). The experimental results are satisfactory in terms of both solution
quality and runtime, especially taking into account the difficulty of the problem.

The remainder of the paper is organized as follows. In Section 2 we formally introduce the
WPRPP by means of a mathematical formulation and develop some upper and lower bounds
for the problem that will be useful for solution quality evaluation. In Section 3 we present the
proposed heuristic. Section 4 describes the computational experiments that we have run, and gives
extensive numerical results, which are thoroughly interpreted. The paper ends in Section 5 with
some comments and conclusions.
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2 Problem Description

In this section we introduce the WPRPP and give some bounds for it. First we provide some basic
graph-theoretical definitions that are needed for the discussion. A graph is a pair of sets (V,E),
where the elements of V are called vertices and the elements of E , which are called edges, are pairs
of vertices. The number of vertices is denoted by n and the number of edges by m; the density of a
graph is the proportion of edges present from the maximum possible. The set of vertices that are
connected to vertex v by edges that begin at v is called the neighborhood of v and denoted by Γ(v).

An edge can be directed meaning that the direction of traversal over that edge is fixed. The
edge between vertices v and w is written as {v,w} when the traversal direction is indifferent, but
as (v,w) when it is fixed to originate from v and to end in w, in which case it is called en arc.

A walk is a sequence of vertex visits that proceeds along edges of the graph, proceeding from a
vertex to a neighboring vertex, and so forth. It is closed if it ends in the same vertex where it began;
if there are no repeated vertices on a closed walk, it is a tour. A walk may be represented either as
an ordered list of vertices that represents the visits or as an ordered list of arcs that represents the
traversals.

2.1 Problem definition

Input: An undirected graph G = (V,E), with |V | = n and |E| = m, a non-negative symmetric
profit function p that assigns to each edge in E a value in R, a non-negative asymmetric cost function
c that assigns to each edge in E two values in R (one for each possible direction of traversal), and
a depot vertex d ∈ V .

Task: Find a closed walk T in G that includes a given depot vertex d maximining the total
profit minus the cost, where a cost is incurred at each traversal of an edge whereas the profit is
collected only at first traversal of an edge. That is, the objective function is

max
T ∈Π(G,d)

(
P (T )− C(T )

)
, (1)

where Π(G,d) is the set of all possible closed walks in graph G that contain d, P (T ) is the total
profit gained by T , and C(T ) is the total cost incurred by T . Walks T ∈ ΠG with positive values
of the objective P (T )− C(T ) indicate profitable solutions.

Let tTvw denote the number of times that an arc (v,w) is traversed on closed walk T . Note that
tTvw = 0 when T does not contain the arc (v,w). Clearly, tTvw depends on T . When the closed walk
T we are referring to is clear from the context, we drop the index T .

Then, the total profit P (T ) is given by

P (T ) =
∑

{v,w}∈E

min {1, tvw + twv} pvw. (2)

Similarly,

C(T ) =
∑

{v,w}∈E

tvwcvw + twvcwv (3)

represents the total traversal costs. The WPRPP is NP-hard since it is a directed version of the
PRPP, which is known to be NP-hard [Aráoz et al., 2006].
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2.2 Bounds for WPRPP

We define an asymmetric auxiliary traversal-profit function

βvw = pvw − cvw, (4)

representing the net profit of a first traversal of each arc, profitable if positive. Note that each edge
in the graph gives rise to two arcs, for both of which the traversal-profit is defined.

We also define a symmetric auxiliary profit function α

αvw = pvw − (cvw + cwv) (5)

for each edge of the graph.
To derive an upper bound for the net total cost, we first associate with each edge {v,w} ∈ E the

maximum possible net profit associated with it, namely max{β{v,w},β{w,v}}. Then, an upper bound
on the optimal WPRPP value can be obtained by considering only those edges with a positive net
profit:

U =
∑

{v,w}∈E

max{0, βvw,βwv}, (6)

To derive a lower bound, we obtain a solution in which the entire graph is traversed by depth-
first search — by definition, each edge is traversed exactly once in each direction. The total profit
of such walk gives the lower bound:

L =
∑

{v,w}∈E

αvw. (7)

In practice, we have observed that L is a very weak lower bound, and thus we have used a
reference value R given by

R =
∑

{v,w}∈E

max{0, αvw} (8)

to contrast the quality of the heuristic solutions. Note that R accounts for the overall net profit
that could be obtained with the profitable two-way traversal edges. Note that this is not a valid
bound, neither lower nor upper.

Recall that t is a function that maps each directed edge in G to the number of times it is
included in T . Now, the total profit of a closed walk is

B =
∑

(v,w)∈T

(pvw − tvwcvw) , (9)

that is, all the obtained profits minus the involved costs. In order to obtain indicators of the quality
of solutions that are comparable over all possible input graphs, we normalize both the reference
value R of Equation (8) and the total profit of a solution B of Equation (9) in terms of the upper
and lower bounds:

R̂ =
U −R
U − L

(10)

and

B̂ =
U − B
U − L , (11)

where the resulting value is in the [0, 1] interval when the reference value or the total profit,
respectively, is between the two bounds, and exceeds one whenever the value in question is worse
than the lower bound (which is possible for a heuristic unless the solutions are pruned specifically
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to exclude solutions worse than the known bound). For instance, if L = 50 and U = 100, a reference
value R = 70 would normalize to R̂ = 0.6 and a solution with B = 85 would normalize to B̂ = 0.3.
Note that the lower the value of B̂ the better as it reflects how close the value of the solution is
from its upper bound. If B̂ > 1 then the solution is very poor as even a full traversal is more
cost effective. Using these normalized indices permits comparison between different instances of
different size and with very different values for the upper and lower bounds.

3 Ant-Colony Based Heuristic

Ant-colony optimization (ACO) [Dorigo and Birattari, 2010, Dorigo and Blum, 2005] refers to a
very diverse set of agent-based heuristic algorithms that solve complex problems by performing —
either sequentially or in parallel — several local searches that share information with simultaneous
or future search agents through a (globally accessible) data structure referred to as a pheromone
table (following the terminology common for ACO literature). Pheromone is deposited to mark
promising regions of the solution space when visited by a single agent with the goal of attracting
other agents towards it. This pheromone then evaporates over time. This type of methods have
been successful in routing problems and are often employed [Ding et al., 2012, Narasimha et al.,
2013, Reed et al., 2014, Ting and Chen, 2013].

In particular, we chose ACO for the present problem as the input graph can be thought to
consist of profitable and non-profitable zones; a minimal profitable zone is a single edge that has
a lower traversal cost (at least in one direction) than the profit obtained from it, and then larger
profitable zones are formed as induced subgraphs of vertices that connected to each other with such
profitable edges. A solution to the problem needs to pick some of these protifable zones and to
connect them into a closed tour that includes the depot. The pheromone analogy of ACO that is
intended to guide a search procedure towards high-fitness subsolutions, even when it is required to
pass through a non-promising zone to reach them, is a good fit to the problem at hand.

Also Santos et al. [2010] use ACO for a different arc routing problem; their approach starts
with a constructive phase of generating initial solutions which are then improved by pheromone-
guided exploration. Our solution has no initial population but rather uses the pheromone table so
that subsequent constructions may identify profitable zones based on computations done by earlier
constructions. Also, their problem has capacity constraints regarding the tour to be constructed,
whereas our problem poses to restriction to the length of the closed walk as long as extending the
route is able to provide an increase in the total benefit. Doerner et al. [2004] solve a capacitated
routing problem with an ACO as well, with promising results.

At the initialization step of our proposed heuristic, we set a pheromone table at all-zero initial
values: τvw = 0 for all (v,w). The same table will be used for all iterations (that is, for each ant).
We begin each iteration of the heuristic with a walk consisting only of the depot vertex, v = d.

Tour extension. A new vertex to visit along the walk is chosen as follows: each neighbor w of
the current vertex v is a candidate and it is given a preference weight that depends on the following
factors:

• the number of times the arc (v,w) has been included thus far, tvw,

• the number of times the arc (w, v) has been included thus far, twv,

• number of times the vertex w has been visited thus far, denoted here by ηw,

• the traversal cost of the arc (v,w), cvw, and the
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Algorithm 1 A pseudocode of the selection of the next vertex to visit that takes as parameters
γ and ϵ. The graph G is given as input, as well as the current vertex v and the present walk T of
length ℓ starting at d.

1: ω ← 0 (total cost of the current walk)
2: for w ∈ Γ(v) do
3: E ← # of traversals of {v, w} along T in either direction
4: V ← # of visits to w along T
5: ζvw ← cvw
6: if E = 0 then
7: ζvw ← ζvw − pvw
8: end if
9: τvw ← current pheromone level for (v, w)

10: νvw ← τvw × γ + ζvw × (1− γ)
11: if νvw < 0 then
12: νvw = ϵ
13: end if
14: χvw ← νvw/(E × V + 1)
15: cvw ← cost of travelsal for (v, w)
16: ω ← ω + cvw
17: store τvw for arc (v, w)
18: end for
19: c← Uniform[0,ω]; α← 0 (roulette-wheel selection)
20: for w ∈ Γ(v) in random order do
21: α← α+ τvw
22: if α ≥ c ∨

(
w = d ∧ exp(−ℓ−1) > Uniform[0, 1]

)
then

23: return w
24: end if
25: end for

• the current level of pheromone for arc (v,w), τvw.

We compute
νvw = γ × τvw + (1− γ)× ζvw+ (12)

where γ ∈ (0, 1) is a parameter controlling the importance of the pheromone table P in this phase
and

ζvw =

{
cvw − pvw, if tvw + twv = 0,
cvw, otherwise.

(13)

We then compute the final preference weight as

χvw =
υvw

(tvw + twv)ηw + 1
, (14)

with

υvw =

{
νvw, if νvw > 0,
ϵ, otherwise,

(15)

where ϵ > 0 is a default-preference parameter in order to maintain all neighbors as potential next
vertices and not create dead ends for the construction.

The goal of Equation (14) to make frequently visited vertices and multiply traversed edges
less preferable (the constant one is added in the denominator to avoid division by zero when the
neighbor has not yet been visited). We then perform a roulette-wheel selection using the values χvw

of the neighbors to select the neighbor to which to proceed along the walk. If the depot belongs to
the candidate list, its preference is modified by increasing its selection probability by

exp(−ℓ−1), (16)
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Algorithm 2 A pseudocode of the proposed method, taking as input the current pheromone table
P, formed by the present values of τij , ρ, the graph G together with a depot vertex d are given
as input and a closed walk is produced as output. We abuse the notation for brevity treating the
walk as a sequence and a set simultaneously.

1: V = {d}
2: B← 0
3: v ← d
4: T ← [d]
5: ℓ← 1
6: while (conditionless loop) do
7: w← select a neighbor of v (using Algorithm 1)
8: B ← B − cvw
9: if (v, w) /∈ T ∧ (w, v) /∈ T then

10: B ← B + pvw
11: end if
12: T ← T appended by (v, w)
13: ℓ← ℓ+ 1
14: if v ∈ V then
15: if B ≥ 0 then (profitable walk)
16: ∀τij ∈ P , τij ← ρ× τij (pheromone evaporation)
17: τij ← τij + log(1 + B)/ℓ,∀(i, j) ∈ T (pheromone deposit)
18: end if
19: end if
20: V ← V ∪ {v}
21: if v = d then return T (closed walk completed)
22: else if ℓ > 2m then
23: restart at line 1 (a cutoff for failing to close the walk)
24: end if
25: end while

where ℓ is the length of the current walk, making it more probable to close the walk the longer it
gets. The selected vertex is then appended to the traversal and the walk becomes one edge longer.
The pseudocode of the selection process is described in Algorithm 1.

Algorithm 2 shows the construction of a single closed tour, whereas the main procedure of the
ACO adaptation for the problem is shown in Algorithm 3. We use the following stopping criteria:
if the last added vertex is the depot, we probabilistically either conclude the iteration (as a closed
walk has been completed) or start another segment to extend it. If the last vertex was not the
depot and the walk length already exceeds 2m, we perform a cutoff, meaning that we abort and
discard the iteration (lines 24–25 in Algorithm 3). This is to avoid getting stuck adding long loops;
in our experiments we document the frequency with which this happens.

As we bind from above the maximum length of a potential solution and each step only examines
the neighbors of the current vertex, a single iteration takes O (m) time. In practice, the probability
of not returning to the depot within the allowed length, is small, as will be discussed in Section 4.
We also discuss the empirical runtime in detail in that section.

Pheromone management. When the selected vertex was already visited in the current partial
solution, and the newly generated circuit is profitable, meaning that the total cost at the present
B is positive, all the included edges increase their pheromone by log(1−B)/ℓ, where ℓ is the length
of the walk that constitutes the current partial solution and the constant one is present to ensure
that it will always be a non-negative variation in the pheromone. Before carrying out a pheromone
increase, the existing pheromone values are evaporated multiplying by a parameter ρ ∈ (0, 1).

A pseudocode of the main algorithm, incorporating the pheromone management to the walk
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Algorithm 3 A pseudocode of the proposed method, taking as input the maximum stall count k,
the improvement threshold ξ, as well as the input graph G together with a depot vertex d. A closed
walk is produced as output. We abuse the notation for brevity treating the walk as a sequence and
a set simultaneously.

1: P ← empty (global pheromone table)
2: a← 0 (stall counter)
3: B∗ ← nil (best total profit seen)
4: T ∗ ← nil (best solution seen
5: while a ≤ k do
6: compute T for (G, d) based on P (using Algorithm 2)
7: B ← the total profit of T
8: if B > B∗ then
9: if B − B∗ ≥ ξ then

10: a← 0 (improvement resets the stall counter)
11: else
12: a← a+ 1
13: end if
14: B∗ ← B
15: T ∗ ← T
16: end if
17: end while
18: return T ∗

extension and the iterations, is given in Algorithm 3. The stopping condition is discussed in the
next section; when performing a fixed number of iterations, we simply never reset the counter a.

4 Experiments

All experiments are executed on a MacBook Air with a 1.4 GHz Intel Core 2 Duo processor, 4 GB
of 1,067 MHz DDR3 memory, and a SSD, running OS 10.9.1, using the system-provided version
of Python 2.7.2, using NumPy (http://www.numpy.org/) in addition to standard libraries. We
have used the following set of instances, all of which are in turn generated from well-known Rural
Postman Problem (RPP) or General Routing Problem (GRP) instances:

S1: The 118 CPARP instances used by Aráoz et al. [2009a] with symmetric costs.

S2: The 118 CPARP instances used by Aráoz et al. [2009a] modified to have asymmetric costs.

S3: The 40 GRP instances of http://www.uv.es/corberan/instancias.htm transformed into
CPARP instances with symmetric costs.

S4: The 40 GRP instances of http://www.uv.es/corberan/instancias.htm transformed into
CPARP instances with asymmetric costs.

Table 1 depicts information on the instances, grouped according to their characteristics and
sizes. In each row, the instance group name, the number of instances (#) per group, number of
nodes, and number of edges in the original graph, are displayed. The sets are described in more
detail in Corberán et al. [2011].

These sets of instances were further grouped into two subsets A and B according to their size.
The 36-instance subset A has mostly smaller graphs, with n ∈ [7, 20], average being 15, and
m ∈ [10, 40], the average being 27. The 280-instance subset B has mostly larger graphs, with
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Table 1: Summary of the instances.

Group name # |V | |E|

Albaidaa 1 102 160

Albaidab 1 90 144

P 24 7–50 10–184

D16 9 16 31–32

D36 9 36 72

D64 9 64 128

D100 9 100 200

G16 9 16 24

G36 9 36 60

G64 9 64 112

G100 9 100 180

R20 5 20 37-75

R30 5 30 70-112

R40 5 40 82-203

R50 5 50 130-203

Alba 3 5 116 174

Alba 5 5 116 174

Alba 7 5 116 174

Grp 10 116 174

Madr 3 5 196 316

Madr 5 5 196 316

Madr 7 5 196 316

n ∈ [7, 196], average being 71, with m ∈ [10, 316], the average being 134. The smaller set A is here
used for more extensive experimentation such as parameter-space exploration.

Each graph instance provides us with several input instances to our problem, as we use an
input pair (G, d), selecting a specific vertex to be the depot. Hence a single n-vertex graph in fact
provides us with n inputs for the experiments. In all our reported experiments, each vertex was
used as depot.

Table 2 shows the relation between our sets A and B and the groups used in previous literature
[Aráoz et al., 2013]; our total also includes additional variants of sets S1 through S4 of the table,
for which |A|+ |B| >

∑
i |Si|.

Three simple rules were used to generate the edge profits in the cases where none were provided
in the original instance. All three rules generate the profit for each edge uniformly at random in
an interval

pvw ∈ [u, 3u), (17)

where the difference is the value used for u. For the first profit-assignment scheme, we used the
minimum of the two traversal costs defined for the edge in the original problem instance:

u = min{cvw , cvw}, (18)
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making it possible that some of the edges present are not profitable even when traversed in a single
direction. In the second scheme, we use average:

u = 1
2(cvw + cwv), (19)

where it is still possible for an edge to be profitable in only one direction, even though less likely
if the two costs differ (i.e., the windy characteristic we wish to attend). The third rule uses the
maximum cost,

u = max{cvw, cwv}, (20)

introducing possibly more edges with a higher traversal profit. It is no longer possible in this third
scenario to have an edge that yields no profit with a single traversal in either direction.

4.1 Heuristic Fine-Tuning

We first study the effects of the parameter values with the goal of determining the ideal value to
use for each; we leave autoadaptive parameter setting for future work.

First we explore values for the pheromone-weight factor

γ ∈ {0.0, 0.1, 0.2, . . . , 1.0}. (21)

The other parameters of the algorithm were fixed as follows: the inclusion constant ϵ = 1
and the evaporation factor ρ = 0.9999. We perform 30 executions on the A set, using now only
the minimum profit-assignment scheme of Equation (18). We measured the distribution of the
normalized best total cost B̂ of Equation (11) over the set of executions of the heuristic for each
value of γ. The results are shown in Figure 1a.

As can be seen, the minimum of the best solution value remains very small on all parameter
values, but the behavior of the worse solutions varies. In order to select the best value for the
parameter, we observe that the medians of B̂ are smaller than 0.3 for γ < 0.5 and slowly rise above
that for larger values. Also the minima of B̂ are less than 0.01 for γ < 0.4 and then grow. The
value 0.2 minimizes the first quartile and is the second smallest for the third; thus we choose to fix
γ = 0.2 for the remaining experiments.

Now, we proceed to vary the evaporation factor of the pheromone table

ρ ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.99, 0.999, 0.9999}. (22)

We include several values close to one as the evaporation in many other ACO-type heuristics is
kept slow. A value of 0.7 is recommended by Colorni et al. [1992], but we are particularly keen

Table 2: The first column indicates the instance group; S1 and S3 are instances with symmetric
costs whereas S2 and S4 have asymmetric costs. S1 and S2 are sets Albaida, P, D, G, and R,
whereas S3 and S4 are Alba, Grp, and Madr [Corberán et al., 2011].

Group A B Avg. n Avg. m

S1 18 100 45.6 96.7

S2 18 100 45.6 96.7

S3 0 40 146.0 227.3

S4 0 40 146.0 227.3
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Figure 1: Effects of the pheromone-affecting parameters.
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Figure 2: On the horizontal axis, the power of two x used the inclusion constant ϵ = 2x, and on
the vertical axis, box plots of the best normalized total cost B̂.

to direct the future walks towards observed profitable regions as we aim to combine as many as
possible, for which we chose a very high value in the first place. The rest of the experimental setup
remains unaltered; the results are shown in Figure 1b, where we report the normalized best total
cost B̂ of Equation (11) over the set of executions of the heuristic for each value of ρ.

The best median results are obtained with ρ ≥ 0.8, supporting the initial hypothesis of slow
evaporation being the most favorable. For keeping the worst results at the best possible level as
well as making the best results the best possible ones, we choose ρ = 0.9999, as originally. Again,
the runtimes of individual executions for input pairs (G, d) remained at fractions of a second for
all values of the parameter.

Finally, fixing all other parameters to the values chosen in this section, we study the effect of
the inclusion constant

ϵ ∈ {2−6, 2−5, . . . , 28, 29}. (23)

The maximum value for ϵ was set to be just above the three times the largest edge cost present in
set A, as the profits were generated within ranges depending on the costs (cf. Equation (17)); using
values of a magnitude similar to the largest possible gain would do little to guide the heuristic and
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Figure 3: A histogram showing the iteration number (horizontal axis) at which the best normalized
profit B̂ was found, up to a maximum of 500 iterations; the vertical axis indicates the frequency.

are therefore omitted.
The results are shown in Figure 2. For ϵ > 22, the best results begin to degrade. The medians

of B̂ are at their best for ϵ < 2−2, but the number of cutoffs (that is, walks that reach length 2m
before returning to the depot as indicated in Algorithm 3) begins to rapidly grow for ϵ < 2−3.
Hence we use ϵ = 2−3 = 0.0125 for the remaining experiments, keeping the number of cutoffs at
two at the most for each of the 30 executions.

We now estimate the number of iterations after which we can normally expect not to further
improve the current best solution. The results are shown in Figure 3 and reveal that the heuristic
keeps on improving upon the best solution for quite a large number of iterations. However, the
magnitude of the improvement drops drastically already after 20–30 iterations, as shown in Figure
4. However, there are sudden jumps later down in all three plots of Figure 4, and therefore, instead
of fixing the iteration count per se, we use a flexible stopping criterion, as the improvement rate
seems to depend on the instance structure: as soon as k = 30 consecutive iterations have not
reached an improvement over ξ = 0.05 on the normalized cost of the best closed walk, the heuristic
stops; the pseudocode in Algorithm 3 reflects this setup.

In summary, we have found thus far with the experiments on set A that for the minimum profit-
assignment scheme, choosing the parameters as γ = 0.2, ρ = 0.9999 and ϵ = 0.125 is a functional
setup and that we may cease when 30 iterations have failed to produce at least a 0.05 improvement
on the normalized total cost. For the remainder of the experiments we fix our heuristic parameters
at these values.

4.2 Heuristic Assessment on Small Graphs

We ran the heuristic with the parameter values determined in the previous section first for all of
the input graphs in set A, using all three profit-generation methods. Each vertex acted as depot
once and ten replicas.

We also ran modified versions of the heuristic for comparison: a simple search that selects the
next vertex to visit uniformly at random, a greedy search that select the next vertex to visit in such
a way that more a candidate increases the total profit of the present tour fragment, the higher the
probability of selecting it, and a tabu search with recently used edges being blocked from being
used again, unless no other candidate is present.

We set the tabu list capacity based on preliminary experiments with [1, 2, 4, 8, 16, 32] percent of
the edge count (rounded up with the ceiling function to obtain an integer) as the capacity for all the
instances of set A, for all three profit-generation schemes, for five depot vertices selected uniformly
at random, with three replicas per depot and a cut-off after 10 iterations of no impromement. For
the repetitions of each instance, we assigned six “votes” for the capacity that gave the best result
on average, five votes to the second, four votes to the third, etc. We then added up the voted over
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Figure 4: The improvement obtained on each iteration (horizontal axis) for all graphs in set A.
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Figure 5: On the vertical axis, the normalized reference values R̂ and the normalized values of
the best obtained solutions — cf. Equations (10) and (11), respectively — for the three profit-
assignment schemes in set A. The size of each dot is proportional the number of edges included
in the computation divided by 2m, that is, the larger it is, the bigger proportion of the edges has
been included. The light squares correspond to the reference values and the dark circles to those
of the obtained solutions.

all instances and chose the value with the highest vote count, which was two percent with a 22%
of the total votes (the second-highest votecount was one percent with 21%, but with small graphs
these both round up to the same list capacity). We leave more complex tabu search constructions
where the entities stored in the tabu list are tour fragments in general instead of just single ages
as future work.

For each execution, we recorded the values of the upper and lower bounds U and L, respectively,
as well as the reference value R, together with the numbers of edges included in the sums of L and
R — see Equations (7) and (8), respectively. We computed for each input pair (G, d) the total cost
of the best closed walk B∗, the length of this best closed walk found, and the time in seconds it
took to compute it.

Figure 5 TOBEDONE
Changing the profit-assignment scheme alters the abundance of edges that are profitable regard-

less of the direction of traversal. The proposed heuristic performs better under the minimum-profit
assignment scheme of Equation (18) (the left plot in Figure 5) when all edges are profitable for a
single traversal as pvw ≥ max{cvw, cwv}, but not necessarily double traversal (cf. Equation (20)).
On the horizontal axis in Figure 5, for each instance, the results corresponding to its different
possible depots are depicted consecutively.

Figure 6 shows the lengths of the obtained solutions divided by 2m (i.e., the total length of a
depth-first search), expressed as percentages — values above 100 are possible for closed walks that
traverse at least some edges more than twice.

We visualize the execution time of the proposed heuristic on the A set in Figure 7. The horizontal
and vertical axes indicate the number of vertices (n) and the number of edges (m), respectively.
For the sake of a visual comparison computing times are proportional to dot diameters. Each of
the three profit-assignment schemes is drawn separately.

13



 0

 100

 200

 300

 400

 500

 0  10  20  30  40  50  60

Fr
eq

ue
nc

y

Normalized length (%)

(a) Minimum profit assignment, nor-
malized length of the best solution.

 0

 100

 200

 300

 400

 500

 0  10  20  30  40  50  60

Fr
eq

ue
nc

y

Normalized length (%)

(b) Average profit assignment, nor-
malized length of the best solution.

 0

 100

 200

 300

 400

 500

 0  10  20  30  40  50  60

Fr
eq

ue
nc

y

Normalized length (%)

(c) Maximum profit assignment,
normalized length of the best solu-
tion.

 0

 100

 200

 300

 400

 500

 0  10  20  30  40  50  60

Fr
eq

ue
nc

y

Normalized length (%)

(d) Minimum profit assignment,
normalized length of the reference
value.

 0

 100

 200

 300

 400

 500

 0  10  20  30  40  50  60

Fr
eq

ue
nc

y

Normalized length (%)

(e) Average profit assignment, nor-
malized length of the reference
value.

 0

 100

 200

 300

 400

 500

 0  10  20  30  40  50  60

Fr
eq

ue
nc

y

Normalized length (%)

(f) Maximum profit assignment,
normalized length of the reference
value.

Figure 6: Histogram of the normalized lengths of closed walks, using each vertex in turn as depot.

For the numerical values of the runtimes, Figure 8 shows the individual runtime histograms for
each of the three profit-assignment schemes, using the total time for all the iterations until reaching
the stopping condition. In each case, for each instance and possible depot, its runtime indicates the
overall computing time (in seconds) for all the iterations until the stopping condition was reached.
It can be observed that the profit-assignment scheme has little effect on the runtime. The runtime
over the 3, 360 executions was over two seconds in only twelve cases and over five seconds only
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Figure 7: The maximum runtime (represented by the diameter of the dot) of the heuristic within
set A with respect to the number of vertices (n) and edges (m).
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twice: 6.5 seconds once under the average scheme and 10.6 seconds once under the average scheme.
For an improved visibility of the small runtimes we have cut the long tail from the histogram.

4.3 Heuristic Assessment on Larger Graphs

We now report the behavior of the proposed heuristic on instances of set B, using the same parame-
ter values as above. For these graphs, we experimented only under the minimum profit-assignment
scheme of Equation (18), and also counted the number of iterations aborted and the total time
spent on the aborted iterations. As these graphs require higher runtimes per execution, instead
of using all vertices as depots, we used a uniform random samples of five depots per instance.
TOBEDONE

First, in Figure 9a, we show the quality of the solutions themselves by means of the normalized
total cost of Equation (11). These are all well beneath the upper bound and concentrated around
the value L + 1

3(U − L). In the vast majority of the cases the values of the obtained solutions are
much better than the reference values; cf. Equation (8). Only in a few pathological cases the values
of the obtained solutions are worse than the corresponding reference values. We should also note
that the instance structure affects the quality of the obtained solutions, as was the case with the
instances in set A in Figure 5.

As we are now using a dynamic stopping condition based on the improvement obtained, we
include in Figure 9c a histogram of the frequency with which the number of iterations reaches a
given number. It rarely reaches 100. The runtimes for set B are shown in Figure 9d. There is a
flat heavy tail on the runtimes (shown in Figure 10): approximately one percent of the executions
take over two minutes. For set B, we find that 84 percent of the times the solution is produced in
less than 30 seconds and 95 percent of the times, the solution is obtained in less than one minute.

As the proposed heuristic is non-deterministic, a detailed asymptotic analysis can get lengthy,
but we want to provide experimental evidence for the informal reasoning of the time complexity.
In Figure 11 we plot the average runtime for the values of n and m that appear within set B. In
Figures 11a and 11b, each value of n or m, respectively, is considered independently (we call this
the raw data), where fit attempts have high error. Figures 11c and 11d give similar results when
the values of n and m are respectively binned. For this we have used fixed width bins of sizes 20
for n and 70 for m.

As can be seen in Figure 11, the empirical time requirements of the heuristic can be better
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Figure 8: Histograms of the individual runtimes over all executions of the heuristic for the three
profit-assignment schemes.
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Figure 9: Histograms of normalized total profits (absolute and relative), numbers of iterations, and
runtimes for set B.

appreciated with the binned data than with the raw data. We also exclude in each case one outlier
when fitting curves to the binned data (indicated in the figures). The cubic curve obtained for
the binned data adjusts quite accurately for both n and m, whereas the quadratic curve adjusts
adequately only for m, indicating experimental time complexity of order O

(
n3

)
and O

(
m2

)
for

these instances. In general, m ∈ O
(
n2

)
for graphs with densities close to one. However, graphs in

set B have, in general, a much lower density of edges which on average is ≈ 0.15. This explains
why we have observed in our experiments O

(
m2

)
∼ O

(
n3

)
.
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Figure 10: Percentage of instances that exceed a given runtime for instances in set B.

16



 0

 10

 20

 30

 40

 0  50  100  150  200

Av
g.

 ru
nt

im
e 

(s
ec

)

Number of vertices

(a) Number of vertices n versus the average
runtime; raw data.

 0

 10

 20

 30

 40

 0  100  200  300  400  500  600  700

Av
g.

 ru
nt

im
e 

(s
ec

)

Number of edges

(b) Number of edges m versus the average run-
time; raw data.

 0

 10

 20

 30

 40

 0  50  100  150  200

Av
g.

 ru
nt

im
e 

(s
ec

)

Number of vertices

(c) Number of vertices n versus the average
runtime; binned data.

 0

 10

 20

 30

 40

 0  100  200  300  400  500  600  700

Av
g.

 ru
nt

im
e 

(s
ec

)

Number of edges

linear
quadratic

cubic
quartic
outlier

data

(d) Number of edges m versus the average run-
time; binned data.

Figure 11: The average runtimes plotted against n and m for set B, with and without binning. In
each plot, four polynomial fits are drawn with lines. The same legend applies to all four plots.
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As already mentioned, the heuristic terminates when the walk is longer than 2m. We counted
the number of such cutoffs and report the histogram of the strictly positive values in Figure 12. In
total 91.4 % of the executions had zero cutoffs and are excluded from the histogram.

4.4 Robustness of the Solutions Found

We also experimented on the closeness of the computed solution with respect to the best solution
found during a set of iterations. For set A (the smaller graphs) we executed 100 iterations for each
input pair (G, d), whereas for set B we only executed 10 iterations for each input pair. We recorded
for each pair which was the best solution B∗ obtained for that pair and computed for any other
solution value B that was obtained for that same pairs tolerance of how far that value was from B∗:

ρ =
B∗ − B
B∗ . (24)

Note that there is no limit as such to the values that B can take — the route may not have been
profitable or have a profit (or a cost) near zero. Therefore, ρ ≥ 0, but is not bounded from above.

It is important to remember that the costs and the profits are floating-point numbers and the
profits were generated pseudo-randomly at uniform over a continuous range, for which equality is
unlikely unless the same exact solution is returned twice (which again is unlikely for a randomized
heuristic). Thus we cannot reasonably count the number of times the best solution appeared, but
rather how far from the best value were the other solution values. We illustrate this in terms of
tolerance levels: we compute for a given tolerance κ > 0 the percentage of solutions values that
were no further than κ from the best solution.

We used values for κ from 0.001 onward in multiples of two; the resulting plot is shown in
Figure 13. Note that for set A, the best solutions necessarily comprised 1% whereas for set B it
was 10%, for which the B set plots begin at a higher level. It can be observed in Figure 13 that the
profit-assignment scheme (minimum, average, or maximum of the two costs defined in the instance)
has a minor effect on the results (the minimum-generation being the hardest to make profitable
and hence also presenting a heavier tail of worse solutions) and the shape of the curve is generally
the same for the 100-execution A set and the 10-execution B set. The rapid increase indicates that
there are several solutions reaching approximately half of the best profit.

5 Conclusions

In this work, we have introduced the Windy Prize-Collecting Rural Postman Problem and proposed
an efficient heuristic for solving it, motivated by ant-colony optimization. The heuristic performs
essentially weighted random walks on the graph, using a pheromone table to store information on
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Figure 12: Histogram of the number of cutoffs per execution, when at least one cutoff was present
(that is, in 8.6% of the executions).
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profitable partial walks from early iterations towards future computations. We document numerical
results from numerous computational experiments, where in most cases good solutions (i.e., prof-
itable closed walks) are obtained, almost always in less than a half a minute for problem instances
adapted from previous literature with up to 196 vertices and 632 edges.

Note that presently the heuristic returns a closed walk upon returning to the depot. The
optimal solution could very well consist in several visits to the depot, which is easily incorporated
to the proposed heuristic by storing all the profitable walks and then attempting combinations of
those that had a positive total profit. As the number of possible ways to combine closed walks is
exponential, the cardinalities of the differences of the sets of the visited vertices or the included
edges could be employed to find tours that traverse largely distinct sections of the input graph and
hence would incur little loss of benefit when combined into a single walk with multiple visits to
the depot. We leave this combination step to future work in order to keep the presented heuristic
simpler.

In future work, we wish to compare the results obtained by the proposed heuristic to exact
results on small graphs as well as to a modification of the method proposed by Palma [2011] that
is based on tabu search but for a non-windy variant of the problem. We are also interested in a
variant of the problem where the depot is not fixed but the selection of the depot is part of the
problem formulation, as our experiments revealed that the choice of depot has a powerful impact
in the solutions found.

Also parallel versions of the heuristic are of interest, as it is rather straight-forward to implement
on a multicore or a distributed system as long as the pheromone table can be stored for read-write
access in shared memory and improvements on the best known solution are “broadcasted” for
implementing the relative stopping condition.

We will also consider a complete restart when a higher number of cutoffs are made, so as to
diminish the heavy tail reported for runtimes. We suspect that in some instance structures, the
pheromones placed early on may direct the future constructions to regions away from the depot and
then cycle there, avoiding return to the depot. We also leave the introductions of re-departures from
the depot to future work, as it would require a roll-back mechanism for when profitable extensions
are not found and hence somewhat complicates the formulation of the heuristic.

Another concern, with synergies to the parallel implementation, is the computational scalability
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of the proposed heuristic towards massive graphs. We have implemented an instance generator
based on a 3D-landscape (a randomized fractal-like process) and modelling with simple physics the
cost (work against gravity and friction) for creating windy graph instances and hope to use real-
world data from cities for generating realistic profit assignments. This would permit the creation
of arbitrary-sized problem instances.
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J. Aráoz, E. Fernández, and C. Franquesa. The clustered prize-collecting arc-routing problem.
Transport. Sci., 43(3):287–300, 2009a.
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