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Roger Z. Ŕıos-Mercado1

Universidad Autónoma de Nuevo León (UANL)

Graduate Program in Systems Engineering

AP 111-F, Cd. Universitaria

San Nicolás de los Garza, NL 66450, Mexico

roger.rios@uanl.edu.mx

Conrado Borraz-Sánchez

Energy and Infrastructure Analysis Group

Los Alamos National Laboratory

Los Alamos, NM 87545, USA

conradob@lanl.gov

September 2014

1Corresponding author



Abstract

This paper provides a review on the most relevant research works conducted to solve natural

gas transportation problems via pipeline systems. The literature reveals three major groups of gas

pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim

at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.

There is certainly a vast amount of research done over the past few years on many decision-

making problems in the natural gas industry and, specifically, in pipeline network optimization. In

this work, we present a state-of-the-art survey focusing on specific categories that include short-term

basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor

station modeling (fuel cost minimization problems). We discuss both steady-state and transient

optimization models highlighting the modeling aspects and the most relevant solution approaches

known to date.

Although the literature on natural gas transmission system problems is quite extensive, this is,

to the best of our knowledge, the first comprehensive review or survey covering this specific research

area on natural gas transmission from an operations research perspective. The paper includes a

discussion of the most important and promising research areas in this field. Hence, this paper can

serve as a useful tool to gain insight into the evolution of the many real-life applications and most

recent advances in solution methodologies arising from this exciting and challenging research area

of decision-making problems.

Keywords: Operations research; Natural gas; Pipeline optimization; Transmission systems; Non-

linear programming; Mixed-integer linear programming; Mixed-integer nonlinear programming;

Steady-state models; Transient models; Line-packing problem; Pooling problem; Fuel cost mini-

mization problem.



1 Introduction

Natural gas [93] is believed by many to be an essential energy source for the future. The abundance

of natural gas coupled with its environmental soundness and multiple applications across all sectors,

means that natural gas will continue to play an increasingly important role in meeting demand for

energy in many countries.

While short term factors can significantly affect the demand for natural gas, it is the long term

demand factors that reflect the basic trends for natural gas use into the future.

In order to analyze those factors that affect the long term demand for natural gas, it is most ben-

eficial to examine natural gas demand by sector. The three most important sectors are: residential

and commercial demand, industrial demand, and electric generation demand.

Residential and commercial : According to the U.S. Energy Information Administration (EIA),

the energy demand in the U.S. residential and commercial sectors for example, is expected

to increase 6% between 2009 and 2035. Natural gas consumption in the residential sector

accounts for 21% of all consumption in the U.S.

Probably the most important long term driver of natural gas demand in the residential sector

is future residential heating applications. Between 1991 and 1999, 66% of new homes, and

57% of multifamily buildings constructed used natural gas heating. In 2010, 54% of new

single family homes constructed used natural gas. The increase in the number of new homes

using natural gas for heat over the next 20 years is expected to provide a strong driver for

residential natural gas demand (see Figure 1.)

Figure 1: New houses by heating fuel type 2000 – 2007 (Source: EIA - US Natural Gas Markets:
Mid-Term Prospects for Natural Gas Supply - 2008)

Regarding the energy demand in the commercial sector, the EIA expects that it increases at

an average annual rate of 1.1% through 2035. Commercial floor space is expected to increase

at a rate of 1.2% per year over the same period, so the energy demand per area of commercial
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floor space is actually expected to decrease 0.1% per year reflecting improvements in energy

efficiency. Natural gas currently supplies 15% of the energy consumed in the commercial

sector and will do so through 2035.

Industrial : The EIA projects that industrial energy demand will increase at an average rate

of 0.9% per year to 2035. The estimate represents energy requirements for both energy-

intensive manufacturing industries (which are expected to decline), and non energy-intensive

manufacturing industries (which are expected to grow). Industrial demand accounts for 27%

of natural gas demand. The primary force shaping the demand for natural gas in the industrial

sector is the movement away from energy-intensive manufacturing processes. There are two

driving forces behind this shift: the increased energy efficiency of equipment and processes

used in the industrial sector, as well as a shift to the manufacture of goods that require less

energy input. This trend is expected to hold into the future, and is the reason for modest

increases in energy demand for the industrial sector.

Electric generation: The demand for electricity is predicted by the EIA to increase by an average

rate of 1% per year through 2035. In order to meet this growing demand, EIA predicts that

223 gigawatts of new electric generation capacity will be needed by 2035. Because of the

relatively low capital requirements for building natural gas-fired combined cycle generation

plants, as well as the reduction of emissions that can be earned from using natural gas as

opposed to other fossil fuels, the EIA expects 60% of new electric generation capacity built

by 2035 will be natural gas combined-cycle or combustion turbine generation.

While natural gas-fired electric generation accounted for 16% of all generation in 2002, the

EIA predicts it will account for 24% of all generation in 2035. In addition to increased

demand for natural gas powered central station generation, distributed electricity generation

(as discussed for residential, commercial, and industrial sectors) may serve to increase the

demand for natural gas for electricity generation purposes in the future.

The EIA, in its Annual Energy Outlook 2011 [121], projects that natural gas demand in the

United States could be 26.55 trillion cubic feet (Tcf) by the year 2035. That is an increase of

16% over 2009 demand levels. In comparison total energy consumption is expected to increase by

20% (from 94.79 quadrillion British thermal units to 114.19) by 2035. The EIA predicts an annual

energy demand increase of 0.7% over the next 26 years.

On an international arena, assessments in natural gas demand, production and reserves also

foresee a continual increase in the decades ahead. According to global projections provided by

the EIA in its International Energy Outlook 2011 [122], natural gas consumption increases at

an average rate of 1.6% per year through 2035. Models used to generate these projections are

based on macroeconomic assumptions and obey the Organization for Economic Cooperation and
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Development members (OECD) and non-members (non-OECD). OECD countries are split into

three subgroups: OECD Americas (United States, Canada, and Mexico/Chile), OECD Europe,

and OECD Asia (Japan, South Korea, and Australia/New Zealand). Non-OECD countries are split

into five regional subgroups: non-OECD Europe and Eurasia (which includes Russia); non-OECD

Asia (which includes China and India); Middle East; Africa; and Central and South America (which

includes Brazil). Figure 2 shows global projections in natural gas consumption for OECD and non-

OECD members. Results indicate that growth in natural gas consumption is most concentrated

in non-OECD countries while accounting for 76% of the total world increment in natural gas

consumption.

Figure 2: Annual projection values of world natural gas consumption through 2035 for OECD and
non-OECD members (Source: Oil and Gas Journal and EIA)

Figure 3: Projected world energy consumption by end-use sector and fuel (Source: EIA - Interna-
tional Energy Statistics database, March 2011)
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World projections of energy consumption by end-use sector and fuel through 2035 are shown

in Figure 3. Electric power sector projections are shown separately in Figure 4, with the addition

of nuclear power projections. Figures reveal that most of natural gas consumption is concentrated

in the industrial and electric power sectors, accounting for 87% of the total world natural gas

consumption. By comparison with other hydrocarbon fuels, figures also indicate that natural gas

continues to be the fuel of choice through 2035. Natural gas consumption growth is observed at an

average of 1.7% and 2.0% per year in the industrial and electric power sectors, respectively.

Figure 4: Projected world energy consumption of the electric power sector (Source: EIA - Interna-
tional Energy Statistics database, March 2011)

Factors such as low greenhouse gas emissions and relatively reduced capital costs make natural

gas position competitive in most of the sectors among other energy sources, particularly for new

power generation facilities. In addition, global projections in natural gas reserve levels support

growth in markets through 2035. Figure 5 shows global projections in natural gas reserves by

geographic regions. In the figure, the largest concentrations are observed in Eurasia and the Middle

East, where as of January 2011 four of non-OECD Middle East’s more important producers, namely

Qatar, Iran, Saudi Arabia and the United Arab Emirates, claim together more than 40% of the

world’s proved natural gas reserves.

Regarding world natural gas production estimates, OECD and non-OECD countries reveal

increases at an average rate of 0.9% and 2.0% per year through 2035, respectively (see Figures 6–

7). Projected values for non-OECD countries also indicate a production growth that accounts

for more than 81% of the total growth in world natural gas production, which exceeds their own

projected consumption growth. As a result, export trades to OECD countries are also projected

through 2035.

Among OECD subgroups, despite the 84% projected increase in Norway’s natural gas produc-

tion, OECD Europe shows a decline in its projections while falling from 10.6 trillion cubic feet

in 2008 to 8.3 trillion cubit feet in 2035. OECD Asia reveals the strongest growth in natural gas

production among OECD regions, with an average rate of 4.5% per year.

Among non-OECD subgroups, Middle East projects the largest growth in natural gas production

while increasing its values from 13.5 trillion cubic feet in 2008 to 28.8 trillion cubic feet in 2035.
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Figure 5: Projected world natural gas reserves by geographic region (trillion cubic feet) – Sources:
Oil&Gas Journal and EIA

Europe and Eurasia also project a strong growth in natural gas production with a 32% increase

from 2008 to 2035, where Russia is the dominant natural gas producer, contributing with more

than 75% of the production estimates. Readers interested in a detailed analysis on global trends

in natural gas demand, production and reserves are referred to [122].

Figure 6: Projected world natural gas production by OECD subgroups (trillion cubic feet)

It is important to note that the projected global steady climb on trends in demand, production

and reserves levels for natural gas could increase as climate change legislation grows demand for

low-carbon fuels such as clean natural gas. While forecasts made by different federal agencies

may differ in their exact expectations on natural gas global tendencies, one result is recurrent

across studies: natural gas consumption, production and reserves will continue to increase for the

foreseeable future.

The following stages are involved in the process of getting the natural gas out of the ground,

and driven to its end destination.
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Figure 7: Projected world natural gas production by non-OECD subgroups (trillion cubic feet)

Exploration: In this stage, the issue of how natural gas is found and how companies decide where

to drill wells for it is addressed.

Extraction: This stage deals with the drilling process, and how natural gas is brought from its

underground reservoirs to the surface.

Production: In this stage the processing of natural gas once is brought out from the underground

takes place.

Transport : The natural gas is transported from the processing plant to local distribution compa-

nies across a pipeline network in this stage.

Storage: This stage accounts for the storage of natural gas.

Distribution: In this stage, natural gas is delivered from the major pipelines to the end users.

Marketing : This stage involves the buying/selling activity from the natural gas marketers.

The efficient and effective movement of natural gas from producing regions to consumption

regions requires an extensive and elaborate transportation system. In many instances, natural gas

produced from a particular well will have to travel a great distance to reach its point of use. The

transportation system for natural gas consists of a complex network of pipelines, designed to quickly

and efficiently transport natural gas from its origin, to areas of high natural gas demand. Trans-

portation of natural gas is closely linked to its storage: should the natural gas being transported

not be immediately required, it can be put into storage facilities for when it is needed.

There are three major types of pipelines along the transportation route: the gathering system,

the interstate pipeline system, and the distribution system. The gathering system consists of

low pressure, small diameter pipelines that transport raw natural gas from the wellhead to the

processing plant. Should natural gas from a particular well have high sulfur and carbon dioxide
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contents (sour gas), a specialized sour gas gathering pipe must be installed. Sour gas is corrosive,

thus its transportation from the wellhead to the sweetening plant must be done carefully.

The field of Operations Research has taken a major role in the natural gas industry as a num-

ber of important and relevant problems in design, extraction, production, transportation, storage,

distributing, and marketing, have been successfully tackled by OR models and techniques over the

past 40 years. Zheng et al. [137] provide a recent survey on optimization models in the natural

gas industry while focusing on three specific aspects: production, transportation, and market. The

authors basically discuss a mathematical formulation of the underlying problem and provide a lit-

erature revision of the existing optimization techniques that solve it. Their study covers six general

problems, namely the production scheduling problem, the maximal recovery problem, the network

design problem, the fuel cost minimization problem, and the regulated and deregulated market

problems. Our goal in this paper is to discuss the most relevant research work that has been done

in the natural gas transport industry from the operations research perspective. The paper covers

works on three specific optimization areas posed by the gas transport industry when optimizing its

transmission systems. This involves problems in short-term basis storage, pipeline resistance and

gas quality satisfaction, and fuel cost minimization via pipeline transmission networks.

The paper is organized as follows. We provide next a more in-depth insight into the natural

gas industry. Particularly, we emphasize the main components of natural gas transmission pipeline

systems and highlight those stages that define the focus of the present work. Some concepts

regarding the modeling and optimization of natural gas transportation problems used throughout

the text are also discussed. In Section 3 we address the effective application of the optimization

theory on the transport and storage of natural gas towards the contractual demands satisfaction.

The section particularly discusses the existing, although very limited literature on the efficient

transport and short-term basis storage of natural gas along transmission lines, also referred to as

the line-packing problem. In Section 4 we deal with the pipeline resistance and gas quality problems

in natural gas transportation systems. The research works discussed here are based on pipeline

resistance studies, also referred to as the maximum flow capacity in a pipeline, and gas blending-type

constraints to meet gas quality requirements, also referred to as the pooling problem. In Section 5

we discuss the problem of how to transport the gas through a pipeline network at minimum cost

referred to as pipeline optimization. Final remarks and discussion on major challenges in the field

are presented in Section 6.

2 Background: Network Properties and Classification

Natural gas industry is a fast-growing infrastructure. It provides consumers with a virtually almost-

free natural gas access in its front end. By simply turning on the main valves (taps) for delivering gas

from a pipeline system, end users can make use of a wide list of home or industrial gas appliances.
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Nevertheless, the long trip that natural gas covers from the wellheads (as a raw material) to get to

residential or businesses (as a clean and efficient source of energy, i.e., as we know it, see Figure 8),

entails a considerable number of complex tasks. Such tasks correspond to different transitional

stages of natural gas that can be classified into two primary groups:

(a) Exploration, drilling, extraction, production and long-term storage of natural gas.

(b) Gathering, short-term storage, transportation and distribution of natural gas.

This classification obeys the key instrument used for the service to be achievable, namely pipeline

network systems. Unlike group (a), long pipelines of various diameters are essentially required for

the group (b) dynamics.

Figure 8: Natural gas.

Moreover, the 20th century witnessed the outbreak of business giants that captured most of

the transitional stages involved with natural gas from the wellheads to end users. Yet the changing

nature of the natural gas infrastructure called for new upgrades. Nowadays, small and medium size

companies are transforming the natural gas industry worldwide. Unlike the former corporations,

these companies derive profit by focusing their efforts on one or two specific transitional stages of

natural gas. As a result, the monopolistic control of the natural gas industry observed back in the

last century has been declining to some extent.

In this study, we focus primarily on works related to gas transport industry problems. Partic-

ularly, we discuss the most relevant works in the field of optimization that deal with short-term

storage, quality, and compressor fuel cost of natural gas pipeline network systems. Hence, we

provide next some insights into the gas transportation via pipelines.

2.1 Natural Gas Transportation Via Pipelines

The natural gas transportation is a crucial activity performed by the gas industry in which the gas

has to be moved from one location to another. Several types of transportation means might be

applied to transport the gas, yet it is well known that pipelines represent the most economical means
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to transport large quantities of natural gas. In addition, the advent of metallurgical improvements

and welding techniques, coupled with the exponential increase of pipeline networks during the

last decades all over the world, have made the gas transportation via pipelines more economically

attractive.

Currently, pipelines are used both offshore and onshore, with a remarkable difference in terms

of security and construction prices. Building pipeline systems under the sea is highly costly and

technically demanding, a lot more than onshore. For example, according to Gazprom1, the Nord

Stream2 (41 in) pipeline project is expected to cost around e 14.8 billion [96], of which 40.5% [40]

corresponds to the 965.7 km long onshore pipeline system on Russian and German territories,

whereas the remaining 59.5% is destined to the 259.4 km long offshore section of the project.

Hence, when financial, political or environmental issues arise, gas transportation operators look

for different alternatives to perform this task. This includes tanker ships and flatboats, by which

natural gas can be transported as LNG (liquefied natural gas), MLG (medium conditioned liquefied

gas), or CNG (compressed natural gas). More detailed information on commercially applicable

methods for natural gas storage and transport can be found in [24, 47, 58, 50].

Moreover, it is a common practice that the location, construction and operation of natural gas

pipeline systems are regulated by federal and state regulations. Nonetheless, in several countries,

including USA, Canada, and Brazil, pipeline systems are fully-privatized, i.e., they are private

company-owned and thus operated independently. In these scenarios, the fuel cost minimization

problem (see Section 5) has a priority focus. This, however, is not exactly the case in most of the

European countries. For example, in Nordic countries like Norway and Denmark, the compressor

stations located in transmission lines are usually kept on to their maximum capacity for long periods

of time, thus this problem is either completely neglected or becomes a lesser matter.

There are essentially three major types of pipelines (usually buried underground) along the

transportation lines, ranging in size from 4 inches to 48 inches in diameter (100 to 1,220 mm):

gathering systems, transmission systems, and distribution systems. Gathering pipeline systems

gather raw natural gas from production wells. Transmission pipeline systems transport natural gas

thousands of miles across the world to bring natural gas from the pre-processing plants or storage

facilities to distribution systems. Distribution pipeline systems can be found in communities and

distribute natural gas to homes and businesses.

1OAO Gazprom (Open Joint Stock Company) is the Russian state-owned energy monopoly established as the
largest extractor of natural gas in the world.

2Nord Stream is a two-line gas submarine pipeline to link Russia and the European Union via the Baltic Sea.
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Figure 9: Transportation pipelines.

The main differences among these systems are the physical properties of the pipelines used,

such as diameter, stiffness, material, etc., and the specifications of the maximum and minimum

upstream and downstream pressures. For instance, gathering and transmission lines are constructed

from steel pipe (see Figure 9), whereas distribution lines can be constructed from steel or modern

plastic pipe. A more detailed description of these pipeline systems is presented next.

2.2 Gathering Systems

Gathering lines are pipelines that collect gas from multiple flow lines, which in turn are connected

to a single wellhead in a production field. Flow lines are composed of narrow pipelines typically

buried 4 ft underground and working at a roughly 250 psi pressure. According to an Environmental

Protection Agency (EPA) study [123], flow lines represent one of the largest sources of emissions

in the gas industry due to methane leakage [61].

Gathering systems are composed of medium size steel pipelines, usually no more than 18 inches

in diameter, and working at a roughly 700 psi pressure. These systems basically carry raw oil or

nonodorous raw gas to centralized points, such as production and long-term storage facilities, or

marine docks. Submarine pipelines that collect gas from the deep water production platforms are

also considered gathering systems.

At the production facilities, also known as processing plants, the raw gas undertakes a number

of purification procedures. These procedures typically remove impurities like water, carbon oxide

(CO), carbon dioxide (CO2), mercury (Hg) and sulfur (S) to prevent corrosion of the pipelines,

or inert gases like helium (He) to increase the energy value of the gas. Heavier hydrocarbons like

propane (C3H8) and butane (C4H10) are also removed and treated as by-product of natural gas (a
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typical mixture known as liquefied petroleum gas, LPG, or LP gas).

After pre-processing, the gathering systems are also used to transport natural gas from the

production facilities to the transmission lines for its final sell and distribution. In some cases, the

raw gas is directly transported from the wellheads to a main transmission line or to a long-term

storage facility for its further treatment and use.

2.3 Transmission Systems

A transmission line is a pipeline mainly used to transport large amounts of natural gas across

long distances from a gathering, processing or storage facility to a distribution system, which may

include far-away storage facilities and large-volume customers. Note that the large-volume customer

category are those factories, power plants, petrochemical facilities, and gas institutional users that

are not downstream from a distribution center.

Several devices such as valves, regulators, pipelines, compressors, pressure gauges, junction

nodes, among others, play a key role in natural gas transmission systems to efficiently perform

the gas transportation task. These systems, federally regulated, are characterized for having long

steel pipelines (ranging from 3 inches to 48 inches in diameter) that may cross cities, states or even

countries. Large amounts of natural gas are typically transported by means of compressor stations

installed at strategic points along the transmission line. These compressor stations usually work at

a pressure of approximately 200 psi to 1,400 psi.

2.4 Distribution Systems

Distribution lines, also known as “main”, are pipelines used to supply natural gas to end users.

They are part of a network system of piping located downstream of a natural gas transmission line,

i.e., they are the middle step between high pressure pipelines and low pressure service pipelines.

Natural gas (local) distribution companies (LDCs) are establishments in charge of distributing

natural gas to end users. These companies usually face a number of management problems related

to natural gas purchase under conditions of uncertain demands and frequent price changes (variable

price rate). A good example is that of the Chilean local distribution system built in 1994, which

was aimed at serving residential, commercial, and industrial customers while lacked of local storage

facilities. Yet, it started its operations in 1997 and grew quite fast during the next decade, becoming

one of the largest LDC in Chile while serving gas to more than 200,000 residential customers [32].

In [32], Contesse et al. present a MIP model to optimize the purchasing and transportation contracts

for this Chilean LDC in the absence of local storage resources.

Natural gas distribution systems are small- to mid-size pipelines (ranging from 2 inches to 20

inches in diameter) which are constructed out of plastic, cast iron, and steel. They are usually

installed underground along streets and roadways. Due to safety reasons, distribution pipelines
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typically operate below their capacity and work at a pressure of approximately 0.5 psi up to 200

psi.

These systems connect with the main transmission lines at “city gate” stations. The key function

of a city gate station is to reduce the incoming gas pressure in order to meet safety regulations and

to allow gas distribution through primarily underground mains and service lines. According to the

U.S. Environmental Protection Agency (EPA)’s 2011 report [124], for example, there were more

than 1,200,000 miles of distribution lines in USA in 2009. This reflects an increase of roughly 5

times over the US distribution system observed back in 1990.

2.5 Technicalities of Gas Transmission Network Components

Compressor Stations

As mentioned above, compressor stations play a crucial role in the natural gas industry. They

are considered one of the most important assets in the considerably high number of transmission

pipeline network systems worldwide. Note that a compressor station may be composed of several

compressor units connected in series or in parallel.

A simple definition of a compressor is that of a device to increase the pressure of natural gas

by reducing its volume, thus providing the required propel force or boost to keep it moving along

the transmission line. These are devices strategically installed along the gas transmission lines that

provide enough energy to natural gas for its transmission. More precisely, a compressor unit along

a natural gas transmission system is a large mechanical device that receives the gas at pressures

ranging from 200 psi to 600 psi, and compresses it back up to 1000 psi to 1400 psi. (As a reference,

the typical vehicle tires work with compressed air at roughly 30 to 50 pounds of pressure per square

inch.) As a result, natural gas overcomes frictional losses and maintains required pressures to keep

moving through the transportation line towards another compressor station or end users.

Several types of gas compressors units can be found in the gas industry. Among the most

frequently used are those compressors characterized by a centrifugal dynamic movement or by

means of reciprocating positive displacements. The latter is a compressor in which the compressing

element is a piston having a reciprocating motion in a cylinder.

In many cases, the decision whether to use a centrifugal or reciprocating compressor unit in-

cludes, among other factors, a thorough analysis of operating conditions, hydraulic pipeline studies,

emission requirements, and general lifecycle cost estimates [91, 92]. In addition, the pressure and

flow characteristics of pipelines, coupled with the steady-state and transient capabilities of the

network system, also influence the design and arrangement of compressor units in a station [6, 75].

Readers interested in design and arrangement of compressor stations in natural gas transmission

systems are referred to the works of Akhtar [6], Kurz [74], Mokhatab, Santos, and Cleveland [92],

and Santos [113].
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Gate Settings

Gate settings are installed periodically (about every 10 miles) along the natural gas transmission

system to help control the gas flow when, e.g., a particular section of the pipeline must be isolated

for safety reasons or due to a scheduled maintenance. These are specific locations where the

gas streams can be stopped by closing a valve, and are usually bounded by fences to prevent

unauthorized operation of the valves.

When multiple lines are located parallel to each other in the same rights-of-way, crossover piping

that connects all of the pipelines together is built at the gate sites. This allows diversion of the flow

of the natural gas between the adjacent pipelines. The flexibility to divert gas from one pipeline to

an adjacent pipeline is extremely useful to allow one pipeline to be isolated and worked on while

gas continues to flow down the parallel pipeline system.

Rights-of-Way Corridors

Most natural gas transmission pipelines are located underground in rights-of-way corridors. This

terminology has to do with the fact that the pipeline owner has to obtain permissions from affected

landowners that give the operator the right to construct, operate, and maintain the pipeline for its

entire length. That is, a rights-of-way consists of consecutive property easements acquired by, or

granted to, the pipeline company. The main goal is to obtain enough space to perform unforeseen

or scheduled maintenance (or inspections) of the pipelines.

Since pipelines have a long life span, typically many decades long, the original owner or owners

of the land who gave permission to build the pipeline in its current location may not be the current

owners of the land. In the life of a pipeline, the landowners may change numerous times. Keeping

up with who the current owners are is a major task for the pipeline operator.

Valves and Regulators

Valves and regulators are typical components in a pipeline system. They are installed for operational

and safety reasons. That is, by means of a valve, the gas operator can restrict or direct the gas flow

from one point to another so that scheduled maintenance or demand requirements are met. The

operator may also require to completely shut down the gas flow through a specific pipeline section

due to malfunctions in order to prevent loss of fluid. In real-practice, regulatory requirements [87]

force the transporter to install mainline block valves at certain fixed spacing along the transmission

line.

Valves are constructed of steel due to regulations and specifications imposed by the American

Petroleum Institute (API), the American National Standards Institute (ANSI), and the American

Gas Association (AGA) [87].
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For several decades the scientific community in the field of gas pipeline optimization has been

significantly challenged with the large number of complex issues arisen from this particular real-life

decision making problem. Such aspects are thoroughly discussed in the following sections.

3 Short-Term Basis Storage

Reasons for success in different arenas of the natural gas industry are due to both the efficient

management of resources and equipment, as well as the effective implementation of the appropriate

analytical strategies. The natural gas transport and storage industry is no exception. Because of

the substantial increase in both natural gas demand and its reserves in recent decades, coupled

with the expected promising growth in its production and distribution in the years ahead, the

gas industry has become more aware of the need for a sustainable infrastructure that may lead to

increases in revenue.

It is well known that natural gas can be stored and transported in its different states of mat-

ter [24]. However, the natural gas transportation means other than pipelines, e.g., truck, train,

or ship, are usually not economically feasible [32]. For example, natural gas in its liquid form

at approximately -163oC (-260oF), also known as liquefied natural gas or LNG [47, 50], can be

transported in cryogenic containers while its volume is increased about 1/600th the volume in its

gaseous state. The liquefaction and re-gasification processes, as well as the specially designed cryo-

genic vessels (LNG carriers) or cryogenic tankers have shown to be very costly. However, LNG

can become economically appealing for the gas transport industry when the distance over which

natural gas is transported is significantly long. According to [50], shipping natural gas in its liquid

form is more beneficial than transporting it in its gaseous state via onshore and offshore pipelines

when the distance exceeds 700 miles and 2,200 miles, respectively.

Natural gas in its gaseous form is still considered the most economical way to be stored and

transported. In this section, we focus on those research works that address the effective application

of the transport and storage of natural gas that leads to contractual demands satisfaction over a

given planning horizon. More precisely, we discuss the existing, although very limited literature

on the efficient transport and short-term basis storage of natural gas along transmission lines, also

known as the line-packing problem. Readers interested in empirical models, theoretical foundations

and applications of long-term basis storage of natural gas are referred to the works of Zwitserloot

and Radloff [140], Neumann and Zachmann [94], Holland [66, 67], and the references therein.

The line-packing problem in natural gas transmission pipeline systems basically entails the

optimization of gas refill in pipelines in periods of low demand or sufficient capacity, and the gas

withdrawals in periods of shortfall. This is done by, e.g., closing (or throttling) a downstream valve

while upstream compressors continue sending gas into the pipeline, i.e., packing more gas in the

pipelines by increasing the pressure. A more complete description of the line-packing problem is
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provided next.

3.1 The Line-Packing Problem

Gas pipelines have proven to be the most suitable transportation means for the gas industry since

the advent of metallurgical improvements and welding techniques after World War II. Since then,

dependable and economic pipeline systems have become essential in preserving the continuous

business growth of the gas transport industry in national and international arenas. Nevertheless, a

common denominator in the transportation process is that a number of unpredictable or scheduled

events do occur on a daily basis. Among these events we can find, e.g., the break down of flow

capacities elsewhere in the system due to malfunctions, routine maintenance or inspection; failures

in upstream process capacity; shortfall in downstream capacity; demand uncertainty; and high

fluctuation in demand due to seasons (in the winter the demand is usually higher than in the

summer). However, gas producers must be able to supply gas to their customers despite such

difficulties.

As a strategy to some extent alleviate the consequences of those events, natural gas operators

must take into account one key fact: Gas pipelines do not only serve as transportation links between

producer and consumer, but they also represent potential storage units for safety stocks. That is,

due to the compressible nature of dry gas, large reserves can be stored on a short-term basis inside

the pipeline through a process called line packing. This is accomplished by injecting more gas

into the pipelines during off peak times by increasing the gas pressure, and by withdrawing larger

amounts of gas during periods of high demand when flow capacities elsewhere in the system break

down. Hence, the problem of keeping a sufficient level of line-pack during a given planning horizon

becomes critical to the gas transporter.

To conceptualize this problem, let us see the simplest example. Let us suppose that there is

a unique transmission line between one producer and one costumer, and let us assume that the

amount of gas required by the client during several consecutive periods can easily be satisfied with

only 70% of the maximum capacity. An obvious solution is simply to send the required amount for

the mentioned periods. However, let us assume that the demand increases up to 130% of maximum

capacity for some subsequent period. Here, the producer can not meet such requirement, thus

leading to considerable economic losses. Hence, the strategic idea would be to send for instance

100% of the maximum capacity, then consuming just the required demand in each period, and

storing the remaining gas to satisfy future extraordinary requirements.

Figure 10 shows a typical network instance that is composed of 10 source nodes, 10 sink nodes

and 10 pipeline segments. As we can observe from the figure, a highly potential storage unit can be

inferred by each pipeline in order to meet multiple gas demands during a given planning horizon.
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Figure 10: Potential network elements for short-term storage.

3.2 Literature Survey

Related works facing problems of seasonal peak demands can be traced back since 1970. However,

the literature reveals that these works were more focused on solving this problem from a managerial

perspective, rather than from an operative perspective. Welch et al. [127], for example, proposed

to deal with this problem by using other fuels and optimizing a number of scheduled interruptions

whenever the gas flow broke down. In addition, they showed that the availability of large industrial

contracts was an important factor in containing the peak demand. More recently, Contesse, Ferrer,

and Maturana [32] conduct a study on the natural gas supply chain, in which they infer that the

changes in the gas industry regulatory system have lead to several alternatives for absorbing demand

fluctuations based on contractual strategies of, for example, the use of storage facilities. They

mainly refer to two types of contracts: (a) a sale customer contract on a supply interruptible basis

in which customers have their gas supply shortened during periods of peak demands in exchange for

a lower price; and (b) the firm transportation contract, which allows shippers to reserve a portion

of the pipeline’s total delivery capacity for their own use.

From the mathematical programming perspective, some attempts, although few, have been

made in the direction of mathematical planning models for the line-packing problem [37, 28, 73,

54, 18].

For instance, de Nevers and Day [37] examine the natural gas pipeline inventory from a math-

ematical perspective to match time-varying demands with supplies in an unsteady-state pipeline

network system. Their study is based on two dimensionless parameters for the packing and draft-

ing behavior. As a result, their model is capable of showing the limits of the line-packing and
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line-drafting for a single pipeline segment.

Carter and Rachford [28] discuss several control strategies to operate pipeline network systems

through periods of fluctuating loads. Their study aims at finding an optimal schedule for the

line-pack under uncertain demand assumptions. As a result, they provide a number of possible

scenarios with specific schedules for modifying the set-point values of compressor stations.

Krishnaswami, Chapman, and Abbaspour [73] present a simulation approach for optimizing

pressure units of compressor stations to meet a specific line-packing along transient, non-isothermal

pipeline network systems. They first formulate an implicit finite difference model to provide a flow

capacity analysis, and then propose a nonlinear programming model to minimize the average fuel

consumption rate of each compressor station over a given planning horizon. The model is solved

by applying a sequential unconstrained minimization technique based on a directed grid search

method that solves the unconstrained subproblems. Due to the complexity of problem, their study

is, however, limited to a linear (gun-barrel) pipeline network system with two compressor stations

composed of three compressor units each.

Frimannslund and Haugland [54] follow the ideas presented in the work of Carter and Rach-

ford [28], and propose a mathematical formulation to cope with line-packing levels for a pipeline

network system in steady-state conditions. Their study is based on homogeneous gas batches, a

concept introduced in [28]. The concept refers to the creation of a number of batches (gas pack-

ages) inside the pipelines for their future scheduled withdrawal. The “homogeneous” term in turn

establishes that all gas batches are made of the same gas composition no matter when they are

constructed, thus implying the assumption that all gas sources in the network provide gas of the

same quality. Due to this assumption, no quality constraints on the transported and delivered gas

was required. According to [54], a blending process between the batches inside the pipeline seems

to be unrealistic unless a long lasting shortfall in downstream capacity takes place.

Borraz-Sánchez [18], motivated by the work of Frimannslund and Haugland [54], proposes and

implements a mixed-integer nonlinear programming (MINLP) model and a global optimizer-based

mathematical programming algorithm for solving large-scale natural gas transmission networks

problems under steady-state assumptions. Unlike Frimannslund and Haugland’s work, the key idea

behind Borraz-Sánchez’s MINLP model is to build up ’heterogeneous’ batches (i.e., gas packages of

possibly different composition) for a multiple-time period planning horizon. This strategy basically

allows the model to account for gas sources that may provide gas of different quality, thus resulting

in a more sophisticated model. An essential assumption of Borraz-Sánchez’s work is to consider

that no blending process among the batches takes place inside the pipelines [54], which is a rather

common practice in the gas industry. Moreover, a fundamental part of Borraz-Sánchez’s model is

also its capability to keep track of energy content and gas quality to ensure that contract terms

are met. The model assumes a specific gas quality at the sources (which may be determined by

producers), and satisfies the gas quality imposed at the terminals. Here, several gas streams of
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different composition may be blend at junction points of the network in order to meet the quality

requirements. The inherent problem in satisfying natural gas quality requirements, which directly

introduces an NP-hard problem known as the pooling problem [53, 62], is addressed in Section 4.

More recently, Zavala [136] presents a stochastic model to solve the line-packing problem. The

model also captures the network dynamics by discretizing the governing partial differential equa-

tions in time and space. Zavala considers a gas network with links comprising long pipelines and

nodes consisting of junction points and compressors. The proposed model is a representation of

a stochastic optimal control model that considers conservation and momentum equations, typical

operational constrains, and uncertainty in demands. The author performs a degrees-of-freedom

(DOF) analysis to verify the consistency of the model and uses the underlying results to derive

consistent initial conditions and non-anticipativity constraints. In addition, the author also incor-

porates a risk metric into the objective function to mitigate cost variance and system volatility. The

computational study demonstrates the benefits obtained with the stochastic formulation against

the deterministic and robust counterparts.

4 Pipeline Resistance and Gas Quality Satisfaction

We start by distinguishing two disjoint research groups encompassing network flow problems. One

group, which may be recalled as the classical group, defines constant arc capacities for transporting

solid goods, whereas the second group, committed to optimizing fluid flows, defines non-constant

arc capacities. In this section, we focus on those works contributed by the second group, which are

committed to optimize transmission pipeline systems of natural gas transport in steady-state.

Two major characteristics of steady-state network flow models are the strong dependence be-

tween the pipeline flow and the pressure drop along the transmission line, and the inclusion of

pressure values as a state variable at interconnection points. Furthermore, the pressure values in

the pipeline system are determined by the flow and pressure values of upstream network elements of

the evaluated component. Consequently, more refined modeling techniques are required to compute

the resistance of the pipelines.

The fundamental flow equation, based on derived solutions from partial differential equations,

has been universally accepted as the full statement to describe fluid flows under various boundary

conditions. This mathematical description of fluid flow is based on a physical principle and models of

physical behavior, namely the law of conservation of mass, Darcy’s law, and equations of state [87].

Basically, the bigger, shorter, and colder the pipeline containing lighter gasses is, the more flow is

permitted.

Menon [87] establishes that the pipeline resistance, also referred to as the maximum flow capac-

ity in a pipeline, is strongly dependent on the physical properties of pipelines and the composition

of the gas. Thus, during the last century several equations were proposed to simulate compressible
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gas flow in long pipelines, including the Weymouth equation (developed in 1912), the Panhandle A

equation (developed in 1940), and the Panhandle B equation (developed in 1956). The equations

were developed from the fundamental energy equation for compressible flow, but each has a special

representation of the friction factor to allow the equations be solved analytically. In addition, they

differ from each other by the method used to create them and the number of parameters used

to define them. For low pressures and short pipeline, they may not be applicable. The works of

Osiadacz [99], Crane [35], and Modisette [89] provide complete details of these equations.

Due to its simplicity and its accuracy when applied to gas flows at high pressures, coupled with

the fact that it has been around the longest, the Weymouth equation is, however, the most-widely

used to model flow capacities. The equation, which basically defines the relationship between the

flow and the pressure drop through a horizontal pipeline segment, is given by:

x2uv = Wuv

(

p2u − p2v
)

, (1)

where xuv is the mass flow rate through the horizontal pipeline segment (u, v), pu and pv are the

upstream and downstream pressure, respectively, and Wuv, referred to as the Weymouth factor, is

a parameter that depends on gas and pipeline properties as given by

Wuv =
d5uv

KzuvguTfuvLuv
,

where zuv is the compressibility of the flow in pipeline (u, v), gu is the specific gravity of the flow

arriving at node u, T is the gas temperature, fuv is the (Darcy-Weisbach) friction factor in pipeline

(u, v), Luv is the length of pipeline (u, v), duv the inside diameter of pipeline (u, v), and K is a

global constant with value defined by the units used.

Note that (1) typically expresses the mass flow rate in terms of standard ft3/day, which is not a

measure of volume per time, but a measure of mass per time, i.e., the mass contained in one cubic

foot of stated specific gravity at standard conditions given by the pressure base Pb(psia)(Kilopascals)

and the temperature base Tb(
oR). Such standard conditions are determined by gas sales contracts

and are different from those conditions usually defined by the scientific community. Moreover, flow

estimates become more accurate when the variability of the gas specific gravity is introduced into

the calculation, which results in an alteration of the standard measure.

4.1 Ideal Gas Law

An ideal gas is a theoretical gas composed of molecules, in which there are no intermolecular

attractive forces and all the internal energy is in the form of kinetic energy. From the kinetic

theory, it can be deducted the so-called ideal gas Law, which can be written
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z =
PV

NkT
, (2)

where z is the gas compressibility, P is the absolute pressure, V is the volume, N is the number of

molecules, k is the Boltzmann constant (1.38066× 10−23J/K), and T is the absolute temperature.

Eq. (2) defines the relationship between the state variables that characterize an ideal gas: P, V,

and T . Contrary to real gases, an essential assumption of an ideal gas is that z is equal to 1 for any

pressure value at a given temperature. However, real gases exhibit a clear dependence on current

pressure and temperature conditions, thus changing the compressibility. This is studied next.

4.2 Gas Compressibility

As observed in (2), the gas compressibility, also referred to as the z-factor, can be considered as

the deviation from ideal gas. More formally, it is defined as the relative change in gas volume in

response to a change in pressure and temperature. The importance of accurate estimates of this

parameter is obvious from (1) and the definition of Wuv.

The literature on gas metering reveals a number of diverse methods for approximating the

z-factor, including experimental measurements, equations of state methods [43], empirical correla-

tions [71], and regression analysis methods [44, 59].

For instance, in Chapter 4 of Katz et al. [71] a graphical correlation for the z-factor as a function

of pseudo-reduced temperature and pressure based on experimental data is presented. As a result,

the Standing-Katz z-factor chart has been used to obtain natural gas compressibility factors for

more than 40 years. Dranchuk and Abou-Kassem [43] used the equation of the state to fit the

Standing-Katz data and extrapolated to higher reduced pressure. This was accomplished by a

simple mathematical description of the Standing-Katz z-factor chart.

In addition, several equations have been introduced to compute the z-factor, including the

CNGA method, the AGA-NX19 and DPR methods.

Methods for Computing the z-Factor

The CNGA method [36] was developed by the California Natural Gas Association (CNGA) to com-

pute the z-factor based on the gas specific gravity, temperature and pressure values. This method

has been in use since the last century. One of its first applications is reported by Davisson [36],

who makes use of the method in a computer program for precise flow calculations. More recently,

Borraz-Sánchez and Haugland [21] make use of the CNGA method to compute gas compressibility

values in pipelines along natural gas transmission systems.

The AGA-NX19 method is used to compute z-factor values based on the gas specific gravity

and the average temperature and pressure conditions. The method was developed in a research

project supported by the American Gas Association (AGA) between 1956 and 1962 [114].
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The Dranchuk, Purvis, and Robinson (DPR) method uses the Benedict-Webb-Rubin equation

of state [17] to correlate the Standing-Katz chart in order to approximate z as a function of (g, T, P )

[44]. The DPR method uses several coefficients in a polynomial function of the reduced density, ρr.

Note that all these methods have a domain where they are reasonably accurate, and may break

down outside. A brief description of these methods is provided next. A complete survey can be

found in Menon [87].

4.3 Gas Specific Gravity Estimates

The specific gravity, g, is a dimensionless unit defined as the ratio between the density (mass per

unit volume) of the actual gas and the density of air at the same temperature. Menon [87] provides a

complete list of specific gravity values and other properties of various hydrocarbon gases. Published

values of the specific gravity of natural gas range from 0.554 to 0.870.

Specific gravity estimates in natural gas transmission systems are based on the principle estab-

lished for the pooling problem, i.e., quality constraints.

The Pooling Problem

In the oil and natural gas industry, the pooling problem refers to the scenario in which a number

of different sources in a network system provide gas or oil with different quality attributes (i.e.,

the product being transported is made of different composition) and which flow streams must be

blended in a series of pools in order to meet given customer requirements. The problem is an

extension of the minimum cost flow problem on networks describing three sets of nodes: sources,

pools and terminals. Here, the resulting quality of the end products, after they might have been

blended each other a certain number of times, depend on what sources they originated from, and

in what proportion. Typically, an expected range in the quality of the product being transported

is imposed at terminals.

As specified by Adhya, Tawarmalani, and Sahinidis [3] and Foulds, Haugland, and Jørnsten [51],

the mathematical model includes bilinear and nonconvex quadratic programming constraints, also

referred to as quality constraints, that make it hard to solve. The nonlinearity appears in two types

of constraints, namely the quality balance at pools or network elements, and quality bound at the

terminals.

Theorem 1. The pooling problem is NP-hard even in the case of single-layer of pools.

Proof: A poly reduction from the 3-dimensional matching problem to the single-layered pooling

problem. Interested readers in the complete proof are referred to [7].

Haverly [63] presents one of the pioneering works in this field, and since then the scientific com-
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munity has put special attention into proposing optimization techniques, models and applications

for the pooling problem. Aggarwal and Floudas [4] present a Bender’s decomposition-based algo-

rithm to search for global solutions to the pooling problem. Floudas and Visweswaran [49], Adhya,

Tawarmalani, and Sahinidis [3] and Almutairi and Elhedhli [8] pursue the goal of the previous work

and apply Lagrangian relaxation techniques.

Three main formulations of the pooling problem, based on nonlinear programming, can be

found in the literature [10, 88]: i) the p-formulation (Haverly [63]) which consists of flow and

quality variables; ii) the q-formulation (Ben-Tal et al. [16]) which replaces the quality variables of

the p-formulation with variables representing flow proportions; and iii) the pq-formulation (Tawar-

malani and Sahinidis [119]) which adds RLT cuts to the q-formulation (RLT –Reformulation-

linearization technique suggested by Sherali and Adams [115].) The pq-formulation dominates (i.e.,

is tighter than) both the q- and p-formulations, and the p-formulation is in turn dominated by the

q-formulation. However, the pq-formulation cannot be applied to networks with multi-layered of

pools. For this type of networks, dry gas pipeline transportation and multi-period inventory models

are applied. Audet at al. [10] propose a branch-and-cut quadratic programming algorithm to solve

the pooling problem, and study two mathematical models: a flow variables-based model and a

model based on flow proportions entering pools. As a result, they propose a hybrid model based on

the two tested models for general pooling problems. More recently, Alfaki and Haugland [7] pro-

pose a formulation based on source and terminal proportions (denoted the STP-formulation) that

is stronger than the pq-formulation proposed by Tawarmalani and Sahinidis [119], and suggest a

branching strategy for solving it. The STP-formulation basically combines the source and terminal

flow proportions, and defines specific flow streams on diverse paths of the network.

The literature reveals a good selection of pooling problems published by Haverly [63], Ben-Tal

et al. [16], Foulds, Haugland, and Jørnsten [51], and Adhya, Tawarmalani, and Sahinidis [3].

Moreover, when uncertainty plays a key role in the design and operation of the pooling system,

stochastic optimization models are applied. For instance, Li et al. [78, 79] propose a duality-based

decomposition method to guarantee finding an ǫ-optimal solution for the stochastic pooling problem.

The method basically decomposes the stochastic nonconvex mixed-integer nonlinear program into a

series of primal bounding subproblems by convexifying and underestimating the bilinear functions.

Since the resulting master problem is typically hard to solve, they apply relaxation and dualization

techniques to solve a sequence of primal bounding problems, feasibility problems and relaxed master

problem. The sequence of subproblems are submitted to version 8.1.5 of the global optimizer

BARON. BARON [118] is an implementation of a branch-and-bound algorithm where a convex

relaxation of the submitted problem is solved in each node of the search tree.
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Figure 11: A flow balance imposed by quality constraints

Quality Constraints

Let u and v be two network elements such that there is a link from u to v, and let xuv be the flow

variable through the link. Let qau denote the quality a of the flow stream leaving element u, i.e.,

the relative content of some gas component like e.g. CO2. For the flow stream qav entering element

v, the corresponding quality constraint is given by

qav =

∑

u∈Nv
xuvq

a
u

∑

u∈Nv
xuv

, (3)

where Nv is the set of upstream elements that connect v with a direct link.

For convenience, equation (3) can be written in a non-fractional from as:

qav
∑

u∈Nv

xuv =
∑

u∈Nv

xuvq
a
u. (4)

As we can observe, the left-hand side of (4) is given by a bilinear term for each upstream process

stage u of v. The main challenge of the quality constraints is that their terms are products of two

unknown variables and cannot be linearized. Figure 11 shows the flow balance imposed by the

quality constraint for the case where a network element k has two upstream neighbors, u and v.

Let G = (V,A) be a directed acyclic gas transmission network, where V and A are the node

and arc sets, respectively. Let Vs ⊆ V be the set of supply nodes (sources), and let Vd ⊆ V be the

set of demand nodes (sinks). By convention, for any node i ∈ V , let V −

i = {j ∈ V : (j, i) ∈ A} be

the set of start nodes of incoming arcs.

For a source node i ∈ Vs, it is assumed that gi is known, and for nodes j ∈ V \ Vs, the gas

specific gravity value is given by

gj =

∑

i∈V −

j
gixij

∑

i∈V −

j
xij

. (5)

Equation (5) expresses the specific gravity value of a blend of different flow streams as the

weighted average of specific gravities of entering flows. The flow values constitute the respective

weights.

The equation of specific gravity balance is obtained by multiplying (5) by the total flow:
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gj
∑

i∈V −

j

xij −
∑

i∈V −

j

gixij = 0, j ∈ V. (6)

4.4 Flow Accurate Estimates: Related Work

Since the last century, a substantial research work has been done in optimizing flow along arc

capacity networks [5]. Among those works, the majority of those ones related to steady-state gas

flow problems, have modeled the resistance of a pipeline as a function of state variables ever since

the inception of gas pipeline optimization (around the middle of the 20th century). The work of

Wong and Larson [130] when minimizing the total fuel cost incurred by compressor stations is a

good example. They suggested to apply the well-known Weymouth equation [99] to compute the

pipeline capacity. The same principle is followed by more sophisticated works, as those presented

by Carter [26], Ŕıos-Mercado et al. [111], De Wolf and Smeers [38, 39], Borraz-Sánchez and Ŕıos-

Mercado [23], Bakhouya and De Wolf [13], Kalvelagen [70], and Borraz-Sánchez and Haugland [19].

Carter [26] propose a non-sequential dynamic technique that outperforms hybrid methods for

cyclic networks and allows rapid turnaround of optimization runs for steady-state flow models.

Ŕıos-Mercado et al. [111] propose a reduction technique for natural gas transmission network op-

timization problems that substantially decreases the size of the network without altering with its

mathematical properties. De Wolf and Smeers [39] present a model to solve the problem of dis-

tributing gas at a minimum cost through a pipeline network under nonlinear flow-pressure relations

constraints, material balance equations, and pressure bounds. The solution method is based on

piecewise linear approximations of the nonlinear flow-pressure relations. Borraz-Sánchez and Ŕıos-

Mercado [23], motivated by the work of Carter [26], propose a non-sequential dynamic programming

algorithm for optimizing large-size cyclic network systems under steady-state assumptions.

Several works, such as those presented by O’Neill et al. [97], Wilson, Wallace, and Furey [128]

and De Wolf and Smeers in [38, 39], propose various MINLP models to describe the operating

settings of the compressor stations. Their models, however, integrate transportation functions with

gas sale planning functions. O’Neill et al. [97] and Wilson et al. [128] apply a Successive Linear Pro-

gramming, whereas De Wolf and Smeers [38, 39] implement piecewise linear approximations solved

by an extension of the Simplex algorithm [52]. Bakhouya and De Wolf [13] separate the integrated

model proposed by previous works, and focus only on minimizing the total power consumption

at compressor stations. They solve the problem by applying a two-phase method to Belgian and

French gas transmission networks. Kalvelagen [70] proposes an improved model for the MINLP

gas transportation problem and solves it using GAMS [33]. Borraz-Sánchez and Haugland [19] effi-

ciently tackle the fuel cost minimization problem in steady-state natural gas transmission networks

by proposing and implementing a dynamic programming-based tree decomposition algorithm.

All the cited works neglect the fact that the parameter in the Weymouth equation depends
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not only on pipeline characteristics, but also on thermodynamic and physical gas properties. This

includes temperature, specific gravity (relative density) and compressibility (z-factor), which are

assumed as universal constants in these works. In instances where the network elements show no

or only modest variation in these properties, it may be valid to neglect their variability and to

represent them by global constants. This does however not seem to be the case in all real-life

instances.

Examples where the assumption is unrealistic exist. The pipeline network connecting wells on

the Norwegian continental shelf with the European continent is supplied by gas from sources of

relatively lean gas, situated in the North Sea, and sources located in e.g. the Haltenbank area.

Since the latter area generally has richer gas, in the sense that it consists of components of higher

specific gravity, the assumption of constant properties may be unrealistic. Also, gas compressibility

depends on current temperature and pressure conditions, which also vary along the transmission

line.

The literature on optimization models for pipeline gas transportation does not seem to be very

rich on models with variable specific gravity or compressibility, and most works focus on models

for transient flow. Abbaspour and Chapman [2], for example, analyze non-isothermal transient

flow of gas in natural gas pipeline. Their work is based on z-factor estimates as a function of

pressure and temperature. They assume a steady-state heat flow between the gas in the pipeline

and the surroundings. Chaczykowski [29] studies one-dimensional, non-isothermal gas flow model

to simulate slow and fast fluid transients. Their work is based on unsteady heat transfer term in the

energy equation. Simulations of two gas transmission pipeline networks were conducted to show

that the unsteady heat transfer model hinders the gas temperature changes while considering the

heat in the surroundings.

In steady-state flow models, Belyaev, Gushchin, and Shenbrot [14] provide arguments on poten-

tial error causes in gas metering by studying a real-test case from the Russian Federation. Belyaev

and Patrikeev [15] present a study on the influence of variations of the gas composition by using

correction factors that depend on the density under standard conditions. Their work is based on

readings of all the instruments involved in commercial operations during a certain period. Ba-

hadori, Mokhatab, and Towler [12] propose and develop a new method to account for difference in

z-factor estimates between natural gases containing sour components and those ones characterized

as sweet gases. Their work is based on two correlations for computing pseudo-critical pressure and

temperature values as a function of the gas specific gravity. As a result, a simplified calculation

method is introduced for quick estimations of z-factor values for sour natural gases.

Borraz-Sánchez and Haugland [21] study the effect caused by the variability of the specific

gravity and compressibility of the gas on flow estimates in transmission pipeline systems. They

extended previously suggested models by incorporating the variation in pipeline flow capacities

with gas specific gravity and compressibility. Their work also applies the principle stated by the
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Weymouth equation to compute the resistance of the pipeline, and makes use of the California

Natural Gas Association method [36], which depends on gas specific gravity and pressure values,

to compute gas compressibility values in each pipeline of the network system. The variability of

specific gravity is then estimated at junction points as the weighted average of specific gravities

of entering flows. Due to the resulting nonconvex model, they propose a heuristic that iteratively

solves a simpler model by means of a global optimizer. Their solution approach turns out to be

very promising while providing exact solutions to many test instances and finding deviations less

than 12% from optimality in the remaining cases.

5 Compressor Station Modeling

5.1 Introduction to the Fuel Cost Minimization Problem in Natural Gas Pipeline

Systems

As natural gas pipeline systems have grown larger and more complex, the importance of optimal

operation and planning of these facilities has increased. The investment costs and operation ex-

penses of pipeline networks are so large that even small improvements in system utilization can

involve substantial amounts of money.

The natural gas industry services include producing, moving, and selling gas. The main focus

in this section is on the transportation of gas through a pipeline network. Moving gas is divided

into two classes: transmission and distribution. Transmission of gas means moving a large volume

of gas at high pressures over long distances from a gas source to distribution centers. In contrast,

gas distribution is the process of routing gas to individual customers. For both transmission and

distribution networks, the gas flows through various devices including pipes, regulators, valves, and

compressors. In a transmission network, gas pressure is reduced due to friction with the pipe wall

as the gas travels through the pipe. Some of this pressure is added back at compressor stations,

which raises the pressure of the gas passing through them.

In a gas transmission network, the overall operating cost of the system is highly dependent

upon the operating cost of the compressor stations in a network. A compressor station’s operating

cost, however, is generally measured by the fuel consumed at the compressor station. According

to Luongo, Gilmour, and Schroeder [80], the operating cost of running the compressor stations

represents between 25% and 50% of the total company’s operating budget. Hence, the objective

for a transmission network is to minimize the total fuel consumption of the compressor stations

while satisfying specified delivery flow rates and minimum pressure requirements at the delivery

terminals.

Depending on how the gas flow changes with respect to time, we distinguish between systems

in steady state and transient state. A system is said to be in steady state when the values charac-
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terizing the flow of gas in the system are independent of time. In this case, the system constraints,

particularly the ones describing the gas flow through the pipes, can be described using algebraic

nonlinear equations. In contrast, transient analysis requires the use of partial differential equations

(PDEs) to describe such relationships. This makes the problem considerably harder to solve from

the optimization perspective. In fact, optimization of transient models is one of the most challeng-

ing ongoing research areas. In the case of transient optimization, variables of the system, such as

pressures and flows, are functions of time.

The issue of how to design a pipeline network involves decisions on diameter and length of

pipes, location of compressor stations, and network configuration. For works on optimal design of

pipeline systems the reader is referred to the work of Babonneau, Nesterov, and Vial [11], Costa, de

Medeiros, and Pessoa [34], El-Shiekh [46], Marcoulaki, Papazoglou, and Pixopoulou [84], Mariani,

Ancillai, and Donati [85], Osiadacz and Górecki [104], Sanaye and Mahmoudimehr [112], Tsal et

al. [120], and Zhou, Liu, and Li [138]. In this section, we survey the most significant work on

both steady-state and transient gas transmission network problems, assuming an existing pipeline

system, with the objective of minimizing the operational costs.

Gas transmission network problems differ from traditional network flow problems in some fun-

damental aspects. First, in addition to the flow variables for each arc, which in this case represent

mass flow rates, a pressure variable is defined at every node. Second, besides the mass balance

constraints, there exist two other types of constraints: (i) a nonlinear equality constraint on each

pipe, which represents the relationship between the pressure drop and the flow; and (ii) a nonlinear

nonconvex set which represents the feasible operating limits for pressure and flow within each com-

pressor station. The objective function is given by a nonlinear function of flow rates and pressures.

The problem is very difficult due to the presence of a nonconvex objective function and nonconvex

feasible region.

5.2 Description of Basic Model

Let G = (V,A) be a directed graph representing a natural gas transmission network, where V is

the set of nodes representing interconnection points, and A is the set of arcs representing either

pipelines or compressor stations. Let Vs and Vd be the set of supply and demand nodes, respectively.

Let A = Ap ∪ Ac be partitioned into a set of pipeline arcs Ap and a set of compressor station arcs

Ac. That is, (u, v) ∈ Ac if and only if u and v are the input and output nodes of compressor station

(u, v), respectively.

Two types of decision variables are defined: Let xuv denote the mass flow rate at arc (u, v) ∈ A,

and let pu denote the gas pressure at node u ∈ V . The following parameters are assumed known:

Bu is the net mass flow rate in node u, and PL
u and PU

u are the pressure limits (lower and upper)

at node u. By convention, Bu > 0 (Bu < 0) if u ∈ Vs (u ∈ Vd), and Bu = 0 otherwise.
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The basic mathematical model of the minimum fuel cost problem (MFCP) is given by:

min g(x, p)=
∑

(u,v)∈Ac

guv(xuv, pu, pv) (7)

subject to
∑

v:(u,v)∈A

xuv −
∑

v:(v,u)∈A

xvu=Bu u ∈ V (8)

(xuv, pu, pv)∈Duv (u, v) ∈ Ac (9)

x2uv=Ruv(p
2
u − p2v) (u, v) ∈ Ap (10)

pu∈[P
L
u , P

U
u ] u ∈ V (11)

xuv≥0 (u, v) ∈ A (12)

The objective function (7) measure the total amount of fuel consumed in the system, where

guv(xuv, pu, pv) denotes the fuel consumption cost at compressor station (u, v) ∈ Ac. For a single

compressor unit the following function is typically used:

g(1)(xuv, pu, pv) =
αxuv
η

{(

pv
pu

)m

− 1

}

,

where α and m are assumed constant and known parameters that depend on the gas physical

properties, and η is the adiabatic efficiency coefficient. This adiabatic coefficient is a function of

(xuv, pu, pv) that is, in general, a complex expression, implicitly defined. A function evaluation of

η requires solving a linear system of algebraic equations. In practice, though, polynomial approxi-

mation functions that fit the function relatively well and are simpler to evaluate are employed. In

other cases, when the fluctuations of η are small enough, η can be assumed to be a constant.

For a compressor station (u, v) with nuv identical compressor units hooked-up in parallel which

is very commonly found in industry, the fuel consumption is given by:

guv(xuv, pu, pv) = nuvg
(1)(xuv/nuv, pu, pv).

When all nuv units are fixed and operating we have a nonlinear programming (NLP) model. Treat-

ing nuv as decision variables, leads to mixed-integer nonlinear programming (MINLP) models.

Constraints (8) establish the mass balance at each node. Constraints (9) denote the compressor

operating limits, where Duv denote the feasible operating domain for compressor (u, v) ∈ Ac.

Equations (10) express the relationship between the mass flow rate through a pipe and its pressure

values at the end points under isothermal and steady-state assumptions, where Ruv (also known as

the pipeline resistance parameter) is a parameter that depends on both the physical characteristics

of the pipeline and gas physical properties. When the steady-state assumption does not hold,

this relationship is a time-dependent partial differential equation which leads to transient models.

Constraints (11) set the lower and upper limits of the pressure value at every node, and (12) set
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the non-negativity condition of the mass flow rate variables. Further details of this model can be

found in Wu et al. [133].

5.3 Network Topology

There are three different kinds of network topologies: (a) linear or gun-barrel, (b) tree or branched,

and (c) cyclic. Technically, the procedure for making this classification is as follows. In a given

network, the compressor arcs are temporarily removed. Then each of the remaining connected

components are merged into a big super-node. Finally, the compressor arcs are put back into

their place. This new network is called the associated reduced network. Figure 12 illustrates the

associated reduced network for a 9-node, 8-arc example. As can be seen, the reduced network has 3

supernodes (labeled S1, S2, S3) and 2 arcs (the compressor station arcs from the original network).

Compressor station arc
Pipeline arc
Transhipment node
Delivery node
Supply node

2 3 4 5

1

6 7

98

(a) Original network.

(b) Associated reduced network.

2 3 4 5

1

7

8 9

6

S1
S3

S2

Figure 12: Illustration of a reduced network.

Types of network topologies:

Linear topology: This corresponds to a linear arrangement of the compressor station arcs, that is,

when the reduced network is a single path.
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Tree topology: This occurs when the compressors are arranged in branches through the system,

that is, when the reduced network is a tree.

Cyclic topology: This happens when compressors are arranged forming cycles with other compres-

sor stations. That is, it refers to a cyclic reduced network.

(a) Linear topology.

6 7

1

8 9

1110

4

2 3

5

(b) Tree topology.

4 5 6

1

7 8

1310

3

2

9 11 12

(c) Cyclic topology.

3 4 5

1

6 7

98

2

Figure 13: Different kinds of pipeline network topologies.

These different types of network topologies are shown in Figure 13, were the original network is

represented by solid line nodes and arcs, and the reduced network by dotted super nodes. Note that

even though networks in Figure 13(a) and 13(b) are not acyclic from a strict network definition,

they are considered as non-cyclic pipeline network structures.

As it will be seen in the following section, the state of the art on steady-state systems establishes
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that linear and tree topologies are more tractable despite the nonconvexity of the problem. Since

it has been shown that in this type of topologies, under certain conditions the flow variables can

be uniquely determined [111], techniques such as dynamic programming have been successfully

applied to solve for the discrete set of pressure variables. Cyclic structures are harder to solve, and,

regardless of network topology, transient systems are even more challenging.

5.4 Steady-State Models

This section focuses on reviewing optimization models and approaches. Descriptive simulation mod-

els are out of the scope of this work. Nonetheless, for research on simulation of natural gas networks

or descriptive simulation models the reader is referred to the seminal work of Osiadacz [99], or the

recent work of Zhu, Henson, and Megan [139], Herrán-González et al. [65], and Woldeyohannes and

Majid [129].

Optimization of a compressor station has been studied previously by Mahmoudimehr and

Sanaye [82] Osiadacz [98], Percell and Van Reet [106], and Wu, Boyd, and Scott [132]. These

works focused on a mathematical model in a single compressor unit. Later, Wu et al. [133] com-

pleted the analysis for the same problem, but considering several units within compressor stations.

Krishnaswami, Chapman, and M. Abbaspour [73] present a systematic approach for operating the

units of a compressor station to meet a specified line-pack profile. Nguyen et al. [95] present a

comparison of three automation approaches for compressor selection. All these works study the

behavior of a compressor station. In this survey we focus on the entire pipeline network optimiza-

tion.

Model Properties and Lower Bounds

Ŕıos-Mercado et al. [111] present a study of the properties of gas pipeline networks on steady-state,

and exploit them to develop a technique that can be used to significantly reduce problem dimension

without disrupting problem structure. This technique has been successfully used in many works

on pipeline optimization.

Wu et al. [133] present an in-depth study of the underlying mathematical structure of the

compressor stations of the MFCP. Then, based on this study, they propose two model relaxations

(one in the compressor domain and another in the fuel cost function) and derive a lower bounding

scheme. They present empirical evidence that shows the effectiveness of the lower bounding scheme.

For the small problems, where optimal solutions were known, the proposed lower bound yield

a relative optimality gap of around 15–20%. For a larger, more complex instance, it was not

possible to find optimal solutions, but they were able to compute lower and upper bounds, finding

a large relative gap between the two. They show this wide gap is mainly due to the presence of

nonconvexity in the set of feasible solutions, since the proposed relaxations did a very good job of
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approximating the problem within each individual compressor station. Later, Borraz-Sánchez and

Ŕıos-Mercado [23] compute a lower bound for cyclic instances obtaining relative optimality gaps of

less than 16%, and, in most of the cases, less than 10%.

Methods Based on Dynamic Programming

One of the most successful technique for addressing the MFCP is Dynamic Programming (DP).

One of the main advantages of DP is that a global optimum is guaranteed to be found and that

nonlinearity can be easily handled. Until very recently, its application had been practically limited

to noncyclic networks, such as linear (also known as gun-barrel) or tree topologies. It is well known

that in DP computation time increases exponentially with the dimension of the problem, commonly

referred as the curse of dimensionality.

DP for pipeline optimization was originally applied to gun-barrel systems in the late 1960s. It

has been one of the most useful techniques due to both its computational behavior and its versatility

for handling nonlinearity on sequential systems. DP was first applied to linear systems by Wong

and Larson [130] in 1968, and then applied to tree-structured topologies by Wong and Larson [131].

A similar approach was described by Lall and Percell [76] in 1990, who allow one diverging branch

in their system.

In 1989, Luongo, Gilmour, and Schroeder [80] published a hierarchical approach that allowed

for both cycles and branches of arbitrary complexity. This represented significant progress in

terms of finally addressing the issue of real world pipeline configurations. Their technique was no

longer pure DP. Basically, DP was used to optimally describe the pieces of the pipeline that were

arranged in a sequential manner. This typically reduced the system to a much smaller combinatorial

problem, without any possibility of a recursive DP solution. A sufficiently small instance could be

solved exactly via enumeration; otherwise it was solved inexactly using simulated annealing. This

hierarchical approach worked very well for some complex pipelines, but for others the computational

cost was very high.

One of the most significant works on cyclic networks known to date is due to Carter [26] who

developed a non-sequential DP algorithm, but limited to a fixed set of flows. This led to an

interesting question of how to find the optimal setting of the flow variables and how to modify

the current flow setting to obtain a better objective value. Extensions to work on cyclic systems

addressing these issues were developed by Ŕıos-Mercado, Kim, and Boyd [110]

Ŕıos-Mercado, Kim, and Boyd [110] propose a heuristic solution procedure for fuel cost min-

imization on gas transmission systems with a cyclic network topology Their heuristic solution

methodology is based on a two-stage iterative procedure. In a particular iteration, at a first stage,

gas flow variables are fixed and optimal pressure variables are found via dynamic programming. At

a second stage, pressure variables are fixed and an attempt is made to find a set of flow variables
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that improve the objective function by exploiting the underlying network structure. They tested

their algorithm in some real-world instances provided by a Houston-based company. Example 1 is a

tree-structured system with 16 compressor stations, 56 pipes, and 64 total nodes (that is including

supply, demand, and transshipment nodes). Example 2 is single-cycle system with 6 compressor

stations, 9 pipes, and 14 nodes. Example 3 is a multi-cycle system with 17 compressor stations, 23

pipes, and 35 nodes. Empirical evidence supports the effectiveness of the proposed procedure by

finding relative improvements ranging from 3.34% to 41.77% in the instances tested.

Borraz-Sánchez and Ŕıos-Mercado [22, 23] propose a hybrid metaheuristic procedure that ef-

ficiently exploits the problem structure. This hybrid procedure combines very effectively a non-

sequential dynamic programming algorithm for finding an optimal set of pressure variables for a

fixed set of mass flow rate variables, and short-term memory tabu search procedure for guiding

the search in the flow variable space. Empirical evidence over a number of instances supports the

effectiveness of the proposed procedure outperforming a multi-start generalized reduced gradient

(GRG) method both in terms of solution quality and feasibility. Furthermore, to assess the quality

of the solutions obtained by the algorithm, a lower bound is derived. It is found that the solution

quality obtained by the proposed lower bounding procedure is relatively good.

Borraz-Sánchez and Haugland [20] present a two-phase method for the MFCP. As suggested

by previous work, they consider consider a procedure where each iteration consists of a flow im-

provement step and a pressure optimization step. Alternating between flow and pressure, one set

of decision variables is kept fixed in each step. Still in agreement with previously suggested meth-

ods, the nonconvex subproblem of optimizing pressure is approximated by a combinatorial one.

This is accomplished by discretization of the pressure variables. The contribution of their work is

a method for solving the discrete version of the problem in instances where previously suggested

methods fail. Unlike methods based on successive network reductions, their method does not make

any assumptions concerning the sparsity of the network. By constructing a tree decomposition

of the network, and applying dynamic programming to it, they were able to solve the discrete

version of the pressure optimization problem without enumerating the whole solution space. By

an adaptive discretization scheme, they obtain significant speed-up of the dynamic programming

approach in comparison with fixed discretization. They tested their proposed solution method

on a set of test instances, and compared the results to those obtained by applying both a global

and a local optimizer to the continuous version of the problem. The experiments indicate that

a method guaranteeing the global optimum in reasonable time seems unrealistic even for small

instances. Further, discretizing the pressure variables and applying dynamic programming to a

tree decomposition gives better results than applying a commercially available local optimization

package.

The details on the DP formulation can be found in the referred works or in the work by Ŕıos-

Mercado [109].
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Methods Based on Gradient Search

In 1987, Percell and Ryan [107] applied a different methodology based on a Generalized Reduced

Gradient (GRG) nonlinear optimization technique for noncyclic structures. One of the advantages

of GRG, when compared with DP, is that they can handle the dimensionality issue relatively

well, and thus, can be applied to cyclic structures. Nevertheless, being a method based on a

gradient search, there is no guarantee for a global optimal solution. Villalobos-Morales and Ŕıos-

Mercado [125] evaluated preprocessing techniques for GRG, such as scaling, variable bounding, and

choice of starting solution, that resulted in better results for both cyclic and noncyclic structures.

Flores-Villarreal and Ŕıos-Mercado [48] performed an extensive computational evaluation of the

GRG method over a large set of instances on cyclic structures with relative success.

Linearization Approaches

DeWolf and Smeers [39] take a different angle to the problem. They present a solution method based

on piecewise linear approximations of the nonlinear flow-pressure relations. The approximated

problem is solved by an extension of the Simplex method. The solution method is illustrated in

an instance of the Belgium gas network, and solved some real-world cases. They compare their

approach with other LP-based approach, called Successive Linear Programming (SLP). They found

their proposed approach takes less time than SLP. They also found that, as the model is in general

nonconvex, the choice of the starting point was crucial if one limits oneself to find only local

solutions or upper bounds on the solution in global procedures. Thus, they devised a mechanism

for generating the initial solution that was empirically shown to reduce running times by 50%.

Jin and Wojtanowicz [68] present a study aimed at optimizing a very large case study in China.

The large size and complex geometry of network required breaking it down into smaller components,

optimizing operations of the components locally, re-combining the optimized components into the

network and optimizing the network globally. This four-step approach employed four different op-

timization methods to solve the problem: a penalty function method, pattern search, enumeration,

and non-sequential dynamic programming. The results of applying global optimization show that

the increase in gas throughput considerably reduces cost savings. For instance, a reduction of

operational cost savings from 23% up to 1.2% was observed when increasing the gas rate from 67

to 90 million m3/d. The study also shows that operation costs approach those found in current

practice when compressor stations work at their maximum capacity. Hence, global optimization

proves to be more effective when the gas pipeline system works at any mass flow rate other than

its maximum rating, a typical case of present operation in Chinese gas networks.
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Approaches for MINLP Models

Pratt and Wilson [108] propose a successive mixed-integer linear programming method. Their

algorithm solves the nonlinear optimization problem iteratively by linearizing the pressure drop-

flow equations (10). Integer variables are included in the formulation for compressor unit selection,

and the problem is solved using branch and bound.

Cobos-Zaleta and Ŕıos-Mercado [31] presented a solution technique based on an outer ap-

proximation with equality relaxation and augmented penalty algorithm OA/ER/AP for solving a

mixed-integer nonlinear programming model, where an integer decision variable, representing the

number of compressor units running within each station, is incorporated. They present satisfactory

results as they were able to find local optima for many instances tested.

Martin, Möller, and Moritz [86] incorporate binary decision variables to decide whether to use

or not a compressor unit within a compressor station and whether to open or close valves. They

describe some techniques for a piece-wise linear approximation of the nonlinearities of the model

resulting in a large mixed-integer linear program. They study sub-polyhedra linking these piecewise

linear approximations and show that the number of vertices is computationally tractable yielding

exact separation algorithms. They also present suitable branching strategies complementing the

separation algorithms. They tested their method on three real-world instances provided by their

industrial partner, E.ON Ruhrgas AG, a German gas company. The size of the instances range

from 11 to 31 pipes and from 3 to 15 compressor stations. They observed that the piece-wise linear

approximation is accurate enough to guarantee globally optimal solutions.

Chebouba et al. [30] present an Ant Colony Optimization (ACO) algorithm for the MFCP with

a variable number of compressor units within a compressor station. Part of the decision process

involves determining the number of operating units in each compressor. The ACO algorithm [42]

is a new evolutionary optimization method to solve different combinatorial optimization problems.

They tested their method on the Hassi R’mell-Arzew real-world pipeline network in Argelia con-

sisting of 5 pipes, 6 nodes, 5 compressor stations, and 3 units in each compressor. They also built

three additional cases with up to 23 compressor stations, and 12 compressor units in each compres-

sor. They compare their method with a DP implementation. Their empirical work shows a good

performance of the proposed method in noncyclic systems.

Tabkhi et al. [116] present a computational study of MFCP applied to a case study in the

French company Gaz de France. The authors present a MINLP model where binary variables for

representing pipeline flow direction are introduced. They used the GAMS/SBB solver for solving

the MINLP model, which calls CONOPT for solving the NLP subproblems. The real-world case

has 30 pipes and 6 compressor stations. To make the problem more tractable for the solver, the

authors consider several different strategies for initializing some or all the binary variables. They

also report on a sensitivity analysis discussing one of the particular strategies for initializing the
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binary variables.

Wu et al. [134] present a hybrid objective model with compressor switching constraints that

aims at maximizing revenue and throughput while considering a weighting value to account for both

optimization problems. The model is solved by means of a particle swarm optimization (PSO)

algorithm that includes an adaptive inertia weight adjusting procedure to overcome premature

convergence issues. A commercially available simulation software is used to provide the initial

particles that satisfy the underlying model. The authors present a case study based on a Chinese

gas pipeline system with a gun-barrel topological structure and four compressor stations. The

proposed algorithm showed a fast convergence speed when compared with other extensions of the

PSO algorithm.

Table 1: Summary of research on steady-state models.

Work Model N Approach

Wong and Larson [130] NLP L DP
Percell and Ryan [107] NLP L, T GRG
Villalobos-Morales and Ŕıos-Mercado [125] NLP L, T GRG
De Wolf and Smeers [39] NLP T Linearization
Lall and Percell [76] NLP T DP
Luongo et al. [80] NLP T Hierarchical, DP, SA
Wong and Larson [131] NLP T DP
Borraz-Sánchez and Haugland [20] NLP C NDP, tree decomposition, adaptive discretization
Borraz-Sánchez and Ŕıos-Mercado [23] NLP C Tabu search and NDP
Carter [26] NLP C NDP
Flores-Villarreal and Ŕıos-Mercado [48] NLP C GRG
Jin and Wojtanoiwicz [68] NLP C Penalty function, pattern search, NDP
Ŕıos-Mercado et al. [110] NLP C Decomposition, DP
Chebouba et al. [30] MINLP L ACO
Martin et al. [86] MINLP L Linearization
Cobos-Zaleta and Ŕıos-Mercado [31] MINLP T OA/ER/AP
Pratt and Wilson [108] MINLP C Successive MILP, B&B
Tabkhi et al. [116] MINLP C SBB/CONOPT
Wu et al. [134] MINLP L PSO

Notation
N := Network topology (L = linear; T = tree; C = cyclic)
Approach: ACO = Ant colony optimization; NDP = Non-sequential DP; SA = Simulated annealing;
SBB = Standard branch and bound; PSO = Particle swarm optimization

Table 1 summarizes the research on steady-state models for pipeline network optimization.

Entries are first sorted by model type, and then by network topology.

Other Models

Carter et al. [27] describe a class of noisy optimization problems from the gas transmission in-

dustry, and propose an algorithms for their solution. The algorithms they consider are implicit

filtering [57], the global optimization algorithm DIRECT [69] and a new hybrid of implicit filtering

and DIRECT, which attempts to capture the best features of the two. They consider minimizing
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the cost of fuel for the compressor stations in a gas pipeline network. This cost can be reduced

by changing both flow patterns through the system and pressure settings throughout the system.

In their model the problems have two flows as design variables. The flow variables can be either

unknown inlet or outlet flows, or Kirchhoff’s law representations of flow splits between different

possible alternative paths. Once these boundary and loop flows have been specified, each evaluation

of the objective function f involves solving a hierarchy of embedded optimization problems and

associated simulation subproblems, and then evaluating the total fuel used at the solutions to the

subproblems. The main decision variables in the subproblems are pressure settings throughout the

pipeline system, and on/off settings for the large number of individual compressors throughout the

system. The value of the objective function f is the total fuel used. The hierarchical optimization

that is internal to the function evaluation involves solving a large combinatorial problem using non-

sequential dynamic programming [26]. In this formulation, the pressure settings at the discharge

side of each compressor station are first discretized into a set of discrete values covering the range

of potentially attainable values for the equipment being simulated. Hydraulic analysis is used to

propagate each discretized pressure at each station discharge forward in space, which establishes

an implicit discretization of potential pressures at the suction side of each station as well. For

any station (with specified flow) they pick each possible pair inlet and outlet pressures from the

discretization and determine whether station operation is feasible and, if so, what is the fuel cost.

This determination in itself is a substantial mixed integer nonlinear optimization and simulation

problem [25]. Once the local consequences of operating each station at different combinations of

inlet and outlet pressure have been computed, non-sequential dynamic programming is used to

select the best possible combination of discretized pressures throughout the system while main-

taining hydraulic integrity, satisfying the pressure drop equations between stations, and observing

all equipment limitations. They apply the three methods to some instances from the gas pipeline

industry and to a suite of test problems from the global optimization literature. They found that

the performance of implicit filtering depends strongly on its starting point. When implicit filtering

found a feasible point, then it performed much better than either DIRECT or the hybrid. However,

for a large percentage of starting points implicit filtering did not find a feasible point. DIRECT did

relatively poorly in all problems, needing a larger amount of function evaluations to get comparable

results. For the suite of test problems from the literature, implicit filtering was trapped in a local

minimum for a significant fraction of the runs. DIRECT was more robust, but not completely

successful. They conclude that the hybrid algorithm offers the best compromise between low cost

and robustness.

Wu, Lai, and Liu [135] consider a gas transportation problem in a distribution network rather

than a transmission network. A pipeline network is generally established either to transmit gas

at high pressure from coastal supplies to regional demand points (transmission network) or to

distribute gas to consumers at low pressure from the regional demand points (distribution network).
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In this study, the distribution network is considered. The distribution network differs from the

transmission one in a number of ways. Pipes involved in a distribution network are often much

smaller and the network is simpler, having no valves, compressors or nozzles. In that paper, the

authors introduce the problem of minimizing the cost of pipelines incurred by driving the gas in a

distribute nonlinear network under steady-state assumptions. In particular, the decision variables

include the length of the pipes’ diameter, pressure drops at each node of the network, and mass

flow rate at each pipeline leg. They establish a mathematical optimization model of this problem,

and then present a global optimization approach, which is based on the GOP primal-relaxed dual

decomposition method by Visweswaran and Floudas [126]. Their method is successfully tested on

two real-world instances having 6 nodes and 5 pipes, and 13 nodes and 14 pipes.

Borraz-Sánchez and Haugland [21] extend previously suggested models by incorporating the

variation in pipeline flow capacities with gas specific gravity and compressibility for a steady-state

isothermal model. Flow capacities are modeled as functions of pressure, compressibility and specific

gravity by the commonly-used Weymouth equation. In their work, the California Natural Gas

Association method is used to model compressibility as a function of specific gravity and pressure.

The sources feeding the transmission network do not necessarily supply gas with equal specific

gravity. In their model, they assumed that when different flow streams enter a junction point,

the specific gravity of the resulting flow is a weighted average of the specific gravities of entering

flows. To handle the nonconvex NLP model, they propose a heuristic method based on an iterative

scheme in which a simpler NLP model is solved in each iteration. Computational experiments are

conducted in order to assess the computability of the model by applying a global optimizer, and to

evaluate the performance of the heuristic approach. When applied to a wide set of test instances,

the heuristic method provides solutions with deviations less than 10% from optimality, and in many

instances turns out to be exact. They also report several experiments demonstrating that letting

the compressibility and the specific gravity be global constants can lead to significant errors in the

estimates of the total network capacity.

MohamadiBaghmolaei et al. [90] take a different angle at the MFCP. They argue that there

might be some cases where accurate information about the process may not be available or the

system may have a nonlinear time variable behavior. In such cases, due to the lack of information

and difficulties in prediction of gas turbine and compressor efficiency, techniques which depend on

experimental data such as artificial neural networks (ANNs) may be applied. In their work they

use ANNs within a genetic algorithm to predict the relationship among the decisive parameters and

minimize the fuel consumption in a pipeline network. They apply their approach to a case study

in the south of Iran considering a linear system with four compressor stations. The comparison

between the efficient total fuel consumption and the final delivery pressure predicted by ANN and

conventional numerical models confirms the accuracy of the proposed method.

Gopalakrishnan and Biegler [60] study a Nonlinear Model Predictive Control (NMPC) formu-
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lation for optimizing the operational costs of gas pipeline networks. They use an economic NMPC

formulation, which directly considers the compressor operating cost as the controller objective. Due

to diurnal gas demands, the optimal operation is a cyclic steady state. The controller objective and

terminal constraints are suitably defined to ensure asymptotic convergence and closed-loop stability

of the cyclic steady state. It is shown through simulations that the performance of the economic

NMPC formulation is better than a tracking NMPC. The inherent robustness of the formulation

also ensures convergence to a region around the cyclic steady state when demand forecasts are

inaccurate. The large scale NLP is also solved within a reasonable CPU time making it practical

for online application

To the best of our knowledge, apart from the work of Wu et al. [134] where a hybrid objective

model is presented along with a weighting value that accounts for both optimization problems,

the only work on the MFCP from a biobjective optimization perspective is due to Hernandez

Rodriguez et al. [64] who consider the minimization of fuel consumption and the maximization

of gas mass flow delivery simultaneously. They present a computational comparison between a

genetic algorithm (GA) coupled with a Newton-Raphson procedure and the well-known ǫ-constraint

method for multiobjective programming. Additionally, a study of carbon dioxide (CO2) emissions

is carried out. In their empirical work, it was observed that the two methods obtain overlapping

Pareto fronts, however, the one obtained by the GA is considerably larger than the one obtained

from the ǫ-constraint method. Along the Pareto front provided by the GA, the CO2 emissions

vary from 1.1% to 1.8% of the natural gas flow delivery. A related study by Garcia-Hernandez

and Brun [56] focuses on maximizing flow rate by keeping optimal conditions on the available

compression power.

5.5 Transient Models

Transient models are more challenging as the governing PDEs associated to the dynamics of the

gas system must be taken into consideration. There has been certainly some research done from

a descriptive perspective. Here we survey the most significant work related to the optimization of

transient systems.

Hierarchical Control Approaches

Optimization techniques have also been applied for transient (time dependent) models. For in-

stance, Larson and Wismer [77] propose a hierarchical control (HC) approach for a transient opera-

tion of a gun-barrel pipeline system. Osiadacz and Bell [102] suggest a simplified algorithm for the

optimization of the transient gas transmission network, which is based on a HC approach. The HC

approach for transient models can be found in Anglard and David [9], Osiadacz [100], and Osiadacz

and Swierczewski [105]. Some degree of success has been reported from these approaches as far
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as optimizing the compressor station subproblem. However, these approaches have limitations in

globally optimizing the minimum cost.

One of the most significant early efforts to address transient flow in natural gas pipeline systems

from an HC standpoint was due to Osiadacz [101] who developed an algorithm based on hierarchical

control and network decomposition. Local problems were solved using a gradient search technique.

The subsystems are coordinated using a goal coordination method to find the global optimum. He

formulated discrete state equations for the case in which output pressures are treated as elements

of the control vector. The algorithm was tested using part of the National Grid of UK containing

23 nodes, 13 pipelines, 3 compressor stations, 2 storage supply nodes, and 1 source. A time frame

of 24 hours with time discretization steps of 2 hours were established. The results were somewhat

similar to those obtained by an alternate algorithm based on sequential quadratic programming

due to Furey [55]. The maximum discrepancy found was in the order of 15%. The authors indicate

that dynamic instances over 24 hours could not be solved exactly in reasonable times. The authors

conclude by suggesting their proposed method based on decomposition-coordination is suitable for

parallel computing.

Mathematical Programming Approaches

Early work on transient optimization of natural gas pipeline systems is due to Mantri, Preston, and

Pringle [83]. They develop a transient gas optimization model that minimizes the cost of transport-

ing natural gas over time periods in which line-pack and throughput are changing due to designated

fluctuations in supply and demand. The major component of their optimization engine is based

on the GRG method and dynamic programming. Tao and Ti [117] derive a method for transient

analysis in a gas pipeline network. Traditionally, the governing equations for transient analysis of a

gas pipeline system involve two partial differential equation, which are normally solved by complex

numerical methods. The authors extend the electric analogy method by combining resistance and

capacitance, which leads to a first order ordinary differential equation and an alternative way to

solving the transient problem. The proposed method was found more efficient than previous ap-

proaches. Later Ke and Ti [72] use the same analogy to an electrical system to develop a new model.

Empirical evidence shows that solutions obtained under this new model are compatible with those

using previous models. This new model is found more tractable. Osiadacz and Chaczykowski [103]

present a comparison between isothermal and non-isothermal models for transient flow in natural

gas pipeline systems.

Ehrhardt and Steinbach [45] address a transient pipeline optimization problem. They present

appropriate space and time discretizations to obtain a large-scale nonlinear programming problem

(NLP). This large-scale NLP is solved by the general-purpose NLP code SNOPT in combinations

with the automatic differentiation add-on SnadiOpt. They tested their approach on a relatively
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small network with three compressor stations considering different scenarios.

Aalto [1] present a study on real time optimization of a natural gas pipeline in transient condi-

tions. He points out that many pipeline systems are, however, only mildly nonlinear even in large

transients such as compressor station (CS) shutdown or startup. A dynamic, receding horizon op-

timization problem is defined, where the free response prediction of the pipeline is obtained from a

pipeline simulator and the optimal values of the decision variables are obtained solving an approx-

imate Quadratic Programming (QP) problem where the cost function is the energy consumption

of the CSs. The problem is extended with discrete decision variables, the shutdown/start-up com-

mands of CSs. A Mixed Logical Dynamical (MLD) system is defined, but the resulting Mixed

Integer QP problem is shown to be very high-dimensional. Instead, a sequence of QP problems is

defined resulting in an optimization problem with considerably smaller dimension. The receding

horizon optimization is tested in a simulation environment and comparison with data from a true

natural gas pipeline shows 5 to 8 % savings in compressor energy consumption.

Mahlke, Martin, and Moritz [81] present a simulated annealing metaheuristic for the transient

natural gas network optimization problem. For this transient problem, they present a highly

complex mixed integer nonlinear program. They relax the equations describing the gas dynamics

in pipes by adding these constraints combined with appropriate penalty factors to the objective

function. A suitable neighborhood structure is developed for the relaxed problem where time steps

as well as pressure and flow of the gas are decoupled. They tested their method on three real-world

instances provided by the German gas company E.ON Ruhrgas AG. The range of the size was from

11 to 31 pipes and from 3 to 15 compressor stations. They obtained reasonably good results in

very competitive running times.

Domschke et al. [41] apply an implicit box scheme to the isothermal Euler equation to derive a

MINLP for the transient MCFP. The model is solved by means of a combination of (i) a novel mixed-

integer linear programming approach based on piecewise linearization and (ii) a classical sequential

quadratic program applied for given combinatorial constraints. Their empirical work reveals that

better approximations to the optimal control problem can be obtained by using solutions of the

SQP algorithm to improve the MILP. Moreover, iteratively applying these two techniques improves

the results even further.

More recently, Zavala [136] proposes a discretization framework for the PDEs governing the

dynamics of the gas system by applying a Finite Difference scheme in space and by using an

implicit Euler scheme in time for the continuity and momentum equations. The discretization is

used in a two-stage stochastic model that involves recourse actions before the end of the planning

horizon. The author claims that the two-stage structure is more restrictive but also computationally

more tractable.
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6 Research Challenges

The natural gas industry keeps evolving and thus a greater flexibility in the day-to-day gas transport

operations is required. While posing huge opportunities for improvements, the natural gas infras-

tructure has to convey her ideas through analytical methods. With technological breakthrough

observed during the last decades, these methods can now become applicable and can be developed

by the scientific community.

From the optimization perspective, there are still quite a few areas that pose a wide range

of challenges to the scientific community. For example, one of the most significant challenges

to the natural gas transport industry is how to integrate and to solve in the analysis transient

models, i.e., models depending on time. More precisely, by conducting a steady-state study, we

consider the gas flow decision variables in the system to be independent of time. This allows the

use of algebraic equations to describe the behavior of natural gas through the pipeline network.

A transient analysis requires the use of partial differential equations to describe the continuity,

energy, and momentum equations that relate the decision variables, such as gas flow, velocity,

density, pressure, and temperature, as a function of time. Due to the challenge imposed by the

transient case, while increasing the number of variables, as well as the inherent complexity of the

problem, works on this area are still in a developing phase. See Section 5.5.

Second, although in practice, gas transport operations are defined by inherently transient pro-

cesses, we assume that the problem is in steady-state. That is, the mathematical model provides

solutions for pipeline systems that have been operating for a relative large amount of time.

Concerning pipeline capacity, the question of how to handle excess in the maximum capacity

in pipelines while meeting strict transportation contracts poses a significant issue for the natural

gas industry. Analytical models encompassing the optimization of the pipeline capacity release are

required. The volume variability also introduces significant configuration challenges in the natural

gas transport, particularly in compressor stations operation.

From the gas quality perspective, the improvements not only concern customer demands sat-

isfaction, but also represent a higher impact on pipeline infrastructure. From the operational

perspective, for example, the theory of optimization can become a blunt instrument in gas quality

estimates on the acid formation from sulfur compounds that may lead to pipeline corrosion. The

difficulty stems from the fact that constituents can vary seasonally or even more frequently. Safety

and reliability are also main concerns for the natural gas transport industry.

Moreover, most of the works discussed in this paper are confined to irreversible flows in steady-

state, i.e, the gas can flow through a pipeline in only one direction. The authors inherently assume

that valves are present to restrict the direction of flow. However, steady-state flow models consider-

ing reversible flows may represent a significant contribution to those pipeline networks that connect

their major lines with storage facilities, in which the flow in either direction may be allowed.
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In steady-state models, the gas flow is considered isothermal at an inlet average effective tem-

perature. This is a common practice in which authors assume that a heat transfer with the sur-

roundings in the pipeline system causes the temperature to remain constant. Works on this area

pose a significant challenge due to the inherent complexities associated to the gas temperature. In

these works, it is also assumed that the transmission lines are composed of horizontal pipelines. In

practice, these systems have frequent changes in their elevation. Hence, a special attention must

be paid into the necessary correction factors to compensate the changes in elevation.

The majority of the works discussed here are based on deterministic models, i.e., where each

parameter is assumed known in advance. There is an evident need of stochastic programming

models and approaches to handle those cases where the variation of the parameters (such as demand

or supply) is so high that deterministic assumptions no longer hold. In this paper, we have reviewed

some of the few works starting to face this challenge, particularly in compressor station optimization

networks and pooling systems. Additionally, we have seen some works in natural gas marketing

problems (see [137] for a review on some of these problems); nonetheless, we believe this is a

tremendous area of opportunity for problems in natural gas transmission systems.

Final remark: One of the major challenges to efficiently exploit the natural gas supplies arises

from the limitation of the optimization techniques, which are already developed in theory, but to

less extent applicable in practice due to considerably strong assumptions. For success in the increase

in the demand, more than a few successful optimization tools capable of responding to changing

conditions in a rational manner are required. This would certainly make more efficient the use

of existing natural gas transmission systems, thus resulting in significant economic compensations

beyond the expected levels for the natural gas industry. We may expect that this trend will speed

up towards a more promising future with the continual contribution of the scientific community.
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[31] D. Cobos-Zaleta and R. Z. Ŕıos-Mercado. A MINLP model for minimizing fuel consumption on

natural gas pipeline networks. In Proceedings of the XI Latin-Ibero-American Conference on Operations

Research, Concepción, Chile, October 2002.

[32] L. Contesse, J. C. Ferrer, and S. Maturana. A mixed-integer programming model for gas purchase and

transportation. Annals of Operation Research, 139(1):39–63, 2005.

[33] GAMS Development Corporation. GAMS: The Solver Manuals. GAMS Development Corporation,

Washington, DC, 2008.

[34] A. L. H. Costa, J. L. de Medeiros, and F. L. P. Pessoa. Optimization of pressure relief header networks:

A linear programming formulation. Computers & Chemical Engineering, 24(1):153–156, 2000.

[35] CRANE. Flow of fluids: Through valves, fittings and pipe. Technical paper 410M, Crane Company,

New York, 1982.

[36] E. G. Davisson. A computer program for flow calculations. Technical report ORNL–TM–1093, Oak

Ridge National Laboratory, Oak Ridge, February 1965.

[37] N. de Nevers and A. Day. Packing and drafting in natural gas pipelines. Journal of Petroleum

Technology, 35(3):655–658, 1983.

45



[38] D. De Wolf and Y. Smeers. Mathematical properties of formulations of the gas transmission problem.
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[65] A. Herrán-González, J. M. De La Cruz, B. De Andrés-Toro, and J. L. Risco-Mart́ın. Modeling and

simulation of a gas distribution pipeline network. Applied Mathematical Modelling, 33(3):1584–1600,

2009.

47



[66] A. Holland. Optimization of injection/withdrawal schedules for natural gas storage facilities. In

R. Ellis, T. Allen, and M. Petridis, editors, Applications and Innovations in Intelligent Systems XV,

pages 287–300. Springer, London, UK, 2008.

[67] A. Holland. A decision support system for energy storage traders. In L. Coyle and J. Freyne, editors,

Artificial Intelligence and Cognitive Science, volume 6206 of Lecture Notes in Computer Science, pages

291–292. Springer, Berlin, Germany, 2010.

[68] L. Jin and A. K. Wojtanowocz. Optimization of large gas pipeline network – A case study in China.

Journal of Canadian Petroleum Technology, 49(4):36–43, 2010.

[69] D. R. Jones. DIRECT global optimization algorithm. In C. A. Floudas and P. M. Pardalos, editors,

Encyclopedia of Optimization, volume 1, pages 431–440. Kluwer, Dordrecht, The Netherlands, 2001.

[70] E. Kalvelagen. An improved formulation for a gas transportation problem. Working paper, GAMS

Development Corporation, Washington, DC, April 2003.

[71] D. L. Katz, D. Cornell, R. Kobayashi, F. H. Poettmann, J. A. Vary, J. R. Elenbaas, and C. F. Weinaug.

Handbook of Natural Gas Engineering. McGraw-Hill, New York, 1959.

[72] S. L. Ke and H. C. Ti. Transient analysis of isothermal gas flow in pipeline network. Chemical

Engineering Journal, 76(2):169–177, 2000.

[73] P. Krishnaswami, K. S. Chapman, and M. Abbaspour. Compressor station optimization for linepack

maintenance. In Proceedings of the 36th PSIG Annual Meeting, Palm Springs, October 2004.

[74] R. Kurz. Considerations on compressor station layout. Pipeline & Gas Journal, 234(9):22–26, 2007.

[75] R. Kurz, S. Ohanian, and M. Lubomirsky. On compressor station layout. In ASME Conference

Proceedings – Voluyme 4: Turbo Expo 2003, pages 1–10, 2003. Paper GT2003–38019.

[76] H. S. Lall and P. B. Percell. A dynamic programming based gas pipeline optimizer. In A. Bensoussan

and J. L. Lions, editors, Analysis and Optimization of Systems, volume 144 of Lecture Notes in Control

and Information Sciences, pages 123–132, Berlin, 1990. Springer-Verlag.

[77] R. E. Larson and D. A. Wismer. Hierarchical control of transient flow in natural gas pipeline networks.

In Proceedings of the IFAC Symposium on Distributed Parameter Systems, Banff, Alberta, Canada,

1971.

[78] X. Li, E. Armagan, A. Tomasgard, and P. I. Barton. Stochastic pooling problem for natural gas

production network design and operation under uncertainty. AIChE Journal, 57(8):2120–2135, 2011.

[79] X. Li, A. Tomasgard, and P.I. Barton. Decomposition strategy for the stochastic pooling problem.

Journal of Global Optimization, 54(4):765–790, 2012.

[80] C. A. Luongo, B. J. Gilmour, and D. W. Schroeder. Optimization in natural gas transmission networks:

A tool to improve operational efficiency. Technical report, Stoner Associates, Inc., Houston, April 1989.

[81] D. Mahlke, A. Martin, and S. Moritz. A simulated annealing algorithm for transient optimization in

gas networks. Mathematical Methods of Operations Research, 66(1):99–115, 2007.

48



[82] J. Mahmoudimehr and S. Sanaye. Minimization of fuel consumption of natural gas compressor stations

with similar and dissimilar turbo-compressor units. Journal of Energy Engineering, 140(1):04013001,

2014.

[83] V. B. Mantri, L. B. Preston, and C. S. Pringle. Transient optimization of a natural gas pipeline system.

In Proceedings of the 17th PSIG Annual Meeting, Albuquerque, October 1985.

[84] E. C. Marcoulaki, I. A. Papazoglou, and N. Pixopoulou. Integrated framework for the design of

pipeline systems using stochastic optimisation and GIS tools. Chemical Engineering Research and

Design, 90(12):2209–2222, 2012.

[85] O. Mariani, F. Ancillai, and E. Donati. Design of a pipeline: Optimal configuration. In Proceedings of

the 29th PSIG Annual Meeting, Tucson, October 1997.
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