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Abstract

The capacitated vertex p-center problem is a well-known location problem that consists of
placing p facilities and assigning customers to each of these facilities so as to minimize the largest
distance between any customer and its assigned facility, subject to demand capacity constraints
for each facility. In this work, a metaheuristic for this location problem that integrates several
components such as greedy randomized adaptive search procedures with probabilistic sampling,
iterated greedy local search and variable neighborhood descent, is presented. Empirical evidence
over a widely used set of benchmarks on location literature reveals the positive impact of each of
the developed components. Furthermore, it is found empirically the proposed heuristic outperforms

the best existing heuristic for this problem.

Keywords: Combinatorial optimization; Discrete location; Capacitated p-Center Problem; Meta-

heuristics; Iterated greedy local search; Variable neighborhood search.



1 Introduction

In this paper, the capacitated vertex p-center problem (CpCP) is addressed. This is a well-known
location problem that can be defined as follows. Given a set of vertices V' representing customers
and potential facility location points, where each node j € V has a demand w; and a facility
capacity sj, a set of edges E representing distance between nodes with value d;;, and a given
number p of desired facilities, we must decide where to locate p facilities and how to assign all the
customers to these facilities so as to minimize the largest distance between any customer and its
assigned facility subject to the demand capacity constraint. The CpCP is N'P-hard [9]. Several
practical applications can be modeled as a CpCP, particularly problems that arise on emergency
situations such as providing emergency medical service by carefully locating emergency facilities
or ambulances, or the location of fire stations that will provide a prompt response and rapid
transportation of equipment. In these situations it is clear that the cost for preserving human life
is more important [3].

Plenty of work has been devoted to the uncapacitated version of this problem. Elloumi et al. [6]
provide an extensive review of the literature. However, the research on the CpCP has been more
limited. The most significant contributions from the exact optimization perspective are due to
Ozsoy and Pmar [14] and Albareda-Sambola et al. [1]. In the former, the authors presented an
exact method based on solving a series of set covering problems using an off-the-shelf mixed-integer
programming (MIP) solver while carrying out an iterative search over the coverage distances. In
the latter, the authors proposed an exact method based on Lagrangian relaxation and a covering
reformulation.

To the best of our knowledge, the most significant heuristic method for the CpCP is due to
Scaparra et al. [18]. In their work, the authors developed a heuristic based on large-scale local
search with a multiexchange neighborhood represented by an improved graph, exploiting principles
from network optimization theory. They address instances of up to 402 nodes and 40 facilities.

The main purpose of our work is to integrate several of the components that have been very suc-
cessful in other combinatorial optimization problems into a metaheuristic algorithm for the CpCP.
To this end, a construction heuristic based on a greedy randomized adaptive search procedure with
probabilistic sampling is developed. In addition, this is enhanced by a local search phase combining
iterated greedy local search and variable neighborhood descent. In each of these components, the
particular problem structure is adequately exploited. Our empirical work indicates the positive
impact of each of these components when integrated into the metaheuristic. When compared to
the existing work, the proposed heuristic provides solutions of better quality than those found by
the other heuristic under similar, and in many cases significantly less, computational effort.

The rest of the paper is organized as follows. The combinatorial optimization model for the

CpCP is given in Section 2. In Section 3, a detailed description of the proposed algorithm is



prsented. Section 4 shows the empirical results providing a descriptions of the data sets, param-
eter fine-tunning, comparison among methods, and component analysis of the proposed heuristic.

Concluding remarks are given in Section 5.

2 Problem Formulation

Let V be the set of nodes representing customers or potential locations for the p facilities. The
integer distance between nodes 7 and j is represented for d;;. Each node j € V has a demand
or weight w; and each node 7 € V' has a capacity defined by s;. For the combinatorial model, a
p-partition of V' is denoted by X = {X1,...,X,,} and K = {1: p}, where X;, C V is called a subset
of V. Each subset X}, is formed by a subset of nodes such that (J,cp Xp =V and X;; N X; = @
for all k,l € K,k # . The set of centers is denoted by P C V such that P = {¢(1),...,¢(p)} where
c(k) is the active location for subset Xy, i.e., the node that hosts the facility serving the customers

in X;. The problem can be represented by the following combinatorial model.

i X 1
lnin gggf( k) (1)

where II is the collection of all p-partitions of V. For a given territory X} its cost function, also
called the bottleneck cost, is computed as f(Xy) = max;ex, {d; k) } where the center c(k), taking

into account the capacity, is given by

k) = i dii: 0 < 8 . 2
(k) = arg min 4 max 4 d j,GZX wy < s (2)
k

Here, by convention, if for a given X} there is not any i € X} such that ) w; < s; then

JEXk
f(X%) = co. We define by £(j) the center k serving customer j.

3 Description of the Heuristic

In the recent years, one important trend in the metaheuristic field is that of integrating different
components resulting in successful hybrid methods that attempt to better exploit the specific
problem structure. As a direct consequence of this, sometimes it is not clear how to name a specific
heuristic as it uses ideas from several methods. In this regard, the proposed solution method uses a
greedy randomized adaptive search procedure as its guiding framework. In its construction phase,
a selection based on biased sampling is employed. Then Iterated Greedy Local Search (IGLS) and
Variable Neighborhood Descent (VND) are applied in the improvement phase. IGLS is a technique
originally proposed by Ruiz and Stiitzle [17] that extends the Iterated Local Search (ILS) heuristic.

IGLS iteratively applies destruction and reconstruction to a given input solution focusing on the



space of locally optimal solutions. IGLS iterates over a greedy reconstruction heuristic instead of
iterating over a local search as done in ILS.

VND is an iterative improvement algorithm that realizes the general idea behind Variable
Neighborhood Search (VNS). In VND, k neighborhoods are used, which are typically ordered
according to increasing size. The algorithm starts with the first neighborhood and performs iterative
improvement steps until local optimality is reached. Whenever no further improving step is found
for the i-th neighborhood and i+ 1 < k, VND continues the search in the (i + 1)-th neighborhood;
if an improvement is found, the search process starts again at the first neighborhood. It has been
shown that VND can considerably improve the performance of iterative improvement algorithms
with respect to both the solution quality of the final solution and the time required for finding
high-quality solutions compared to using standard iterative improvement in large neighborhoods

[8]. The proposed approach is presented in Algorithm 1.

Algorithm 1 IGLS-VND
1. procedure IGLS_VND(V, p, a, [terpax)

2: X < CONSTRUCTION(V, p) > Construction
3: X + VND(X)

4 XDt X

5: while —(stopping criteria) do > Local Search
6: X + PERTURBATION(X, «)

7: X «+ VND(X)

8: if X is better that X"t then

9: Xbest - X

10: else

11: X < SHAKE(X)

12: end if

13: Ttermax <+ Itermax — 1

14: end while

15: return XPest

16: end procedure

An initial solution is obtained in Steps 2-3. Within the main loop (Steps 5-14), the local search
(Steps 6-7) is performed as long as the solution keeps improving. We use an effective improvement

criterion proposed in [18] which includes the reduction of bottleneck elements, defined as:
FXD) < fX) Vv (F(XT) = f(X), B(X') € B(X), T(X") € T(X)), (3)

where B(X) denote the set of bottleneck subsets in X, ie., B(X) = {k € K : f(Xx) = f(X)}



and J(X) contains the demand nodes with maximum distance from the active location in each
subset Xy, i.e., J(X) = {j € X, : djer) = f(X),k € B(X)}. This criteria is met if it decreases the
objective function value or if it reduces the number of bottleneck customers while not worsening the
total cost, without creating new bottleneck subsets and new bottleneck customers. The incumbent
solution Xt is updated if a better feasible solution is found according to the criterion (3) otherwise
a shake (Step 11) of the solution X is applied. The approach stops when the maximum number of

iterations is met. These components are described next.

3.1 Construction

The construction phase consists of two stages: (a) center location and (b) customer allocation.
In the former, we used a strategy based on greedy randomized adaptive search with probabilistic
selection which diversifies the set of potential centers. In the latter, a deterministic greedy approach

based on a distance criterion and capacity constraints is performed.

Stage (a): Center location

The goal here is to choose an adequate set of p centers or seed nodes. The choice of these centers
is made through a greedy randomized adaptive construction procedure, taking into account the
distance factors and the capacity of each vertex j € V. This phase is based on the greedy method
proposed by Dyer and Frizie [5] for the p-center problem. The location phase starts by choosing the
first center randomly. Then, we iteratively choose the next center seeking a node whose weighted
distance from its nearest center is relatively large. The motivation of this is to try to obtain centers
that are as disperse as possible, but also to favor the choice of centers with large capacity such we
can assign more customers to it in the allocation phase. Within a greedy randomized procedure
method this is done as follows. Let P be a partial set of chosen centers. Then for each j € V' \ P,

its nearest center is given by i* = argmin;cp{d;;}. The we compute the greedy function as

Y(j) = sjdi=;. (4)

We choose the next element ¢* using a probability value determined by greedy function (4). The

probability 7(j) of selecting element j € V'\ P can be computed as 7(j) = v(j)/ > e\ p 7(J")-

Stage (b): Customer allocation

Once the centers are fixed, the second stage consists of allocating the customers to these centers.
This stage is performed in a deterministic greedy manner. As some preliminary testing showed,
performing this step under a randomized greedy strategy did not bring any value to the quality of

the solution. In addition, the pure greedy approach in this phase is more efficient. The customers



are defined by the remaining nodes j € V'\ P. To this end we define a greedy function that measures

the cost of assigning a customer j to a center k located in c(k) as follows:
. djc(k)
¢(]7 k) = max T? —T(lﬁ) + wj ¢ (5)

where d = max; jev{d;;} + 1 is a normalization factor and r(k) = Se(k) — D_jrex, Wy 18 the residual
capacity for the set whose center k located in c(k). If the capacity constraint is satisfied, the
function only takes into account the distance factor; otherwise, the function returns an integer
value that penalizes the assignment. Then each node j is assigned to its nearest center, namely
Xpr + Xp= U {j} where k* = argminge g ¢(j, k). Finally, once the assignment is done, the centers

for the entire partition are updated using (2). Algorithm 2 depicts the construction method.

Algorithm 2 Construction
1: procedure CONSTRUCTION(V, p)

2: P+ o > Stage (a)
3: Choose i* € V randomly
4: P+ PU {l*}

5: Update v(j) and w(j),j € V\ P

6: while |P| < p do

T: Choose i* € V'\ P randomly using a probability 7(7)
8: P+ PU{i*}

9: Update v(j) and w(j),j € V\ P

10: end while

11: X<+—o > Stage (b)
12: for all j € V\ P do

13: kE* < arg minge i (7, k)

14: X + Xpx U{j}

15: Update c(k™*)

16: end for

17: return X

18: end procedure

3.2 Local Search

To attempt to improve the solution, a local search phase that uses VND within an IGLS framework
is performed (Steps 5-14 in Algorithm 1). In this phase a perturbation consisting of unassigning
and reassigning customers to centers according to the IGLS idea is done first (Step 6). Then, this

is followed by VND (Step 7), where two different neighborhood structures are used. Finally, a more



aggressive destruction/reconstruction procedure is performed (Step 8). Each of these components
is explained in detail next.

This idea of hybridizing ILS with VND/VNS has been successfully used in the past for other
combinatorial optimization problems. For instance, Ribeiro et al. [16] implement a variant of this
to solve a real-life car sequencing problem; Subramanian et al. [19] used a parallel version for the
the VRP with simultaneous pickup and delivery; Martins et al. [13] proposed a method for solver
a routing and wavelength assignment problem for optical networks. Another interesting advantage
of IGLS is that it allows to diversify and improve along the search without the need to employ

complex memory structures.

Algorithm 3 Perturbation
1: procedure PERTURBATION(X, «)

2: W+ o > Destruction
3 for all k € K do

4: Update p(j),j € Xk \ {c(k)}

5: while 17 < a do

6: Choose j € X \ {c(k)} randomly using a probability p(j)

7 W« Wu{j}

8: end while

9: end for

10: Sort W' from worst to best djy;y,j € W
11: X« X\W

12: for all j/ € W do > Reconstruction
13: k* « argminge g ¢(j5', k)

14: Xpr + Xpe U{J'}

15: end for

16: Update c(k), k € K

17: return X

18: end procedure

3.2.1 Perturbation

This method takes a solution as an input and applies destruction and reconstruction steps. The
objective of this procedure is to reduce bottleneck elements using specific criteria of disconnection
for each subset. In this specific case, for a chosen X, the destruction step is done by unassigning
the a% of nodes located in X}, with high values of the probability function defined by p(j) =
djc(r)/ Zj’e x,, djc(k)- The choice of this function is motivated by the fact that the nodes farther

from the center are the ones affecting more the dispersion function, i.e., any node disconnected



belonging to J(X). The reconstruction step reassigns each disconnected node to a nearest center,
namely Xp+ < Xp+ U {j} where k* = argmingcx ¢(j, k). A priority assignment is given to the
bottleneck nodes, i.e., nodes whose previous assignment matched the value of the objective function
value. Finally, once the reconstruction is done, the centers for the entire partition are updated using
(2). The pseudo-code of this perturbation method is shown in Algorithm 3.

The destruction and reconstruction steps of the perturbation method are illustrated in Figure
1. In this example, 5 and v represent the node centers of two subsets. The nodes in green
indicate bottleneck nodes or nodes that generate the worst cost. In this case, before destruction
f(X) = 18. In the destruction phase, the nodes with dash line represent the set of nodes selected
to be disconnected from its center based on the probability p(j). In the reconstruction phase, the
green node is given priority allocation and changes its location from S5 to 7, reducing the cost of

the current solution to 12.

J

(a) Destruction (b) Reconstruction

Figure 1: Destruction and reconstruction steps in the perturbation method.

It is important to point out that an improvement in the objective function value is not necessarily
achieved by the perturbation method. This is due to the fact that there might be some nodes that
can worsen the objective value of the current solution during the reconstruction step. However;
this is not precisely bad news because, it allows more diversification to a given solution which
can later be improved by VND in the following step. As it is usual in IGLS, the value of the
destruction parameter « plays an important role in the quality of the solutions found by the
method. Appropriate values are empirically investigated and fine-tuned for a large number of

instances in the benchmark data sets as shown in Section 4.2.



3.2.2 VND

Our VND implementation, depicted in Algorithm 3, employs two different neighborhood structures

denoted by N7 and N3. For each of the two neighborhoods, the potential move takes into account

both distance and capacity factors. Given the nature of the objective function, it makes perfect

sense to consider only a subset of promising moves, not the entire neighborhood. Therefore a best

improving move strategy is adopted through the search. Each neighborhood is described next.

Algorithm 4 Variable Neighborhood Descent

1. procedure VND(X)

2:

10:
11:

while k£ < kpax do
X'+ argmingen; (x) f ()
if X’ is better that X then
X'+ X
k+1
else
k< k+1
end if
end while

return X

12: end procedure

N1)

Nz)

Reinsertion: This neighborhood considers moves where a node j € J(X) (currently as-
signed to center of set X,) is assigned to set Xj, with k # ¢, i.e., given X = (X1,...,X))
reinsertion(j, k) = {X1,..., Xg \ {4},..., Xp U {j}, ..., Xp} where j must be a bottleneck
node for the move to be attractive. Note that a move is considered valid if and only if the
move does not exceed the capacity of the target subset and the distance between j and c(k) is
strictly less than f(X). These restrictions rule out infeasible movements, reducing the size of

the neighborhood to be explored, and therefore, increasing the performance of the procedure.

Ezchange: This neighborhood considers moves where two nodes i € J(X) and j in a different
subset X, with k # ¢, are swaped, i.e., given X = (Xy,...,X,), swap(i,j) = {X1,..., X4 U
{G\ {3}, ... Xp U i} \ {4}, ..., Xp}, where i must be a bottleneck node for the move to be
attractive. Similarly, the move is valid if and only if it does not exceed the capacity of the

respective target subset and the distance between i and ¢(k), j and ¢(q) is strictly less than

f(X).

These two moves are illustrated in Figure 2. A green node indicates a bottleneck node. Figure

2(a) represents a reinsertion move. Here, the node labeled “a” is designated as the most attractive



move, and it changes its location from § to -, reducing the cost of the current solution to 12. Figure
2(b) represents an exchange move, where nodes “a” and “b” are swapped, reducing the cost of the

current solution to 12.

©) ©)

(a) Reinsertion (b) Exchange

Figure 2: Illustration of neighborhood structures in the VND method.

3.2.3 Shake

The previously described perturbation and VND methods consider moves where centers tend not
to change too much. The computational effort of every move evaluation is reasonable. However,
it is possible to force a more aggressive destruction/reconstruction mechanism that would cause
centers to change considerably. This is achieved by a “shake” mechanism that is applied after
a local optima is reached under the iterative application of the perturbation and VND. This, of
course, requires more computational effort but it pays off. The shake method performs removal
and reconstruction of several subsets, which greatly diversifies the search path. The subsets to be

destructed are chosen according to the following criterion:

K {n' (), n* ()’ () 1 n'(§) = 1), 5 € T(X)} (6)

where 7(j) = arg minge e dje(r). Here n(5), n%(j), and n3(j) are the first, second, and third nearest
centers to j € J(X), respectively, under the distance criterion. Let W <« Ugex Xi. We then now
remove these sets from the current solution X < X \ W. Now, using the construction method, we
construct a new solution X’ by reassigning the nodes in W with p’ = |K|. Finally X + X U X' is

the new current solution.



Algorithm 5 Shake
1. procedure SHAKE(X)

2 K+ {n'G):n?(G) () = 0 (5) =€), 5 € T(X)}
3 if £ # @ then

4 W< o

5: W= Upex Xk

6: X« X\ W
7

8

9

P+ [K]
X' + ConsTRUCTION(W, p')
X+ XUuXx’

10: end if

11: return X

12: end procedure

Note that this reconstruction step introduces a randomized mechanism, influenced by the con-
struction phase. This shake mechanism does not guarantee reducing bottleneck nodes nor improv-
ing the objective value; however, the aggressive destruction diversifies the partial structure of the
current solution, selecting other subsets of potential centers which may be desirable to guide the
method to other most promising search regions during the improvement phase to be performed

later.

Figure 3: Segment of a solution which is eligible for applying the shake method.

Figure 3 shows a segment of a solution which is eligible for applying the shake method. In this
example, node a is a bottleneck node currently assigned to its closest center $ under the distance
criterion, i.e., n(a) = £(a). Therefore, under the selection criterion defined in (6), the region formed

by the subsets with centers «, 8, and +y is destroyed. Then these three sets are rebuilt using the

10



construction step defined in Algorithm 2, yielding a new solution.

4 Computational Results

This section shows the overall performance of the heuristic which is empirically assessed on widely
used benchmarks on location literature. We use the exact methods of Ozsoy and Pmar (OP) [14]
(OP) and Albareda-Sambola et al. (ADF) [1] to compute exact solutions or lower bounds to some
problems to have a better estimates of the optimality gap for the heuristic solutions. ILOG CPLEX
12.5 is used as LP solver in these exact methods. A time limit of 1 hour and a memory usage limit
of 2 Gb was set as stopping criteria. Each of the experiments was carried out on a machine with
AMD Opteron 2.0 GHz (x16), 32 GiB RAM under Debian 6.0.8 GNU/Linux Kernel 2.6.32-5, 64

bit architecture.

4.1 Benchmark Instances

For the experiments, we used four different data sets. No benchmark instance data sets for the
CpCP exist in the literature; however, we tested and compared all methods using data sets generated

for other location problems and used in previous work on this problem.

(Set A) Beasley OR-Library: This data set, proposed in [2] for the capacitated p-median problem,
contains two groups of 10 instances with equal facility capacity. One has 50 demand nodes
and 5 facilities to be located, and the other has 100 demand nodes and 10 facilities to be

located.

(Set B) Galvao and ReVelle: This data set was generated by Scaparra et al. [18] specifically for
the CpCP based on the data set of Galvao and ReVelle for the maximal covering location
problem [15]. The data sets contais instances with 100 and 150 customers, and 5 to 15
centers, with variable facility capacity. The original set is composed by two networks that

were randomly.

(Set C) Lorena and Senne: This set, proposed in [12] por the CpMP, includes 6 large instances
whose size ranges from 100 to 402 customers, and from 10 to 40 centers, and equal facility

capacity. This is considered a large scale set given the number of nodes.

(Set D) Ceselli and Righini: There exists a recent data set added to the OR-Library proposed
in [4]. This is regarded as a very hard set to solve for capacitated location problems such
as p-median and p-center problems, and may be significantly influenced by the ratio between
n and p. This set is composed by 4 subsets «, 8,7 and §, each subset consisting of forty
instances: 20 of them concern graphs with 50 and 100 vertices and p = {5; the other 20
instances were randomly generated on graphs with cardinality 150 (15 centers) and 200 (20

11



centers), also all capacities were fixed to 120. Therefore, the same 40 instances were solved
with different number of centers: « with p = L%J, B with p = L%J, ~ with p = L%J and 0
with p = L%"J The overall capacity was preserved in all subsets by setting w; = [12%-‘. We

refer to this as four different data sets, namely D-«, D-3, D-v, and D-6.

4.2 Fine-tuning

The purpose of this first experiment is to fine-tune the heuristic with respect to parameter « for
each data set. This is achieved by a detailed statistical analysis described below. The response

variable studied is the average relative percentage deviation or gap as follows:

GAP = W

where f(X) is the resulting objective function value found for each particular instance and f% is

(7)

the best known lower bound. This bound was obtained by applying either of the exact methods
[14, 1]. In some cases this computed best known lower bound turned out to be the optimal solution.
The heuristic iteration limit was set to 100 for each value o € {0.0,0.1,...,1.0} on all data sets,
performing 5 replicates of this experiment. We separate the results into seven blocks, according
to the number of data sets with subsets and study a single factor a of each block composed by
5 replicates, where GAP is the response variable. First, we analyzed the data using the Kruskal-
Wallis non-parametric test [10]. For each data set we obtained p-value < 0.05; therefore, concluding

that o affects the response variable.
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Figure 4: Graphs of statistical analysis for data set A.

Figures 4-10 show a set of three plots for each data set. The first plot shows a simple boxplot
based on the relationship between the levels () and GAP. It can be seen clearly that « affects
the response variable. When o = 0.0, the GAP has inferior quality than it has in 0.1 < o < 0.9.
For the for the rest of the plots, we only consider analyzing the range [0.1,0.8]. It should be

12



noted, that as « increases so does the level of destruction and therefore the computational effort
increases. The second plot displays boxplots of the groups with their sign confidence intervals for
the medians using a Friedman’s Test [7]. This graph is interesting because one can visually see the
locations of the groups with respect to the others, defining the significance by a gray color in the
bar. Finally, the third graph is a means plot with Tukey’s Honest Significant Difference (HSD) 95%
confidence intervals. This plot gives us a more accurate view of what level («) the mean achieves
its lowest value against the response variable. Based in the last test, it was observed that the set
{0.4,0.5,0.6,0.6,0.5,0.4,0.6} of « values gave the best resuts for each data set A, B, C, D-a, D-3,
D-~ and D-§, respectively. For the next experiments, we used these selected values for « and run
our heuristic using 1000 as iteration limit for data sets A, B, and C, and 500 as iteration limit for

data sets D-*, and 30 repetitions.
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Figure 5: Graphs of statistical analysis for data set B.
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Figure 6: Graphs of statistical analysis for data set C.
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4.3 Comparison between heuristics

The main purpose of these experiments is to provide a detailed comparison between the proposed
heuristic (QR) and the one by Scaparra et al. (SPS) [18]. In addition, we have decided to include
the results obtained by the exact methods (Ozsoy and Pmar (OP) [14] and Albareda-Sambola et al.
(ADF) [1]) for two reasons. First, since we have the codes of all four methods, running them all in
the same platform allows a true comparison among them in terms of computational effort. Most of
the instances were solved by either of the exact methods, thus this allows for a true optimality gap
computation for the heuristic solutions. Then, while it is expected that solution quality reported
by the heuristic might not be as good as the one delivered by the exact methods, we can certainly
assess the trade-off between solution quality and computational effort. Finally, to the best of our
knowledge, this full comparison among these other exact and heuristic methods had not been done
before.

Tables 1-7 display the comparison of methods for each data set. In each table the first two
columns represent the instance size measured by number of nodes n and number of partitions p.
“Instance” is the name of the particular problem instance and “Optimal” indicates the optimal

“*” hheside the value. The section

value of the instance or the best known lower bound denoted by
“Time (s)” gives the execution time in seconds and “Deviation (%)” expresses the percent of relative
deviation or gap with respect to the optimal value or best known lower bound for each method. In
the case of exact methods, the gap represent the deviation between best lower and upper bound
found. It should be noted that for the proposed method QR, we show the average time performance
over the 30 independent repetitions, also “QR! %” and “QR? %” denote the average and best GAP,
respectively, over all repetitions. Table 8 summarizes the comparison among methods for all data
sets in terms of their average relative optimality gap, running time, and number of infeasible

“on

solutions. An infeasible solution (indicated by in the column) is reported if no feasible solution
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Table 1: Comparison of methods on data set A.

n p Instance Optimal Time Deviation %
ADF OP SPS QR ADF  OP SPS QRT QRZ?
50 5 cpmp01 29 0.07 0.32 0.71 0.34 0.00 0.00 0.00 0.00  0.00
cpmp02 33 0.13 2.05 0.97 0.34 0.00 0.00 0.00 0.00  0.00
cpmp03 26 0.29 0.47 0.91 0.36 0.00  0.00 7.69 0.00 0.00
cpmp04 32 0.09 1.00 1.01 0.36 0.00 0.00 0.00 0.00  0.00
cpmp05 29 2.22 1.79 1.11  0.38 0.00 0.00 0.00 0.19  0.00
cpmp06 31 2.19 2.72 1.06 0.38 0.00 0.00 3.23 3.07  0.00
cpmp07 30 0.16 0.82 1.23  0.38 0.00 0.00 0.00 0.80  0.00
cpmp08 31 0.18 1.10 1.09 0.37 0.00 0.00 0.00 1.29  0.00
cpmp09 28 3.46 7.22 1.29 0.37 0.00 0.00 0.00 3.25  0.00
cpmplO 32 4.41 6.39 2.50 0.37 0.00  0.00 9.38 12.81 0.00
Average 1.32 2.39 1.19 0.36 0.00 0.00 2.03 2.14  0.00
100 10 cpmpll 19 6.38 5.48 9.34 1.17 0.00 0.00 5.26 9.62  0.00
cpmpl2 20 0.33 5.98 10.21 1.10 0.00 0.00 15.00 5.22  0.00
cpmpl3 20 11.27 6.54 9.32 1.15 0.00 0.00 10.00 0.64  0.00
cpmpl4 20 2.40 4.96 8.70 1.11 0.00 0.00 10.00 2.44  0.00
cpmplb 21 2.66 7.28 9.64 1.19 0.00  0.00 9.52 3.73 0.00
cpmpl6 20 22.84 12.38 10.35 1.16 0.00 0.00 5.00 4.42 0.00
cpmpl7 22 78.51  553.31 9.91 1.20 0.00 0.00 4.55 4.70  4.55
cpmpl8 21 10.14 9.77 8.21 1.10 0.00 0.00 9.52 1.77 0.00
cpmpl9 21 5.00 19.06 10.16 1.18 0.00 0.00 9.52 5.66  0.00
cpmp20 21  397.88 20.55 8.97 1.20 0.00 0.00 9.52 9.20  0.00
Average 53.74 64.53 9.48 1.16 0.00 0.00 8.79 4.74  0.46
Overall average 27.53 33.46 5.34 0.76 0.00 0.00 5.41 3.44 0.23

was found after the stopping criteria was met.

As far as data set A is concerned (Table 1), the exact method was found very efficient for
the smaller instance group (size 50 x 5), performing better than any heuristic. However, when
attempting the larger group (size 100 x 10), there are a couple of instances for which the exact
method struggled. The performance of both heuristics was more robust than that of the exact
method as they both took less than 0.65 seconds to solve each instance.

quality, the proposed heuristic found better solutions than the ones reported by the SPS heuristic.

Table 2: Comparison of methods on data set B.

In terms of solution

n P Instance Optimal Time Deviation %
ADF OP SPS QR ADF  OP SPS QR QR?
100 5 G1 94  159.94 9.02 7.00 1.06 0.00 0.00 2.13 1.80 1.06
100 5 G2 94 53.37 12.41 7.09 1.06 0.00 0.00 2.13 1.83 0.00
100 10 G3 83 55.19 122,17 14.02 1.39 0.00 0.00 8.43 8.68 4.82
100 10 G4 84 113.05 41.76 1521 1.44 0.00 0.00 7.14 8.60 5.95
150 10 G5 95 430.61 302.30 40.55 2.29 0.00 0.00 7.37 4.45 2.11
150 10 G6 96 155.52 224.46 36.85 2.20 0.00 0.00 7.29 4.23 2.08
150 15 G7 89 208.94 102.64 49.78 3.20 0.00 0.00 8.99 8.04 5.62
150 15 G8 89 251.59 421.37 47.88 3.21 0.00 0.00 10.11 8.79 6.74
Overall average 178.53 154.52 27.30 1.98 0.00 0.00 6.70 5.80 3.55

When analyzing data set B (Table 2) we can observe that the exact method takes considerably
longer than both heuristics to reach an optimal solution. On average, the exact method takes about
an order of magnitude longer. In terms of heuristic solution quality, our heuristic obtains slightly

better solutions (average gap of 6.04 %) than the SPS heuristic (average GAP of 6.70%).
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Table 3: Comparison of methods on data set C.

. Time Deviation %

n p  Instance Optimal —z5e—0Fp SPS OR ADF OP SPS QR! QRZ
100 10 SICI 364 262.10 36897 1450  0.71 000 000 2667 2552 528
200 15 SJC2 304 5824 11424 79.90  2.36 0.00 000 1902 758 291
300 25 SJC3a 278 14270  283.95 23415  7.66 0.00 000 3694 1030 3.24
300 30 SJC3b 253 11108  277.79 247.68 10.29 0.00 000 30.86 848 3.7
402 30 SJC4a 284 576.16 1100.08 631.14  13.82 0.00 000 4229 9.06 451
402 40  SJCAb 239 251.51  343.50 505.12  22.68 0.00 0.00 3493 915 3.60

Overall average 933.63 41476 28543 950 0.00 000 3179 1168 380

Regarding data set C (Table 3), we can observe that the best exact method takes on average
near 4 minutes while our heuristic takes under than 7 seconds. When comparing our heuristic with
the SPS heuristic, we can see that ours is faster and finds solutions of significantly better quality.

The results of data sets D-* are displayed in Tables 4-5. As discussed in previous sections, this
set is considered complex because their value of p has a significant effect on the performance of the
methods. When analyzing subset D-a (Table 4), we observed out heuristic outperforms heuristic
SPS in terms of both solution quality and computational effort. Regarding subset D-/ (Table 5),
SPS shows a significant number infeasible solutions while our heuristic provides feasible solutions
for all instances. Finally, regarding subsets D-y and D-0 (Tables 6-7) the infeasibility level of SPS
is increased considerably, while QR provides a feasible solution for all instances of the subset D-v
and has only two instances with infeasible solutions in D-§. The decrease in the quality of the
solution by the heuristic methods is notable, but the computation effort is considerably less. In
particular, our heuristic is considerably faster than any other method.

Table 8 summarizes the comparison among methods. Analyzing this table, we observe that QR
is considerably faster that gets an SPS for all data sets. Regarding solution quality, the proposed
method provides acceptable solutions for data sets A, B, C and for subsets D-a and D-5. For
subsets D-y and D-6, the comparison between QR and SPS in terms of solution quality does not
make too much sense because SPS fails in finding feasible solutions to a large number of instances.
In that regards, our heuristic is still better as it was able to find feasible solutions to practically
every instance. When compared to the exact methods, our heuristic is still more reliable in terms
of number of feasible solutions found. Exact method ADF and OP delivered 36 and 13 infeasible
solutions while QR delivered only 2 unfeasible solutions.

Figure 11 shows a comparison of the methods in terms of their asymptotic running time and
used memory resources with respect to the number of nodes. The memory statistic indicates
the maximum resident set size used [11], in bits, that is, the maximum number of bits of physical
memory that each approach used simultaneously. As can be seen, the resources used by the proposed
approach are lower than those used by the other three methods. In particular, the memory usage

requirements of the two exact methods, as expected, are considerably larger.
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Table 4: Comparison of methods on data set D-a.

n p Instance Optimal Time Deviation %
ADF OP SPS QR ADF  OP SPS QR! QR?
50 5 01 29 0.07 0.33 0.70 0.20 0.00 0.00 0.00 0.00 0.00
02 33 0.12 2.04 0.98 0.18 0.00 0.00 0.00 0.00 0.00
03 26 0.30 0.46 0.90 0.19 0.00 0.00 7.69 0.09 0.00
04 32 0.09 1.01 1.01 0.21 0.00 0.00 0.00 0.00 0.00
05 29 2.26 1.81 1.11  0.22 0.00 0.00 0.00 1.04 0.00
06 31 2.17 2.72 1.05 0.20 0.00 0.00 3.23 3.18 0.00
07 30 0.16 0.81 1.22  0.22 0.00 0.00 0.00 2.02 0.00
08 31 0.19 1.07 1.08 0.20 0.00 0.00 0.00 2.49 0.00
09 28 2.89 8.37 1.30 0.20 0.00 0.00 0.00 3.55 0.00
10 32 4.27 6.88 2.51 0.21 0.00 0.00 9.38 14.44 0.00
Average 1.25 2.55 1.19 0.20 0.00 0.00 2.03 2.68 0.00
100 10 11 19 6.31 5.52 9.18 0.63 0.00 0.00 5.26 11.73 0.00
12 20 0.34 5.75 10.21 0.65 0.00 0.00 15.00 6.08 0.00
13 20 11.12 6.65 9.67 0.65 0.00 0.00 10.00 1.75 0.00
14 20 2.45 4.70 8.68 0.64 0.00 0.00 10.00 4.06 0.00
15 21 2.68 7.28 9.60 0.63 0.00 0.00 9.52 4.63 0.00
16 20 23.69 12.34 10.34 0.65 0.00 0.00 5.00 4.83 0.00
17 22 77.74 554.23 9.78  0.65 0.00 0.00 4.55 5.86 4.55
18 21 10.16 9.86 8.21 0.63 0.00 0.00 9.52 2.38 0.00
19 21 4.94 19.84 10.20 0.64 0.00 0.00 9.52 6.85 0.00
20 21 395.24 20.38 8.87 0.65 0.00 0.00 9.52 9.52 9.52
Average 53.47 64.65 9.48 0.64 0.00 0.00 8.79 5.77 1.41
150 15 21 16 29.86 31.96 27.48 1.50 0.00 0.00 25.00 11.25 6.25
22 17 103.79 1386.81 24.76 1.58 0.00 0.00 11.76 4.83 0.00
23 16 33.12 37.78 2335 1.54 0.00 0.00 18.75 12.50 0.00
24 16 54.09 56.31 29.18 1.60 0.00 0.00 25.00 12.64 6.25
25 16 0.72 32.71 2299 1.55 0.00 0.00 12.50 0.87 0.00
26 16 14.66 57.28 28.48 1.57 0.00 0.00 12.50 9.86 6.25
27 18  3303.97 130.39 27.22 1.60 0.00 0.00 11.11 10.28 5.56
28 17 21.43 48.93 28.06 1.57 0.00 0.00 5.88 0.00 0.00
29 15 18.68 40.25 25.69 1.58 0.00 0.00 20.00 13.11 6.67
30 15 4.58 52.53 28.87 1.59 0.00 0.00 20.00 7.08 6.67
Average 358.49 187.50 26.61 1.57 0.00 0.00 16.25 8.24 3.77
200 20 31 14 45.00 29.83 52.55 3.01 0.00 0.00 21.43 6.31 0.00
32 14 3600.75 1798.05 86.42 3.30 7.14 0.00 2857 27.94 14.29
33 14 58.70 101.90 57.16 3.14 0.00 0.00 28.57 11.07 7.14
34 15 974.15 168.16 60.03 3.17 0.00 0.00 26.67 12.81 6.67
35 14 94.71 83.85 66.88 3.07 0.00 0.00 14.29 10.91 7.14
36 14 48.37 46.66 57.54 3.16 0.00 0.00 14.29 10.91 7.14
37 14 8.03 89.52 65.99 3.08 0.00 0.00 28.57 7.54 0.00
38 14 710.26 321.27 66.66 3.15 0.00 0.00 28.57 18.18 7.14
39 13 66.72 215.80 56.29 3.07 0.00 0.00 23.08 14.87 7.69
40 15 475.44 186.77 66.56  3.12 0.00 0.00 20.00 6.82 0.00
Average 608.21 304.18 63.61 3.13 0.71 0.00 23.40 12.74 5.72
Overall Average 255.36 139.72 25.22 1.38 0.18 0.00 12.62 7.36 2.72
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Table 5: Comparison of methods on data set D-3.

. Time Deviation %
n p  Instance Optimal —3 oP SPS OR ADF  OP SPS QR! QR?
50 01 29 1.20 32.27 1.18 0.36 0.00 0.00 0.00 5.20 0.00
02 33 0.93 3.07 2.19 0.38 0.00 0.00 10.00 13.75 10.00
03 26 0.85 39.52 1.96 0.39 0.00 0.00 10.00 12.97 10.00
04 32 7.92 5.35 2.51 0.39 0.00 0.00 8.33 20.78 16.67
05 29 46.47 15.40 3.28 0.42 0.00 0.00 9.52 21.48 14.29
06 31 8.60 5.11 3.73 0.40 0.00 0.00 4.55 16.74 0.00
07 30 2.32 2.10 4.99 0.42 0.00 0.00 0.00 10.39 0.00
08 31 2.28 2.63 3.78 0.44 0.00 0.00 4.35 4.35 4.35
09 28 7.60 14.65 0.45 0.40 0.00 0.00 - 23.10 21.05
10 32 2.55 3.87 0.15 0.38 0.00 0.00 - 21.43 4.35
Average 8.07 12.40 2.42 0.40 0.00 0.00 5.84 15.02 8.07
100 10 11 19 209.89 435.85 8.72 2.07 0.00 0.00 0.00 15.16 0.00
12 20 2.67 28.05 9.67 2.17 0.00 0.00 15.38 11.28 7.69
13 20 1723.90 151.62 9.13 2.02 0.00 0.00  23.08 19.96 0.00
14 20  3600.00 35.88 10.12 2.06 15.38 0.00 7.14 7.26 7.14
15 21 14.01 13.76 10.07 2.08 0.00 0.00 21.43 20.80 14.29
16 20 40.18 13.41 11.56 2.13 0.00 0.00 7.14 13.34 7.14
17 22 37.76 59.74 12.55 2.13 0.00 0.00 21.43 26.98 21.43
18 21 18.74 43.47 10.68 2.09 0.00 0.00 14.29 22.42 0.00
19 21 17.21 31.33 14.01 2.14 0.00 0.00 30.77 38.37 30.77
20 21  3078.14 3600.00 0.58 2.04 23.08 7.69 - 81.80 38.46
Average 874.25 441.31 9.71 2.09 3.85 0.77 15.63 25.74 12.69
150 15 21 16 363.19 79.51 36.69 5.63 0.00 0.00 27.27 27.07 18.18
22 17 171.87 103.24 26.91 5.72 0.00 0.00 18.18 34.95 18.18
23 16 763.98  3600.01 28.26 5.71 9.09 10.00 27.27 45.86 27.27
24 16 504.81 166.45 26.09 5.74 0.00 0.00 18.18 17.73 9.09
25 16 9.10 56.96 15.78 5.39 0.00 0.00  20.00 16.56 10.00
26 16 12.44 88.53 33.45 5.44 0.00 0.00 30.00 22.83 10.00
27 18 164.87 111.24  213.91 5.54 0.00 0.00 25.00 68.84 33.33
28 17 111.83 67.75 31.11 5.60 0.00 0.00 18.18 28.13 9.09
29 15 6.33 98.90 28.81 5.42 0.00 0.00 20.00 22.11 10.00
30 15 32.17 116.24 28.23 5.29 0.00 0.00 30.00 26.00 10.00
Average 214.06 448.88 46.92 5.55 0.91 1.00 23.41 31.01 15.51
200 20 31 14 872.93 194.76 48.09 16.28 0.00 0.00 22.22 24.07 22.22
32 14 2152.14  3600.03 9.27 16.67 44.44  11.11 - 287.13 144.44
33 14 3473.79  3059.78 71.79 17.27 22.22 12.50 44.44 44.44 44.44
34 15 714.62  1489.29 25.50 16.46 20.00 11.11 - 105.89 60.00
35 14 1645.72 118.15 42.46 17.58 22.22 0.00  20.00 20.28 10.00
36 14 1282.98 251.35 60.29 17.10 0.00 0.00 33.33 33.76 22.22
37 14 66.58 183.14 45.71 16.79 0.00 0.00 22.22 19.81 11.11
38 14  1436.34 507.41 63.14 17.76 11.11 0.00  20.00 25.39 10.00
39 13 339.13 165.87 46.96 16.27 0.00 0.00 22.22 16.97 11.11
40 15 2679.24 1331.90 55.01 17.90 22.22 1250 33.33 54.70 33.33
Average 1466.34  1090.17 46.82 17.01 14.22 4.72  27.22 63.24 36.89
Overall Average 640.68 498.19 26.47 6.26 4.74 1.62 18.03 33.75 18.29
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Table 6: Comparison of methods on data set D-.

. Time Deviation %
n p  Instance Optimal —3 OP  SPS QR ADF OP _SPS QR! QR?
50 16 01 7 012 3706 123 0.79 000 000 000 1078 0.0
02 18 1581 2362 267 076 0.00 000 556 1213 556
03 15 213 1880  1.99  0.72 0.00 000 000 668  0.00
04 21 3.92 328 340 073 0.00 000 476 1429  14.29
05 18 0.08 2287 307 076 0.00 000 000 3296 16.67
06 19 3418 229 669  0.73 0.00 000 526 3456  15.79
07 18 11.46 302 720 075 0.00 000 556 2237 556
08 20 1039 7176 053 0.7 0.00  0.00 S 2817 20.00
09 17 506 2633 062 0.72 0.00  0.00 - 3343 1176
10 23 6.86 17156  0.19  0.74 0.00  0.00 - 7152 13.04
Average 900 3806 276 0.5 000 000 302 3271 1027
00 33 11 T 785 3200 1261 41l 0.00 000 27.27 3065 9.0
12 12 3711 8191 1273 420 0.00 000 833 2977 833
13 12 90374 5972 9.68  4.06 0.00 000 833 2926  0.00
14 12 105349 4820 1682 4.8 0.00 000 16.67 3542  16.67
15 13 4923 5504 1129 424 0.00 000 T7.69 2282  7.69
16 13 1864.90  79.53 17.15  4.15 833 000 1538 3812 1538
17 13 408.38  58.80 2423  4.02 0.00 000 T7.69 1269  0.00
18 14 360001 17091 1827  4.21 769 0.00 714 2238 7.4
19 ¥11 3600.00 3600.00 28.15  4.35 9.09 1000 1818 6515  18.18
20 12 9622 10224 476  4.20 0.00  0.00 - 9579 4167
Average T162.00 42393 1557 418 951 100 1296 3820 1242
150 50 21 11 360000 1592.62 5820 16.64 3000 000 1818 5243  18.18
22 10 107710 159.58 5959  16.42 0.00 000 30.00 12000  70.00
23 11 3399 20882 3227 16.69 0.00  0.00 - 11490 63.64
24 10 13611 16812 4421 17.71 0.00 000 2000 4122  30.00
2 9 9825  99.75 2429 16.49 0.00 000 1111 4031  1L11
2% 9 1588 10744 2644 16.86 0.00 000 2222 5414 3333
27 ¥11 61772 3600.00 22.10  17.00 9.09  10.00 - 159.90  81.82
28 10 360000 122.35 28.33 16.74 1111 000 1000  32.61  10.00
29 9 6.92 14094 3029 17.36 0.00 000 2222 4722  33.33
30 9 22647  194.87 2030 16.74 0.00 000 2222 4858  22.22
Average 91124 63945 3460 16.86 102 100 1949 7113 37.36
300 66 31 8§ 1926 9566 5280 3661 0.00 000 2500 4049 1250
32 9 3600.01 149820  9.73  36.02 2292 0.00 - 393.83 244.44
33 8 360000 153159 67.81 38.38 1250 0.00 3750 6465  50.00
34 10 87698  769.40 67.84 36.22 33.33  0.00 - 18517  110.00
35 8  717.64 18256 65.16 37.35 0.00 000 37.50 5438  37.50
36 8 360001 28353 40.23  36.59 1250 0.00 3750 6229  37.50
37 8 2110 31341 5808 37.72 0.00 000 2500 5632  25.00
38 *§ 360000 3600.00 73.45 36.63 1250 14.29 50.00 7042  50.00
39 8 27.09  259.93 46.90 34.97 0.00 000 2500 27.92  25.00
40 9 48926 30257 7091 37.37 1250 000 2222 5426  33.33
Average 165514 883.69 55.29 36.79 1056 143 3247 10097  62.53
Overall Average 91187 49628 27.05 1465 127 086 1699 6075  30.64
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Table 7: Comparison of methods on data set D-6.

n Instance Optimal Time Deviation %
p p ADF OoP SPS QR ADF OP SPS QR! QR?

50 20 Ol 17 023 107.37 178 1.02 0.00 0.00 0.00 69.09 5.88
02 18 0.70 78.12 424 1.02 0.00 0.00 556  59.93  16.67
03 17 2.38 87.34 6.29  0.88 0.00 0.00 000 130.85  41.18
04 20 29.45  102.04 471 0.90 0.00 0.00 10.00 49.42  20.00
05 19 21.26 63.37 0.36  0.92 0.00  0.00 - 8876  42.11
06 21 4.12 18.01 022 0.94 0.00  0.00 - 60.93  40.00
07 19 4.81 17.83 0.23  0.93 0.00  0.00 - 7010  10.53
08 23 3600.00  159.20 0.23 091 20.00  0.00 - 64.06 8.70
09 21 21.21 68.26 022  0.94 0.00  0.00 - 9228  42.86
10 23 14.20 52.95 0.24 0.9 0.00  0.00 - 159.78  86.96
Average 369.84 75.45 1.85 095 2.00 0.00 3.89 8452  31.49

100 40 11 12 52.88  125.81  37.62  5.96 0.00 0.00 16.67 7648  41.67
12 11 3600.01 89.80 2544  6.73 20.00  0.00 18.18  74.30  45.45
13 12 284.85  138.65 22.88 535 0.00  0.00 0.00 73.80  41.67
14 12 12.69 90.96  70.71  6.37 0.00  0.00 - 121.62  58.33
15 13 425  145.28 578 6.29 0.00  0.00 - 13261  69.23
16 13 272.28  143.99 103.63  5.70 0.00  0.00 - 6641  30.77
17 14 3600.01  154.08 549  5.14 7.69  0.00 - 13498  64.29
18 14 3600.01  209.06 339  6.65 7.69 0.0 - 11115 50.00
19 12 3600.00  289.10  29.40  5.46 9.09  0.00 - 11364  58.33
20 14 73.41  509.37 3.93  6.34 0.00  0.00 - 27857 207.14
Average 1510.04  189.61  30.83  6.00 445 000 11.62 118.36  66.69

150 60 21 11 3600.00  290.33 242.81 21.61 20.00  0.00 18.18 119.80  63.64
22 12 3600.00 2930.40  10.23 21.24 9.09  0.00 - 27537  116.67
23 11 270.09  231.48 5.87 21.55 0.00  0.00 - 273.67 127.27
24 9 3002.52  180.47  81.27 22.74 0.00 000 33.33 12043  66.67
25 9 521  142.60  24.77 21.71 0.00 000 11.11 7389  22.22
26 9 4351 19492  36.84 23.77 0.00 0.00 2222 86.36  44.44
27 13 3600.04  3600.00 7.74  21.80 7.69  11.11 - 23846 238.46
28 10 3600.00 1615.84  35.98 22.77 1111 0.00 20.00 7217  30.00
29 9 8.04  232.82 3847 24.83 0.00 000 2222 91.05 44.44
30 9 14.84  240.06  31.32 21.60 0.00 0.00 1111  77.22  33.33
Average 177443  965.89  51.53 22.36 479 111 1974 14284  78.11

200 80 31 8 2643  233.07  55.32 49.17 0.00 0.00 37.50 75.00  37.50
32 10 3600.03 1277.43  11.98 - 40.00  37.50 - - -
33 8 84.32 40258 107.37 49.81 0.00  0.00 37.50 11257  62.50
34 12 1577.88  421.93  11.98 - 40.00  0.00 - - -
35 8 3600.00 1318.10 125.24 50.53 1250 14.29 50.00 124.79  62.50
36 9 57.93  171.37 403.80 49.85 0.00  0.00 - 13537  66.67
37 8 32.87  334.25  72.87 53.18 0.00  0.00 25.00 109.10  75.00
38 8 3600.00  433.88  18.90 48.00 12.50  0.00 - 245.88  100.00
39 8 85.02  302.22  42.66 50.10 0.00  0.00 25.00 80.90  50.00
40 8 3600.01  927.86  94.24 49.45 12.50  14.29 - 186.80  87.50
Average 1626.45  582.27  94.44 50.01 11.75  6.61 3500 133.80  67.71
Overall Average 1320.19  453.30  44.66 19.83 575 193 17.56 119.88  61.15

Table 8: Summary of comparison among methods on all data sets.

Data set Average relative gap (%) Average time (s) Infeasible solutions
ADF _OP SPS QR? ADF OP  SPS QR ADF _OP SPS QR

A 0.00 0.00 5.41 0.23 27.53 33.46 5.34 0.76 0 0 0 0

B 0.00 0.00 6.70 3.55 178.53  154.52 27.30 1.98 0 0 0 0

C 0.00 0.00 31.79 3.80 233.63 414.76 285.43 9.59 0 0 0 0

D-« 0.18 0.00 12.62 2.72 255.36  139.72 25.22 1.38 1 0 0 0

D-3 474 1.62 18.03 18.29 640.68 498.19  26.47  6.26 9 6 5 0

D-v 4.27 0.86 16.99 30.64 941.87 496.28 27.05 14.65 12 3 8 0

D-5 575 193 1756 61.15 1320.19 453.30  44.66 19.83 14 4 21 2
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Figure 11: Comparison among methods in terms of asymptotic running time and memory usage.
The vertical axis is on a logarithmic scale.

4.4 Component analysis

In this last experiment, we assess the value that each individual component gives to the QR heuris-
tic. We consider the three essential components of the method: Perturbation, VND and Shake.
The experiment consists of disabling one component at a time and running the heuristic using 500

as iteration limit, 30 repetitions, and the same set of « values of the previous experiment.

Table 9: Component analysis within heuristic QR.

Data sot All Components (Average GAP (%)) Contribution (%) to obj. fn.

Perturbation =~ VND Shake Perturbation VND  Shake
A 0.23 12.21 3.15 1.48 74.14  18.12 7.74
B 3.55 10.14 4.66 5.01 71.27 9.59 19.13
C 3.80 26.58 9.47 14.61 58.25 14.28 2747
D-« 2.72 22.33 7.12 5.11 78.55 14.93 6.52
D-p 18.29 73.50  45.97 23.95 62.34 31.26 6.40
D-~ 30.64 123.92  73.96 43.75 60.85 29.16 10.00
D-§ 61.15 198.11 122.18 69.30 67.26 29.51 3.23

Table 9 displays the comparison of the components for each data set. In this table, the column
“All” represents the GAP when all components are enabled, which matches the value displayed in
Table 8, column QR?. Each column in the section “Components” represent the component disabled
during the experiment and shows the value obtained. The section “Contribution %” displays the
percentage value that the specific component provides with respect to total value shown in “All.”

It is remarkable that the most influential component within the heuristic is the Perturbation,
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followed by VND and Shake. This is consistent with the statistical analysis, which showed that the
parameter «, used in the perturbation, influences the response variable. Nevertheless, all other two
components add value to the overall performance. The benefit of VND ranges from 9.59 to 31.26
%, and the benefit of the Shake methid ranges from 3.23 to 27.47 %.

5 Conclusions

We have proposed a metaheuristic framework that integrates several components such as a greedy
randomized adaptive procedure with probabilistic selection in its construction phase and iterated
greedy with a variable neighborhood descent in its local search phase. The results indicate the
proposed heuristic outperforms the best heuristic in terms of both solution quality and running
time. The performance of the proposed approach is more robust than that of the exact methods,
requiring less computational effort and memory for obtaining solutions reasonably good objective
values for data sets A, B, and C. For the harder instances in data sets D-vy and D-d, the optimality
gaps of the heuristic solutions are not as good; however, they are still obtained very quickly. For
this harder set, our heuristic found feasible solutions to almost all instances tested, which is clearly
superior to the SPS heuristic as it failed in several instances. In a detailed component analysis, we
have seen the success of the heuristic is mainly due to the perturbation and VND methods. However,
for data sets A, B, and C, the shake method proved very worthwhile as well. The proposed method
provides robust solutions in a short time to the problems previously discussed in the literature, for
the test set D introduced in this paper, the method ensures greater feasibility and speed compared
to the existing heuristic.
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