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Abstract

This paper addresses a supply chain design problem based on a two-echelon single-product
system. In the first echelon the plants transport the product to distribution centers. In the
second echelon the distribution centers transport the product to the customers. Several
transportation channels are available between nodes in each echelon, with different
transportation costs and times. The decision variables are the opening of distribution centers
from a discrete set, the selection of the transportation channels, and the flow between
facilities. The problem is modeled as a bi-objective mixed-integer program. The cost
objective aggregates the opening costs and the transportation costs. The time objective
considers the maximum transportation time from the plants to the customers. An
implementation of the classic epsilon-constraint method is used to generate true efficient sets
for small instances of the problem, and approximate efficient sets for larger instances.
Additionally a metaheuristic algorithm was developed to solve the problem. The
metaheuristic algorithm combines principles of Scatter Search, Path Relinking and greedy
functions. The large instances were solved with the metaheuristic algorithm and a comparison
is made in time and quality with the epsilon-constraint based algorithm. The results are
favorable to the metaheuristic algorithm for large instances of the problem.
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1. Introduction

In recent years Supply Chain Design has been addressed by many authors and several reviews
have been published (Aikens, 1985; Thomas and Griffin, 1996; Vidal and Goetschalckx,
1997; Beamon, 1998; Klose and Drexel, 2005; Sahin and Sural, 2007; Melo et al., 2009). The
decisions imply strategic aspects related with location, capacities and technology selection,
and tactical aspects like product allocation and transportation flows, among others.

In this paper we address a previous work by the authors (Olivares-Benitez et al., 2010) where
a supply chain design problem based on a two-echelon single-product system is introduced.
The problem considers the location of facilities, the selection of transportation channels, the
calculation of the flows between facilities, and the time-cost tradeoff. In particular, the
selection of transportation channels produces a bi-objective optimization problem where cost
and lead time must be minimized. The transportation channels can be seen as transportation
modes (rail, truck, ship, airplane, etc.), shipping services (express, normal, overnight, etc.) or
as transportations offers from different companies. Each option has a cost and time associated,
and one must be selected to transport the product between nodes in each echelon. The
problem is solved in an a posteriori approach, obtaining the non-dominated solutions set to be
presented to the decision maker.

Multiobjective problems in supply chain design have been treated with more emphasis in the
last years taking advantage of increased computational resources and new methods. About
cost and lead time as objectives, in the review by Current et al. (1990) it is evident that the
balance of these measures has not been studied extensively. The most recent review by
Farahani et al. (2010) to describe multicriteria models related to facility location problems
describes some works where metrics of cost and service level are considered. Some previous

works that considers cost and time objectives in supply chain design are presented in Section
2.

The problem addressed along with the mathematical model is described in detail in Section 3.
The methods used to solve the problem are detailed in Section 4. For small instances an
epsilon-constraint based algorithm was used to obtain the true efficient sets. To construct also
approximate efficient sets for large instances the same method was used with a time limit.
Given the complexity of the problem, a metaheuristic algorithm was developed to obtain
approximate efficient sets for larger instances. The generation of instances and the
computational evaluation are described in Section 5. Finally, Section 6 presents the
conclusions of this work.

2. Literature Review

Arntzen et al. (1995) handled the cost-time tradeoff as a weighted combination in the
objective function. The quantity of product to be sent through each transportation mode
available is the decision variable. Transportation time is variable with respect to the quantity
shipped. The problem is solved using elastic penalties for violating constraints, and a row-
factorization technique. Zeng (1998) emphasizes the importance of the lead time-cost tradeoff



associated to the transportation modes available between pairs of nodes in the network. A
mathematical model to optimize both objectives is proposed to design the supply chain
design. In this work facility location is not addressed. The method proposed is a dynamic
programming algorithm to construct the efficient frontier assuming the discretization of time.
In the model proposed by Graves and Willems (2005) cost and time are combined in the
objective function. The supply chain is configured selecting alternatives at each stage of the
production and distribution network. A dynamic programming algorithm is used to solve this
problem. Chan et al. (2006) present a multi-objective model that optimizes a combined
objective function with weights. Some of the criteria include cost and time functions, and one
of the components of time is transportation time. Transportation time varies linearly with the
quantity transported. The model includes stochastic components, but facility location is not
considered. A genetic algorithm is the base of an iterative method where scenarios with
changing weights are solved. Altiparmak et al. (2006) propose a model with three objective
functions to minimize total cost, to maximize total customer demand satisfied, and to
minimize the unused capacity of distribution centers. Here, transportation time is handled as a
constraint that determines a set of feasible distribution centers able to deliver the product to
the customer before a limit. They proposed a procedure based on a genetic algorithm to obtain
a set of non-dominated solutions. In the work by ElMaraghy and Majety (2008) a model is
proposed to optimize cost, including the cost of late delivery. The model considers the
dynamic nature of the decisions. They use commercial optimization software to solve the
model, analyzing different scenarios. More recently, Moncayo-Martinez and Zhang (2011)
propose a model similar to that of Graves and Willems (2005) where activities must be
selected to design the supply chain. This is a bi-objective model that optimizes cost and lead
time in a multi-echelon network. They used a Pareto Ant Colony Optimization metaheuristic
to obtain the Pareto Optimal Set.

3. Problem description and mathematical model

The problem introduced by Olivares-Benitez et al. (2010) is a two-echelon distribution system
for one product in a single time period. A set of manufacturing plants produce and send the
product to distribution centers in the first stage. Later, the distribution centers transport the
product to the customers. The number and location of plants and customers, along with
demands and capacities respectively, are known. The distribution centers must be selected
from a discrete set of potential locations with fixed opening costs and limited capacities. A
single sourcing policy is assumed for the transportation form the distribution centers to the
customers. Figure 1 depicts the structure of the supply chain.

[Figure 1 goes about here]

The transportation of the product from one facility to the other in each echelon of the network
is done selecting one of several alternatives available. Each transportation channel represents
a type of service with associated cost and time parameters. These alternatives can be obtained
from offers of different companies, the availability of different types of service for each
company (e.g. express and regular), or the use of different modes of transportation (e.g. truck,
rail, airplane, ship or inter-modal). It is assumed that a faster service is usually more
expensive.



A bi-objective mixed-integer programming model was proposed to solve the problem
described previously, as follows.

Sets:

1 : set of plants i

J : set of potential distribution centers j

K : set of customers &

LP;  :setofarcs/betweennodesiandj;ie l,jeJ

LWy :setofarcs / between nodes jand k;j € J, k € K

Parameters:

CPj; : cost of transporting one unit of product from plant i to distribution center j using arc
l.jl;l'EI,jEJ,IELPl_'j

CWiju : cost of sending one unit of product from distribution center j to customer k& using arc
Jkl;jeJ ke K, e LWy

TP; : time for transporting any quantity of product from plant i to distribution center j
using arc ijl;i € I,j € J,l € LP;

TWjy : time for transporting any quantity of product from distribution center j to customer k&
using arc jkl;j € J,ke K, € LWy

MP;  : capacity of planti; i € [

MW, : capacity of distribution center j; j € J

Dy : demand of customer k; k € K

F; : fixed cost for opening distribution center j; j € J

Decision variables:

Xij : quantity transported from plant i to distribution center j using arc ijl; i € I,j € J, | €
LP;

Yiu : quantity transported from distribution center j to customer & using arc jkl;, j € J,
keK,le LWy

Z : binary variable equal to 1 if distribution center j is open and equal to 0 otherwise; j €
J

Ajji : binary variable equal to 1 if arc ijl is used to transport product from plant i to
distribution center j and equal to 0 otherwise; i € I,j € J, [ € LP;

By : binary variable equal to 1 if arc jk/ is used to transport product from distribution

center j to customer & and equal to O otherwise; j € J,k € K, [ € LWj

Auxiliary variables:
T : maximum time that takes sending product from any plant to any customer

E} : maximum time in the first echelon of the supply chain for active distribution center j,
ie E! = rr}allx(TPWAw); ieljedleclLP;

E? : maximum time in the second echelon of the supply chain for active distribution

center j, i.e. E; = II}(Z}X(TWWB]H);]' el keK,lelW



MODEL 1:

min(f,, /)
H=22 2 CPuXy+ 2> 2 CWyYy + ) FiZ, (1)
iel jeJ leLF; JjeJ keK1eLWy jeJ
=T )
subject to
T-E, —E:20 jed (3)
E,-TP,A; >0 iel jeJ lelLPy (4)
E;-TW B, >0 jed, keK e LW (5)
z Zijzsz keK (6)
jeJ leLw,
> > X, <MP, iel (7)
jeJ leLB;
MW, Z,=> > Y, >0 jeJ (8)
keKleLW/k
22Xy =2 DY =0 jeJ ©)
iel leLPij keKleLW/k
> > B, =1 kek (10)
jed leLWy,
>4, <1 iel jelJ (11)
IELE-/
> B, <1 jed,kekK (12)
IeLW),
Xy —A4; 20 iel jed lelLPy (13)
Yy —B,y 20 jed, keK,le LWy (14)
MPA,; —X,; >0 iel jeJ lelLP (15)
MW B, —Y, >0 jed, keK,le LWy (16)
> >4,-2,20 jeJ (17)
iel leLP,
T,E,E},X,;,Y,; 20 iel, jeJ keK,leLP;lelWy (18)

Z,,4,.B, €0}

i iel,jeJ keK lelLPlelW; (19)

In this model, objective function (1) minimizes the sum of the transportation cost and the cost
for opening distribution centers. Objective function (2) minimizes the maximum
transportation time from the plants to the customers through each distribution center.
Constraints (3)-(5) calculate the maximum transportation time in each echelon for each
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distribution center. Constraints (6) force the demand satisfaction for each customer.
Constraints (7) imply that the capacities of the plants are not exceeded. Constraints (8) meet
two conditions: that the flow going out from a distribution center must not exceed its capacity,
and that the flow of product is done only through open distribution centers. Constraints (9)
keep the flow balance at each distribution center. Constraints (10) force the single source
policy from distribution centers to customers. The selection of only one transportation channel
between facilities is required in constraints (11) and (12). Constraints (13)-(17) establish links
between the sets of variables 4;;, Bju, X1, Y and Z; to avoid incoherent solutions. Constraints
(18) and (19) are for declaration of variables.

About the computational complexity of the problem, it has been demonstrated that the well-
known UFLP is polynimially reducible to the model described above (Olivares-Benitez et al.,
2010). Since UFLP is NP-hard (Cornuejols et al., 1990) the model above is NP-hard too.

4. Exact and metaheuristic methods

4.1 Exact method

The method selected for generating true efficient sets was the epsilon-constraint method. This
method transforms the problem by making constraints all except one objective as follows.

min{f, (x): f,(x)<e,,izk,xe X}

Where f = (fi,....f,) is the set of p real-valued objective functions, x is a solution to the
problem and X is the set of feasible solutions. The values of vectors & are changed
systematically to obtain the efficient frontier for the problem. Further details can be seen in
Steuer (1989) and Ehrgott (2005) as references.

Olivares-Benitez et al. (2010) developed an implementation of the epsilon-constraint method
that uses the solutions generated during the process to accelerate the construction of the true
efficient set. This version of the epsilon-constraint method, named “Backward epsilon-
constraint method with estimated lower limit for £,” (ReC), was used to construct the true
efficient sets for several small instances generated artificially. The procedure was coded in
ANSI C. The single-objective subproblems of the epsilon-constraint based algorithm were
solved using the CPLEX 11.1 callable library (ILOG, 2008).

4.2 Metaheuristic method

Because of the computational complexity of the problem, relatively large instances may no
longer be tractable from an exact optimization perspective. Thus the development of a
heuristic method is suitable to find an approximate set of efficient solutions. In this work we
propose a metaheuristic algorithm to approximate efficient solutions of the problem for large
instances. This is a population-based metaheuristic that uses some principles of Scatter
Search, Path Relinking (Laguna and Marti, 2003) and Greedy functions.



The metaheuristic algorithm is composed of three main methods. These are a constructive
method, an improvement method, and a combination method. However, these methods use a
basic procedure to construct a solution based on a decomposition of the problem. It is
important to explain this hierarchical construction procedure before going to the details of the
methods.

4.2.1 Hierarchical construction procedure

A solution is constructed hierarchically starting with the selection of the distribution centers to
be opened. Each method uses a specific strategy to perform this selection as will be described
below. The next decision in the hierarchy is the selection of the transportation channel
between each pair of facilities. The selection of the transportation channel is done using a
weighted greedy function. This greedy function has a component based on the transportation
cost and the other component based on the transportation time as shown in equations (20) and
(21). These functions are normalized to avoid the scaling problem. A higher value of the
greedy function implies a worse selection considering that both criteria, time and cost, are
minimized:

Harcy )= 4,0 g (20)
iel ’?El%i“’u (CE/ ! ) iEI,EIEIJa,?iLEJ (TPiil )
v, ™,
plarc )= A, M 2 ; o
e el ”‘gg}éﬂWﬂ(CWﬂ‘l) t jeJ,lfgfa}l)éLW;k(Tijl)

The weights are systematically changed each iteration of the constructive method and
inherited through the rest of the algorithm. The aim of weights variation is to obtain solutions
well distributed along the efficient frontier instead of a concentration of solutions in the
extremes of the frontier.

Once the transportation channel with the best value is selected, the problem can be
decomposed by echelon. First, the flow of product from distribution centers to the customers
can be obtained solving a generalized assignment problem (GAP) as depicted in Figure 2. The
solution to the GAP assigns customers to distribution centers, and all the demand of the
customer is satisfied by the distribution center assigned. The costs used in the formulation of
the GAP correspond to the values of the greedy functions ¢(arc P ) Later, the flow of product

from the plants to the distribution centers is obtained solving a transportation problem (TP) as
shown in Figure 3. The demand at the open distribution centers is the sum of the demands of
the customers assigned to them previously. In this step the costs in the TP are the values of the
greedy functions ¢(arcij., ) This basic procedure is called to construct a solution in each

method.
[Figure 2 goes about here]

[Figure 3 goes about here]



4.2.2 General algorithm

The metaheuristic algorithm is composed of three main methods. These are a constructive
method, an improvement method, and a combination method. The scheme of this algorithm is
presented in Figure 4.

[Figure 4 goes about here]

A strategy of elitism is used to avoid losing solutions after each method and then converging
toward the true efficient set. The solutions from the constructive and improvement methods
are used to update the approximate efficient set NDS using the dominance relation of the new
solutions with respect to those already in NDS. After the execution of each method a reference
set RS is constructed combining the solutions in the updated set NDS and the “diverse”
solutions obtained from the method. The diverse solutions are selected among those close to
the current set NDS in the objective functions space. Finally, in the post-processing stage the
last set RS is used in the combination method. The solutions obtained in this method are used
to update the approximate efficient set NDS. The final result of the algorithm is the
approximate efficient set in the last NDS set.

The constructive method generates a number of solutions. The selection of the distribution
centers to be opened is done randomly. The weights 4. and A, for the greedy functions are
generated systematically in a linear combination considering the number of solutions to be
generated. These weights are used to select the transportation channel and their values are
inherited through the rest of the algorithm. At this point the hierarchical construction
procedure is called to construct solutions for each variation of the weights values. The
algorithm for the constructive method is shown in Figure 5.

[Figure 5 goes about here]

The solutions obtained in the constructive method create and update a set of non-dominated
solutions called NDS. The solutions in NDS are included in a reference set named RS. To
provide variety to the reference set some dominated solutions are included. These dominated
solutions are taken from the points closest to the current efficient frontier in NDS.

To guide movements in the improvement and combination methods, a greedy function for the
distributions centers was formulated, similar to that of the arcs, as shown in equations (22 -
24).

F,+3 MP max( P, )+ ZD max Cij, /MW
5 (e, )= = (22)
max[F +> MP max( P, )+ ZD max CW/H /MW]

jeJ leLW

iel



¢l (dcj ) = ! Eglei{lpw (TPU ! ) * kegeigwm (T W/'kl ) -
max( min (T P, )+ min (TWW )j

iel leLPy * keK IeLWy,

jeJ

¢ (dcj ) = A9 (dcj )+ g’ (dcj ) (24)

The improvement method uses local search and explores three types of neighborhoods for
each solution in the reference set. These correspond to movements of opening, closing and
exchange of distribution centers. For each neighborhood a sorted list is created according to
the value of the aggregated greedy function ¢(dc j) in equation (24). Each element in the list

is taken at a time in that order as described below:

e Closing of facilities CN (s). The open distribution centers are sorted in descending
order by ¢(dc_ ; ) value, i.e. from worst to best.

e Opening of facilities ON (s). The closed distribution centers are sorted in ascending
order by ¢(dc_/ ) value, i.e. from best to worst.

e Exchange of facilities EN (s). The previous two lists are created. One open facility is
closed and one closed facility is opened. The lists are explored taking as pivot the list
for opening.

To accept one movement the dominance of the new solution is considered. If an infeasible or
dominated solution is created by the movement, it is rejected. Figure 6 shows the acceptance
criterion and direction of improvement where weakly and strongly non-dominated solutions
are accepted. The algorithm for the improvement method is shown in Figure 7.

[Figure 6 goes about here]
[Figure 7 goes about here]

After a number of iterations applying the constructive and improvement methods, the
combination method is used as a post-processing stage. It is based on Path Relinking (Laguna
and Marti, 2003) to obtain a set of solutions for each pair of solutions from a reference set RS.
One of the solutions is selected as “initiating solution” and the other is selected as “guiding
solution”. The combination makes movements in the vector of values Z; of the distribution
centers and completes a solution calling to the hierarchical construction procedure. The path
is constructed giving priority to closing movements until infeasibility is found. Then, a
distribution center that was closed with respect to the guiding solution is now opened. The
construction of the path follows giving preference to closing movements. The criterion shown
in Figure 6 is used to accept these movements and the new solutions are used to update the set
of no-dominated solutions NDS. Figure 8 shows the algorithm for the combination method.

[Figure 8 goes about here]
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5. Computational Evaluation

The specific goals accomplished by the experiments are as follows. Firstly, to solve relative
small size instances with the exact method to have a reference to compare with the
metaheuristic algorithm. Also, a variation of the exact method was used to obtain approximate
efficient sets for larger instances. These approximate efficient sets will be compared with
those obtained with the metaheuristic algorithm to determine their quality, and the
computational run times will be compared to evaluate the efficiency of the metaheuristic
algorithm.

To perform the computational study, instances of different sizes were randomly generated as
described in Olivares et al. (2010). The sizes generated are shown in Table 1, where the group
code indicates: [number of plants - number of potential distribution centers - number of
customers - number of arcs between nodes].

[Table 1 goes about here]

5.1 True efficient sets

The “Backward epsilon-constraint method with estimated lower limit for £, (ReC) algorithm
was used to solve the generated instances (Olivares-Benitez et al., 2010). The procedure was
coded in C and compiled with Visual Studio 6.0. The CPLEX 11.1 callable library (ILOG SA,
2008) was used to solve optimally the sub-problems involved in the epsilon-constraint based
algorithm. These routines were run in a 3.0 GHz, 1.0 Gb RAM, Intel Pentium 4 PC. The true
efficient sets of the small instances of groups 5-5-5-2, 5-5-5-5, and 5-5-20-2 were obtained.
The run times were recorded for comparison with the metaheuristic algorithm.

Figure 9 shows the efficient frontier for the instance number 2 of the group 5-5-5-5. The
efficient frontier for the rest of the mentioned instances is similar. The points are not
connected because of the discretization of time units. It is evident the tradeoff between cost

(f1) and time (f2).

[Figure 9 goes about here]

5.2 Approximate efficient sets using the epsilon-constraint based algorithm

To have a comparison for large instances, the ReC algorithm was used with a time limit of
3600 seconds per each value of . The CPLEX 9.1 callable library (ILOG SA, 2005) was used
to solve optimally the sub-problems involved in the epsilon-constraint based algorithm. These
routines were run in a 3.0 GHz, 1.0 Gb RAM, Intel Pentium 4 PC. The approximate efficient
sets and the run times were recorded for comparison with the metaheuristic algorithm.

5.3 Approximate efficient sets using the metaheuristic algorithm

The metaheuristic algorithm was coded in C. The CPLEX 9.1 callable library (ILOG SA,
2005) was used to solve the GAP and TP sub-problems generated within the algorithm. The
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algorithm was run in a 3.0 GHz, 1.0 Gb RAM, Intel Pentium 4 PC. The number of
constructed solutions NCS in the metaheuristic algorithm was set to 100 solutions. The
number of iterations before the execution of the combination method was set to 10.

5.4 Comparisons

To make comparisons of the efficient frontiers obtained with the algorithms several metrics
were used. The computing time and the number of non-dominated points |S;| are reported. The
ratio Rpos (S;) (Altiparmak et al., 2006) is calculated also. This ratio is able to compare more
than two efficient sets. To make the computations, a reference efficient set P must be
constructed with the union of the efficient solutions of all the r sets, and the dominated
solutions are eliminated. This metric indicates the ratio of points from the set S; that belong to
the reference efficient set P. A higher value of this metric is better, indicating the quality of
the approximate efficient set obtained.

Additionally, based on the features of the problem treated in this work, a special metric was
designed, although the principle may be adapted to other bi-objective combinatorial
optimization problems. The discretization of objective f; and the number of objectives allows
proceeding as follows for a pair of sets S} and S,. A set of values 7 is constructed with each
value of objective f, where values for objective f; exist in both sets:

={h()V fils')s € S,5" € ST () AT ) A fils) = £(5)]

Then an average deviation D,,. is calculated with the ratios of objective f; for each value of f,
in the set 7, as shown in equation (25).

ﬁ frls)=1
2 :
Dave = el 1 TfZ(S ) Vs e Slg S’ S SZ (25)

The idea is very simple. For a fixed value of objective £, the ratio f; (s) / f1 (s”) is calculated
only if the values of objective f; are available in both sets. Then the average of these ratios is
calculated. The minimum D,,;, of these ratios is calculated with equation (26).

= l’l’lln S) (S)
Drn =128 [fl(s> AGE

For these metrics D,,. and D,;,, the true efficient sets and the approximate efficient sets
obtained with the ReC algorithm take place in the computations as S,, and the approximate
efficient sets obtained with the metaheuristic algorithm are considered as ;.

) VseS,s' €S (26)

Table 2 and Table 3 show the results for five instances of each size. The results of the epsilon-
constraint based algorithm are identified with the code [ReC] and the results of the
metaheuristic algorithm are identified with the code [MH]. Table 2 presents the comparison
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between the exact method and the metaheuristic method, i.e. the true efficient sets and the
approximate efficient sets respectively. The results in Table 3 compare the performance of the
exact method with time limit and the metaheuristic method, i.e. approximate efficient sets in
both cases.

[Table 2 goes about here]
[Table 3 goes about here]

The comparison of results for each metric must be made as follows. A greater value for |S5)|
and Rpos (S;) is better. These values indicate the size and quality of the efficient frontier. A
lower value, less than or equal to 1.0, for metrics D,,;, and D,,. indicates that the metaheuristic
algorithm achieves lower cost (f;) compared to the epsilon-constraint based algorithm, for the
same transportation time (f;). A visual comparison of the efficient frontiers is shown in
Figures 10 and 11 for a small instance and a very large instance respectively.

[Figure 10 goes about here]

[Figure 11 goes about here]
6 Conclusions

The process of supply chain design involves decisions over several aspects. The most treated
decisions in the literature are facility location, transportation flows, production levels, supplier
selection, and inventory levels. Nevertheless only the most recent works include
transportation channel selection. The supply chain design problem addressed here
incorporates the selection of the transportation channel that produces a cost-time tradeoff.
Hence as a bi-objective problem, the solution is not unique and a set of efficient solutions
must be obtained. The construction of a set of efficient solutions follows an a posteriori
approach where the decision maker will take the final decision considering other criteria to
select one among the different solutions obtained.

In this work we designed a metaheuristic algorithm ad-hoc to solve the problem treated. This
metaheuristic incorporates elements from Greedy functions, Scatter Search and Path
Relinking. Also it decomposes the construction of a solution in a hierarchy of decisions. Some
of the steps require the use of exact methods to solve a generalized assignment problem and a
transportation problem. This approach has been formalized recently as “Matheuristics™ that
combine metaheuristics and mathematical programming techniques (Maniezzo et al., 2009).

The comparison in Table 2 shows that the metaheuristic algorithm becomes competitive in
terms of computing time with the exact method for small instances, although its results have
lower cardinality and quality. However the efficient frontiers obtained with the metaheuristic
algorithm are not too far from those obtained with the exact method as can be observed in the
example of Figure 10.
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For large instances, the metaheuristic algorithm becomes competitive in the three metrics of
comparison: computing time, cardinality and quality of the efficient set obtained as observed
in Table 3. Beyond the “metaheuristic” elements of the algorithm we believe that a great
benefit comes from the decomposition of the problem by echelon to construct a solution. This
allows integrating commercial software into the algorithm to solve reduced instances of the
transportation and generalized assignment problems. This integration with mathematical
programming methods produces high quality solutions and better approximate efficient sets.

Extensions to the model may include multiple commodities, direct flows from plants to
customers, and flows between distribution centers. Also inventory decisions, routing
decisions, and international supply chain aspects may be considered. These elements change
the structure of the problem and a major modification of the metaheuristic algorithm should
be done.

The results of the metaheuristic algorithm were compared favorably to the results of an
epsilon-constraint based algorithm. However it may be interesting the comparison of the
metaheuristic algorithm with other methods. The natural candidates for this additional
comparison are Evolutionary Algorithms like SPEA 2 (Zitzler et al., 2001) and NSGA-II (Deb
et al., 2002).

Acknowledgements: This research has been supported by ITESM Research Fund CAT128 and
the Mexican National Council for Science and Technology (grant SEP-CONACYT 61903).
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Figure 1 Single product, single period, and two-echelon distribution system. Each
transportation channel has a time and a unitary cost associated. Source: Olivares-Benitez et al.
(2010).
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Constructive 5

; ——————————————
method 4
- /7
!
]

No . )

Iterations

i
{\A!’
\
\
A
~
~
~
~
-~
~
~
-~

completed?
7
/ 7
/ /
’ ’
4 /
4 /
’ " T
A 4 , ’ I’ Combination
Improvement |, 7 method
method / 7
1

Post-processing =
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Method Constructive

Input: Instance data; Number of Constructed Solutions (NCS).

Output: Set of Constructed Solutions, CS = {s" | r = 1,..., NCS} or general infeasibility
message.

BEGIN

01. Check general feasibility of the instance under the following conditions:

ZMPI' 2 ZDk ’ ZMW./ 2 ZDk

iel kek Jed kek
02. If the instance is infeasible:
03. Return message of infeasibility.
04. Else:
05. CS=0Q.
06. Forr=1, ..., NCS:
07. Initialize Z;=0,4;;=0,Bu=0,i € I,je J ke K, € LP;, | € LW).
08. Initialize s” is incomplete.
09. Calculate the vector [ 2, A/ ] for solution s
10. Calculate the aggregated greedy function for each element ¢(arciﬂ l¢(arcﬂd) using
equations (20) — (21).
11. While solution s” is incomplete and the instance is feasible:
12. While 'z MW, <> D,
jeJ keK
13. Select randomly a distribution centerj’ € J, Z;= 1.
14. End While.
15. Set of open distribution centers J' = {j € J | Z; = 1}.
16. s" = Hierarchical construction procedure (J*).
17. If 5" is infeasible:
18. If|J | <|J]
19. Go To Step 13 to open another distribution center.
20. Else:
21. Return a message of infeasibility for the instance.
22. End If.
23. Else:
24, CS=CS U {s"} and the associated vector [ A/, A ] is stored in the structure of the
solution s”.
25. End If.
26. End While.
217. End For.
28. Return the set CS in the output file.
29. End If
END

Figure 5 Algorithm for the constructive method.
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Method Improvement

Input:
Output:
BEGIN

Instance data; Reference set of solutions RS; Approximate efficient set NDS.
Approximate efficient set NDS updated.

01. For each s € RS:

02. Current solution s’ = s.

03. Exit _local search = 0.

04. While Exit local search = 0:

05. Initialize the set of improved solutions IS = &.

06. Obtain solution s° or infeasibility message exploring the closing neighborhood CN
(s)).

07. NDS = Update NDS set (s, NDS).

08. If s° meets the acceptance criterion and direction of improvement, IS = IS U {s°}.

09. Obtain solution s° or infeasibility message exploring the opening neighborhood ON
(8.

10. NDS = Update NDS set (s°, NDS).

11. If s° meets the acceptance criterion and direction of improvement, IS = IS U {s°}.

12. Obtain solution s° or infeasibility message exploring the exchange neighborhood EN
(s).

13. NDS = Update NDS set (s°, NDS).

14. If s° meets the acceptance criterion and direction of improvement, IS = IS U {s°}.

15. If IS # &:

16. Select randomly a solution § € IS

17. New current solution s’ = 3.

18. Else:

19. Exit_local search=1.

20. End If.

21. End While.

22. End For.

END

Figure 7 Algorithm for the improvement method.
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Method Combination

Input: Instance data; Reference set of solutions RS; Approximate efficient set NDS.
Output: Approximate efficient set NDS updated.
BEGIN

01. For V (initiating solution) s € RS:
02.  For V (guiding solution) » € RS:

03. Ifs;trandZ;;tZ; Vjeld

04. Create sets FC and FO; Sort sets FC = {j;, ja,... | ¢(dcj, )z ¢(dcj‘_+] )} and FO = {ji, ja... |
dlde, )< lde, )}

05. Create intermediate solutiong, Z{ =Z VjeJ, AL =4, Al = A,

06. If partial solution ¢ is feasible (based on accumulated capacity):

07. Use the Hierarchical construction procedure to complete solution g.

08. If complete solution ¢ is feasible:

09. NDS = Update NDS set (¢, NDS).

10. End If.

11. End If.

12. n=1,p=1.

13. While n < |FC):

14. Modify intermediate solution ¢ making Z7 =0, € FC.

15. If partial solution ¢ is feasible (based on accumulated capacity):

16. Use the Hierarchical construction procedure to complete solution g.

17. If complete solution ¢ is feasible:

18. NDS = Update NDS set (¢, NDS); n=n + 1; Go To Step 13.

19. Else:

20. n=n+1; Go To Step 26.

21. End If.

22. Else:

23. n=n+1; Go To Step 26.

24, End If.

25. End While.

26. While p < |FO|:

27. Modify intermediate solution ¢ making Z ;’p =0,j, e FO.

28. If partial solution ¢ is feasible (based on accumulated capacity):

29. Use the Hierarchical construction procedure to complete solution g.

30. If complete solution ¢ is feasible:

31. NDS = Update NDS set (¢, NDS); p=p + 1; Go To Step 13.

32. Else:

33. p=p+1;Go To Step 26.

34. End If

35. Else:

36. p=p+1;Go To Step 26.

37. End If.

38. End While.

39. End If.

40. End For.

41. End For.

END

Figure 8 Algorithm for the combination method.
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Figure 9 Set of non-dominated points for the instance number 2 of the group 5-5-5-5. Source:
(Olivares-Benitez et al., 2010).
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Figure 10 Comparison of the approximate efficient frontiers for instance number 1 of group 5-
5-5-2.
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Figure 11 Comparison of the approximate efficient frontiers for instance number 1 of group
50-50-100-2.

Table 1 Generated instances.

Group code Number of Number of Number of
instances  binary variables  constraints

5-5-5-2 5 105 385
5-5-5-5 5 255 835
5-5-20-2 5 255 940
5-20-20-2 5 1020 3625
20-20-20-2 5 1620 5740
20-20-20-5 5 4020 12940
20-20-50-5 5 7020 22600
50-50-50-2 5 10050 35350
50-50-100-2 5 15050 52950
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Table 2 Comparison of results from the metaheuristic algorithm [MH] and the epsilon-
constraint based algorithm [Re(] for small instances.

Total time | Total time

Group code | Instance (sec) [MH] | (sec) [ReC] [Skec] Rpos(ReC) | |Syul | RrostMH) | Dy D,in
5-5-20-2 1 29 236 31 1.000 20 0.050 1.042  1.000
5-5-20-2 2 33 269 33 1.000 20 0.050 1.031 1.000
5-5-20-2 3 71 452 33 1.000 22 0.045 1.045 1.000
5-5-20-2 4 54 324 32 1.000 20 0.050 1.052  1.000
5-5-20-2 5 74 491 33 1.000 27 0.037 1.028  1.000
5-5-5-5 1 92 134 38 1.000 32 0.125 1.020  1.000
5-5-5-5 2 64 159 40 1.000 25 0.160 1.027  1.000
5-5-5-5 3 63 219 39 1.000 27 0.259 1.014  1.000
5-5-5-5 4 147 180 39 1.000 31 0.194 1.022  1.000
5-5-5-5 5 64 111 39 1.000 28 0.179 1.018  1.000
5-5-5-2 1 75 7 32 1.000 22 0.364 1.028  1.000
5-5-5-2 2 36 11 29 1.000 21 0.095 1.024  1.000
5-5-5-2 3 43 12 28 1.000 22 0.364 1.019  1.000
5-5-5-2 4 37 24 31 1.000 17 0412 1.021 1.000
5-5-5-2 5 41 10 25 1.000 18 0.389 1.017  1.000
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Table 3 Comparison of results from the metaheuristic algorithm [AMH] and the epsilon-

constraint based algorithm with time limit [ReC] for large instances.

Group code | Instance (Ts‘égl ! ;;;‘I]e (Ts‘égl : Reg]me Swedl | Reos(ReC) | 1Sus | ReosME) | D | Dy
50-50-100-2 1 53715 24022 31 0.032 38 0974 0831 0.646
50-50-100-2 2 59076 24022 30 0.000 37 1000 0798  0.645
50-50-100-2 3 55026 24026 37 0.081 37 1000 0816  0.602
50-50-100-2 4 57049 24604 33 0.091 37 0946 0859  0.681
50-50-100-2 5 45386 24020 37 0.027 38 0974 0810 0.643
50-50-50-2 1 32901 24604 39 0.051 37 0973 0903 0813
50-50-50-2 2 34144 24604 39 0077 40 0950 0888  0.795
50-50-50-2 3 41621 24010 37 0.027 36 0972 0850 0.698
50-50-50-2 4 27755 24010 39 0.026 39 0974 0874 0.780
50-50-50-2 5 30655 24008 36 0.028 4 0975 0909  0.843
20-20-50-5 1 17756 24603 37 0.054 39 0949 0912 0800
20-20-50-5 2 20145 24603 41 0024 41 0976 0899  0.793
20-20-50-5 3 21887 24007 39 0.026 37 0973 0898  0.799
20-20-50-5 4 18764 24603 40 0.025 3 0974 0908 0816
20-20-50-5 5 18001 24010 40 0.100 370973 0908  0.835
20-20-20-5 1 5029 24270 41 0049 41 0951 0927 0842
20-20-20-5 2 5426 24487 40 0050 40 0975 0929  0.860
20-20-20-5 3 3597 24009 39 0.077 39 0949 0930 0.844
20-20-20-5 4 2764 24007 41 0.049 40 0975 0924 0867
20-20-20-5 5 5209 24605 38 0.053 41 0951 0936 0859
20-20-20-2 1 4680 22937 40 0.125 38 0921 0967 0900
20-20-20-2 2 4100 23405 39 0.128 39 0872 0965 0.906
20-20-20-2 3 2847 23022 40 0.200 38 0842 0962 0888
20-20-20-2 4 4238 23407 40 0.150 39 0872 0973 0878
20-20-20-2 5 4612 23446 39 0.205 39 0821 0979 0915

520-202 1 3615 22257 38 0.289 37 0703 0973 0900

5-20-20-2 2 3097 22257 38 0.289 39 0718 0977  0.905

5-20-20-2 3 2346 22231 38 0.368 37 0649 0983 0914

5-20-20-2 4 2403 21709 39 0.282 39 0718 0981  0.899

520-20-2 5 4425 21669 39 0.282 39 0718 0977 0920
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