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Abstract: In this paper we address a multi-period mixed integer non-linear problem for the 

capacity expansion of multiproduct batch plants. In this problem, given a certain batch plant 

with its current configuration, product recipes, and growing production targets, modular 

expansions are wanted so that new demand can be met.  Unlike most work for the batch 

retrofit problem found in literature, a multi-period disjunctive model is presented, so that 

long term investments and expansions can be planned out in advance. Although effective for 

short periods, the proposed model becomes computationally inefficient for long time 

horizons. To address this issue, we propose a rolling horizon algorithm that further exploits 

the advantages of a disjunctive programming model.  A numerical example based on a case 

study from industry is presented that shows that the rolling horizon algorithm is very 

effective on finding near optimal solutions to large instances with a considerable number of 

time periods. Furthermore, empirical evidence shows how the solution found by the 

proposed algorithm can be used as a starting solution for the direct method for the original 

problem to deliver a global optimal solution to the problem. 

 

Keywords: batch retrofit; multiproduct batch plants; multiperiod MINLP model; disjunctive 

programming; rolling horizon algorithm. 



 
 

1. INTRODUCTION 

 Typically, batch production involves a general purpose facility where a wide variety of 

products can be produced with different processing recipes by sharing all available resources 

such as equipment, raw material, intermediates and utilities (Pinto, Barbosa-Póvoa, and 

Novais, 2005). 

 Determining the capacity of any plant depends on the amount of product that it is able 

to produce. However, in a batch plant such capacity not only depends on the capacity of the 

installed equipment but also on the production scheduling, the number of products and their 

recipes, the changeover times between products, and several other factors. To calculate such 

capacity is not trivial work.  It needs a detailed analysis of all process times for each 

product, along with the available equipment. Even though equipment may never be out of 

work, it may be the case where the batch scheduling is not optimal leaving capacity in 

disuse. Sometimes after an optimal scheduling a plant expansion is not even necessary 

(Macchietto, 2005). 

 This work deals with the capacity expansion of a batch plant such that new production 

targets can be met.  This problem is known as the retrofit problem. The retrofit is an 

optimization problem whose objective is to obtain a new plant layout starting with an actual 

plant configuration such that the benefits are maximized subject to a new demand. The 

solution is a plant configuration map where equipment that is not used is sold and new 

equipment is acquired and adjusted to work with existing equipment (Montagna, 2003). The 

proposed formulation differs from that in literature (Barbosa-Póvoa, 2007) in extending the 

retrofit problem to a long horizon in order to allow investment planning by using a 

multiperiod model. To the best of our knowledge, the most relevant model of a multiperiod 



 
 

batch retrofit is due to Moreno, Montagna, and Iribarren (2007); however, their model is 

limited and does not allow for variations in the plant configuration during the time horizon 

in their model.  

 By extending the retrofit problem to a multiperiod model, the size of the problem 

increases drastically. In order to keep the problem tractable, a disjunctive programming 

model is introduced as an alternative model to the MINLP problem by using disjunctions 

and logic propositions (Raman and Grossmann, 1994). Disjunctive programming is based on 

the idea of expressing constraints (equalities and inequalities) in terms of global constraints 

that always should hold. These global constraints may be disjunctions that correspond to 

conditional constraints in the continuous space, and logic propositions in the discrete space. 

All these constraints are expressed in terms of Boolean and continuous variables, which are 

selected to optimize a given objective function subject to the various types of constraints 

(Lee and Grossmann, 2003).  Disjunctive programming has been proven to be effective in 

terms of providing a qualitative and quantitative framework for modeling a number of 

applications ranging from desalting plants to distillation columns (Mussati et al., 2008; 

Caballero, Milán-Yañez, and Grossmann, 2005). Among the various applications it is shown 

that a disjunctive model representation provides a very flexible, intuitive and effective way 

to formulate discrete optimization problems (Oldenburg and Marquardt, 2008). 

  It has been observed that optimization algorithms for disjunctive programming 

formulations are in many cases more efficient than the ones developed for their regular full 

space models (Grossmann, 2004).  

 Even though disjunctive programming was used to keep the problem solvable for large 

time periods, it proved insufficient. A planning horizon for 20 years is to be considered, and 



 
 

the disjunctive model could not find solution for such amount of time periods. For this 

reason, a rolling horizon algorithm is additionally proposed.  

 All the rolling horizon algorithms give approximations of the optimal solution with a 

significant decrease in their computational requirements. The algorithm provides a feasible 

solution for the original problem in reasonable time. Furthermore, such solution was used as 

a starting point to the direct method on the original model to find the global optimum. 

 Rolling horizon algorithms work by separating a problem into a sequence of iterations, 

each of which models only part of the horizon in detail (Dimitriadis, Shah, and Pantelides, 

1997). The rest of the horizon is modeled with a relaxed model (Erdirik-Dogan and 

Grossmann, 2007a).   

 This paper has been motivated by a real-world problem in a local brewery, Cervecería 

Cuauhtémoc Moctezuma. The specific goal is to propose a mutiperiod model for the retrofit 

design of multiproduct batch plant over a long planning horizon. Taking into consideration 

the scale of the problem, a disjunctive programming was used to try and help solution times. 

We also investigate some solution strategies in the rolling horizon approach such as priority 

branching for reducing the computational effort. 

 The algorithm provides a feasible solution for the problem in reasonable time. 

Furthermore, in this specific case the problem was solved optimally since the RHA 

suboptimal solution was used as a starting point to the direct method on the original model 

to find the global optimum.  This assesses that the RHA solution had an optimality gap of 

8.6%, which is quite reasonable for industry standards. 

 The rest of the paper is organized as follows. First, in Section 2 the problem definition 

is given, including the notation, the disjunctive programming model, and numerical 



 
 

examples that illustrates the usefulness of the proposed model. Then, in Section 3, we 

describe in detail the proposed rolling horizon algorithm for handling longer time periods of 

this problem. Section 4 shows the empirical work, where the model and solution approach is 

evaluated on some instances based on real-world data.  This is followed by a discussion and 

conclusions in Section 5.  

 

2.  PROBLEM DESCRIPTION AND MODELING FRAMEWORK 

 Given a batch plant, with a series of equipment, products, and a growing demand, the 

goal is to find a program of staged expansions that allow the demand to be met at every time 

period of the horizon. The performance measure to be minimized is the expansion cost 

generated by the acquisition of new equipment. The general idea is to optimize the 

production rate of each product in the plant. The production rate is a function of the batch 

size and the cycle time, where each product has its own production rate. For this reason a 

production scheme must be considered. In the specific case of this work, the most 

convenient scheme is single product campaigns. For this specific application, a single 

product campaign is adopted. 

 Given a growing demand for a set of products and a plant configuration, the problem 

consists of deciding when and where new equipment must be added in order to meet the 

production targets. In each considered time period, the plant can grow in any of its 

production stages by adding new equipment. The outcome is a calendar of expansions 

giving equipment size and investment for each time period. 

 The assumptions by which the proposed model works correspond to those commonly 

used in the optimal design of multiproduct batch plants (Vaselenak, Grossmann, and 



 
 

Westerberg, 1987) which are: the recipes for all products are given, fixed processing times 

are specified for each of the products in each type of equipment, the products are 

manufactured sequentially, a continuous range of equipment sizes is assumed to be 

available, and the number of batches is permitted to be non integer since this is usually a 

large number. 

 

2.1 Notation 

Sets and Indices: 

 I  Set of products; i ∈ I 

 J  Set of production stages; j ∈ J 

 K   Set of new unites per production stage; k ∈ K 

 T  Set of time periods; t ∈ T 

 M  Set of existing units in initial plant configuration; m ∈ M 

Parameters: 

 N  The number of products manufactured 

 Nj
old  The number of existing units in stage j 

 Vjm
old   The volume of existing unit m in stage j 

 Tij  The process time of product i in stage j 

 H  The operating time period 

 Sij  The size factor of product i in stage j 

 Kjt  The annualized fixed charge of installing a new unit in stage j in period t 

 Cjt  The annualized cost coefficient of installing a new unit in stage j in period t 

 Qit  The demand of product i in period t 



 
 

 Vj
L  The minimum volume of new units in stage j 

 Vj
U  The maximum volume of new units in stage j 

 Zj  The maximum number of units that can be added to stage j 

 ZU  The maximum number of units that can be added to the plant 

Binary decision variables: 

yjk  Selection of investment of unit k in stage j; (= 1) if unit k is chosen for 

investment in stage k; (= 0) otherwise 

wjkt  Operation of unit k in stage j in period t; (= 1) if unit k is in operation in stage j 

in period t; (= 0) otherwise 

wB
ijkmt  Operate new unit k in phase with existing unit m for product i in stage j in  

 period t; (= 1) if unit k is operated in phase with existing unit m for product i in 

stage j in period t; (= 0) otherwise 

wC
ijkt  Operate new unit k in sequence with existing units for product i in stage j in  

 period  t; (= 1) if new unit k is operated in sequence with existing units for 

product i in stage j in period t; (= 0) otherwise 

zjkt  Expansion/installation of new unit k in stage j in period t; (= 1) if unit k is 

expanded in stage j in period t; (= 0) otherwise 

 

Continuous decision variables: 

 Nit  The number of batches of product i in period t 

 Bit  The batch size of product i in period t 

 TL
it  The limiting cycle time of product i in period t 

 Vjkt  The volume of new unit k in stage j in period t 



 
 

 Ejkt  The expansion volume of new unit k in stage j in period t 

 VB
ijkmt The volume required in new unit k in stage j for product i to use it in phase  

   with existing unit m in period t 

 VC
ijkt The volume required in new unit k in stage j for product i to use it in sequence 

   with existing units in period t 

 CEjkt Expansion/installation cost for new unit k in stage j in period t 

 

2.2 Disjunctive Model 

 
 To handle the multiperiod aspect we are introducing a time-indexed model that extends 

the model by Fletcher, Hall, and Johns (1991).  We use the same notation, except that some 

parameters and variables have in addition a time index.  The expansions happen just once 

among the modeling horizon and are equivalent to installing a new unit. A convexified 

formulation of the feasible domain is used in order to guarantee a global optimum. The 

multiperiod batch retrofit problem is addressed with a disjunctive model, based on the 

general disjunctive multiperiod model proposed by Van den Heever, Grossmann, and 

Vasantharanjan (2000).  

 
 A multiproduct batch plant for manufacturing N products and consisting of M stages in 

sequence with parallel equipment in each stage is considered as shown in Figure 1.   
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Figure 1:  Superstructure for retrofit design of multiproduct batch plant (Vaselenak, Grossmann, 

and Westerberg, 1987) 

 

We define the following variables to apply the exponential transformation 

(Vaselenak et al., 1987): )1(
it

x  = ln Nit, )2(
it

x  = ln Bit, )3(
it

x = ln TLit.  The multiperiod 

formulation, obtained by applying the general disjunctive model is then as follows:   

Detailed Disjunctive Design (DDD) model 

i) Objective function: 

min ∑ ∑ ∑
t j k

tjkCE  

ii) Production targets: 

tiBN itti ,Qit ∀≥  with exponential transformation 
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iv) Yearly operating time: 
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 Convergence to the optimal solution is guaranteed in a finite number of iterations since 

the model is convex (Vaselenak, Grossmann, and Westerberg, 1987).   

 

2.3 Numerical example 

 In order to show the advantages of using disjunctive programming, a small example of 

10 time periods is solved in GAMS 22.5 using DICOPT as a solver on a Dell DXP051 with  

3192Mhz and 2GB. CPLEX 11.0 and CONOPT were used respectively as the MIP and NLP 

solvers called upon by DICOPT.  This modeling system, computer and solvers will be used 

for all examples throughout this paper. 

 The data for this example can be found in Section 4, using only the first 10 periods from 

the product demands.  Table 1 has the results for the problem solved under different models.  

 



 
 

Table 1. 10 period problem solved by different models. 
Model Discrete 

variables 
Continuous 

variables 
Number of 
equations 

Solution 
time 
CPU 
sec. 

Expansion 
Cost 

($1000) 

Full space non-convex 
model.  2,220 5,267 7,122 *** *** 

Full space convexified 
model* 2,220 4,097 5,932 623452 **1024.06

Model DDD 2,220 5322 8,958 41226 950.36 
Model DDD with slack 
variables and priority 
branching 

2,220 5,297 7,152 6328 950.36 

*Convexified model proposed by Vaselenak et al., 1987. 
** Best solution found while using all resources available. 
*** Solver reports model as infeasible. 
 

 For the full space non-convex model, the solver reported the problem as infeasible. The 

convexified model did not find the optimal solution and reports the best integer solution 

found, with a value of $1024.06, taking 623,452 CPU seconds. The disjunctive model, 

model DDD finds the optimal solution in 41,226 seconds. Finally model DDD, with the 

addition of slack variables and using priority branching finds the same optimal solution in 

just 6,328 seconds.  

 Priority branching helps the solution time considerably because it takes advantage of the 

hierarchical structure of the problem in the disjunctions (see equation viii) by branching first 

on yj, then on wjt and then on zjt. 
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Figure 2:  MINLP solution times. 

 

 To have an idea on how much time is spent on solving the MIP master problem and 

NLP subproblem, we solved several instances for different time periods (5 to 10) based on 

the same data. Figure 2 shows the computational time for the MIP and NLP sections of 

the instances tested. As we can see, the solution time is practically associated with the time 

it takes in solving the master problems.  This is an important reason that motivates the the 

use of disjunctive programming.  As mentioned before, this proposed model is successful 

and  a very valuable tool for attempting to find decisions to problems with 10 or less time 

periods; however, when attempting to solve instances with time horizon of 20 time periods, 

the direct use of the solver proved insufficient, motivating the development of the proposed 

solution approach.   

 

 

 



 
 

3.  ROLLING HORIZON ALGORITHM 

 The model previously presented can be solved directly with branch and bound methods. 

For problems of considerable size and complexity, involving long time horizons, the 

computational effort can be expensive.  In order to obtain solutions for large problem 

instances, a rolling horizon algorithm (RHA) is considered, to aid the solution time and to be 

able to include considerable number of time periods.  

  The RHA is a heuristic framework used to reduce the computational effort of 

multiperiod problems while finding an approximation of the optimal solution. Instead of 

solving the complete design horizon, the problem is decomposed into a sequence of sub-

problems that are solved recursively (Beraldi et al., 2008).  

 For a horizon of H time periods and taking r periods at a time, using f as a counter and 

model DDD as a base model the Rolling Horizon Algorithm is shown in Figure 3. 

The time horizon is partitioned differently for each sub problem. In every subproblem 

the initial part of the partition is modeled with the Detailed Disjunctive Design problem 

(DDD), the rest of the horizon is modeled with the relaxation of the DDD problem, which 

we will call Relaxed Disjunctive Design problem (RDD). The relaxation of the discrete 

variables is used in RDD.  The binary variables found in the solution of the detailed 

subproblem are fixed and the algorithm proceeds to the next partition and subproblem 

(Eridirik-Dogan and Grossmann, 2007b). This helps the model because it keeps the 

information of the complete horizon in each iteration of the RHA.  

 

 

 



 
 

Procedure RHA ( P, H, r ) 

Input: P := An instance of the problem; H := Number of planning horizon time periods;  

r := Number of time periods that sets the size of the subproblem 

Output: X := A feasible solution for the problem  

1. start = 1  (initialize period counter) 

2. while ( start ≤ H ) do 

3.       end = min { start + r – 1, H } 

4.       binary variables obtained previously for periods [ 0, start – 1 ] are fixed 

5.       binary variables for future periods [ end + 1, H ] are relaxed 

6.       X = Solution of model with optimal binary variables for periods [ start, end ] 

7.       start = start + r  (update period counter)  

8. end-while 

9. return X 

10. stop     

Figure 3.  Pseudo-code of Rolling Horizon Algorithm. 

 

 In each sub-problem the periods solved by the detailed problem increase, meanwhile the 

periods solved by the relaxed problem decrease, as seen in Figure 4. The computational 

complexity of the rolling horizon algorithm is practically the same as the one for DDD since 

this model is solved in each iteration and the number of iterations is relatively small because 

most of the binary variables are being fixed to those obtained in previous iterations even 

though the size of the detailed problem increases with each iteration. This recurrent scheme 

keeps going until the complete horizon has been solved for the detailed problem. 



 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Rolling horizon algorithm scheme (Erdirik-Dogan and Grossmann, 2007b). 

 

 Even though it is possible to fix every variable to the value obtained in the sub-

problems, only binary variables are fixed in each new subproblem. These represent the plant 

configuration.  The continuous variables (volumes, batch size, etc.) are left free in order to 

reduce possible infeasibilities as usual. 

 

4.  EMPIRICAL WORK 

 RHA is a succession of MINLP solved to optimality. Global optimality is shown in 

detail for the uniqueness of the solution of the NLP subproblems for a model of one time 

period in Vaselenak, Grossmann, and Westerberg (1987).  The proof is done by reducing the 

NLP subproblem to a nonlinear program that involves a linear objective function, linear 

inequalities and cuasi-convex inequalities. It then follows that if a Kuhn-Tucker point exists, 
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it will correspond to the global optimum solution. This means that all NLP subproblems that 

arise from our original model have a unique local optimum provided the productions are all 

greater than or equal to zero.  The equations added to such model are all linear, thus 

optimality conditions remain.  

 An example with three products and four production stages is solved for a design 

horizon of 20 years. Parameters for the example are given in Tables 1 through 6. Table 1 has 

the number of new units allowed to be added Zj, the number of existing units in each 

stage old
jN , and the upper and lower limits for the volume of the new units, as well as the 

fixed and variable coefficients for the expansion costs.  Table 3 contains the demand 

information for each product in each time period. Table 4 has the volume data of the initial 

plant configuration. Tables 5 and 6 have the processing times, and the size factor for each 

product in each stage respectively. 

 Table 7 contains the results of applying the rolling horizon algorithm to model DDD for 

a design horizon of 20 time periods. The rolling horizon algorithm pretends to use the 

information of the relaxed model and its ability to find optimal solution fast, 251 CPU 

seconds (second line in Table 6), to find the discrete variables in a shorter time horizon, the 

one of the  sub-problem being solved by the detailed problem in that iteration.   

 

Table 2. Parameter values for the example. 
Parameters stage j 
  1 2 3 4 
Zj 10 10 10 10 

old
jN  1 1 2 1 

Vlo
j 1 2.5 2.5 2 

Vup
j 10 10 10 10 

Cjt    ∀t 13.29 35.21 42.85 7.19 
Kjt    ∀t 0.01329 0.03521 0.04285 0.00719



 
 

 
 
Table 3. Demand Qit  Table 4. old

jmV  

time  products  
Volume of initial existing unit m in stage j in 
1000L 

period 1 2 3  m\j 1 2 3 4 
1 200.0 600.0 1000.0  1 1 4 3 3 
2 220.0 720.0 1150.0  2  -  - 3  - 
3 242.0 864.0 1322.5   
4 266.2 1036.8 1520.9  Table 5. Tij  
5 292.8 1244.2 1749.0  The process time of product i in stage j in h 
6 322.1 1493.0 2011.4  i\j 1 2 3 4 
7 354.3 1791.6 2313.1  1 3.73 288 336 2.08 
8 389.7 2149.9 2660.0  2 3.73 216 216 2.08 
9 428.7 2579.9 3059.0  3 3.73 168 120 2.08 
10 471.6 3095.9 3517.9      
11 518.7 3715.0 4045.6       
12 570.6 4458.1 4652.4  Table 6. Sij  
13 627.7 5349.7 5350.3  Size factor for product i in stage j in l/kg 
14 690.5 6419.6 6152.8  i\j 1 2 3 4 
15 759.5 7703.5 7075.7  1 0.3 11 11 5.76 
16 835.4 9244.2 8137.1  2 0.3 11 11 5.76 
17 919.0 11093.1 9357.6  3 0.3 11 11 5.76 
18 1010.9 13311.7 10761.3       
19 1112.0 15974.0 12375.5       
20 1223.2 19168.8 14231.8       

 

 These results are taking into consideration subproblems of five time periods. Note how 

the total number of variables and equations does not change. The number of discrete 

variables being solved is also the same; however, the effect in computational time is quite 

considerable. The number of binary variables being solved is the same because although the 

number of time periods being solved by the detailed problem increases, the binary variables 

for the time periods already covered by DDD are fixed, leaving the number of binary 

variables being solved by DDD equal to those present in five time periods only. 

 



 
 

 

Table 7. Results and statistics for example 

Problem   
Binary 
Variables 

Continuous 
Variables Equations CPU sec. 

Objective 
value $ 

Detailed 
problem   8,840 20,883 27,798 ***  ***  
Relaxed 
problem   8840R 20,883 27,798 251.39 524.07

R
ol

lin
g 

H
or

iz
on

 A
lg

or
ith

m
 

subproblem 
1 

DDD  5 
periods 
RDD 15 
periods 

2,240         
(6600R) 20883 27,798 937.21 1801.74

subproblem 
2 

DDD  10 
periods 
RDD 10 
periods 

2,240         
(4,400R) 20883 27,798 1915.78 1801.74

subproblem 
3 

DDD  15 
periods 
RDD 5 
periods 

2,240         
(2,200R) 20883 27,798 6928.66  2147.0

subproblem 
4 

DDD  20 
periods 
15 
periods 
fixed 2240 20883 27,798 7463.12  3526.60

        FINAL 17143.4 3526.6
 
*** No solution was found. 
 
 

 The third line in Table 6 corresponds to subproblem 1, where the first 5 time periods are 

solved by DDD and the rest are relaxed. For subproblem 2, the binary variables for the first 

5 time periods are fixed, model DDD is run throughout period 10, and periods 11 through 20 

are relaxed. For subproblem 3, binary variables from periods 1 to 10 are fixed, the detail 

model is solved throughout period 15, and those corresponding to time periods 16 to 20 are 

relaxed. Finally in the last subproblem, subproblem 4, the binary variables from time periods 



 
 

1 to 15 are fixed to those obtained in previous sub problems, and the detailed model is 

solved for the complete time horizon. 

  With model DDD it was not possible to find a solution for a design horizon of 20 

periods, with the rolling horizon algorithm a solution was found in less than 5 hours. 

However, optimality was lost, since this solution is an approximation, i.e., an upper bound to 

the optimal solution. 

 Although the optimal solution was not found by the detailed model for the complete 

planning horizon, it was possible to feed the solution found by the RH algorithm as a 

starting point for the model in full space, and find the optimal solution value of $3244.78 in 

a 440,190 CPU seconds. Although the computational times are not comparable, since the 

model had a good feasible starting point, the value of the solution gives us a measure of the 

optimality gap of the considered approach. When comparing the optimal solution to that 

found by the rolling horizon algorithm, we have an optimality gap of 8.68%. 

 

5. CONCLUSIONS 

 A multiperiod capacity expansion or multiperiod retrofit problem is a better form to 

approach design and investment decisions compared to the typical retrofit problem where 

just one period is taken into account. This however, increases the size and complexity of the 

problem enormously. To try to mitigate this effect, a disjunctive model is proposed, obtained 

by transforming the original problem using the convex hull relaxation over a disjunctive set. 

The disjunctive model proved to improve results when compared to the same problem 

modeled in full space. The disjunctive model, however, could not find solution for a horizon 

of 20 time periods which was of interest, to address this problem, a rolling horizon algorithm 

was proposed. 



 
 

 The proposed rolling horizon algorithm has the benefit that it can use the information of 

the demands for the entire design horizon. This is convenient since it allows the model to 

anticipate future demands and use that information when deciding both the amount of 

volume and when to install new equipment. This formulation considers all feasible options 

for this kind of problem. 

 The RHA was illustrated in a case study with 20 time periods.  It was found the reported 

solution had an optimality gap of 8.6%, which is more than reasonable for industry 

standards.  Furthermore, it was illustrated how this solution could be used as a starting 

solution for the direct solution method for the DDD model, finding a true global optimal 

solution in this particular example.   Even though this finding of a global optimum cannot be 

guaranteed for every possible instance, this solution strategy can certainly be applied to 

attempt to improve the solution found by the RHA. 

 As possible areas of opportunity for future work it would be worthy to consider solving 

to optimality the detailed model through a non commercial solver, this was not attempted 

due to time limitations.  
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