

A Disjunctive Programming Model and a Rolling Horizon Algorithm for

Optimal Multiperiod Capacity Expansion in a Multiproduct Batch Plant

Gabriela García-Ayala1

Department of Chemical Engineering, Tecnológico de Monterrey,

Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico

e-mail: mg_garcia@yahoo.com

Roger Z. Ríos-Mercado Óscar L. Chacón-Mondragón

Graduate Program in Systems Engineering, Universidad Autónoma de Nuevo León,

AP 111-F, Cd. Universitaria, San Nicolás de los Garza, NL 66450, Mexico

e-mail: { roger, ochacon }@ yalma.fime.uanl.mx

May 2011

1 Corresponding author

Abstract: In this paper we address a multi-period mixed integer non-linear problem for the

capacity expansion of multiproduct batch plants. In this problem, given a certain batch plant

with its current configuration, product recipes, and growing production targets, modular

expansions are wanted so that new demand can be met. Unlike most work for the batch

retrofit problem found in literature, a multi-period disjunctive model is presented, so that

long term investments and expansions can be planned out in advance. Although effective for

short periods, the proposed model becomes computationally inefficient for long time

horizons. To address this issue, we propose a rolling horizon algorithm that further exploits

the advantages of a disjunctive programming model. A numerical example based on a case

study from industry is presented that shows that the rolling horizon algorithm is very

effective on finding near optimal solutions to large instances with a considerable number of

time periods. Furthermore, empirical evidence shows how the solution found by the

proposed algorithm can be used as a starting solution for the direct method for the original

problem to deliver a global optimal solution to the problem.

Keywords: batch retrofit; multiproduct batch plants; multiperiod MINLP model; disjunctive

programming; rolling horizon algorithm.

1. INTRODUCTION

 Typically, batch production involves a general purpose facility where a wide variety of

products can be produced with different processing recipes by sharing all available resources

such as equipment, raw material, intermediates and utilities (Pinto, Barbosa-Póvoa, and

Novais, 2005).

 Determining the capacity of any plant depends on the amount of product that it is able

to produce. However, in a batch plant such capacity not only depends on the capacity of the

installed equipment but also on the production scheduling, the number of products and their

recipes, the changeover times between products, and several other factors. To calculate such

capacity is not trivial work. It needs a detailed analysis of all process times for each

product, along with the available equipment. Even though equipment may never be out of

work, it may be the case where the batch scheduling is not optimal leaving capacity in

disuse. Sometimes after an optimal scheduling a plant expansion is not even necessary

(Macchietto, 2005).

 This work deals with the capacity expansion of a batch plant such that new production

targets can be met. This problem is known as the retrofit problem. The retrofit is an

optimization problem whose objective is to obtain a new plant layout starting with an actual

plant configuration such that the benefits are maximized subject to a new demand. The

solution is a plant configuration map where equipment that is not used is sold and new

equipment is acquired and adjusted to work with existing equipment (Montagna, 2003). The

proposed formulation differs from that in literature (Barbosa-Póvoa, 2007) in extending the

retrofit problem to a long horizon in order to allow investment planning by using a

multiperiod model. To the best of our knowledge, the most relevant model of a multiperiod

batch retrofit is due to Moreno, Montagna, and Iribarren (2007); however, their model is

limited and does not allow for variations in the plant configuration during the time horizon

in their model.

 By extending the retrofit problem to a multiperiod model, the size of the problem

increases drastically. In order to keep the problem tractable, a disjunctive programming

model is introduced as an alternative model to the MINLP problem by using disjunctions

and logic propositions (Raman and Grossmann, 1994). Disjunctive programming is based on

the idea of expressing constraints (equalities and inequalities) in terms of global constraints

that always should hold. These global constraints may be disjunctions that correspond to

conditional constraints in the continuous space, and logic propositions in the discrete space.

All these constraints are expressed in terms of Boolean and continuous variables, which are

selected to optimize a given objective function subject to the various types of constraints

(Lee and Grossmann, 2003). Disjunctive programming has been proven to be effective in

terms of providing a qualitative and quantitative framework for modeling a number of

applications ranging from desalting plants to distillation columns (Mussati et al., 2008;

Caballero, Milán-Yañez, and Grossmann, 2005). Among the various applications it is shown

that a disjunctive model representation provides a very flexible, intuitive and effective way

to formulate discrete optimization problems (Oldenburg and Marquardt, 2008).

 It has been observed that optimization algorithms for disjunctive programming

formulations are in many cases more efficient than the ones developed for their regular full

space models (Grossmann, 2004).

 Even though disjunctive programming was used to keep the problem solvable for large

time periods, it proved insufficient. A planning horizon for 20 years is to be considered, and

the disjunctive model could not find solution for such amount of time periods. For this

reason, a rolling horizon algorithm is additionally proposed.

 All the rolling horizon algorithms give approximations of the optimal solution with a

significant decrease in their computational requirements. The algorithm provides a feasible

solution for the original problem in reasonable time. Furthermore, such solution was used as

a starting point to the direct method on the original model to find the global optimum.

 Rolling horizon algorithms work by separating a problem into a sequence of iterations,

each of which models only part of the horizon in detail (Dimitriadis, Shah, and Pantelides,

1997). The rest of the horizon is modeled with a relaxed model (Erdirik-Dogan and

Grossmann, 2007a).

 This paper has been motivated by a real-world problem in a local brewery, Cervecería

Cuauhtémoc Moctezuma. The specific goal is to propose a mutiperiod model for the retrofit

design of multiproduct batch plant over a long planning horizon. Taking into consideration

the scale of the problem, a disjunctive programming was used to try and help solution times.

We also investigate some solution strategies in the rolling horizon approach such as priority

branching for reducing the computational effort.

 The algorithm provides a feasible solution for the problem in reasonable time.

Furthermore, in this specific case the problem was solved optimally since the RHA

suboptimal solution was used as a starting point to the direct method on the original model

to find the global optimum. This assesses that the RHA solution had an optimality gap of

8.6%, which is quite reasonable for industry standards.

 The rest of the paper is organized as follows. First, in Section 2 the problem definition

is given, including the notation, the disjunctive programming model, and numerical

examples that illustrates the usefulness of the proposed model. Then, in Section 3, we

describe in detail the proposed rolling horizon algorithm for handling longer time periods of

this problem. Section 4 shows the empirical work, where the model and solution approach is

evaluated on some instances based on real-world data. This is followed by a discussion and

conclusions in Section 5.

2. PROBLEM DESCRIPTION AND MODELING FRAMEWORK

 Given a batch plant, with a series of equipment, products, and a growing demand, the

goal is to find a program of staged expansions that allow the demand to be met at every time

period of the horizon. The performance measure to be minimized is the expansion cost

generated by the acquisition of new equipment. The general idea is to optimize the

production rate of each product in the plant. The production rate is a function of the batch

size and the cycle time, where each product has its own production rate. For this reason a

production scheme must be considered. In the specific case of this work, the most

convenient scheme is single product campaigns. For this specific application, a single

product campaign is adopted.

 Given a growing demand for a set of products and a plant configuration, the problem

consists of deciding when and where new equipment must be added in order to meet the

production targets. In each considered time period, the plant can grow in any of its

production stages by adding new equipment. The outcome is a calendar of expansions

giving equipment size and investment for each time period.

 The assumptions by which the proposed model works correspond to those commonly

used in the optimal design of multiproduct batch plants (Vaselenak, Grossmann, and

Westerberg, 1987) which are: the recipes for all products are given, fixed processing times

are specified for each of the products in each type of equipment, the products are

manufactured sequentially, a continuous range of equipment sizes is assumed to be

available, and the number of batches is permitted to be non integer since this is usually a

large number.

2.1 Notation

Sets and Indices:

 I Set of products; i ∈ I

 J Set of production stages; j ∈ J

 K Set of new unites per production stage; k ∈ K

 T Set of time periods; t ∈ T

 M Set of existing units in initial plant configuration; m ∈ M

Parameters:

 N The number of products manufactured

 Nj
old The number of existing units in stage j

 Vjm
old The volume of existing unit m in stage j

 Tij The process time of product i in stage j

 H The operating time period

 Sij The size factor of product i in stage j

 Kjt The annualized fixed charge of installing a new unit in stage j in period t

 Cjt The annualized cost coefficient of installing a new unit in stage j in period t

 Qit The demand of product i in period t

 Vj
L The minimum volume of new units in stage j

 Vj
U The maximum volume of new units in stage j

 Zj The maximum number of units that can be added to stage j

 ZU The maximum number of units that can be added to the plant

Binary decision variables:

yjk Selection of investment of unit k in stage j; (= 1) if unit k is chosen for

investment in stage k; (= 0) otherwise

wjkt Operation of unit k in stage j in period t; (= 1) if unit k is in operation in stage j

in period t; (= 0) otherwise

wB
ijkmt Operate new unit k in phase with existing unit m for product i in stage j in

 period t; (= 1) if unit k is operated in phase with existing unit m for product i in

stage j in period t; (= 0) otherwise

wC
ijkt Operate new unit k in sequence with existing units for product i in stage j in

 period t; (= 1) if new unit k is operated in sequence with existing units for

product i in stage j in period t; (= 0) otherwise

zjkt Expansion/installation of new unit k in stage j in period t; (= 1) if unit k is

expanded in stage j in period t; (= 0) otherwise

Continuous decision variables:

 Nit The number of batches of product i in period t

 Bit The batch size of product i in period t

 TL
it The limiting cycle time of product i in period t

 Vjkt The volume of new unit k in stage j in period t

 Ejkt The expansion volume of new unit k in stage j in period t

 VB
ijkmt The volume required in new unit k in stage j for product i to use it in phase

 with existing unit m in period t

 VC
ijkt The volume required in new unit k in stage j for product i to use it in sequence

 with existing units in period t

 CEjkt Expansion/installation cost for new unit k in stage j in period t

2.2 Disjunctive Model

 To handle the multiperiod aspect we are introducing a time-indexed model that extends

the model by Fletcher, Hall, and Johns (1991). We use the same notation, except that some

parameters and variables have in addition a time index. The expansions happen just once

among the modeling horizon and are equivalent to installing a new unit. A convexified

formulation of the feasible domain is used in order to guarantee a global optimum. The

multiperiod batch retrofit problem is addressed with a disjunctive model, based on the

general disjunctive multiperiod model proposed by Van den Heever, Grossmann, and

Vasantharanjan (2000).

 A multiproduct batch plant for manufacturing N products and consisting of M stages in

sequence with parallel equipment in each stage is considered as shown in Figure 1.

S t a g e 1 S t a g e MS t a g e j
V M , k , tV j , k , tV 1 , k , t

V M , t
o l dV j , t

o l dV 1 , t
o l d

V M , 1 , tV j , 1 , tV 1 , 1 , t

N M , t
o l dN j , t

o l dN 1 , t
o l d

Figure 1: Superstructure for retrofit design of multiproduct batch plant (Vaselenak, Grossmann,

and Westerberg, 1987)

We define the following variables to apply the exponential transformation

(Vaselenak et al., 1987):)1(
it

x = ln Nit,)2(
it

x = ln Bit,)3(
it

x = ln TLit. The multiperiod

formulation, obtained by applying the general disjunctive model is then as follows:

Detailed Disjunctive Design (DDD) model

i) Objective function:

min ∑ ∑ ∑
t j k

tjkCE

ii) Production targets:

tiBN itti ,Qit ∀≥ with exponential transformation

tixx
itit

,Qln it
)2()1(∀≥+

iii) Limiting cycle time of product i:

tjiw
T k

B
ijkt

itL

,,N
T old

j
ij ∀≤−∑ ; applying exponential transformation

tjixw
it

k

C
ijkt ,,)exp(TN)3(

ij
old
j ∀−≥+∑

iv) Yearly operating time:

t TN itL
i

it ∀≤∑ tH ; applying exponential transformation

txx t
i

itit
∀≤+∑ H)exp()3()1(

v) Bound on total number of new units:

UZ≤∑∑
j k

jky

vi) Option B capacity constraints:

tmjiBV it
k

B
ijkmt ,,,SV ij

old
jm ∀≥+∑

vii) Distinct assignment of new units:

11,1, −=∀≥ + jkjjk Zkjyy K

viii) Disjunction for every unit k added to stage j:

kj
V

y

t
V

w

E

CE
z

E

ECE
z

i

SBV

VV

VV

w

VV

VV

w

VV

VV

w

VV

w

EVV

VV

y

jkt

jk

jkt

jkt

jkt

jkt

jkt

jkt

jktjkt

jkt

ijit
C

ijkt

U
j

C
ijkt

jkt
C

ijkt

C
ijkt

U
j

B
ijkmt

jkt
B

ijkmt

B
ijkmt

U
j

B
tijk

jkt
B

tijk

B
tijk

L
jjkt

jkt

jkttjkjkt

U
jjkt

jk

,
0

0

0

0

VV

CK
U
j

L
j

jtjt

1

1

1

1,

∀
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

=

¬
∨

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∀
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

≥

¬
∨

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

=

¬

∨

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

≤≤

+=

∀

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

≥

≤

≤
∨

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

≤

≤∨∨

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

≤

≤

≥

+=

≤

−

K

ix) Logic relationships:

tkjwz

tkjzw

tkjyw

kjwy

kjyz

tkjiwww

jktjkt

t

jkjkt

jkjkt

t
jktjk

jk
t

jkt

jkt
C
ijkt

m

B
ijkmt

,,

,,

,,

,

,

,,,

1

∀≤

∀≤

∀≤

∀≥

∀=

∀=+

∑

∑

∑

∑

=τ
τ

x) Variables:

{ }
old
j

jkt
C
ijkt

B
ijkmtjktjk

C
ijkt

B
ijkmtjktjktjkLititit

NmZkTtJjIi

zwwwyVVVEVTBN

∈∈∈∈∈

=≥

,,,,

1,0,,,,0,,,,,,,

 Convergence to the optimal solution is guaranteed in a finite number of iterations since

the model is convex (Vaselenak, Grossmann, and Westerberg, 1987).

2.3 Numerical example

 In order to show the advantages of using disjunctive programming, a small example of

10 time periods is solved in GAMS 22.5 using DICOPT as a solver on a Dell DXP051 with

3192Mhz and 2GB. CPLEX 11.0 and CONOPT were used respectively as the MIP and NLP

solvers called upon by DICOPT. This modeling system, computer and solvers will be used

for all examples throughout this paper.

 The data for this example can be found in Section 4, using only the first 10 periods from

the product demands. Table 1 has the results for the problem solved under different models.

Table 1. 10 period problem solved by different models.
Model Discrete

variables
Continuous

variables
Number of
equations

Solution
time
CPU
sec.

Expansion
Cost

($1000)

Full space non-convex
model. 2,220 5,267 7,122 *** ***

Full space convexified
model* 2,220 4,097 5,932 623452 **1024.06

Model DDD 2,220 5322 8,958 41226 950.36
Model DDD with slack
variables and priority
branching

2,220 5,297 7,152 6328 950.36

*Convexified model proposed by Vaselenak et al., 1987.
** Best solution found while using all resources available.
*** Solver reports model as infeasible.

 For the full space non-convex model, the solver reported the problem as infeasible. The

convexified model did not find the optimal solution and reports the best integer solution

found, with a value of $1024.06, taking 623,452 CPU seconds. The disjunctive model,

model DDD finds the optimal solution in 41,226 seconds. Finally model DDD, with the

addition of slack variables and using priority branching finds the same optimal solution in

just 6,328 seconds.

 Priority branching helps the solution time considerably because it takes advantage of the

hierarchical structure of the problem in the disjunctions (see equation viii) by branching first

on yj, then on wjt and then on zjt.

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

5 6 7 8 9 10

time periods

C
PU

 s
ec

on
ds

MIP
NLP
TOTAL

Figure 2: MINLP solution times.

 To have an idea on how much time is spent on solving the MIP master problem and

NLP subproblem, we solved several instances for different time periods (5 to 10) based on

the same data. Figure 2 shows the computational time for the MIP and NLP sections of

the instances tested. As we can see, the solution time is practically associated with the time

it takes in solving the master problems. This is an important reason that motivates the the

use of disjunctive programming. As mentioned before, this proposed model is successful

and a very valuable tool for attempting to find decisions to problems with 10 or less time

periods; however, when attempting to solve instances with time horizon of 20 time periods,

the direct use of the solver proved insufficient, motivating the development of the proposed

solution approach.

3. ROLLING HORIZON ALGORITHM

 The model previously presented can be solved directly with branch and bound methods.

For problems of considerable size and complexity, involving long time horizons, the

computational effort can be expensive. In order to obtain solutions for large problem

instances, a rolling horizon algorithm (RHA) is considered, to aid the solution time and to be

able to include considerable number of time periods.

 The RHA is a heuristic framework used to reduce the computational effort of

multiperiod problems while finding an approximation of the optimal solution. Instead of

solving the complete design horizon, the problem is decomposed into a sequence of sub-

problems that are solved recursively (Beraldi et al., 2008).

 For a horizon of H time periods and taking r periods at a time, using f as a counter and

model DDD as a base model the Rolling Horizon Algorithm is shown in Figure 3.

The time horizon is partitioned differently for each sub problem. In every subproblem

the initial part of the partition is modeled with the Detailed Disjunctive Design problem

(DDD), the rest of the horizon is modeled with the relaxation of the DDD problem, which

we will call Relaxed Disjunctive Design problem (RDD). The relaxation of the discrete

variables is used in RDD. The binary variables found in the solution of the detailed

subproblem are fixed and the algorithm proceeds to the next partition and subproblem

(Eridirik-Dogan and Grossmann, 2007b). This helps the model because it keeps the

information of the complete horizon in each iteration of the RHA.

Procedure RHA (P, H, r)

Input: P := An instance of the problem; H := Number of planning horizon time periods;

r := Number of time periods that sets the size of the subproblem

Output: X := A feasible solution for the problem

1. start = 1 (initialize period counter)

2. while (start ≤ H) do

3. end = min { start + r – 1, H }

4. binary variables obtained previously for periods [0, start – 1] are fixed

5. binary variables for future periods [end + 1, H] are relaxed

6. X = Solution of model with optimal binary variables for periods [start, end]

7. start = start + r (update period counter)

8. end-while

9. return X

10. stop

Figure 3. Pseudo-code of Rolling Horizon Algorithm.

 In each sub-problem the periods solved by the detailed problem increase, meanwhile the

periods solved by the relaxed problem decrease, as seen in Figure 4. The computational

complexity of the rolling horizon algorithm is practically the same as the one for DDD since

this model is solved in each iteration and the number of iterations is relatively small because

most of the binary variables are being fixed to those obtained in previous iterations even

though the size of the detailed problem increases with each iteration. This recurrent scheme

keeps going until the complete horizon has been solved for the detailed problem.

Figure 4. Rolling horizon algorithm scheme (Erdirik-Dogan and Grossmann, 2007b).

 Even though it is possible to fix every variable to the value obtained in the sub-

problems, only binary variables are fixed in each new subproblem. These represent the plant

configuration. The continuous variables (volumes, batch size, etc.) are left free in order to

reduce possible infeasibilities as usual.

4. EMPIRICAL WORK

 RHA is a succession of MINLP solved to optimality. Global optimality is shown in

detail for the uniqueness of the solution of the NLP subproblems for a model of one time

period in Vaselenak, Grossmann, and Westerberg (1987). The proof is done by reducing the

NLP subproblem to a nonlinear program that involves a linear objective function, linear

inequalities and cuasi-convex inequalities. It then follows that if a Kuhn-Tucker point exists,

DDD RDDDDD

DDD RDDDDD DDD

DDD DDD DDD

Sub-Problem 1

Sub-Problem 2

Sub-Problem

Sub-Problem 4

RDD

DDD

fixed

Sub-

Sub-

Sub-

Sub-

fixed

fixed fixed

fixed

solve

fixed

solve

solve

solve

DDD

DDD RDDDDD

DDD RDDDDD DDD

DDD DDD DDD

Sub-Problem 1

Sub-Problem 2

Sub-Problem

Sub-Problem 4

RDD

DDD

fixed

Sub-

Sub-

Sub-

Sub-

fixed

fixed fixed

fixed

solve

fixed

solve

solve

solve

DDD RDDDDDDDD RDDDDD

DDD RDDDDD DDD

DDD DDD DDD

Sub-Problem 1

Sub-Problem 2

Sub-Problem

Sub-Problem 4

RDD

DDD

fixed

Sub-

Sub-

Sub-

Sub-

fixed

fixed fixed

fixed

solve

fixed

solve

solve

solve

DDD

it will correspond to the global optimum solution. This means that all NLP subproblems that

arise from our original model have a unique local optimum provided the productions are all

greater than or equal to zero. The equations added to such model are all linear, thus

optimality conditions remain.

 An example with three products and four production stages is solved for a design

horizon of 20 years. Parameters for the example are given in Tables 1 through 6. Table 1 has

the number of new units allowed to be added Zj, the number of existing units in each

stage old
jN , and the upper and lower limits for the volume of the new units, as well as the

fixed and variable coefficients for the expansion costs. Table 3 contains the demand

information for each product in each time period. Table 4 has the volume data of the initial

plant configuration. Tables 5 and 6 have the processing times, and the size factor for each

product in each stage respectively.

 Table 7 contains the results of applying the rolling horizon algorithm to model DDD for

a design horizon of 20 time periods. The rolling horizon algorithm pretends to use the

information of the relaxed model and its ability to find optimal solution fast, 251 CPU

seconds (second line in Table 6), to find the discrete variables in a shorter time horizon, the

one of the sub-problem being solved by the detailed problem in that iteration.

Table 2. Parameter values for the example.
Parameters stage j
 1 2 3 4
Zj 10 10 10 10

old
jN 1 1 2 1

Vlo
j 1 2.5 2.5 2

Vup
j 10 10 10 10

Cjt ∀t 13.29 35.21 42.85 7.19
Kjt ∀t 0.01329 0.03521 0.04285 0.00719

Table 3. Demand Qit Table 4. old

jmV

time products
Volume of initial existing unit m in stage j in
1000L

period 1 2 3 m\j 1 2 3 4
1 200.0 600.0 1000.0 1 1 4 3 3
2 220.0 720.0 1150.0 2 - - 3 -
3 242.0 864.0 1322.5
4 266.2 1036.8 1520.9 Table 5. Tij
5 292.8 1244.2 1749.0 The process time of product i in stage j in h
6 322.1 1493.0 2011.4 i\j 1 2 3 4
7 354.3 1791.6 2313.1 1 3.73 288 336 2.08
8 389.7 2149.9 2660.0 2 3.73 216 216 2.08
9 428.7 2579.9 3059.0 3 3.73 168 120 2.08
10 471.6 3095.9 3517.9
11 518.7 3715.0 4045.6
12 570.6 4458.1 4652.4 Table 6. Sij
13 627.7 5349.7 5350.3 Size factor for product i in stage j in l/kg
14 690.5 6419.6 6152.8 i\j 1 2 3 4
15 759.5 7703.5 7075.7 1 0.3 11 11 5.76
16 835.4 9244.2 8137.1 2 0.3 11 11 5.76
17 919.0 11093.1 9357.6 3 0.3 11 11 5.76
18 1010.9 13311.7 10761.3
19 1112.0 15974.0 12375.5
20 1223.2 19168.8 14231.8

 These results are taking into consideration subproblems of five time periods. Note how

the total number of variables and equations does not change. The number of discrete

variables being solved is also the same; however, the effect in computational time is quite

considerable. The number of binary variables being solved is the same because although the

number of time periods being solved by the detailed problem increases, the binary variables

for the time periods already covered by DDD are fixed, leaving the number of binary

variables being solved by DDD equal to those present in five time periods only.

Table 7. Results and statistics for example

Problem
Binary
Variables

Continuous
Variables Equations CPU sec.

Objective
value $

Detailed
problem 8,840 20,883 27,798 *** ***
Relaxed
problem 8840R 20,883 27,798 251.39 524.07

R
ol

lin
g

H
or

iz
on

 A
lg

or
ith

m

subproblem
1

DDD 5
periods
RDD 15
periods

2,240
(6600R) 20883 27,798 937.21 1801.74

subproblem
2

DDD 10
periods
RDD 10
periods

2,240
(4,400R) 20883 27,798 1915.78 1801.74

subproblem
3

DDD 15
periods
RDD 5
periods

2,240
(2,200R) 20883 27,798 6928.66 2147.0

subproblem
4

DDD 20
periods
15
periods
fixed 2240 20883 27,798 7463.12 3526.60

 FINAL 17143.4 3526.6

*** No solution was found.

 The third line in Table 6 corresponds to subproblem 1, where the first 5 time periods are

solved by DDD and the rest are relaxed. For subproblem 2, the binary variables for the first

5 time periods are fixed, model DDD is run throughout period 10, and periods 11 through 20

are relaxed. For subproblem 3, binary variables from periods 1 to 10 are fixed, the detail

model is solved throughout period 15, and those corresponding to time periods 16 to 20 are

relaxed. Finally in the last subproblem, subproblem 4, the binary variables from time periods

1 to 15 are fixed to those obtained in previous sub problems, and the detailed model is

solved for the complete time horizon.

 With model DDD it was not possible to find a solution for a design horizon of 20

periods, with the rolling horizon algorithm a solution was found in less than 5 hours.

However, optimality was lost, since this solution is an approximation, i.e., an upper bound to

the optimal solution.

 Although the optimal solution was not found by the detailed model for the complete

planning horizon, it was possible to feed the solution found by the RH algorithm as a

starting point for the model in full space, and find the optimal solution value of $3244.78 in

a 440,190 CPU seconds. Although the computational times are not comparable, since the

model had a good feasible starting point, the value of the solution gives us a measure of the

optimality gap of the considered approach. When comparing the optimal solution to that

found by the rolling horizon algorithm, we have an optimality gap of 8.68%.

5. CONCLUSIONS

 A multiperiod capacity expansion or multiperiod retrofit problem is a better form to

approach design and investment decisions compared to the typical retrofit problem where

just one period is taken into account. This however, increases the size and complexity of the

problem enormously. To try to mitigate this effect, a disjunctive model is proposed, obtained

by transforming the original problem using the convex hull relaxation over a disjunctive set.

The disjunctive model proved to improve results when compared to the same problem

modeled in full space. The disjunctive model, however, could not find solution for a horizon

of 20 time periods which was of interest, to address this problem, a rolling horizon algorithm

was proposed.

 The proposed rolling horizon algorithm has the benefit that it can use the information of

the demands for the entire design horizon. This is convenient since it allows the model to

anticipate future demands and use that information when deciding both the amount of

volume and when to install new equipment. This formulation considers all feasible options

for this kind of problem.

 The RHA was illustrated in a case study with 20 time periods. It was found the reported

solution had an optimality gap of 8.6%, which is more than reasonable for industry

standards. Furthermore, it was illustrated how this solution could be used as a starting

solution for the direct solution method for the DDD model, finding a true global optimal

solution in this particular example. Even though this finding of a global optimum cannot be

guaranteed for every possible instance, this solution strategy can certainly be applied to

attempt to improve the solution found by the RHA.

 As possible areas of opportunity for future work it would be worthy to consider solving

to optimality the detailed model through a non commercial solver, this was not attempted

due to time limitations.

Acknowledgements: The authors of this work would like to thank the Mexican Council for

Science and Technology (CONACYT) and UANL´s Scientific and Technological Research

Support Program for their financial supports in this research.

REFERENCES

Barbosa-Póvoa, A.P. (2007). A critical review on the design and retrofit of batch plants.

Computers and Chemical Engineering, 31(7):833-855.

Beraldi, P., Ghiaji, G., Grieco, A., and Guerriero, E. (2008). Rolling-horizon and fix-and-

relax heuristics for the parallel machine lot sizing and scheduling problem with sequence

dependent set-up costs. Computers and Operations Research, 35(11):3644-3656.

Caballero, J.A., Milán-Yañez, D., and Grossmann, I.E. (2005). Optimal synthesis of

distillation columns: Integration of process simulators in a disjunctive programming

environment. Computer Aided Chemical Engineering, 20:715-720

Dimitriadis, A.V., Shah, N., and Pantelides, C.C. (1997). RTN-based rolling horizon

algorithms for medium term scheduling of multipurpose plants. Computers and Chemical

Engineering, 21(s1):s1061-s1066.

Erdirik-Dogan, M., and Grossmann, I.E. (2007a) Planning models for parallel batch

reactors with sequence-dependent changeovers. AIChE Journa,l 53(9):2284-2300.

Erdirik-Dogan, M., and Grossmann, I.E. (2007b). A decomposition method for the

simultaneous planning and scheduling of single-stage continuous multiproduct plants.

Industrial and Engineering Chemistry Research, 46(15):5250.

Fletcher, R., Hall, J.A., and Johns, W.R. (1991) Flexible retrofit design of multiproduct

batch plants. Computers and Chemical Engineering, 15(12):843-852.

Grossmann, I.E. (2004). Advances in logic-based optimization approaches to process

integration and supply chain management. In M.A. Galan and E. Del Valle (editors)

Chemical Engineering: Trends and Developments. Wiley, Weinheim,

Germany.

Lee, S., and Grossmann, I.E. (2003). Global optimization of nonlinear generalized

disjunctive programming with bilinear equality constraints: Applications to process

networks. Computers and Chemical Engineering, 27(11):1557-1575.

Macchietto, S. (2005). Integrated Batch Processing: A model for advanced manufacturing.

In Proceedings of the 2005 APACT Conference, pp. 20-22. Birmingham, United Kingdom.

Montagna, J.M. (2003). Optimal retrofit of multiproduct batch plants. Computers and

Chemical Engineering, 27(8-9):1277-1290.

Moreno, M.S., Montagna, J.M., and Iribarren, O.A. (2007). Multiperiod optimization for

the design and planning of multiproduct batch plants. Computers and Chemical

Engineering, 31(9):1159-1173.

Mussati, S.F., Barttfeld, M., Aguirre, P.A., and Scenna, N.J. (2008). A disjunctive

programming model for superstructure optimization of power desalting plants.

Desalination, 222(1-3):457-465.

Oldenburg, J., and Marquardt W. (2008). Disjunctive modeling for optimal control of hybrid

systems. Computers and Chemical Engineering, 32(10):2346-2364.

Pinto, T., Barbosa-Póvoa, F.D., and Novais, A.Q. (2005). Optimal design of batch plants

with a periodic mode of operation. Computers and Chemical Engineering, 29(6):1293-1303.

Raman, R., and Grossmann, I.E. (1994). Modeling and computational techniques for logic

based integer programming. Computers and Chemical Engineering, 18(7):563-578.

Van den Heever, S., Grossmann, I.E., and Vasantharanjan, S. (2000). Integrating complex

economic objective with the design and planning of offshore oilfield infrastructures.

Computers and Chemical Engineering, 24(2-7):1049-1055.

Vaselenak, J.A., Grossmann, I.E., and Westerberg, A.W. (1987). Optimal retrofit design in

multiproduct batch plants. Industrial and Engineering Chemistry Research, 26(4):718-726.

