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Abstract

In this paper, a multiobjective scatter search (SS) procedure for a bi-objective territory design
problem is proposed. A territory design problem consist of partitioning a set of basic units into
larger groups that are suitable with respect to some specific planning criteria. These groups must
be compact, connected, and balanced with respect to the number of customers and sales volume.
The bi-objective commercial territory design problem belongs to the class of NP-hard problems.
Previous work showed that large instances of the problem addressed in this work are practically
intractable even for the single-objective version. Therefore, the use of heuristic methods is the
best alternative for obtaining approximate efficient solutions for relatively large instances. The
proposed SSMTDP (Scatter Search for a Multiobjective Territory Design Problem) method contains
a diversification generation method based on a GRASP framework. The improvement method is
based on a relinked local search strategy (RLS). The combination method is a two-phase method
that takes as input two given p-partitions with their corresponding set of territory centers, and
solves an assignment problem to find new territory centers. A partial solution is created by keeping
on each territory those nodes that belong to the same territory in both solutions. Three new
solutions are obtained from this partial solution. Each of these new solutions is generated using
a GRASP procedure with an independent merit function. For instance, the first new solution
is generated by assigning those unassigned nodes to the partial solution such that a dispersion
measure is minimized. The second solution is created by considering a merit function related to the
deviation from the target number of customers, and the third one is created by taking into account
the infeasibility with respect to the allowed quantity of sales volume. The proposed SSMTDP is
evaluated over a variety of instances taken from literature. This includes a comparison with two
of the most successful multiobjective heuristics from literature such as SSPMP (a scatter search
metaheuristic) and NSGA-II (a genetic algorithm). Experimental work reveals that the proposed
SSMTDP consistently outperforms both SSPMP and NSGA-II on all instances tested.

Keywords: Territory design; bi-objective programming; Pareto front; Scatter search, GRASP;
SSPMO; NSGA-II.



1 Introduction

Commercial territory design is a recent districting application. It consists of partitioning a set of
basic units (BUs) into larger groups according to some specific planning criteria. In the problem
addressed in this work, these groups must be compact, connected, and balanced with respect
to the number of customers and sales volume. The single objective version of this problem was
introduced by Rı́os-Mercado and Fernández [15]. Due to the complexity of the problem, they
developed a reactive GRASP procedure to solve it. Their proposed procedure outperformed the
company method in both solution quality and degree of infeasibility with respect to the balancing
requirements. Different versions of this problem have been studied as well. Segura-Ramiro et al. [19]
use another dispersion measure that is very common in facility location. It is the objective function
of the p-Median Problem (pMP). Balancing requirements are considered as constraints. They solved
the problem by an implementation of a well-known heuristic technique called location-allocation.
The results showed good heuristic performance. Caballero-Hernández et al. [4] developed a GRASP
for a commercial territory design problem with joint assignemnt constraints with relatively good
results. The bi-objective version of this problem was introduced by [16]. In that work, an improved
implementation of the ε-constraint method for solving instances of small to medium size is proposed.
To the best of our knowledge there is no previous work that address the bi-objective commercial
territory design problem from the heuristic point of view.

In this work, the well-known framework of Scatter Search (SS) is used to develop a heuristic
that allows to obtain approximate efficient solutions to the bi-objective commercial territory design
problem. Five key components were derived and developed within the SS framework: (i) a diversifi-
cation generation method based on GRASP, (ii) an improvement method based on a novel relinked
search strategy, (iii) a solution combination method based on a hybrid scheme; (iv) a reference set
update method, and (v) a subset generation method. As usual in SS, the first three methods were
specifically tailored to attempt to exploit the problem structure.

The proposed SSMTDP was evaluated over a set of large instances. The results indicate that
the SSMTDP is able to find good solutions that are very well distributed along the efficient frontier.
Even though the initial solutions have a poor evaluation in the objective functions, the proposed
combination method has the ability of exploring new regions in the search space and the improve-
ment method allows to obtain better solutions that are very far from the initial set. When com-
pared to state-of-the-art multi-objective methods such as SSPMO and NSGA-II, it was observed
that these procedures struggled in generating feasible solutions to the problem. A few instances
could be solved by these procedures. In contrast, the SSMTDP reported efficient solutions for all
instances tested. Furthermore, SSMTDP reported significantly better solutions for those instances
that were solved for both NSGA-II and SSPMO.

The paper is organized as follows. Section 3 provides a description of the problem. Section
2 discusses relevant work developed in multiobjective territory design. Section 4 describes the
SSMTDP procedure. Experimental work is discussed in Section 5 and finally in Section 6 some
conclusions are presented.
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2 Previous Work on Multiobjective Territory Design

The multiobjective nature of the territory design problems can be found in diverse fields such as
sales districting, political districting, and school districting. However, most of the works transform
the multiobjective problem into a single objective problem. Few works develop procedures for
obtaining approximate efficient solutions.

Tavares et al. [21] study a multiobjective public service districting problem. They considered
multiple criteria such as location of the zone with respect to the network, mobility structure within
a zone, zone corresponding to administrative structures, centers of attraction in the zone, social
nature, and geographical nature. They proposed an evolutionary algorithm with local search and
applied it to a real-world case of the Paris region public transportation. They discussed results for
bi-objective cases considering different criteria combination.

Guo, Trinidad, and Smith [8] propose a multiobjective zoning and aggregation tool (MOZART).
MOZART is an integration of a graph partitioning engine with a Geographic Information System
(GIS) through a graphical user interface. They illustrated the performance of MOZART by solving
two zoning problems from three government local areas in Victoria: Kingston, Bayside, and Glen
Eira. The first part of their experimental work was done by taking into account a single objective
of equality in population size. In contrast, in the second part of their experimental work, both
equity in population and compactness were treated as objective functions. They report a case with
577 census collection districts and 20 zones. The inclusion of compactness as the second zoning
objective yields zones with better shapes.

Bong and Wang [1] present a multiobjective hybrid metaheuristic approach for a GIS-based
spatial zoning model. Their heuristic procedure is a combination of tabu search and scatter search.
They show the procedure performance by solving a political districting problem with 55 basic units
and 3 districts. Equity in population, compactness, and socio-economic homogeneity are treated
as objectives.

Ricca and Simeone [14] address a multiple criteria political districting problem. Such criteria
were connectivity, population equality, compactness, and conformity to administrative boundaries.
They transformed the multiobjective model into a single-objective model, where the objective
function is a convex combination of three objective functions (inequality, noncompactness, and
nonconformity to administrative boundaries), and connectivity is considered as a constraint. They
compared the behavior of four local search metaheuristics (descent, tabu search, simulated anneal-
ing, and old bachelor acceptance) over a sample of five Italian regions. The old bachelor acceptance
produced the best results in most of the cases.

Bowerman, Hall, and Calamai [2] present a multiobjective approach for solving a school bus
routing problem. They proposed a heuristic technique that firsts groups students into clusters using
a multiobjective districting algorithm. After that, a school bus route and the bus stops for each
cluster are generated by using a combination of a set covering procedure and a traveling sales-
man problem procedure. They report experimental results for a real-world instance in Wellington
County, Ontario. The districting algorithm considers four objectives: minimizing the number of

2



routes, minimizing the length of the routes, load balancing, and compactness of the routes. The
last three criteria are placed in a weighted objective function where the number of routes is the
dominant objective, i.e., a solution with fewer routes is always favored over a solution with more.
Different plans were designed using different sets of weights over the optimization criteria.

Scott, Cromley, and Cromley [18] make a multiobjective analysis of school districting in a case
study from Connecticut, USA. They propose a mixed-integer goal programming model where the
goal constraints are to minimize disparities in: minority enrollments, grand-list/student ratios,
student-teacher ratios, and overall enrollment. The number of districts is not fixed and the conti-
guity criterion is not formulated in an explicit way. Experimental work using different weighting
scenarios reveals that the traditional distance-minimizing or transportation-minimizing objectives
are in conflict with all other aims of equity and quality of educational opportunities.

Ricca [13] addresses a territory aggregation problem in Rome. A heuristic procedure based on
an old bachelor acceptance is implemented. Compactness, population equality, and inner variance
are the optimization criteria. Inner variance is used to guarantee homogeneous zones according to
some socio-economic factors such as the population, number of schools, hospitals, and shopping
centers. The objective function used in this work is a convex combination of the optimization
criteria. Different sets of weights were used to obtain approximate efficient solutions. The heuristic
technique reported better designs than the existing one.

To the best of our knowledge the only work on multiobjective commercial territory design is the
one by Salazar-Aguilar, Rı́os-Mercado, and González-Velarde [16]. In that work, the bi-objective
model is introduced and an improved ε-constraint method is proposed for finding optimal Pareto
fronts. One of the limitations of that work is of course the size of the instances that could be solved
exactly. The largest tractable instance has 150 BUs and 6 territories. Therefore, the motivation of
the present work is to develop an effective method for tackling larger instances of this commercial
territory design problem (TDP). For a survey on single-objective TDP applications, the reader is
referred to the work of Kalcsics, Nickel, and Schröder [9].

3 Problem Description

Given a set V of city blocks (basic units, BUs), the firm wishes to partition this set into a fixed
number (p) of disjoint territories that are suitable according to some planning criteria. The ter-
ritories need to be balanced with respect to each of two different activity measures (number of
customers and sales volume). Additionally, each territory has to be connected, so that each basic
unit can be reached from any other without leaving the territory. Territory compactness is required
to guarantee that customers within a territory are relatively close to each other. Compactness and
balance with respect to the number of customers are the most important criteria identified by the
firm. Therefore in this work these criteria are considered as objective functions and the remaining
criteria are treated as constraints.

Let G = (V,E), where E is the set of edges that represents adjacency between BUs. An edge
connecting nodes i and j exists if i and j are adjacent BUs. Multiple attributes such as geographical
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coordinates (cx
j , cy

j ), number of customers and sales volume are associated to each node j ∈ V . In
particular, the firm wishes perfect balance among territories, that is, each territory needs to have
the same number of customers and sales volume. Let A = {1, 2} be the set of node activities, where
1 refers to the number of customers and 2 refers to sales volume. We define the size of territory Bk

with respect to activity a as w(a)(Bk) =
∑

i∈Bk
w

(a)
i , where w

(a)
i is the value associated to activity

a ∈ A in node i ∈ V . Hence, the target value is given by μ(a) =
∑

j∈V w
(a)
j /p. Due to the discrete

nature of this problem, it is practically impossible to have perfectly balanced territories. Thus, a
tolerance parameter τ (2) is introduced to allow a relative deviation from the average sales volume.

Let Π be the set of all possible p-partitions of V . For a particular territory Bk, c(k) is a
territory center and dij is the Euclidian distance between nodes i and j, i, j ∈ Bk. A territory
center is computed as

c(k) = arg min
j∈Bk

∑
i∈Bk

dij

Under the previous assumptions, the bi-objective combinatorial model can be written as follows.

min
B∈Π

f1(B) =
∑

k=1,...p

∑
i∈Bk

dic(k) (1)

min
B∈Π

f2(B) = max
k=1,...p

1
μ(1)

[
max

{
w(1)(Bk) − μ(1), w(1)(Bk) − μ(1)

}]
(2)

Subject to :

w(2)(Bk) ∈
[
(1 − τ (2))μ(2), (1 + τ (2))μ(2)

]
, k = 1, . . . , p (3)

G = (Bk, E(Bk)) is connected ∀k = 1, . . . , p (4)

The goal is to find a p-partition of V, such that both the dispersion (1) on each territory Bk and
the maximum relative deviation with respect to the number of customers in each territory (2) are
simultaneously minimized. Constraints (3) establish that the territory size (sales volume) should
be between the range allowed by the tolerance parameter τ (2). In addition, each territory should
induce a connected subgraph (4).

This is an NP-hard problem and previous work [16] reveals that large instances are intractable
by applying the existing exact solution procedures. In this paper we introduce a heuristic procedure
for obtaining approximate efficient solutions to large instances.

4 The SSMTDP Procedure

The evolutionary approach called Scatter Search (SS) was first introduced in [7] as a metaheuristic
for integer programming. It is based on diversifying the search through the solution space. It
operates on a set of solutions, named the reference set (PR), formed by good and diverse solutions
of the main population (P). These solutions are combined with the aim of generating new solutions
with better fitness, while maintaining diversity. Furthermore, an improvement phase using local
search is applied. As detailed in [11], the basic structure of SS is formed by five main methods.
SS is a very flexible technique, since some modules of its structure can be defined according to the
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problem at hand. For instance, the diversification, the improvement, and the combination methods
are commonly tailored to the specific problem.

The components of the proposed SSMTDP procedure are described next.

• A diversification generation method that generates a set of initial solutions. It is based on
the proposed GRASP procedures developed by [17]. Specifically, we use the procedure called
BGRASP-I. This procedure uses a merit function based on two components: dispersion and
maximum deviation with respect to the target value in the number of customers. This method
keeps connectivity as a hard constraint. The post-processing phase of BGRASP-I is carried
out by the improvement method described below.

• An improvement method that transforms a trial solution into one or more trial solutions. This
method is an implementation of a relinked local search (RLS) strategy and is applied to each
solution obtained by either the diversification generation or the combination method.

As mentioned in [12], most local search applications to multiobjective optimization use mul-
tiple runs to approximate the Pareto front. This technique is usually based on a weighted
aggregation of the objective functions where each run consists of solving the single-objective
optimization problem that results from applying a given set of weights. To obtain an approxi-
mation of the Pareto front the procedure must be run as many times as the desired number of
points, using different weight values. The performance of implementations based on multiple
runs deteriorates as the need for generating more efficient solutions increases, since this is
directly proportional to the number of times that the procedure must be executed.

On the other hand, [12] propose the use of relinked local searches, where linked means that
the last point of one search becomes the initial point of the next search and where each point
visited at any iteration could be included in the final approximation. This method is based on
the very well known Fritz-John optimality principle for multiobjetive optimization which has
been empirically demonstrated to provide a dense and diverse initial set of efficient points.

Our improvement method consists of optimizing three objective functions: (i) dispersion
measure

z1(S) =
∑

j∈Vt,t∈T

djc(t), (5)

(ii) maximum deviation with respect to the number of customers

z2(S) =
1

μ(1)
max
t∈T

{
max{w(1)(Vt) − μ(1), μ(1) − w(1)(Vt)}

}
, (6)

and (iii) total infeasibility

z3(S) =
1

μ(2)

∑
t∈T

max
{
w(2)(Vt) − (1 + τ (2))μ(2), (1 − τ (2))μ(2) − w(2)(Vt), 0

}
(7)

related to the balancing of sales volume. Note that c(t) is the center of territory Vt. Then,
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the post-processing phase consists of systematically applying the local search sequentially to
each of the three objectives individually. That is, first local search is applied using z1 as
the merit function in a single-objective manner. After a local optimum is found, the local
search is continued with z2 as merit function, and then z3. Finally, the initial objective z1 is
used after the local optimum is obtained for the last objective. During the search, the set of
nondominated solutions is updated at every solution.

• A reference set update method that maintains a portion of the best solutions of the reference
set. In this case, the reference set is formed by efficient solutions according to the Pareto
sense. When an efficient solution is found, this enters the reference set and those solutions
that are dominated by the added solution are deleted from the reference set.

• A subset generation method that operates in the reference set in such a way so as to select some
solutions to be combined. All possible pairs of solutions from the reference set are selected.
During each SSMTDP iteration, a temporal memory is used to avoid those combinations that
were done in the previous iteration. In other words, for a specific iteration, the combination
process is applied just to those pairs of solutions that were not combined in the previous
iteration.

• A solution combination method that transforms the solution sets formed by the subset gener-
ation method into one or more combined solution. In this work, three solutions are generated
(see Algorithm 1) from each pair of solutions. There are many ways of combining a pair of so-
lutions. In the proposed SSMTDP procedure, this component is developed by attempting to
keep good features present in the current solutions. Then, given a pair of solutions S1 and S2,
these are combined by identifying the best matching between territories. An exhaustive eval-
uation of the possible matchings requires a high computational effort. Therefore, the method
attempts to find the best territory matching based on their corresponding territory centers
only. This is done by solving an associated assignment problem. The assignment problem
used in this method minimizes the sum of distances between the territory centers identified
on these solutions. For instance, suppose that solutions S1 and S2, with corresponding center
sets C1 and C2, are to be combined. The assignment problem is solved between the center
sets C1 and C2, and after that, the resulting assignment is used to determine which territories
are matched (see Algorithm 2). Each matching pair (i, j) of this assignment yields a territory
in the combined solution by assigning to this territory all those nodes that are common to
both territory with center in i in S1 and territory with center in j in S2 (see Algorithm 3).
Let Sp be the partial territory design obtained this way. Finally, this partial solution Sp is
used as a starting solution for generating three different trajectories, each of them guided
by a different objective function, namely: i) dispersion, ii) maximum deviation with respect
to the number of customers, and iii) total infeasibility with respect to the sales volume (see
Algorithm 4). This, of course, generates three solutions called Sz1, Sz2 , Sz3 , respectively.

The SSMTDP stops by iteration limit or by convergence, that is, when the reference set does
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not change (see Algorithm 1). Note that the updating of the reference set takes place after a
potential set of nondominated solutions is obtained by applying the improvement method over all
trial solutions (S(z1), S(z2), and S(z3)) generated by the combination method. This strategy was
adopted given that the computational effort increases considerably when the typical strategy (i.e.,
updating after each new feasible solution is generated) is performed.

Algorithm 1 General scheme of SSMTDP
Output: REFSet Set of efficient solutions (reference set)

flag← 1 := 1 if the solution REFSet changes, 0 in otherwise
iter = 0, NS = ∅, E = ∅, REFSet= ∅
REFSet ← DiverseSolutions {use any of the proposed GRASP procedures}
while ((flag) and (iter < max iter)) do

COM← SubsetGeneration(REFSet) {pairs of solutions to be combined}
NS← ∅
for (S1, S2) ∈ COM do

(Sz1, Sz2 , Sz3) ← CombinationMethod(S1, S2)
NS ← NS∪{Sz1, Sz2, Sz3}

end for
E ← Improvement(NS ) {calls to post-processing phase of the GRASP procedures by minimiz-
ing of (z1, z2, z3, z4) }
flag← UpdateRefSet(E,REFSet)
iter+1

end while
return REFSet

Algorithm 2 CombinationMethod(S1, S2)
Input:

(S1, S2):= Pair of solutions to be combined
Output: (Sz1 , Sz2, Sz3) Three new solutions obtained by combining S1 and S2

C1 ← ⋃
t∈{1,...,p} c(t) ∈ Vt, vt ∈ S1

C2 ← ⋃
t∈{1,...,p} c(t) ∈ Vt, vt ∈ S2

M ← ∅ := Matching {(i1, j1), (i2, j2), ..., (ip, jp)} between elements from C1 and C2, where it ∈ C1

and jt ∈ C2, t ∈ {1, ..., p}
M ← SolveAssignmentProblem(C1,C2)
Sp ← BuildPartialSolution(S1, S2,M)
Compute I ′ ⊂ V such that I ′ contains those nodes that have not been assigned in the partial
solution Sp

(Sz1 , Sz2, Sz3) ← GenerateNewSolutions(Sp, I ′)
return (Sz1 , Sz2 , Sz3)

Figure 1 illustrates the process of generating a partial solution by combining a pair of trial
solutions S1 and S2. In this figure, the black nodes represent the territory centers. Suppose that
after solving the assignment problem, the resulting assignment is represented by territories enclosed
by dotted lines in S1 and S2. The partial solution is the basis for generating three new solutions
Sz1, Sz2 , and Sz3. These new solutions are obtained by adding the unassigned nodes to the partial
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Algorithm 3 BuildPartialSolution((S1, S2),M)
Input:

(S1, S2):= Pair of solutions to be combined
M := Matching {(i1, j1), (i2, j2), ..., (ip, jp)} between territory centers from S1 and S2

Output: (Sp = (V1, V2, ..., Vp)) Partial assignment of nodes to territories
for (t = 1, ..., p) do

Vt ← ∅
Vt ← ∪Vit ∩ Vjt, where Vit ∈ S1 and Vjt ∈ S2

if (Vt == ∅) then
Vt ← jt

end if
end for
return (Sp = (V1, V2, ..., Vp))

Algorithm 4 GenerateNewSolutions(Sp, I ′)
Input:

Sp := Partial solution
I ′ := Unassigned nodes

Output: (Sz1 , Sz2, Sz3) Three new solutions obtained since Sp

Sz1 ← AssignmentGRASP(Sp, I ′, z1) {Merit function for minimizing z1(S)}
Sz2 ← AssignmentGRASP(Sp, I ′, z2) {Merit function for minimizing z2(S)}
Sz3 ← AssignmentGRASP(Sp, I ′, z3) {Merit function for minimizing z3(S)}
return (Sz1 , Sz2 , Sz3)

Figure 1: Combination of territories between a pair of solutions.
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territories, carrying out three independent applications of the diversification method. That is,
for generating Sz1, the unassigned nodes are assigned to the partial territories through a call to
the diversification method whose merit function is given by the dispersion measure. Then, for
generating Sz2 the merit function is given by the maximum deviation with respect to the number
of customers. Finally, for generating Sz3 a merit function that computes the total infeasibility with
respect to the balancing of sales volume is used.

When all trial solutions are generated (i.e., when all pairs of solutions are combined), this set
of solutions is improved by using the improvement method previously described. At the end, the
improvement process reports a potential set of nondominated solutions that can be included in the
current reference set. Thus, each solution from the potential set enters the reference set if it is an
efficient solution with respect to the current set of solutions belonging to the reference set. Those
solutions that are dominated by the new solution are removed from the current reference set. The
SSMTDP stops when there are no new solutions included in the reference set.

5 Experimental Work

The procedure was coded in C++, and compiled with with the Sun C++ compiler workshop
8.0 under the Solaris 9 operating system and run on a SunFire V440. The data sets were taken
from the library developed by [15]. These data set contains randomly generated instances based
on real-world data provided by the firm. The SSMTDP was applied over two instance sets with
(n, p) ∈ {(500,20),(1000,50)}. In all instances, a tolerance parameter τ (2) = 0.05 was used. Two
stopping criteria were used in the SSMTDP, iteration limit and convergence. In this experiment,
the maximum number of iterations was set to 10.

5.1 Assessing the Performance of SSMTDP

During the experimental work, it was observed that SSMTDP converged without reaching the
iteration limit over all instances tested. That is, in all cases the SSMTDP stopped when there
were no new solutions to be added to the reference set. Figure 2 shows the behavior exhibited by
an instance with 500 BUs and 20 territories. The first front (BGRASP-I) is the initial solution
set generated by the diversification method (BGRASP-I). The following fronts show the solutions
that belong to the reference set on each SSMTDP iteration. Recall that SSMTDP starts with an
efficient solution set that is obtained by the diversification method. These solutions are assigned
to the initial reference set. After that, each pair of solutions in the reference set is combined to
generate three different solutions. The new generated solutions are improved through the RLS
and then, the updating of the reference set is done for obtaining a new reference set. When the
reference set does not change, the SSMTDP stops. In the case illustrated in Figure 2, the SSMTDP
converged in iteration 9. That is, in this iteration, the combination of solutions from the reference
set did not yield potential nondominated solutions to be added to the reference set. Thus, SSMTDP
reports as efficient solutions set those solutions belonging to the reference set in the last iteration.
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Figure 2: SSMTDP performance for an instance with 500 BUs and 20 territories.

To illustrate the behavior of SSMTDP by using instances from (1000,50), Figure 3 shows the
SSMTDP iterations over an instance with 1000 BUs and 50 territories. In this case the SSMTDP
stopped in iteration 8. In summary, the efficient fronts obtained by SSMTDP represent a significant
improvement with respect to the initial fronts provided by BGRASP-I. It was observed that in all
instances tested (20 instances), the SSMTDP method stopped by convergence. These results are
used in Section 5.2 for comparing SSMTDP with another SS heuristic called SSPMO.

In the following section, a comparison between the proposed SSMTDP and SSPMPO, a state-
of-the-art SS heuristic is done.

5.2 Comparison with Existing Multiobjective SS Procedure

Description of SSPMO

SSPMO is a metaheuristic introduced by Molina et al. [12] initially developed for solving non-linear
multiobjective optimization problems; however, it has been adapted for multiobjective clustering
problems as well. It consists of a scatter/tabu search hybrid procedure that includes two different
phases: i) generation of an initial set of efficient points through various tabu searches (MOAMP),
and ii) combination of solutions and updating of efficient set via scatter search.

The generation of the initial set is based on the MOAMP method proposed by Caballero et al.
[3]. To build the initial set of efficient points, MOAMP carries out a series of relinked tabu searches
where each visited point could be included in the final efficient set. The second phase of MOAMP
consists of an intensification search around the initial set of efficient points. For more details see
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Figure 3: SSMTDP performance for an instance with 1000 BUs and 50 territories.

[3] and [12].
The SSPMO procedure creates a reference set (E) using the efficient solutions reported by

MOAMP. A list of solutions that have been selected as reference points is kept to prevent the
selection of those solutions in future iterations. Then, each solution that is added to the set E, is
added to a TE (tabu set). A linear-combination method is used to combine reference solutions.
All pair of solutions in E are combined and each combination yields four new trial solutions. Each
new solution is subject to an improvement method based on MOAMP. Solutions generated after
the improvement procedure are tested for possible inclusion in E.

Once all pairs of solutions in E are combined and the new trial solutions are improved, SSPMO
updates the reference set E and proceeds to the next iteration. The first step in the updating
process is to choose the best solutions according to each of the objective functions taken separately.
In this selection, those solutions belonging to TE are not considered. The remaining solutions
are chosen by using a metric L∞, that is a generalization of the Euclidean distance. For each
x ∈ E \ TE the minimum distance (Lmin∞ (x)) from x to TE is computed, and a uniform random
number is generated. If it is less than (Lmin∞ (x)), then x is declared eligible. Let y be the maximum
number of solutions to be combined. Then, y − g solutions with largest minimum distance to TE
are selected sequentially. Note that, TE is updated after each selection in order to avoid choosing
points that are too close to each other. The updating process continues until the mean value of
(Lmin∞ (x)) for the set of eligible solutions falls below a pre-specified threshold mean-distance. For a
complete description of SSPMO method, see [12].
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The SSPMO method was adapted to the multiobjective commercial territory design problem.
Four objective functions are minimized: i) dispersion (5), ii) maximum deviation with respect to the
average number of customers (6), iii) total infeasibility with respect to the balancing constraints
of sales volume (7), and iv) total number of unconnected nodes. The initial solution set fed to
MOAMP is generated by choosing p seeds (configuration of centers) and each of the remaining BUs
is assigned to its closest center. The maximum number of updates of the reference set was set to
10 (equal to the number of iterations used in SSMTDP), the maximum number of tabu solutions
was set to 55, the threshold value was set to 0.05, and the maximum number of efficient solutions
included in the reference set was set to 100. The neighborhoods are the same that those defined
in the NSGA-II method (following section). For each pair of solutions, four new trial solutions are
generated.

At the end, the efficient solutions reported by SSPMO are filtered using only those feasible
solutions that are efficient with respect to the dispersion measure and the maximum deviation with
respect to the average number of customers.

Comparing SSPMO and SSMTDP

In this part of the computational work, the SSMTDP procedure is compared with SSPMO. Both
SS-based procedures stop by convergence or by iteration limit (10 updates of the reference set).
Figures 4 and 5 show a comparison between the Pareto fronts obtained by SSPMO and SSMTDP,
respectively. These results correspond to 10 instances with 500 BUs and 20 territories. The
maximum number of allowed movements in SSMTDP was set to 800. Graphically, SSMTDP
outperforms SSPMO over all instances tested.

There are different performance measures used to evaluate the quality of those approximated
efficient solutions obtained by approximation procedures in multiobjective optimization. In the
literature of multiobjective optimization, the most used performance measures are the following:

1. Number of points: It is an important measure because efficient frontiers that provide more
alternatives to the decision maker are preferred than those frontiers with few efficient points.

2. k-distance: This density-estimation technique used by Zitzler, Laumanns, and Thiele [22] in
connection with the computational testing of SPEA2 is based on the kth-nearest neighbor
method of Silverman [20]. This metric is simply the distance to the kth-nearest efficient point.
So, the smaller the k-distance the better in terms of the frontier density. We use k=4 and
calculate both the mean and the max of kth-nearest distance values.

3. Size of space covered (SSC): This metric was suggested by Zitzler and Thiele [23]. This
measure computes the volume of the dominated points. Hence, the larger the value of SSC
the better.

4. C(A,B): It is known as the coverage of two sets measure [23]. This measure represents the
proportion of points in the estimated efficient B that are dominated by the efficient points in
the estimated frontier A.
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Figure 4: Comparison of Pareto fronts, SSPMO vs. SSMTDP. Instances from (500,20), part 1.
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Figure 5: Comparison of Pareto fronts, SSPMO vs. SSMTDP. Instances from (500,20), part 2.
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Tables 1, 2, 3, and 4 show a summary of these metrics, these were computed taking into account
all instances from set (500, 20). Clearly, SSMTDP outperforms SSPMO in all metrics for all the
instances, specially when considering convergence, where the SSC metric is around double the
obtained by SSPMO.

Table 1: Summary of minimum values in the set (500, 20).
Procedure No. Points k-distance(mean) k-distance(max) SSC
SSPMO 7.00 0.16 0.30 0.38

SSMTDP 11.00 0.09 0.22 0.93

Table 2: Summary of average values in the set (500, 20).
Procedure No. Points k-distance(mean) k-distance(max) SSC
SSPMO 10.82 0.31 0.56 0.42

SSMTDP 14.36 0.16 0.44 0.97

Table 3: Summary of maximum values in the set (500, 20).
Procedure No. Points k-distance(mean) k-distance(max) SSC
SSPMO 17.00 0.58 0.81 0.54

SSMTDP 22.00 0.26 0.83 0.99

In addition, 10 instances with 1000 BUs and 50 territories were tested by applying both SSPMO
and SSMTDP using the same stopping criteria as in the previous cases, SSPMO spent more than
30 days without getting convergence for the first instance tested. Then, the stopping criteria was
changed and the iteration limit was set to 2. SSMTDP converged and reported efficient solutions
for all instances tested. The maximum number of moves for these cases was set to 2000. Due that
the tremendous computational effort required by the SSPMO, the procedure was not applied over
all instances with 1000 BUs and 50 territories. Figure 6 shows the performance of SSPMO and
SSMTDP. The approximated front reported by SSPMO corresponds to those solutions that belong
to the reference set after iteration 2.

5.3 Comparison with Existing Evolutionary Algorithm

Description of NSGA-II

The Nondominated Sorting Genetic Algorithm (NSGA-II) is an evolutionary algorithm that has
been successfully applied to many multiobjective combinatorial optimization problems in the liter-
ature [5]. It has been empirically shown this method finds significantly better spread of solutions
and better convergence near the true Pareto-optimal front compared to Pareto-archived evolution-
ary strategy (PAES) [10] and Strength Pareto EA (SPEA). The general description of NSGA-II is
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Table 4: Coverage of two sets C(A,B) in the set (500, 20).
C(A,B) SSPMO SSMTDP
SSPMO 0.00 0.00

SSMTDP 0.90 0.00
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Figure 6: Comparison of Pareto fronts, SSPMO vs. SSMTDP. Instance with 1000 BUs and 50
territories.

given in Deb et al. [6].
In this work, NSGA-II was adapted to the problem. Four objective functions are minimized:

i) dispersion (5), ii) maximum deviation with respect to the average number of customers (6), iii)
total infeasibility with respect to the balancing constraints of sales volume (7), and iv) total number
of unconnected nodes. The main features present in this adaptation of the NSGA-II procedure are
the following. The generation of solutions consists of randomly selecting p seeds from the set of
nodes (V ) and assigning the remaining n − p nodes to the closest center. NSGA-II uses different
nondomination levels (ranks). In a few words, for each solution h two entities are calculated: 1)
domination count dh which corresponds to the number of solutions that dominate the solution h,
and 2) a set of solutions Dh that solution h dominates. All solutions in the first nondominated
front have their domination count as zero. Then, for each solution h with dh = 0, each member
(g) from Sp is visited, and its domination count is reduced by one. In doing so, if for any member
g the domination count becomes zero, it is put in a separate list Q̄. These members belong to the
second front. Now, the above procedure is continued with each member of Q̄ and the third front is
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identified. The process continues until all fronts are identified.
In the first iteration, the population is sorted based on the nondomination. Then, the fitness

function is defined according to the nondomination level. At first, the binary tournament selection
is used to create an offspring population Q̄0 of size N . Since elitism is introduced by comparing the
current population with previously found best nondominated solutions, the procedure is different
after the initial generation. In the following iterations, the selection is based on the crowded
operator which combines the rank (nondomination level) and crowded distance. For more details
see [6].

For each pair of solutions two new solutions are obtained. Each new solution copies each center
from the father or from the mother with the same probability and the assignment process is equal
to that of the initial generation. For each generated solution, a random integer number is generated
in the range [0,4]. If the random number is equal to 0, then the mutation process is not applied.
Otherwise, the mutation process takes place by using the kind of move determined by the generated
number. The different neighborhoods are defined by the following moves:

1. Select a center and change it for another randomly selected node. Do a re-assignment of
nodes using the new configuration of centers.

2. Select a node in the border of a territory and assign this node to the adjacent territory
(keeping connectivity).

3. Select a territory r and assign a randomly selected node from an adjacent territory to r.

4. Interchange two nodes between a pair of territories by holding connectivity.

When the convergence criterion is reached, the best nondominated solutions are filtered to
obtain those feasible solutions that are efficient with respect to the dispersion measure and the
maximum deviation with respect to the average number of customers.

Comparing NSGA-II, SSMTDP, and SSPMO

NSGA-II was applied over the two instance sets used in the previous section. The number of
generations and the population size was set to 500, respectively. On each generation 250 solutions
were combined. NSGA-II reported efficient solutions only for a single instance with 500 BUs and
20 territories. For the other 19 instances tested NSGA-II did not obtain feasible solutions and
the SSMTDP procedure reported efficient solutions over all tested instances. It was observed
how NSGA-II failed on appropriately handling the connectivity constraints. Most of the solutions
generated by NSGA-II are highly infeasible with respect to the connectivity constraints, even though
the NSGA-II considers this requirement as objective to be minimized. The selection mechanism
and the combining processes are not enough to efficiently handling these very difficult constraints.
In contrast, the proposed SSMTDP procedure is specifically designed to take the connectivity into
account over all its components. Thus, for this problem, exploiting problem structure definitely
pays off. Figure 7 shows the comparison among the SSMTDP, SSPMO, and NSGA-II procedures.
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Figure 7: Comparison of Pareto fronts for an instance with 500 BUs and 20 territories, SSMTDP,
SSPMO, and NSGA-II.

Note that a few efficient solutions from SSPMO are dominated by the efficient set reported by
NSGA-II. In addition, both SSPMO and SSMTDP reported efficient points in a region that is not
covered by the Pareto front obtained by NSGA-II.

Table 5: Summary of metrics for an instance from (500, 20).
Procedure No. Points k-distance(mean) k-distance(max) SSC
SSPMO 13.00 0.20 0.62 0.38
NSGA-II 4.00 - - 0.43
SSMTDP 13.00 0.13 0.32 0.97

Table 5 shows again the superiority of SSMTDP that clearly outperforms both NSGA-II and
SSPMO, demonstrating the efficiency of the proposed method. In the k-distance (mean and max),
the corresponding values for NSGA-II could not be computed given that we used k = 4. The
coverage of two sets measure C(A,B) is shown in Table 6. Note that the points obtained by NSGA-
II dominated some points obtained by SSPMO. Table 6 shows that NSGA-II dominates 15% of the
points reported by SSPMO. For this metric, SSMTDP dominates the frontiers reported by NSGA-II
and SSPMO (see Figure 7). Moreover, NSGA-II reported feasible solutions just for a single instance
out of 20 instances tested, while SSMTDP reported feasible solutions for all instances tested. In
summary, SSMTDP outperforms both the NSGA-II and SSPMO procedures.
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Table 6: Coverage of two sets C(A,B) for an instance from (500, 20).
C(A,B) SSPMO NSGA-II SSMTDP
SSPMO 0.00 0.00 0.00
NSGA-II 0.15 0.00 0.00
SSMTDP 1.00 1.00 0.00

6 Conclusions and Future Work

In this paper we proposed a novel heuristic procedure called SSMTDP which is based on Scat-
ter Search. Each component of the SSMTDP has been intelligently designed attempting to take
advantage of the problem structure. For instance, a combination method that consists of a hy-
brid approach was implemented. It was shown to obtain quality and diversification of solutions.
This procedure can be used in other applications such as clustering. Empirical evaluation of this
method was carried out over two large instance sets, with 500 BUs and 1000 BUs. The solutions
generated by SSMTDP were compared against those solutions obtained by a well-known multiob-
jective scatter search method called SSPMO. SSMTDP reported better solutions than SSPMO in
all instances tested. In addition, the popular evolutionary algorithm NSGA-II was adapted to the
problem. Empirical work revealed the proposed SSMTDP significantly outperforms NSGA-II on
all instances tested. It was observed NSGA-II struggled on trying to generate feasible solutions on
this highly constrained problem.

The SSMTDP have been tested in the bi-objective version of the commercial territory design
problem. However, the problem can be addressed by optimizing one more objective such as the
balancing with respect to the sales volume. In the other hand, due that the territory design problem
takes place in a previous stage of the product routing, the routing cost is another requirement that
can be incorporated to the current models. This requirement could be treated as objective or as
a constraint. The recently developed procedures can be used as a basis for deriving new solution
techniques to tackled this new problems.
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