
A Scatter Search Based Hyper-Heuristic for Sequencing

a Mixed-Model Assembly Line

Jaime Cano-Belmán

Graduate Program in Systems Engineering

Universidad Autónoma de Nuevo León, Mexico

jaime@yalma.fime.uanl.mx
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Abstract

In this paper a mixed-model assembly-line sequencing problem with the goal of minimizing

work overload is addressed. We consider time windows in work stations of the assembly line (closed

stations). Different versions of a product to be assembled in the line (e.g. automotive industry),

which require different processing time according to the work required in each work station are

considered. In a paced assembly line, products are feeded in the line at a predetermined constant

rate (cycle time). Then, if many products with processing time greater than cycle time are feeded

consecutively, work overload can be produced when the worker have insufficient time to finish its

job. A scatter search based hyper-heuristic is proposed for this NP-hard problem. The procedure

implies the use of priority rules. Computational results that show the efficiency of the hyper-

heuristic are presented.

Keywords: Just-in-Time scheduling; assembly line; priority rules; work overload; scatter search;

hyper-heuristic



1 Introduction

Assembly lines are commonly used in many environments such as the automotive industry, for

instance. Two important decisions for managing mixed-model assembly lines are to spread out

work in stations (balancing) and to determine the sequence for introducing cars into the assembly

line (sequencing). When the mid-term decision of balancing has been taken, a sequencing decision

must be considered. Depending on the manufacturing environment it may be desirable to minimize

or maximize some parameters or characteristics of the line [2]. One of the two main criteria [23, 10]

for sequencing mixed models on assembly lines aims at leveling the load on stations. The second

one searches for the leveling part usage. The problem addressed in this paper is closely related

to the first objective. In particular we are interested in the reduction of the work exceeding the

work station capacity which may be called differently according to the system characteristics and

the enterprize management philosophy: work overload [37, 38], remaining work [6], utility work

[4, 33, 17], or conveyor stoppage [35, 13].

The problem addressed in this paper considers the objective of minimizing work overload.

Since processing time for a product in a station can be greater than cycle time, there is a maximum

quantity of those products that can be consecutively introduced in the line without causing a delay

in the finishing of jobs. All those jobs with high and low work content must be under control for

avoiding excessive work load and idle time. Stations are confined by upstream and downstream

limits. That implies that products are mounted on an assembly line that moves at constant speed

and workers can do their job on products only when they are inside their station. Products get in

the station at constant time intervals. Work overload occurs when work on a product can not be

finished before it leaves the station.

Initial work based on this criterion was carried out by Yano and Rachamadugu [38] and Bolat

and Yano [8]. Exact methods have been proposed (Xiaobo and Ohno [35]) to minimize the total

conveyor stoppage time for instances with 16 total products. Bolat [7] minimizes the total cost of

production for 100-job and 10-station problems.

Nevertheless, due to the complexity of the problem, heuristic approaches are more common than

exact methods to minimize work overload and other sequencing objectives. Some of these heuristics

consider not only the minimization of work overload [37, 38, 8, 9, 4], but multiple objectives [39, 21,

15]. Also, meta-heuristics ([35] minimize work overload, or [30] minimize conveyor stoppage time),

multi-objective meta-heuristics ([17] minimize utility work, keep a constant rate of part usage and

minimizing setup cost with genetic algorithms; [19] keep a constant rate of part usage, smooth

production load and minimize setup times with simulated annealing; [31] minimize utility work

cost, product rate variation cost and setup cost with a memetic algorithm), hybrid multi objective

heuristics ([25] minimize utility work, production rate variation and setup cost), and beam search

([16] part-usage variation and load leveling) have been developed.
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Lately researchers have rescued a heuristic concept originated during the 60’s, evolving heuris-

tics. Nowadays, the concept is better know as hyper-heuristics. This kind of heuristics is an

effort to get more general framework optimization systems [34] which can lead to obtain good

enough - soon enough - cheap enough solutions to a problem, instead of designing a height-specific,

knowledge-based meta-heuristic [11].

Some problems in which the hyper-heuristics performance has been tested are the timetabling

and rostering problems [12] or the bin-packing problem [26]. As it normally occurs in scheduling

problems, many rules or characteristics of the problem may influence in the procedure for solving it.

The problem addressed in this paper can also consider different surrogated rules such as idle time,

bottleneck station, product demand, or worker displacement. Thus, considering a set of problem-

related priority rules, and looking for a whole search algorithm, a hyper-heuristic is proposed to

construct the mixed-model assembly line sequence (MMALS). The objective is to minimize the work

overload. Such hyper-heuristic is developed inside of a well known meta-heuristic: Scatter Search

(SS). SS is a population-based meta-heuristic [22] which has been applied successfully to many

combinatorial problems such as clustering [28], p-median [14], and scheduling [36], for instance.

This paper is organized as follows. In Section 2 the sequencing problem studied in this paper is

described and a formulation is presented. Section 3 presents some of the more relevant and recent

works related to our problem and approach. The scatter search-based hyper-heuristic and its

elements, including the use or priority rules related to the problem are fully described in Section 4.

The use of priority rules related to the problem in the hyper-heuristic environment is also described.

An empirical evaluation of the proposed solution approach is given in section Section 5. Conclusions

are presented in Section 6.

2 Problem Description

In pure continuous production systems, the issue of programming normally focuses on the allocation

of operations to workplaces, the establishment of the route, and the balancing of the line. But, if

several products with small variations are assembled in a line it is also necessary to establish the

sequence of these products. This happens for example in a final automobile assembly line.

In pull production management systems, specifically, within the framework of the philosophy

of just-in-time production, the sequence of operations becomes the key aspect of operations pro-

gramming. This kind of problem can be characterized as a permutation problem with objectives

represented by some efficiency measure. A representative productive system is an assembly line.

Two main activities in the efficient management of an assembly lines are the balancing and the

sequencing. Thus, once the medium to long term decision of balancing has been implemented, and

the production mix is known, the next step is to establish a sequence for introducing units in the

line according to some criteria.
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In this paper we consider that there are products requiring processing times greater than the

cycle time. This is due to the fact that the mixed-product line balancing is done with the condition

that the operation time of each process is not greater than the cycle time. Cycle time is the

elapsed time between the entry of two consecutive products to the line (or any station). If products

with processing time greater than cycle time are introduced in the line successively, a delay in the

completion of one of these products can be produced in some station of the line. There will be

excessive work load in the line. This excessive work in the stations can be found in the literature as

overload [37, 38]), remaining work [6], or utility work [4, 33, 17]. When the management philosophy

of the company is comited to complete the work within the stations boundaries without receiving

extra help, the term line stoppage is used (Xiaobo and Ohno [35]; Celano et al. [13]), as the

workers have an obligation to halt the line in order to complete work on products inside the station

boundaries. Throughout this paper the term work overload is used.

2.1 Operative Characteristics and Assumptions

The following are the characteristics of the production system and assumptions of the problem

addressed in this paper. General surveys or different versions of the problem can be found, for

example, in Bard, Dar-El, and Shtub [2] or Boysen, Fliedner, and Scholl [10]. Normally, the se-

quencing problem appears in product-oriented systems. Such systems converge into a final assembly

line.

The needed operations to assembly a product are done sequentially. Different products are

produced (product i = 1, . . . , I) and all of them follow the same route in the final assembly line.

There exist a great variety of product components, sources and services in the stations. Under

a just-in-time environment, the variety of product components creates the need of determining a

product sequence. The assembly line has been previously balanced. The lay-out of the line, the

number of stations (K) and their length (Lk) are fixed (k = 1, ...,K).

For the period considered, the product demand ni for each product i is known. The total of

products is T =
∑I

i=1 ni. The expected demands have been considered in the balancing phase.

The assembly line balancing is determined on the basis of the expected mix so that, on average,

the expected work load in each station can be completed within the station boundaries. All the

limitations of the line and of the strange processes have been previously considered during the

production program elaboration.

The system production rate is established by both the conveyor speed and the launching fre-

quency, assumed known. Both are fixed, then a paced assembly line is considered. Products on

the assembly line are equidistant from each other. The time between two consecutive launchings is

called cycle time (c), and it has been determined during the balancing phase. There are processing

times pij for each product i in each station k. Processing times are deterministic and include the
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setup times.

The stations considered in this problem are closed. In this kind of stations, the jobs on products

can only be done within the station boundaries due to some tool or equipment restriction. The

station length Lk is the maximum available time to do a job on a product in station k. There are

no buffers between stations. A product is maintained in a station k at least c time units (Lk ≥ c).

It is assumed that processing time pik does not exceed the available time Lk in station k.

Figure 1: Assembly line diagram.

Figure 1 depicts three consecutive closed stations with length Lk. Two workers do the job on

the product simultaneously. If the available time is not enough to finish the product before it

leaves the station, utility workers assist in order to finish the job inside the station boundaries. It

is assumed that there are enough utility workers. Workers do the job as soon as possible. The time

a worker needs to reach a new product is negligible.

2.2 Work Overload

Yano and Rachamadugu [38] proposed a general formulation for measuring work overload. Work

overload is measured in time units and the time unit is the cycle time c = 1. Authors define st

as the starting time of the job on product in position t of the sequence (t = 1, . . . , T ), and ft the

finishing time of the job in position t. If only one stations is considered st = max(t− 1, ft−1)) and

ft = min(st + pt, t − 1 + L), where pt is the processing time of the product in position t of the

sequence. Without loss of generality s1 = 0. Thus, given a sequence π of T elements and considering

one station, the work overload wt obtained in position t of the sequence is wt = [st+pt−(t−1+L)]+

where [x]+ = max(0, x). The total work overload is w(π) =
∑T

t=1 wt.
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2.3 Formulation

Under the above mentioned system characteristics and assumptions, formulations of the problem

can be found in Scholl, Klein, and Domschke [30]. The model considers all the distances can be

measured in time units, which can be assumed due to the paced conveyor. The model given in [30]

takes into account the conditional on the final position of the worker on stations, which must be

the origin of their station in position T + 1 of the sequence. We do not consider such condition on

our problem.

A feasible solution is a sequence containing the demanded ni units of product i. An optimal

solution minimizes the work overload produced in all the stations. A sequence can be described

by the binary variable xit which takes the value 1 if a product i is assigned in position t of the

sequence, 0 otherwise. Two auxiliary variables are included; skt to measure the position of the

worker in period t in station k, and wik to indicate the work overload produced in station k after

processing the unit in position t. It is assumed all the worker start the job on the first product at

the upstream station limit (sk1 = 0: k = 1, . . . ,K). Variables s and w can be computed as shown

in (1) and (2), respectively.

skt = max{min{sk,t−1 +
∑

i
pik · xi,t−1, Lk} − c, 0}

k = 1, . . . ,K; t = 2, ..., T (1)

wkt = max{skt +
∑

i
pik · xit − Lk, 0}

k = 1, . . . ,K; t = 1, ..., T (2)

Following Scholl, Klein, and Domschke [30] and Scholl [29], a simplification of the processing

time required to carry out the job on product in position t in station k can be represented by

ρkt =
∑I

i=1 pik · xit. Thus, the problem can be formulated as a mixed-integer programming model

as follows:

Minimize Z(x,w, s) =
K

∑

k=1

T
∑

t=1

wkt (3)

Subject to
I

∑

i=1

xit = 1 t = 1, . . . , T (4)

T
∑

t=1

xit = ni i = 1, . . . , I (5)

skt + ρkt − wkt − c ≤ sk,t+1 k = 1, . . . ,K; t = 1, . . . , T − 1 (6)

skt + ρkt − wkt ≤ Lk k = 1, . . . ,K; t = 1, . . . , T (7)

skt, wkt ≥ 0 k = 1, . . . ,K; t = 1, . . . , T (8)
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sk1 = 0 k = 1, . . . ,K (9)

xit ∈ {0, 1} k = 1, . . . ,K; t = 1, . . . , T (10)

The objective function (3) minimizes the total work overload. Constraints (4) ensure that only

one item is assigned in each position of the sequence. The satisfaction of the product demand is

guaranteed by (5). Constraints (6) ensures that in station k, a job can not be started until the

previous job has been finished. The condition that jobs are completed within the station limit is

met by (7). The nature of the decision variables is given in (8) and (10). The position of the

worker on the upstream station limit, in period 1 of the sequence is represented by (9). In this

model the starting times are related only to each station, without considering the finishing times

in the previous stations. The variable skt can also be considered as the lost time with respect

of the ideal instant in which a job could had been started in the next position. The problem is

NP-hard [38, 30, 21].

Let Π be the collection of permutations of T =
∑I

i=1 ni items from which ni are of kind i.

The problem, from the combinatorial optimization perspective, consists of finding a permutation

π = (π1, . . . , πT ) ∈ Π satisfying the specified workers displacement constraints (12), that minimizes

the associated work overload (11).

Minimize
π∈Π

w(π) =
∑K

k=1

∑T

t=1
wk,πt

(11)

Subject to π ∈ F = {π : sk,πt
+ pk,πt

− wk,πt
− c ≤ sk,πt+1

, sk,πt
+ pk,πt

−wk,πt
≤ Lk} (12)

The variables sk,πt
and wk,πt represent the worker position in station k when the job on product

in position πt of the permutation is started and the work overload produced in station k after

the job on product in position πt has been finished, respectively. Such variables can be computed

recursively with (13) and (14), assuming sk,π1
= 0: for k = 1, . . . ,K.

sk,πt
(π) = max{min{sk,πt−1

+ pk,πt−1
, Lk} − c, 0} k = 1, . . . ,K; t = 2, . . . , T (13)

wk,πt
(π) = max{sk,πt

+ pk,πt
− Lk, 0} k = 1, . . . ,K; t = 1, . . . , T (14)

2.4 Example

In order to illustrate the work overload problem, a single station example is shown. Four products

are considered: A, B, C, and D, with the following processing times (0.82, 0.94, 1.19, 1.15), and

demands (3,5,7,1) respectively. Station length L=1.2. Processing times and station length are

expressed in cycle time units (c = 1). Let us assume products are going to be introduced into the

assembly line in the following order: CCCADCCBCABABCBB.
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Figure 2: Worker movement diagram.

Without loss of generality, the initial worker position is assumed to be on the upstream limit

of the station. Figure 2 represents the movement of the worker during his/her job on the products

according to the sequence established above. Arrows represent the processing times, and dotted

lines represent the worker displacement from one finished product to the next product on the line.

Station length is limited by the downstream limit (dsl). The first job is done on a product kind C,

which requires 1.19 time units. When this job is finished, the worker walks upstream for reaching

product C in position 2 of the sequence. We assume this time is negligible because the velocity

of the worker is greater than the conveyor speed. Then, the worker starts the second job 0.19

units away from the upstream station limit (usl) and would finish it 0.19+1.19 (starting time +

processing time) units away from the usl. Nevertheless, the worker can not go beyond the dsl, and

0.18 units of work must be left unfinished (w1). When the worker reaches the dsl, he leaves his/her

job and walks upstream, and starts working on the product in position 3 of the sequence 0.20 units

away from the upstream limit. Again, the time allocated is not enough for finishing the job, and

0.19 units of work overload are produced (w2). The product in position 4 requires 0.84 time units,

and the work on it is finished when the worker is 0.20+0.84 units away from the usl. This time,

the job is completed. Products in positions 6, 7, and 9, also produce work overload (w3 = 0.16,

w4 = 0.19, w5 = 0.13). When the worker finishes the job on product of kind B in position 11,

she/he is 0.98 units away from the usl and goes back to reach the unit in position 12 (product A),

but the worker must wait 0.02 (o1) time units until the product get in the station. Recall a new

product get in a station each cycle time c = 1. The job on product A is started when it is on the

usl and finished 0.0 + 0.82 units away from usl. Thus, in position 12 of the sequence, the worker is

idle 1 - 0.82 time units (o2) while waiting product B in position 13 to get in the station. Similarly,

finishing product B in position 13 produces 0.06 units of idle time (o3). The total work overload

produced by the sequence is 0.85 cycle time units. The total idle time is 0.26 cycle time units.
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3 Related work

Several performance measure have been studied to manage efficiently mixed model assembly lines.

The earliest work dates back to Thomopoulos [32] who studies the sequencing problem by looking

for even flow of work along the line. Then, Monden [23] remark two main objectives to deal with

model sequencing on assembly lines: level the load, and keep a constant usage of parts. Other

classifications are given, for example, in [37] and [10]. A mathematical framework is given by Bard,

Dar-El, and Shtub [2] for six variations of the sequencing problem on mixed model assembly lines.

Work load related sequencing problems have been solved optimally. Xiaobo and Ohno [35] pro-

posed two algorithms to minimize total conveyor stoppage time: branch-and-bound and simulated

annealing methods. The first can find optimal solutions for instances with less than 16 products.

Bolat [7] minimizes the total cost of production satisfying human resource capacity limits at a sta-

tions. Optimal solutions for 100-jobs and 10-stations problems, with a proposed branch-and-bound

procedure, which employs some dominance criteria, are found.

An exact algorithm is proposed by Bolat [6] to minimize die total amount of remaining work.

The algorithm can solve 20-job 8-station instances, but requires a prohibitive quantity of compu-

tational effort and memory allocation.

A formulation of the mixed-model sequencing problem to minimize work overload is given by

Scholl, Klein, and Domschke [30]. In general, the system characteristics described by the authors

are the same as the ones described for the problem studied here. Authors consider an additional

condition: the state of the initial and final state (after producing all units) of the system must be

the same (Skt = Sk,T+1 = 0). A truncated branch-and-bound procedure, with a deep-first-search

strategy is used. The branching sub-problems order is controlled by different priority rules. Lower

bounds are obtained by relaxing the problem to a transportation problem. Authors argue that

due to the relatively weak bounds obtained is not appropriate to apply more elaborate bounds

arguments based on the TSP-relaxation considered. An informed tabu search with pattern based

vocabulary building strategies to minimize the work overload is also proposed (the word informed

is used to allude tabu search utilizes the information coded within a vocabulary building strategy).

Since the computational effort and memory requirements to solve real-size problems with exact

methods is extremely large, heuristic and meta-heuristic algorithms have been proposed to solve

work overload sequencing problems.

To minimize work overload, a prospective heuristic is proposed in Yano and Bolat [37]. Yano

and Rachamadugu [38] show a mathematical formulation for the sequencing problem, with the aim

of minimizing the work overload. Two products are considered: basic and optional, with processing

time lower and larger than cycle time, respectively. The proposed algorithm for K-station models

is based on an single-station exact algorithm. The greedy K-station algorithm uses a a lower bound

of the objective function to sequentially determine which job should be placed in the next position.
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Bolat and Yano [8] proposed various procedures. One of them is based on the use of space rules.

Two more greedy procedures are described. Using dynamic programming, the best conditions of

each heuristic are evaluated. A simple hyper-heuristic is proposed in Bautista and Cano [3] to

minimize the work overload in a single station with optional products. An extension of existing

procedures is proposed for multi-product and multi-station problems.

Bolat [5] approaches the problem using minimum jobs sets. Optimal and heuristic algorithms

are proposed. Bolat [6] gives an stochastic algorithm that combines simulated annealing and specific

knowledge methods to minimize utility work.

3.1 Related Criteria

Okamura y Yamashina [24] proposed a heuristic algorithms to minimize the risk of stopping the

conveyor, that is, minimizing the maximum distance a worker would need to proceed downstream

from his/her work station until all the work has been completed. In Bolat and Yano [8] the aim is

to minimize the total units with option above the k allowed units in sequence stretches of size l.

To minimize the total conveyor stoppage time, Xiaobo and Ohno [35] propose branch-and-bound

and a simulated annealing procedures to minimize conveyor stoppage time.

3.2 Multi-Objective Approaches

Approaches considering the work overload criteria together with other mixed-model assembly-lines

related criteria can be found in the literature. Considering open and closed stations, Sharker

and Pan [27] minimize total utility time cost and idle time cost. Tsai (1995) [33] considers the

minimization of both: risk of conveyor stoppage (minimize maximum displacement), and utility

work. He derives an O(log T ) optimal algorithm for both objectives for a single station and two

kinds of jobs (basic and optional).

Aigbedo and Monden [1] propose a parametric procedure that takes into account four objectives

simultaneously: smoothing of parts utilization, smoothing of product load, product rate variation

smoothing, and sub-assembly load variation smoothing. Erel, Gocgunz, and Sabuncuoğlu [16] de-

veloped six beam search algorithms to level both part usage and workload simultaneously. The

procedure is an adaptation of the branch-and-bound method in which a limited number of solu-

tions paths are explored in parallel. Authors explain that the method has the ability to use the

optimizing properties of the branch-and-bound method with limited number beams. Nevertheless,

if the number of beams gets large, computational requirements increase significantly.

Hyun, Kim, and Kim [17] give a mathematical formulation with three objectives: minimizing

total utility work, keeping a constant rate of part usage, and minimizing total setup cost. A genetic

algorithm that offers near-Pareto or Pareto optimal solutions is proposed. A genetic evaluation

and selection mechanism, called Pareto stratum-niche cubicle, is also given.

9



Using simulated annealing in Kim and Cho [19], near optimal solutions are obtained with three

objectives: to keep a constant rate of usage of all parts used by the line, to maintain a smooth

production load, and to minimize the sequence-dependent setup times.

Three objective are studied in Rahimi-Vahed and Mirzaei [25]: total utility work, total produc-

tion rate, and total setup cost. An hybrid multi-objective algorithms based on shuffled frog-leaping

algorithms and bacteria optimization is proposed.

3.3 Two-Phase Procedures

Bolat [4] analyzes the trim line sequencing and a paint station. Two kind of jobs are considered.

The procedure proceeds in two phases. First, a look-ahead procedure is used to minimize the utility

work on the trim line. In a second phase, trim and paint stations are treated together incorporating

the setup cost of changing a job color in the paint shop.

The two main goals of keeping a constant rate of usage of parts and smoothing the workload

at work stations to avoid line stoppages are studied in Zeramdini, Aigbedo, and Monden [39]. In a

first of two phases, the rate of part usage is solved with an extension (look-ahead version) of the

goal chasing method given by Monden [23]. In the second phase, spacing constraints are used to

deal with the workload. The same objectives are considered in Korkmazel and Meral [20]. Existing

approaches are used to minimize the sum of deviations. The best approaches are extended to the

second objective. Kotani, Ito, and Ohno (2004) [21] give a formulation for minimizing the total

line stoppage time with auxiliary workers. A second goal of keeping a constant rate of part usage

is included in the model as constraints. A two-phase approximation algorithm is proposed.

Korkmazel and Meral [20] study the level of loads in stations and keep a constant part usage. In

a first phase, well-known approaches for constant part usage are analyzed. In the second phase the

best approaches are joined with the load objective and the problem is formulated as an assignment

problem which obtain optimal solutions for small-sized problems. Taking into account the problem

characteristics and assumptions described above and the related works (Bolat and Yano [8]; Scholl,

Klein, and Domschke [30]; Yano and Rachamadugu [38]) the following hyper-heuristics is proposed

to deal with the reduction of the work overload on assembly lines.

4 Proposed Heuristic

In this section our proposed hyper-heuristic (HH) is described. The goal of a hyper-heuristic is to

raise the level of generality at which an optimization system can operate. In the literature, a HH

is described as a heuristic that chooses other heuristics to solve a problem [12]. In the proposed

procedure, the Scatter Search meta-heuristic is used as the high level meta-heuristic. In the lower

level of the procedure, priority rules are used. These priority rules are used to build solutions using

a constructive procedure which we call PCCR.
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Figure 3: Basic Scatter Search scheme.

Scatter Search (SS) is a population-based metaheuristic procedure consisting mainly of five

methods: a Diversification Generation Method (DGM), an Improvement Method (IM), a Reference

Set Update Method (RSU), a Combination Method (CM), and a Subset Generation Method (SGM).

The details of some of these method depend on the specific characteristics of the problem. Normally,

a scatter search procedure (see Figure 3) starts with the DGM. This method creates diverse solutions

in the space search. This solutions are stored in the set pool. The next step is to apply the IM to

all the solutions in pool. Then the RSU method selects good solutions from the set pool and store

them in a Reference Set (RefSet). Generally, the RefSet is divided in a subset of solutions with

best objective values and a subset with diverse solutions. The following step consists on selecting

subsets of solutions in the RefSet (SGM) to combine them with the SCM. The new solutions

obtained with the combination method can also be improved with the IM. The RefSet is updated

again with the best solutions (quality and diverse). This methods interact iteratively until no new

(better) solution is found. In the proposed HH we aim to keep the advantages of the combination

strategies used in SS to produce new elements from elite elements in the RefSet.

4.1 PCCR

PCCR is a greedy constructive procedure based on the combination of priority rules. Priority rules

are commonly used in solving scheduling problems in combination with problem knowledge. In this
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procedure PCCR (C, ni)

Input : ni = demand for product i; a rule chain C =

r1, r2, . . . , rT .

Output : an equivalent solution S = s1, s2, . . . , sT .

0 S = ∅, di = ni;

1 for (t = 1 to T ) do

2 st ← i∗ ∈ rt;

3 Update di∗ ;

4 end for

5 return(S);

end PCCR.

Figure 4: PCCR procedure

paper |R|=20 problem-related priority rules are used. The work overload value for a priority rule

chain (C) is obtained by applying the PCCR in Figure 4.

Figure 4 shows the PCCR procedure. The inputs of the PCCR are a priority rule chain C =

{r1, r2, . . . , rT }, where rt is the rule in position t of the chain, and the original product demands ni.

The rule in position t of C determines from a set of candidates, the product i∗ that best satisfies

the rule r (see also Figure 5). Product i is a candidate if ni > 0. This product i∗ is assigned in

position t of the product sequence, and its pending demand is updated. Having a product sequence,

its work overload value can be computed.

Figure 5: Constructive procedure by rules combination.

If during the PCCR procedure, one or more products have the best value for the rule in period

t of the sequence, the tie is eliminated taking only the products in the tie and applying the rules in

lexicographic order, until the tie disappears. Different criteria are considered in the priority rules

used in the procedure. In the Appendix, the 20 priority rules used in this work are stated. Rules
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1-4 decide which product is going to be assigned using the processing times data. Rules 5 and 6

select the product with the largest and smallest pending demand, respectively. Rules 7,8,14 and

15 differentiate the products making a relation of pending production and the difference between

the processing time and cycle time. The displacement of the workers in the stations is used for

selecting the product in rules 9 and 10. Bottleneck station processing times are considered in rules

11 and 12. Rules 16 and 18 use the work overload caused by the assignment of a product. Rules

17 and 19 use idle time. Rule 13 select a product using the measurement of the regularization of

the load along the sequence. Similarly, rule 20 selects according the regularization of idle time.

4.2 Hyper-Heuristic

Similarly to SS in Laguna and Mart́ı [22], our proposed HH is a population-based algorithm that

creates new elements combining the existing ones. A key element in the SS methodology is the

RefSet, which stores good solutions and diverse solutions along the search process. Those solutions

are combined in order to create new solutions. Basically, a SS implementation requires a generator

of diverse solutions, a method to improve solutions, a method to update the elements in the RefSet,

a combination method, and a method to select the solutions to be combined.

Figure 6: Reference set with 3 tiers.

The proposed HH also operates on a reference set. But, instead of a reference set of solutions,

we use a reference set of rule chains C. Combining those chains in the reference set, new chains

are created. Normally, a RefSet is a collection of both b1 high quality solutions and b2 diverse
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solutions that are used to generate new ones using a combination method [22]. The size of the

reference set is b = b1 + b2. See Figure 6.

Figure 7: HH1.

In HH, we use two different chain reference sets, which we henceforth call RS1 and RS2. When

any differentiation of a reference set is needed, it is just called RefSet. RS1 uses two tiers: a

dynamic tier (RSd) and a static tier (RSs). The size of RSd and RSs is b1 = |R| and b3 = |R|,

respectively. RSd stores chains that produced good quality product sequences. RSd is initialized

with rules r ∈ R randomly. The tier RSs is filled at the beginning of the procedure with chains

that only contain one priority rule. This tier is called static, because it is not modified during the

search process. Thus, in RSs the chain 1 contains only the rule 1, the chain 2 contains only the rule

2, and so on. The reason to use a static tier is to ensure that all the priority rules are considered

in the combination phase along the entire search.

RS2 uses a diverse tier (RSD) as well. RSD contains b2 = |R| diverse solutions. This tier is

also initialized randomly. In HH, a normal diversification generator method is not used. As it

has been mentioned, the initial reference set is filled randomly (RSd and RSD) and systematically

(RSs). Since RS2 include diverse elements, an explicit diversification phase is not needed. Both

schemes are shown in Figure 7 and Figure 8, respectively. In Figure 7, the RefSef contains a good

quality elements tier, and a static tier, then the process requires an explicit Diversification phase.

In Figure 8, the RefSet has a third tier for diverse elements, and the Diversification phase is not

required.

Figure 9 shows a pseudo-code of the proposed procedure when RS1 is used. The procedure starts
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Figure 8: HH2.

computing information needed along the search. In step 1, RSd is randomly initialized and RSs

is systematically initialized. During step 2, the equivalent product sequences of RSd are obtained

and its work overload value is computed. A frequency matrix Fr is updated in step 3. Fr stores

the number of times a rule r has been in position t of a chain. In step 6, the chains in the RefSet

are combined with the combination method. The Fr matrix is a key element in the combination

method. All the combined chains are introduced in the set Pool. In step 7, the corresponding

sequences and work overload values of the chains in Pool are computed. Step 8 is optional. If

high quality solutions are preferred, the improvement method is applied on the sequences in Pool.

Depending on the CPU time available, local search can be applied at different grades of depth. In

step 9, the RefSet is regenerated with our reference set update method. The worst b1/2 chains

are substituted with the best b1/2 chains in Pool. Since steps 6-9 are intensification steps, in step

10, the RefSet state is verified. If RefSet has not been improved with new chains (step 10), it is

diversified in step 11. Step 13 updates the Fr matrix and stop criteria. Finally, when the stopping

criteria are reached (maximum time or maximum number of diversifications without improvement),

the procedure leaves the while loop and apply local search on sequences in the last RefSet obtained

(step 15). Finally, the procedure returns the best solution found Sbest.

The general pseudo-code for HH with RS2, is shown in Figure 10. The differences with the

previous procedure are the following: the RefSet contains a diverse tier as well, which is initialized

randomly. Because of this, in step 10, the diversification process is not required because it is implicit

in the combination method. Thus, in step 10, the stopping criteria are just evaluated and updated.
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procedure HH1 (R, Stop criteria, Improve kind)

Input : R = set of priority rules considered; Stop criteria =

criteria to stop search process; Improve kind = depth of

improvement applied on pool sequences.

Output : best solution found Sbest.

0 Setup priority rules info; stop = False; Fr = ∅;

RefSet = ∅; Pool = ∅;

1 Initialize RefSet;

2 Get sequences and values for chains in RefSet;

3 Sbest = best sequence in RefSet;

4 Update frequency matrix Fr;

5 while (!stop) do

6 Combine chains in RefSet;

7 Get Pool chains, sequences and values;

8 Improve sequences in Pool acording to Improve kind;

9 Regenerate RefSet;

10 Update Sbest = best sequence in RefSet, if necessary;

11 if (RefSet state is not improved) do

12 Diversify RefSet;

13 end if

14 Update Fr;

15 if (Stop criteria) do stop = True;

16 end while

17 Find local optimum for sequences in RSd;

18 Update Sbest = best sequence in RefSet;

19 return(Sbest);

end HH1.

Figure 9: Hyper-heuristic scheme 1.
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procedure HH2 (R, Stop criteria, Improve kind)

Input : R = set of priority rules considered; Stop criteria =

criteria to stop search process; Improve kind = depth of

improvement applied on pool sequences.

Output : best solution found Sbest.

0 Setup priority rules info; Fr = ∅; RefSet = ∅; Pool = ∅;

1 Initialize RefSet;

2 Get sequences and values for chains in RefSet;

3 Sbest = best sequence in RefSet;

4 Update frequency matrix Fr;

5 while (!stop) do

6 Combine chains in RefSet;

7 Get Pool chains and sequences;

8 Improve sequences in Pool according to

Improve kind;

9 Regenerate RefSet;

10 Update Sbest = best sequence in RefSet, if necessary;

11 if (RefSet state is not improved ‖ Stop criteria) do

12 stop = TRUE;

13 end if

14 Update Fr;

15 end while

16 Find local optimum for sequences in RSd;

17 Update Sbest = best sequence in RefSet;

18 return(Sbest);

end HH2.

Figure 10: Hyper-heuristic scheme 2.
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In the following sections the components of the hyper-heuristic are described in detail.

4.3 Combination Method

This method combine chains with the purpose of creating new chains. For each pair of chains in

the RefSet a new combined chain is obtained. Thus, given two parent chains Cp = [r1
p, r

2
p, . . . , r

T
q ]

and Cq = [r1
q , r

2
q , . . . , r

T
q ] a new chain Ck = [r1

k, r
2
k, . . . , r

T
k ] is obtained according to (15). In other

words, the rule in the position t of the combined chain is determined according to the frequency

that the rule r has in the position t in the Fr(r, t) matrix.

Ct
k =



















Ct
p if Ct

p = Ct
q

Ct
p if Fr(C t

p, t) ≥ Fr(C t
q, t)

Ct
q otherwise

(15)

Fr(r, t) is a frequency matrix containing the number of times that a rule r has appeared in the

position t of the chains in the RSd. Since RSs do not change, it is not necessary consider it for

computing Fr. For example, let C t
p = 4, Ct

q = 2, Fr(4, t) = 5 and Fr(2, t) = 8, then in position t

of the new chain will be the rule 2, because Fr(2, t) > Fr(4, t).

The idea behind the combination method is that the RefSet contain an elite set of chains, and

that the extrapolation of the rules with more frequency in some positions of the chains of this set,

can guide the search to obtain better results.

The combined chains are stored in the Pool. When the Pool is fulled with the combined chains,

the PCCR is used in order to get the work overload value for each chain. The equivalent sequence

can then be improved with the improvement method described next.

4.4 Improvement Method

Usually, an improvement method is needed if good quality outcomes are desirable. Nevertheless,

a ßprocedure can be implemented without it. In HH both cases are considered. The improvement

method is not applied on the priority rules chains, but on their equivalent product sequences.

Given a chain C, its equivalent product sequence is obtained with the PCCR procedure. Such

product sequence can be represented by the permutation π = (π1, π2, . . . , πT ) of a total of T objects

from which ni objects are of kind i, thus, all solutions are guaranteed to be feasible. Given a solution

S representable by π, the neighborhood N(S) consist of all solutions reachable from S by moving

a segment of seg consecutive elements of S from its current position t in the sequence to a different

position tnext 6= t. Such a move is denoted by move seg(t, tnext). See Figure 11.

The segment size seg in HH is restricted to 1 ≤ seg ≤ 15. In instances with T ≤ 15, the

maximum value for seg is 8. Given T and a segment of size seg, all the possible moves are

|N(S)| = (T − seg)2. Every time a neighborhood is going to be explored, a segment size seg
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is selected randomly, having more possibility to chose those segment sizes that have previously

produced improvement in the local search.

Figure 11: Segment insertion.

In HH, improvement is applied on two specific points of the process: in the Pool sequences, and

in the final RefSet sequences. In Pool, there are a lot of sequences that can be improved, which

requires a relatively large amount of time if a local optimum is wanted. Thinking in saving time

in Pool sequences improvement, only one N(S) is evaluated. A work overload lower bound lbw

can be easily obtained with (16) and can be used to determine an improvement percentage with

respect to the original solution value before the improvement (i.e. 10%, 20%). In the other hand

we have b1 sequences in the final RefSet. Since b1 is much smaller than |Pool|, it could be worth

find a local optimum in such sequences.

lbw =
K

∑

k=1

[

I
∑

i=1

nipik − (c(T − 1) + Lk)

]+

(16)

4.5 Reference Set Update Method

In each iteration of the process, the RefSet is updated. Once all the combined chains and their

equivalent sequence have been obtained (and optionally, improved), the chains with better values

are considered for updating the RSd. In other words, the RSd is regenerated. The regeneration

process for RS1 is shown in Figure 12. Basically, the worst b1/2 chains in the RSd are substituted

by the best b1/2 chains in Pool.

When the RS2 is used, the RSD must be updated as well. The procedure is shown in Figure

13. Once the RSd has been updated in steps 1-8, chains in diverse tier RSD are deleted in step

9. Iteratively, for each chain in Pool the distance d(c,RSd,RSD) is computed. Such distance

measure is the well-known Hamming distance (Jain, Murty, and Flynn [18]). The chain c ∈ Pool

is compared with all the chains in RSd and with the current chains in RSD. In step 11, the chain

with the maximum distance is selected, and introduced in the RSD (step 13).

In the regeneration process, duplication of chains in the RefSet must be avoided. Then, all

the chains in the RefSet have different work overload values. When the regeneration process does
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procedure Regenerate I (RS, Pool)

Input : Pool = current Pool; RS = current RS.

Output : Regenerated RS.

0 Introduced= 0; Get Poolbest; Get RSdworst;

1 while (Introduced < b1/2) do

2 if (Poolbest /∈ RSd) do;

3 Substitute RSdworst by Poolbest;

4 Pool = Pool \ Poolbest;

5 Update Poolbest and RSdworst;

6 Introduced++;

7 end if

8 end while

9 return(Regenerated RS);

end Regenerate I.

Figure 12: Regeneration of RS1.

not produce improvements, the RefSet must be diversified. Diversification is done in two steps: 1)

creation of diversified chains, and 2) selection of those diversified chains which are the least similar

to each other.

4.6 Diversification Phase

The diversification process is applied only when the reference set RS1 is used. The diversification is

needed when the state of the RefSet has not been improved during the last NoImproveMaxCombs

iterations.

The pseudo-code of the diversification procedure is shown in Figure 14. In step 1, the diversifi-

cation process follows the same steps of the combination method. Nevertheless, the key difference

is that this time the criteria to select a rule r from two parent chains, is not to take the one with

more frequency in Fr but the one with less frequency. Given two parent chains Cp and Cq, one

diversified chain Ck is obtained.

Ct
k =



















Ct
p if Ct

p = Ct
q

Ct
p if Fr(C t

p, t) < Fr(C t
q, t)

Ct
q otherwise

(17)

The idea is to obtain chains containing rules with inferior frequency in the Fr, expecting to

guide the search to an unexplored space.
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procedure Regenerate II (RS, Pool)

Input : Pool = current Pool; RS = current RS.

Output : Regenerated RS.

0 Introduced = 0; Get Poolbest; Get RSdworst;

1 while (Introduced < b1/2) do

2 if(Poolbest /∈ RSd)do;

3 Substitute RSdworst by Poolbest;

4 Pool = Pool \ Poolbest;

5 Update Poolbest and RSdworst;

6 Introduced++;

7 end if

8 end while

9 Introduced = 0; RSD = ∅;

10 while (Introduced < b2) do

11 Compute d(c,RSd,RSD) for all c ∈ Pool;

12 RSD ← RSD∪c∗ = max{d(c,RSd,RSD)} : c ∈ Pool;

13 Introduced++;

14 end while

15 return(Regenerated RS);

end Regenerate II.

Figure 13: Regeneration of RS2.
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procedure Diversification (RS, Pool)

Input : RS = current RefSet; Pool = current Pool.

Output : diversified RefSet .

0 Pool = ∅;

1 Combine all chains in RefSet according to (17);

2 Store all chains, their sequences and wo value in Pool;

3 RSd = ∅;

4 RSd← RSd ∪ Poolbest;

5 Introduced = 1;

6 while (Introduced < b1) do

7 Compute d(c,RSd) for all c ∈ Pool;

8 RSd← RSd ∪ c∗ = max{d(c,RSd)} : c ∈ Pool;

9 Introduced++;

10 end while

11 return(diversified RefSet);

end Diversification.

Figure 14: Diversification procedure.

Once a Pool with diversified chains has been obtained, the next step of the diversification

process iteratively looks for the more diversified chains. That is, the process identifies those chains

in Pool that are more different with respect to the chains inside the current RSd. The grade of

differentiation between two chains is really measured with the number of coincidences (Hamming

distance). A coincidence exists if in the same position t, both of the chains have the same rule r.

5 Empirical Work

For evaluating the heuristic performance, we use the set of instances from [30] for mixed-model

assembly lines. For each instance c = 90 time units. Instances do not consider weight (cost) by

incurring in work overload or idle time in stations. Instances are designed with different parameter

values. A summary of the data set are given in the Figure 1. There are 9 groups with particular

characteristics. The first column indicates an identifier for the group, the second column (NIn-

sts)contains the number of instances in the group. Columns 3 and 4 show the number of models

and stations, respectively. Column 5 refers to station lengths. The last column indicates the total

of products in the instance and the number of instances with exactly these characteristics. Small

instances are in group 1 and 2, considering 5 models and 5 stations. All instances in group 1 have

station length of 110 time units, whereas group 2 station length varies in the range [88,132]. Group
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Table 1: Data set characteristics

Group NInsts. I K Lk T

1 5 5 5 110 10(2), 20(2), 30(1)

2 5 5 5 [88,132] 10(2), 20(2), 30(1)

3 30 10 10 110 10, 80, 110, 140, 170, 200, 250, 300, 350, 400 (3 each)

4 10 20 10 110 140, 200, 250, 300, 350 (2 each)

5 10 10 20 110 140, 200, 250, 300, 350 (2 each)

6 10 20 20 110 140, 200, 250, 300, 350 (2 each)

7 10 10 10 [88,132] 140, 200, 250, 300, 350 (2 each)

8 10 10 10 150 140, 200, 250, 300, 350 (2 each)

9 10 10 10 110 140, 200, 250, 300, 350 (2 each)/basic model

7 also considers different station lengths, but with 10 models and 10 stations. Group 3 is conformed

by 30 instances, and the largest instances with 400 products are in this group. Group 4 have twice

as many models than stations, whereas group 5 has instances with double quantity of stations than

models. Group 8 is the heaviest in the sense that considers 20 models and 20 stations. Group 8

has the largest number of stations, and group 9 considers a basic model with fixed station lengths.

A basic model is an austere version of the product, which requires a relatively small job quantity,

unless one or more optional components with one or more attributes have to be assembled to it.

For more details on the data generation we refer the reader to [30]. Thus, the instance bed consists

of 100 instances of small, medium, and large sizes, and different levels of load due to station length,

processing times, and number of products and stations.

To measure the quality of the solutions s obtained for instance h, the deviation measure dev is

used (18), where sbest is the best solution found for instance h using some of the procedures. We

use this measure because we only know 25 optimum values of the 100 instances. Even when we can

get a lower bound with (16), or get it from CPLEX (e.g. after one hour of search), we do not know

certainly the quality of this bound even for small instances. Furthermore, it is known that for some

instances (i.e. unloaded instances), the solution value can be woh = 0. CPLEX obtain the GAP

for MIP problems in the same way. Computations have been performed in a PC with processor

Pentium 4 CPU 2.4 GHz, 512 MB RAM under a system Microsoft Windows XP professional 2002.

devh = |sh − sbest|/|sh + ε| ∗ 100% (18)

The two proposed HH procedures are compared with other three procedures: BC, LS, and

CPLEX. BC are four approximation algorithms proposed in [3]. Only the best results obtained

with those algorithms are used in the comparison. Using the results of the algorithms proposed

23



Table 2: Results for HH1 and HH2

HH1 HH2

Statistic BC LS CPX NoI IRSf IP1N IP10% NoI IRSf IP1N IP10%

Av. dev(%) 20.80 1.02 21.06 18.69 1.93 0.08 1.76 20.57 1.63 0.54 0.31

opt* 4 25 18 16 23 25 25 11 24 24 25

AvIter - - - 50.96 50.96 6.24 6.37 10.8 10.8 2.7 1.3

AvDivs - - - 4.95 4.95 0.38 0.48 - - - -

in [3] as seeds, a local search (LS) procedure is applied. LS is truncated after 1800 seconds of search

if no local optimum has been found.

The local search scheme used is the one described in section 4.4. CPLEX (version 9.0) was used

with a time limit of 1 hour. The deviation of the best integer solution found is reported. Regarding

the hyper-heuristic, in both, HH1 and HH2, improvement is applied in two different points of the

process. This is done in order to know where the local search produce better results. Thus, the

decision maker can evaluate the time-quality factors and find a good compromise. The improvement

is applied on sequences of the Pool and the final RS. Thus, we identify four levels of improvement

in HH1 and HH2: NoI, IRSf , IP1N , and IP10%. In NoI no improvement is applied. IRSf

apply local search on final dynamic RS sequences obtained with NoI. In IP1N the improvement

is directed on sequences of the Pool, exploring only one neighborhood of each sequence (given a

segment size seg, there are (T − seg)2 possible movements). IP10% also works on Pool sequences,

where the local search is stopped when value of the sequence before the improvement w0 is improved

in (w0 − lbw)/10 units. Recall lbw is a lower bound obtained with expression (16).

As explained in Section 4.6, some parameters are used to determine when the process must

diversify or stop the search in HH1. The maximum number of iterations without improvement in

the RefSet before applying a diversification phase is NoImprovemaxcombs = 3. Normally in SS

when no improvement is obtained in the RefSet state in one iteration, the search is stopped. The

maximum number if Diversifications (without improvement) permitted before stopping the search

is MaxDivs = 4. These values were determined in preliminary testing, in which it was observed

that more diversifications did not help improve the results significantly. Then, more diversifications

do not necessarily help the search process. In HH2, the maximum number of iterations without

improvement is NoImprovemaxcombs = 4. A maximum CPU time is established to 3600 seconds

for the iterations loop.

Table 2 shows the measures used to compare the procedures: average deviation (Av. dev(%)),

number of proved optimums reached (opt*), average of iterations for HH1 and HH2, and average of

diversifications for HH1. The smallest average deviation is obtained with HH1, using the improve-

ment level IP1N . It is followed by HH2 with IP10%. Except by IP10% in HH1, all the procedures
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Figure 15: Average deviation and number of proved optimums by procedure.

which apply improvement in pool sequences obtain average deviations under 1%. Nevertheless, the

CPU time limit is reached in HH1 for 79% of the instances with PM1N and 83% with PM10%.

Similarly for HH2, PM1N and PM10% exceed the CPU limit in 80% and 90% of the instances,

respectively. HH1 and HH2 without improvement (NoI) require in average 269 and 511 seconds,

respectively. HH1 and HH2 with improvement in the final RefSet (IRSf) sequences require 505

and 555 seconds average, respectively, which suggests that que quality of the solutions produced

with HH2 are better than those of HH1, since local optimum is reached in lower time. This can

also be seen in the average relative deviation values in the table. The isolated local search proce-

dure (LS) also offers good results with 1.02 of average deviation and reaching 25 of the 27 proven

optimums known. HH1-IP1N , HH1-IP10%, and HH2-IP10% also achieve 25 proved optimums.

Notice, in HH1, that the average deviation value for IP1N is smaller than the one in IP10%. This

can be due to the CPU time required by IP10% in which it improves (while the CPU time limit

is not exceeded) just a few solutions, instead of, just like happens with IP1N, improving for a few

time, many solutions. Figure 15 depicts the average relative deviation and the number of confirmed

optimums reached by each procedure. Average deviation values are represented by circles and opt∗

is represented by squares.

A good compromise between quality solutions and CPU time is offered for IRSf , mainly in HH2

scheme. In this sense, HH2-IRSf reaches 24 confirmed optimums in 9.25 minutes average. During

one hour of search, CPLEX finds 18 optimums, two more than HH1-NoI in 4.49 minutes average of

search, and 7 more than HH2-NoI in 8.52 minutes average. AvIter and AvDivs show the average

of iterations and diversifications used by the procedures, respectively. As can be observed, the
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Table 3: Average deviation (%) by groups

HH1 HH2

Group BC LS CPLEX NoI IRSf IP1N IP10% NoI IRSf IP1N IP10%

1 3.98 0.00 0.00 1.02 0.52 0.00 0.00 1.38 0.52 0.00 0.00

2 1.88 0.00 0.00 0.43 0.31 0.00 0.14 2.25 0.21 0.00 0.00

3 21.01 1.12 20.17 19.74 2.03 0.06 1.17 22.61 1.92 0.62 0.30

4 30.18 2.61 35.59 32.97 3.76 0.30 4.73 35.51 4.10 0.82 0.96

5 16.48 0.99 19.42 18.53 1.35 0.05 0.88 20.57 0.83 0.19 0.27

6 17.72 2.02 27.22 23.14 1.64 0.07 2.82 24.15 1.33 0.59 0.60

7 6.19 0.58 53.51 7.76 0.48 0.00 0.37 8.57 0.36 0.07 0.03

8 0.43 0.00 0.03 0.48 0.00 0.00 0.00 0.61 0.00 0.05 0.00

9 71.01 0.63 61.92 44.07 5.52 0.17 3.53 46.63 3.47 1.17 0.34

number of average iterations and diversifications required by LS1N and LSPool10 to terminate

the process is much smaller then those needed by NoI and IRSf . This means that it pays off to

invest the extra time improving the sequences in Pool.

Since each group of instances has different characteristics it is of particular interest a comparison

between groups and procedures. The dev values by groups are contained in Table 3. The good

global performance of the procedure IP1N for HH1, is maintained by groups. HH1-IP1N find

the best results for groups 1, 2, 7, and 8. In fact, all the proven optimum values are known for all

the instances in group 1, 2, and 8. The three largest instances are contained in group 3 (with 30

instances) which obtain the best average deviation with the same procedure. Group 9 is a special

one. According to the bestobjval obtained from CPLEX in 1 hour of search, the lower bound

is zero for seven of the ten instances of this group. Notice in HH1 by groups, that the average

relative deviation in IP1N always is better than IP10%. The local search in the pool sequences

for IP10%, spends more effort in improving a few solutions, meanwhile in IP1N, exploring just in

the neighborhood, it explores more solutions with less intensity, but reducing the average relative

deviation.

Regarding the segment size used in the local search phase, in order to know if its size is related

to the sequence size we performed the following analysis. We analyze the data of the procedure

LS1NPool because it got better solutions. Initially, all the segment sizes considered in the process

have the same probability to be chosen. When a segment size obtains an improvement its probability

to be chosen in future improvements, increases. At the end of the process we have a frequency of

segment sizes. Instances have different sequence lengths T : 10, 20, 30, 50, 80, 80, 110, 140, 170,

170, 200, 250, 300, 350 and 400. The segment sizes used take a value in the range [1, 15].

Let θseg the number of times a segment of size seg improved a solution along the procedure, Θ =
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∑seg=15

seg=1 θseg the total of improvements obtained along the search, and θ̃seg = θseg/Θ the percentage

of improvements obtained with segment size seg. We can now try to compare θ̃seg for different

instances (with different T values). Let θ̄seg,T the average of the percentage of improvements

obtained with segment size seg in instances with length T . A scatter plot of those θ̄seg,T values

is shown in Figure 16. The higher the peaks in the plot, the more improvements this seg and T

produced in the procedure. One can find high tips through all the surface without indicating some

clear tendency or combination of seg and T to produce good θ̄seg,T values.

Figure 16: Segment size vs. sequence length.

A multiple regression analysis was done with two independent variables: segment size (seg)

and sequence length (T ). The response variable is θ̄seg,T . The analysis of variance reports a P

regression value = 0.791. The regression analysis is θ̄seg,T = 0.0724 − 0.0000T − 0.00071. We

also did the regression analysis only with segment size seg. The analysis reports 11 unusual ob-

servations, a P regression value = 0.493 in the analysis of variance, and a regression equation

θ̄seg,T = 0.0724 − 0.00071seg. Based on this information we can only mention that the best seg-

ment size seg for a given instance depends on the instance characteristics.

Regarding rule frequency at the end of the search, it was clearly observed how some rules

resulted more beneficial than others. In Figure 17 the frequency of the rules in each position of the

sequence of size T = 50 is depicted. This is the smallest instance of group 3. It can be seen many
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Figure 17: Area graph for rule frequency in each position of the sequence for instance with T=50.

rules have a small frequency value along the sequence, but some of them have clear domain along

the sequence. For this instance, four rules appear in more positions in the sequence. The main one

is rule 18, which has 44.5% of the frequencies. Rule 18 is the one that selects the product with the

lowest overload in the current phase of the sequence. The following rule is the number 19, related

to product producing the lowest idle time. Rule 19 has 18.3% of the total frequency in the final

Fr. Other rules with significant frequency value are 7, 13, 14, 17, and 20, with 3.5%, 3.1%, 8.5%,

4.6%, and 4.1%, respectively, of the total frequency in final Fr. The dominance of the rules may

be better appreciated in Figure 18 which shows the box-plot for each of the 20 rules. Even though

there are some dominating rules, there is not a single rule that consistently dominates the other

in every position in the sequence. For instance, in Figure 17 one can see how rule 19 dominates in

positions 1 and 2, whereas rule 18 dominates in position 3. This combination of rules emphasizes

the relation among the main rules that consider overload, idle time, worker displacement, and ideal

production.

6 Conclusions

This work addresses a version of the problem of sequencing products (mixed models) on a paced

assembly line. We consider the approach in which a product demands a component (attribute),

which has different versions, and requires different processing times in the application of each. The

aim of these procedures is to minimize work overload (lost work) in all the stations of the assembly

line due to the limited time spared in the stations and to the work loads along a given sequence.

Both boundaries of stations are closed, and we assume as in [3] and [6], the displacement time the
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Figure 18: Boxplot for rule frequency for instance with T=50.

worker takes from one product to the next, is negligible. A hyper-heuristic based on a scatter search

scheme and the use of priority rules are proposed and compared with procedures from literature.

As in scatter search, the hyper-heuristic use a reference set to store elite elements and obtain better

ones through the combination of these elements. A key difference is that the reference set contain

priority rules chains instead of solutions to the problem. The combination of these chains is based

on a rule frequency matrix. Different levels of improvement are applied on sequences of the pool,

and local search is used to improve sequences on the final reference set. The proposed HH gets the

best average relative deviation when improvement is applied in pool sequences. A good trade-off

between of CPU time and solution quality is observed when local search is used on final reference

set sequences only. Final rule frequency matrix suggests the elimination of some rules that do

not contribute in the search process significatively. This reduces the referenceset size and the

pool size, reducing also the CPU time. When compared to existing work, the proposed procedures

outperformed the others, particularly with HH1 when improvement is applied for one neighborhood

of each sequence in pool, reaching all the known proved optimum values.
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Appendix

In this appendix the 20 priority rules used in the constructive procedure of the proposed hyper-

heuristic are described. This rules are used to select a product between a set of candidates. A

product i is a candidate of rule r if di > 0. Let us the define the following notation.

I set of products;

i product i, i ∈ I;

K set of stations;

k station k, k ∈ K;

ni original demand of product i, i ∈ I;

t position of the sequence, (t = 1, . . . , T ), T =
∑I

i=1 ni;

di pending demand of product i (if t = 0, di = ni), i ∈ I, t = 1, . . . , T ;

pik processing time for product i in station k, i ∈ I, k ∈ K;

rik allocation dynamic index for product i in station k, rik = di ∗∆ik, i ∈ I, k ∈ K;

∆ik worker displacement in station k due to product i, ∆ik = |pik − c|, i ∈ I, k ∈ K;

Lk length of station k, k ∈ K;

ui ideal production of product i, i ∈ I;

sk initial worker position in station k, k ∈ K;

wt accumulated work overload until phase t, wt =
∑t

1 wtk, k ∈ K;

p̄ average processing time p̄ =
∑

pik/(|K| · |I|), i ∈ I, k ∈ K;

kb bottleneck station;

wi work overload produced by product i in current phase t, wi =
∑K

k=1 wti, i ∈ I, k ∈ K;

oi idle time in the current phase t produced by product i, oi =
∑K

k=1 oti, i ∈ I, k ∈ K.

The rules are enumerated as follows:

Rule 1: Select product i∗ with largest processing time, i∗ = arg max{pik}.

Rule 2: Select product i∗ with smallest processing time, i∗ = arg min{pik}.

Rule 3: Select product i∗ with processing time closest to p̄, i∗ = arg min{|pik − p̄|}.

Rule 4: Select product i∗ with processing time closest to c, i∗ = arg min{∆ik}.

Rule 5: Select product i∗ with largest pending demand, i∗ = arg max{di}.

Rule 6: Select product i∗ with lowest pending demand, i∗ = arg min{pik}.

Rule 7: Select product i∗ which produces largest worker displacement in all stations, i∗ =

arg max{ri}.
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Rule 8: Select product i∗ with lowest dynamic index rik, i∗ = arg min{ri}.

Rule 9: Select product i∗ producing the largest total worker displacement in all stations, i∗ =

arg max{
∑K

k=1 ∆ik}.

Rule 10: Select product i∗ producing the smallest total worker displacement in all stations, i∗ =

arg min{
∑K

k=1 ∆ik}.

Rule 11: Select product i∗ with the largest processing time in the bottleneck station, i∗ =

arg max{pikb}.

Rule 12: Select product i∗ with the lowest processing time in the bottleneck station, i∗ =

arg min{pikb}.

Rule 13: Select product i∗ closest to the ideal production ui, i∗ = arg min{|(ni − di)− t · ui|}.

Rule 14: Select product i∗ with the largest sum of the dynamic index value for all stations,

i∗ = arg max
∑K

k=1 rik.

Rule 15: Select product i∗ with the smallest sum of the dynamic index value for all stations,

i∗ = arg min
∑K

k=1 rik.

Rule 16: Select product i∗ that produces the largest overload in the current phase, i∗ =

arg max{wi}.

Rule 17: Select product i∗ that produces the largest idle time in the current phase, i∗ =

arg max{oi}.

Rule 18: Select product i∗ that produces the smallest overload in the current phase, i∗ =

arg min{wi}.

Rule 19: Select product i∗ that produces the smallest idle time in the current phase, i∗ =

arg min{oi}.

Rule 20: Under the regularity concept, select product i∗ producing the work overload value closest

to the ideal work overload value (assuming lbw > 0), i∗ = arg min{(lbw/T ) · t− wt − wi};

where wt is the accumulated value.
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