
A Reactive GRASP for a Sales Territory Design Problem

with Multiple Balancing Requirements

Roger Z. Ŕıos-Mercado1

Graduate Program in Systems Engineering

Universidad Autónoma de Nuevo León

AP 111 – F, Cd. Universitaria

San Nicolás de los Garza, NL 66450, México

E-mail: roger@mail.uanl.mx

Elena Fernández

Department of Statistics and Operations Research

Universitat Politècnica de Catalunya

Jordi Girona 1-3, C5-208, Campus Nord

Barcelona 08034, Spain

E-mail: e.fernandez@upc.es

September 2006

1Corresponding author

Scope and Purpose

The sales territory design problem (TDP) may be viewed as the problem of grouping small

geographic sales coverage units (SCUs) into larger geographic clusters called sales territories in a

way that the territories are acceptable (or optimal) according to relevant planning criteria. This

problem belongs to the family of districting problems that have a broad range of applications

like political districting, school districting, and sales and service territory design, to name a few.

The problem addressed in this paper is motivated by a real-world application from a beverage

distribution firm in the city of Monterrey, Mexico, and may be viewed as a sales TDP. The problem

consists of finding a partition of the entire set of geographical units (blocks) into p territories so

as to minimize a measure of territory compactness. In addition, it is required to find territories

that are balanced (similar in size) with respect to each of three different activity measures (number

of customers, sales volume, and workload), and connected, so that SCUs can reach each other by

traveling within the territory.

Abstract

In this paper we present a Reactive GRASP approach to a sales territory design problem mo-

tivated by a real-world application in a beverage distribution firm. The mathematical framework

includes, as planning criteria, minimizing a measure of territory compactness, balancing the dif-

ferent node activity measures among territories and territory contiguity. The proposed GRASP

approach incorporates several features such as reactivity, by allowing self-adjustment of the re-

stricted candidate list quality parameter, and filtering, which avoids executing the local search

phase in unpromising bad solutions generated by the constuction phase. The algorithm is tested

in several data sets randomly generated from data provided by the industrial partner. The results

show the effectiviness of the proposed approach, as it was able to obtain solutions of much better

quality (both in terms of its compactness measure and feasibility with respect to the balancing

constraints) than those found by the firm in relatively fast computation times.

Keywords: combinatorial optimization, territory design, multiple balancing requirements, meta-

heuristics, reactive GRASP

1 Introduction

The sales territory design problem (TDP) may be viewed as the problem of grouping small ge-

ographic sales coverage units (SCUs) into larger geographic clusters, called sales territories, in a

way that the territories are acceptable (or optimal) according to relevant planning criteria. This

problem belongs to the family of districting problems that have a broad range of applications like

political districting and the design of sales and services territories. The recent paper by Kalcsics,

Nickel and Schröder [14] is an extensive survey on approaches to territory design that gives an up

to date state of the art and an unifying approach to the topic.

The problem addressed in this paper is motivated by a real-world application from a beverage

distribution firm in the city of Monterrey, Mexico, and may be viewed as a sales TDP, where rather

than placing salesmen in territories we are interested in locating centers for the purpose of modeling

the compactness measure. Although several sales territory design approaches have appeared in the

literature [2, 7, 9, 11, 20], the specific features present in this concrete problem make it very unique,

and not addressed before to the best of our knowledge. The firm wishes to partition the area of the

city into disjoint territories that are suitable for their commercial purposes. In particular, the firm

wants to design territories that are balanced (similar in size) with respect to each of three different

activity measures (number of customers, sales volume, and workload). In addition, planning criteria

include: (i) contiguity of each territory, so that SCUs can reach each other by traveling within the

territory, (ii) territory compactness, so that customers within a territory are relatively close to each

other, and (iii) a fixed number of territories.

In this work, we present and discuss a modeling framework for this NP-hard combinatorial opti-

mization problem, and we propose a solution algorithm based on GRASP to construct high-quality

solutions. We have taken a distance-based dispersity measure of the territories as the objective

for the proposed model. Given that it may not exist a territory design where all the territories

are simultaneously balanced with respect to all three measures, for modeling such specification

we require that each territory is within a threshold of its target value for each activity measure.

The above characteristics together with the fact that the number of territories is given, has led

us to model the problem as a p-center problem with multiple capacity constraints, and with the

additional requirement that each territory be connected.

We have implemented two different versions of a GRASP algorithm to obtain solutions to the

problem. The only difference in the two versions is that the second one is a reactive GRASP,

where the parameter α, that controls the restricted candidate list in the constructive phase, is not

fixed and is automatically adjusted based on the history of the search. The two versions allow for

strategic oscillation, since the capacity constraints are relaxed, and incorporated to the objective

function via a penalty term.

We have run a series of computational experiments to assess the efficiency of the proposed

1

GRASP algorithms, and to evaluate the behavior of our approach when compared to current

industry practices. In particular, in these experiments we have analyzed the effect on the obtained

solutions of different threshold values for the balancing constraints. Given that the most time

consuming phase of the procedure is its local search, we have also studied the impact of applying

a filter to avoid executing this phase in unpromising bad solutions generated by the constuction

phase. The obtained results are very satisfactory since we obtain results that improve considerably

the quality of the ones previously obtained by the firm in small computation times.

The paper is structured as follows. In Sections 2 and 3 we describe the problem and we present

the model that we follow, respectively. Section 4 gives an overview of some previous related work.

Section 5 gives the elements of our algorithm, and Section 6 describes the experiments that we

have run and the obtained results. We end the paper in Section 7, with some conclusions and final

comments.

2 Problem Description

The problem is modeled by a graph G = (V,E), where a customer or SCU i is associated with a

node, and an arc connecting nodes i and j exists if customers i and j are located in adjacent blocks.

Now each node i ∈ V has several associated parameters such as geographical coordinates (cx
i , c

y
i),

and three measurable activities. Let wa
i be the value of activity a at node i, where a = 1 (number

of customers), a = 2 (sales volume), and a = 3 (workload). A territory is a subset of nodes Vk ⊂ V .

The number of territories is given by the parameter p. It is required that each node is assigned to

only one territory. Thus, the territories define a partition of V . One of the properties sought in a

solution is that the territories are balanced with respect to each of the activity measures. So, let

us define the size of territory Vk with respect to activity a as: wa(Vk) =
∑

i∈Vk
wa

i , a = 1, 2, 3. Due

to the discrete structure of the problem and to the unique assignment constraint, it is practically

impossible to have perfectly balanced territories with respect to each activity measure. To account

for this, we measure the balance degree by computing the relative deviation of each territory from

its average size µa, given by µa = wa(V)/p, a = 1, 2, 3. Another important feature is that all

of the customers assigned to each territory are connected by a path contained totally within the

territory. In other words, each of the territories Vk must induce a connected subgraph of G. In

addition, industry demands that in each of the territories, customers must be relatively close to

each other. One way to achieve this is for each territory to select an appropriate node to be its

center, and then to define a distance measure such as D = max1≤k≤p maxj∈Vk
dc(k),j, where c(k)

denotes the index of the center of territory k so dc(k),j represents the Euclidean distance from node

j to center of territory k. All parameters are assumed to be known with certainty. The problem

can be thus described as finding a p-partition of V satisfying the specified planning criteria of

balancing, contiguity, and compactness, that minimizes the above distance mesaure.

2

3 MILP Formulation

Indices and sets

n number of blocks (SCUs)

p number of territories

i, j block indices; i, j ∈ V = {1, 2, . . . , n}

a activity index; a ∈ A = {1, 2, 3}

k territory index; k ∈ K = {1, 2, . . . , p}

N i (= {j ∈ V : (i, j) ∈ E ∨ (j, i) ∈ E}) set of nodes which are adjacent to node i; i ∈ V

Parameters

wa
i value of activity a in node i; i ∈ V , a ∈ A

dij Euclidean distance between i and j; i, j ∈ V

τa relative tolerance with respect to activity a; a ∈ A, τ a ∈ [0, 1]

Computed parameters

wa(B) (=
∑

j∈B w
a
j) size of set B with respect to a; a ∈ A, B ⊂ V

µa (= wa(V)/p) average (target) value of activity a; a ∈ A

Decision variables

In the original problem we are not concerned with territory centers; however, we introduce

binary variables based on centers for modeling the compactness measure.

yi =







1 if a territory center is placed at node i; i ∈ V

0 otherwise

xij =







1 if unit j is assigned to territory with center in i; i, j ∈ V

0 otherwise

Model

Minimize f(x, y) = max
i,j∈V

{dijxij} (1)

subject to
∑

i∈V

xij = 1 j ∈ V (2)

∑

i∈V

yi = p (3)

3

∑

j∈V

wa
jxij ≤ (1 + τa)µayi i ∈ V, a ∈ A (4)

∑

j∈V

wa
jxij ≥ (1 − τa)µayi i ∈ V, a ∈ A (5)

∑

j∈∪v∈SNv\S

xij −
∑

j∈S

xij ≥ 1 − |S| i ∈ V ; S ⊂ V \ (N i ∪ {i}) (6)

xij , yi ∈ {0, 1} i, j ∈ V (7)

Objective (1) measures territory compactness. Constraints (2) guarantee that each node j is as-

signed to a territory. Constraint (3) sets the number of territories. Constraints (4)-(5) represent

the territory balance with respect to each activity measure as it establishes that the size of each

territory must lie within a range (measured by tolerance parameter τ a) around its average size. In

particular, the upper bound balancing constraints (4) also assure that if no center is placed at i,

no customer can be assigned to it. Constraints (6) guarantee the connectivity of the territories.

These constraints, proposed by Drexl and Haase [7], are similar to the constraints used in routing

problems to guarantee the connectivity of the routes. Note that, as usual, there is an exponential

number of such constraints.

The model can be viewed as a vertex p-center problem with multiple capacity constraints, and with

additional constraints (5) and (6). Given that even the uncapacitated vertex p-center problem is

NP-hard [15], it follows that our sales TDP is also NP-hard.

4 Related Work

The grouping of small geographical units into larger geographical clusters according to some spec-

ified planning criteria is referred to in the literature as districting or territory design. Many

authors have investigated districting problems and developed models and algorithms in several

contexts, most importantly: design of sales territories [11, 9, 7, 14] and design of political dis-

tricts [12, 10, 13, 16, 3, 1]. Other applications include turfing in telecommunications [19], police

districting [5], districting for salt spreading operations [17], and home-care districting [2]. In Caro

et al. [4], there is a very good review of school redistricting applications. Here, we present a review

of the most relevant work in territory design.

4.1 Sales Territory Design

Hess and Samuels [11] address a sales TDP with workload balancing constraints, and compactness

minimization criteria. As a comptactness criteria they used squared Euclidean distances. They

present a heuristic based on a location-allocation scheme where a linear transportation problem is

used to solve the assignment phase. Then, splits are resolved by means of a “tie breaking” heuristic

which assigns an area to the territory with the maximum of the area’s activity. In their empirical

4

work, they found that a rate of n/p ≥ 20 is more adequate to provide territories whose activity is

within 10% of average. Connectivity was not considered.

Zoltners and Sinha [20] present the first review of sales territory design models. They develop

a framework for sales territory alignment and several properties, which are incorporated into a

general sales territory model.

Fleischmann and Paraschis [9] address a sales territory design problem arising in a German

company for consumer goods. They formulate the problem as a MILP and develop a procedure

based on a location-allocation approach. Specifically they have to allocate 168 sales agents in 1,400

postal areas. Planning criteria: (a) balancing workload (25% tolerance), (b) compact districts.

To ensure (b), they use weighted squared Eucliden distances as a minimization criterion. 70,000

customers are aggregated into 1,400 postal areas for simplifying. No connectivity was considered.

They solve a case study.

Drexl and Haase [7] study the solution of sales force deployment which involves the solution of

four interrelated subproblems namely: sales force sizing, salesman location, sales territory align-

ment, and sales resource allocation. They present a MILP model for the problem of maximizing

revenue subject to connectivity and profit-related constraints for their subproblems. They propose

an approximation method based on solving successively a series of MILPs.

More recently, Kalcsics, Nickel and Schröder [14] present an extensive review of territory de-

sign problems. In their work, they identify common features to many territory design problems,

introduce a basic framework and present in detail two approaches for solving this model: a classical

location-allocation method based on previous work, and a computational geometry-based method.

They present results that assess the efficiency of the latter for large-scale practical problems. The

model they address does not consider contiguity constraints though. They wrap up by highlighting

extensions to the basic model.

4.2 Political Districting

Hess et al. [12] present a location-allocation heuristic for poltical districting under population

equality, compactness, and contiguity considerations. They seek to minimize the sum of squared

distances between each unit and its district center. In their empirical work, their heuristic was

applied to instances of up to 35 territories and 299 nodes, taking less than a minute of CPU to find

feasible solutions.

Garfinkel and Nemhauser [10] present an enumerative algorithm for finding optimal solutions

to a political districting problem under contiguity, compactness, and limited population deviation

requirements. In their empirical work, they were able to solve problems with 40 or fewer units.

Hojati [13] addresses a political districting problem in the city of Saskatoon, Canada. He uses

a three-stage approach where Lagrangian relaxation is used first to determine district centers, then

5

an assignment problem is solved for allocating population units to districts, and then a sequence

of capacitated transportation problems are solved for dealing with splits. His approach, applied

to a 42-unit 5-district problem found more compact partitions with less splits than the existing

districting plan implemented by the city.

Mehrotra, Johnson, and Nemhauser [16] address the problem of political redistricting from a

column generation perspective, and present a heuristic based on branch and price for a case study

in the state of California. They used their method to attempt to solve a 51-node problem with 6

districts. Their method compared favorable with respect to a clustering heuristic as was able to

deliver solutions within 2% of target of the balancing constraint.

Bozkaya, Erkut, and Laporte [3] address a political districting problem subject to side con-

straints such as contiguity, population equality, compactness, and socio-economic homegeneity.

They develop a tabu search procedure and use it to find solutions to a real-world case in Edmon-

ton, Canada, with 828 basic units in 19 districts. Their procedure integrates several of the criteria

into a single-value objective function. Their results indicate that the algorithm produced better

maps than the existing one, while improving at the same time some of the other constraints.

Bação, Lobo, and Painho [1] apply a genetic algorithm to a particular political districting

problem in Portugal by using several measures as objective functions. The authors claim their

method was applied to a 93-district problem in Portugal (they do not mention the total number of

units), and show their results for the region of Lisbon (a 7-district subproblem).

4.3 Other Districting Problems

D’Amico et al. [5] present a simulated annealing algorithm to the problem of redistricting or re-

drawing police command boundaries. They model the problem as a constrained graph-partitioning

problem involving partitioning of a police jurisdiction into command districts subject to constraints

of contiguity, compactness, convexity, and size. Since the districting plan affects urban emergency

services, they also consider quality-of-service constraints. They tested their method in a case study

in Buffalo, New York, Police Department, where they were able to significantly reduce the officer

workload disparity while maintaining current levels of response time in a 409-node network and 5

districts.

Blais, Lapierre, and Laporte [2] describe a districting study undertaken for a local community

health clinic in Montréal. In their problem, a territory had to be partitioned into six districts and

five disticting critera had to be met: indivisibility of basic units, respect for borough boundaries,

connectivity, visiting personnel mobility, and workload equilibrium. The last two criteria are com-

bined into a single objective function and the problem was solved by a tabu search technique that

iteratively moves a basic unit to an adjacent district or swaps two basic units between adjacent

districts.

6

5 Solving the TDP by GRASP

GRASP [8], a fairly well-known metaheuristic that captures good features of both pure greedy

algorithms and random construction procedures, has been widely used for successfully solving

many combinatorial optimization problems. This type of approach has not been considered before

for general territory design problems as far as we know.

function GRASP (limit iterations, α, ρ, p)

Input: limit iterations := GRASP iteration limit; α := GRASP RCL quality param-

eter; ρ := territory closure parameter; p := Number of territories.

Output: A feasible assigment Sbest.

0 Sbest ← ∅;

1 for (l = 1, . . ., limit iterations) do

2 S ← ConstructGreedyRandomizedSolution(α, ρ); q ← |S|;

3 if (q 6= p) then S ← Adjustment(S);

4 S ← PostProcessing(S);

5 if (S better than Sbest) then Sbest ← S;

6 endfor;

7 return Sbest;

end GRASP

Algorithm 1: A GRASP pseudocode for TDP.

A GRASP is an iterative process in which each major iteration consists typically of two phases:

construction and post-processing. The construction phase attempts to build a feasible solution

S, and the post-processing phase attempts to improve it. When a feasible solution is successfully

found in phase one, phase two is typically a local search within suitable neighborhoods with the

aim of improving the objective function value. In our particular case, the construction phase does

not necessarily terminate with a feasible solution, since the solution found may violate constraints

(3) and (4)-(5). Thus, both an adjustment phase, that modifies the current solution so as to satisfy

(3), and a post-processing phase, that attempts to improve the solution quality and to reduce the

total relative infeasibility with respect to (4)-(5), are developed. Algorithm 1 illustrates a generic

GRASP implementation in pseudocode. The algorithm takes as an input an instance of the TDP,

the maximum number of GRASP iterations, the restricted candidate list (RCL) quality parameter

α, and the number of teritories, and returns a solution Sbest. Note that in Step 2, q is the number

of territories found in partition S after the construction phase is done.

The motivation for GRASP in this particular application stems from the fact that it seems

more appealing than current state-of-the-art approaches based on two-stage location-allocation

algorithms for handling the connectivity constraints (6). By handling these constraints within a

construction heuristic such as GRASP, the connectivity is always kept so it remains to appropriately

7

address the balancing constraints (4)-(5). In the next sections, we describe in detail each of the

GRASP basic components and some advanced features such as filtering and reactivity incorporated

in the heuristic.

5.1 Construction Phase

In the construction phase, at a given iteration we consider a partial territory and attempt to either

allocate an unassigned node to it or to “close” the current territory and “start” a new one. When

assigning a node, a greedy function that weighs both a distance-based compactness measure and

the relative violation of the balance constraints (4)-(5) is used as follows. Let Vk be the current

territory being built. We denote by f(Vk) = maxi,j∈Vk
dij its corresponding compactness measure

(as dictated by the objective function). Recall that wa(Vk) =
∑

i∈Vk
wa

j is referred to as the size of

Vk with respect to activity a, a ∈ A.

For a candidate node v, we define its greedy function as

φ(v) = λFk(v) + (1 − λ)Gk(v), (8)

where

Fk(v) = f(Vk ∪ {v}) = max

{

f(Vk),max
j∈Vk

dvj

}

,

accounts for the original objective function, and

Gk(v) =
∑

a∈A

ga
k(v),

with ga
k(v) = (1/µa)max{wa(Vk∪{v})−(1+τa)µa, 0}, accounts for the sum of relative infeasibilities

for the balancing constraints. Note that ga
k(v) represents the infeasibility with respect to the upper

bound of the balance constraint for activity a, and these two factors are weighted by a parameter

λ in function (8). Algorithm 2 shows the pseudocode of the construction procedure.

Line 7 in Algorithm 2 builds the restricted candidate list (RCL) by value α. In line 10, the

criteria for closing the current territory is checked. If met, that is, a balance constraint upper bound

has been violated, the current territory is “closed” and a new one is “started”. Note that in fact,

this threshold is adjusted by a parameter ρ > 0 which allows for further flexibility in succeeding

stages. A value of ρ < 1 allows, for instance, to close a territory having a relatively small size. This

could allow, however, a lower violation of constraints (4) when merging territories in the adjustment

phase. Note that at this point, we are not concerned with the lower bound balancing constraints (5)

because it does not have any impact when adding nodes to a territory, i.e. regardless of which node

is chosen, its lower bound violtion is never worse. This situation changes, however, in the local

search when all territories have been built.

8

function ConstructGreedyRandomized (α, ρ)

Input: α := GRASP RCL quality parameter; ρ := territory closure parameter.

Output: A feasible assigment S.

0 q ← 1; V̄ ← V ;

1 Vq ← {v}, where v ∈ arg min{|N i| : i ∈ V̄ };

2 V̄ ← V̄ \ {v};

3 while (V̄ 6= ∅) do

4 N(Vq)← set of neighbors of Vq;

5 Compute φ(v) in eq. (8) for all v ∈ N(Vq);

6 Φmin ← minv{φ(v)}; Φmax ← maxv{φ(v)};

7 RCL← {j ∈ N(Vq) : φ(j) ∈ [Φmin,Φmin + α(Φmax − Φmin)];

8 Choose v ∈ RCL randomly;

9 Vq ← Vq ∪ {v}; V̄ ← V̄ \ {v};

10 if (wa(Vq) > ρ(1 + τa)µa for any a) then

11 q ← q + 1;

12 Vq ← {v}, where v ∈ arg min{|N i| : i ∈ V̄ };

13 V̄ ← V̄ \ {v};

14 endif ;

14 endwhile;

15 return S = {V1, . . . , Vq};

end ConstructGreedyRandomized

Algorithm 2: The GRASP construction pseudocode.

5.2 Adjustment Phase

Procedure ConstructGreedyRandomizedSolution()does not necessarily return a feasible solution.

In particular, constraints (3) and (4)-(5) may not be satisfied. To address this issue, a two-step

post-processing phase is applied. First, if (3) is not met, i.e., the number of territories q found in the

construction phase is different from p, we either merge territories (q > p) or split territories (q < p)

in procedure Adjustment(). The merging operation consists of iteratively considering a territory

of smallest size and merging it with its smallest neighboring territory. This reduces the number of

connected territories by one at each iteration. This is iteratively repeated until q = p. The splitting

operation consists of taking a territory of largest size, and splitting it into two connected territories

(by recursively applying the same algorithm to the subgraph induced by this territory with p = 2).

This increases the number of territories by one at each iteration, so the procedure is performed

iteratively until q = p. Note that the merging operation can be done very efficiently, while the

splitting operation is itself another TDP problem. However, the nature of the construction phase

makes merging more likely to be applied than splitting. In fact, in the empirical evaluation of the

procedure, we have found that the splitting operation is required in less than 0.4% of the cases.

9

5.3 Local Search

After this adjustment step, a post-processing phase consisting of a local search is performed. Proce-

dure PostProcessing() attempts both to recover feasibility of constraints (4)-(5) and to improve

the objective function value. In this local search, a merit function that weighs both infeasibility

with respect to (4)-(5) and the objective function value is used. In fact, this function is similar to

the greedy function used in the construction phase with the exception that now the sum of rela-

tive infeasibilities takes into consideration both lower and upper bound violation of the balancing

constraints. Specifically, for a given partition S = {V1, . . . , Vp}, its merit function ψ(S) is given by

ψ(S) = λF (S) + (1 − λ)G(S)

where

F (S) = max
k=1,...,p

{

max
i,j∈Vk

dij

}

,

and

G(S) =
p

∑

k=1

∑

a∈A

ga(Vk),

with ga(Vk) = (1/µa)max{wa(Vk)−(1+τa)µa, (1−τa)µa−wa(Vk), 0}, being the sum of the relative

infeasibilities of the balancing constraints.

i

j

V(t(j)) = V(t(i))

(a) Before Move(i,j)

(b) After Move(i,j)

i

j

V(t(j))
V(t(i))

Figure 3: A feasible move.

We use a neighborhood N(S) made up of all solutions reachable from S by moving a basic unit

i from its current territory t(i) to a neighbor district t(j), where j is the corresponding basic unit

10

in territory t(j) adjacent to i, without creating a non-contiguous solution. Such a move is denoted

by move(i, j) and is illustrated in Figure 3, where move(i, j) is represented by arc (i, j) (depicted

in bold). Note that move(i, j) is allowed only if Vt(j) ∪ {i} is connected (which is always the case if

arc (i, j) exists), and Vt(i) \ {i} remains connected. In practice an additional stopping criteria, such

as limit moves, is added to avoid performing the search for a relatively large amount of time. So

the procedure stops as soon a local optima is found or the number of moves exceeds limit moves.

5.4 Filtering

The most time consuming phase of the GRASP is certainly the local search. To speed up the

algorithm we consider the use of a filter to avoid executing the local search in unpromising bad

solutions generated by the previous phase. To achieve this, we store the average value β̄ of the

ratio (ψ(S) − ψ(S ′))/ψ(S), i.e., the average reduction obtained by the local search phase (S’) with

respect to the solution found in the previous phase (S). After the first 100 iterations, we make use

of this information to decide whether or not each constructed solution is submitted to the local

search. The idea is based on the rationale that if some reasonable threshold applied to the cost of

the constructed solution leads to a value much higher than the cost of the best solution found so

far, it is unlikely that the local search could produce a better solution than the current best. We

use β(1 − β̄) as a threshold, where β is an algorithmic parameter that weighs the tightness of this

threshold. A high (low) value for β implies that the threshold would be satisfied less (more) often

and thus the local search is performed less (more) often. Typical values of β are in the [0,1] range,

where β = 0 corresponds to the extreme case where the threshold is always satisfied so the local

search is always performed. This idea is similar to the one proposed by Prais and Ribeiro [18],

except that they used a fixed value of β = 0.9. In our case, we use values of β in the (0.4,0.9) range.

Results are reported in Section 6 (experiment C). The pseudocode of GRASP filter() is depicted

in Algorithm 4.

5.5 Reactive GRASP

The RCL quality parameter α is basically the only parameter to be callibrated in a practical

implementation of a GRASP. Feo and Resende [8] have discussed the effect of the choice of the

value of α in terms of solution quality and diversity during the construction phase and how it

impacts the outcome of a GRASP. In a Reactive GRASP approach [6, 18] this α is self-adjusted

according to the quality of the solutions previously found.

Instead of using a fixed value for the parameter α, which determines what elements are placed

in the RCL at each iteration of the construction phase, the procedure randomly selects this value

α from a discrete set A = {α1, . . . , αm} containing m predetermined acceptable values. Using

different values of α at different iterations allows for building different RCLs, possibly leading to

11

function GRASP filter (limit iterations, α, ρ, β, p)

Input: limit iterations := GRASP iteration limit; α := RCL quality parameter; ρ :=

territory closure parameter; β := filtering parameter; p := Number of territories.

Output: A feasible assigment Sbest.

0 Sbest ← ∅;

1 sum ← 0; times ← 0;

2 for (l = 1, . . ., limit iterations) do

3 S ← ConstructGreedyRandomizedSolution(α, ρ); q ← |S|;

4 if (q 6= p) then S ← Adjustment(S);

5 if (l ≥ 100 and β(1− β̄)ψ(S) < ψ(Sbest)) then

6 S′ ← PostProcessing(S);

7 if (ψ(S′) < ψ(Sbest)) then Sbest ← S′;

8 times ← times+1;

9 sum ← sum+(ψ(S)− ψ(S′))/ψ(S);

10 β̄ ← sum/times;

11 endif ;

12 endfor;

13 return Sbest;

end GRASP filter

Algorithm 4: Pseudocode of the GRASP with filter.

the construction of different solutions which would never be built if a single, fixed value of α was

used. Let pi denote the probability associated with the choice of αi, for i = 1, . . . ,m. Initially,

pi = 1/m, i = 1, . . . ,m, corresponding to a uniform distribution. Then these probabilities are

periodically updated using information collected during the search. Different strategies for this

update can be explored.

At any GRASP iteration, let Ai be the average value of the solutions obtained with α = αi in

the construction phase. The probability distribution is periodically updated every update period

iterations (we use update period = 200 in our implementation) as follows. Compute first qi =

(1/Ai)
δ for i = 1, . . . ,m, and then update the new values of the probabilities by normalization

of the qi as pi = qi/(
∑

j qj). Note that the smaller the Ai, the higher the corresponding pi.

Consequently, in the next block of iterations, the values of α that lead to better solutions have

higher probabilities and are more frequently used in the construction phase. The exponent δ may

be used and explored to differently atenuate the updated values of the probabilities. In our case,

we use δ = 8. The pseudocode of the Reactive GRASP is shown in Algorithm 5.

12

function GRASP reactive (limit iterations, update period, A, ρ, β, δ, p)

Input: limit iterations := GRASP iteration limit; update period := Reactive GRASP

update period; A = {α1, . . . , αm} := GRASP RCL quality parameter set; ρ := terri-

tory closure parameter; β := GRASP filtering parameter; δ := Parameter for atenu-

ating probabilities; p := Number of territories.

Output: A feasible assigment Sbest.

0 Sbest ← ∅;

1 sum ← 0; times ← 0;

2 sumi ← 0; pi ← 1/m; ni ← 0;

3 for (l = 1, . . ., limit iterations) do

4 Randomly select α = αi from A using pi’s;

5 ni ← ni + 1;

6 S ← ConstructGreedyRandomizedSolution(α, ρ); q ← |S|;

7 if (q 6= p) then S ← Adjustment(S);

8 if (l ≥ 100 and β(1− β̄)ψ(S) < ψ(Sbest)) then

9 S′ ← PostProcessing(S);

10 if (ψ(S′) < ψ(Sbest)) then Sbest ← S′;

11 times ← times+1;

12 sum ← sum+(ψ(S)− ψ(S′))/ψ(S);

13 β̄ ← sum/times;

14 sumi ← sumi + F (S′)

15 if (l mod update period = 0) then

16 Ai ← sumi/ni;

17 qi ← (1/Ai)
δ;

18 pi ← qi/(
∑

qi);

19 endif

20 endif ;

21 endfor;

22 return Sbest;

end GRASP reactive

Algorithm 5: Pseudocode of the Reactive GRASP.

13

6 Empirical Work

In this section we present experimental results obtained with a C++ implementation of the GRASP

for this territory design problem. The procedure was compiled with the Sun C++ compiler work-

shop 8.0 under the Solaris 9 operating system and run on a SunFire V440. For the experiments,

randomly generated problems based on real-world data provided by the industrial partner were gen-

erated. Each instance topology was randomly generated as a planar graph in the [0, 100] × [0, 100]

plane. Then, the three node activities were generated from a uniform distribution in the [4,20],

[15,400] and [15,100] ranges for number of customers, product demand, and workload, respectively.

In addition, four different types of instances according to parameter τa are considered. Recall that

this parameter sets the allowable deviation from the target of the balancing constraints. We denote

these sets as DS30, DS20, DS10, and DS05, corresponding to a τa value of 0.30, 0.20, 0.10, and

0.05, respectively. In this sense, DS30 and DS20 are referred to as the loosely constrained sets,

and DS10 and DS05 as the tightly constrained sets. For each of these sets, 20 different instances of

size n = 500 and p = 10 were generated. The choice of size is justified because this resembles the

one currently used in the specific real-world application. Throughout the evaluation, the GRASP

is run with limit iterations = 1000 unless otherwise stated.

Experiment A

In this part of the work, we study the sensitivity of the algorithm with respect to the choice of

the parameter ρ, which is used within the GRASP construction phase, for deciding when to close

(stop allocating new nodes to it) a currently active territory and start a new one (Section 5.1).

To this effect, we run the GRASP with no local search phase, and we measure the quality of the

weighted objective function (ψ), the distance-based measure (F), and the degree of infeasibility

(G). Results over twenty 500-node instances both for loose and tight balancing constraints are

reported in Table 1 and Table 2, respectively. In this study, the GRASP parameter α is set to 0.3.

The results in Table 1 show that for loosely constrained instances the value ρ = 0.8 gave the

best results for all three evaluated measures: weighted objective function, distance-based measure,

and the degree of infeasibility. In particular, all the solutions obtained with the value ρ = 0.8 were

feasible for all the instances in DS30, and all but one instance in DS20 (in which the deviation from

feasibility was really small). For instances in DS30, the second best choice was ρ = 0.6, whereas

for instances in DS20 the second best choice was ρ = 1. These results indicate that for very

loosely constrained instances, small values of ρ give better results, whereas when instances become

somewhat more constrained, higher values of ρ = 0.6 yield better results. This tendency is, in fact,

confirmed by the results in Table 2 where we can see that for tightly constrained instances the value

ρ = 1 gave the best results. It is worth noting that even for really tightly constrained instances,

like the ones in set DS05, the constructive phase generates solutions where, on the average, the sum

14

Table 1: Evaluation of GRASP parameter ρ on loose instances (DS30 and DS20)

500-node instances DS30 DS20

Statistic ρ = 1.0 ρ = 0.8 ρ = 0.6 ρ = 1.0 ρ = 0.8 ρ = 0.6

Weighted objective Best 0.39 0.05 0.16 0.36 0.06 0.73

ψ(S) Average 1.14 0.05 0.33 0.88 0.06 1.00

Worst 1.46 0.06 0.40 1.15 0.06 1.37

Objective (dispersity) Best 25.91 23.88 30.11 23.63 24.46 27.80

F (S) Average 29.41 25.07 32.81 31.33 26.44 33.07

Worst 36.67 26.94 36.84 43.47 29.01 38.43

Sum of relative infeasibilities Best 0.46 0.00 0.12 0.44 0.00 0.94

G(S) Average 1.53 0.00 0.36 1.16 0.00 1.32

Worst 2.00 0.00 0.47 1.53 0.01 1.85

CPU time (sec) Phase 1 119.65 94.30 74.45 104.15 83.50 66.30

Phase 2 78.60 63.60 72.30 70.00 61.55 69.10

Total 198.25 157.90 146.75 174.15 145.05 135.40

of relative infeasibility is very small, indicating that most of these solutions are feasible and when

not their deviation from feasibility is small. As for the CPU times, both with loosely constrained

instances and for tightly constrained instances, higher values of ρ are more time consuming. This is

certainly due to the fact that for each territory that is being constructed higher values of ρ require

more iterations of the constructive phase until the threshold value to close that territory is reached.

Table 2: Evaluation of GRASP parameter ρ on tight instances (DS10 and DS05)

500-node instances DS10 DS05

Statistic ρ = 1.0 ρ = 0.8 ρ = 1.0 ρ = 0.8

Weighted objective Best 0.17 0.25 0.16 1.22

ψ(S) Average 0.37 0.70 0.22 1.93

Worst 0.52 1.00 0.34 2.35

Objective (dispersity) Best 25.31 25.20 28.53 28.00

F (S) Average 30.64 32.44 33.11 34.37

Worst 36.10 44.13 39.56 52.75

Sum of relative infeasibilities Best 0.16 0.25 0.13 1.62

G(S) Average 0.44 0.89 0.21 2.65

Worst 0.65 1.31 0.37 3.26

CPU time (sec) Phase 1 95.55 78.05 91.10 75.20

Phase 2 64.95 65.85 62.20 67.65

Total 160.50 143.90 153.30 142.85

Since this experiment shows that loosely constrained instances can be easily solved, in all the

remaining experiments we have used the more challenging tightly constrained instances in DS10

and DS05, and the value of the parameter ρ is fixed to one.

15

Experiment B

To investigate the behavior of the local search procedure, we implemented two versions, each with

a different strategy for exploring the neighborhood. The first version corresponds to a first found

scheme. That is, the procedure examines the neighborhood of a current solution in a random

fashion, one element at a time, and then makes a move to the first improving neighbor. The second

version is a steepest-descent approach, which examines the entire neighborhood and moves to the

best neighbor. These two versions are referred to as FF (first found) and BN (best neighbor).

We set the GRASP parameters limit iterations = 500, α = 0.3, ρ = 1.0, and limit moves = 100.

Computational results on sets DS10 and DS05 are presented in Table 3.

Table 3: Evaluation of local search on tight instances (DS10 and DS05)

500-node instances DS10 DS05

Statistic FF BN FF BN

Weighted objective Best 0.05 0.06 0.06 0.07

ψ(S) Average 0.05 0.06 0.06 0.09

Worst 0.06 0.07 0.09 0.14

Objective (dispersity) Best 23.42 25.51 23.83 24.63

F (S) Average 24.61 28.22 27.75 30.66

Worst 25.71 41.58 35.54 35.83

Sum of relative infeasibilities Best 0.00 0.00 0.00 0.01

G(S) Average 0.00 0.00 0.00 0.03

Worst 0.00 0.01 0.01 0.11

Relative LS improvement Average 92.96 86.35 88.53 77.37

CPU time (sec) Phase 1 48.15 48.65 46.30 46.65

Phase 2 32.00 32.20 30.85 30.90

Phase 3 46.55 52.45 49.50 53.55

Total 124.70 133.30 126.65 131.10

As can be seen, the results in Table 3 indicate that the two versions of the local search in-

deed provide with considerably improved solutions. This is true for all three evaluated measures:

weighted objective function, distance-based measure, and the degree of infeasibility. The reductions

in the sum of relative infeasibilities are specially relevant, since the improvement obtained with the

local search is in all cases above 74%. In particular, all the solutions found with the FF strategy

for the DS10 instances were feasible, and the sum of infeasibilities was 0.01 for the most infeasible

solution generated for any of for the DS05 instances. Moreover, the FF strategy gave also the best

results for the two other measures, and, at the same time, it was also less time consuming than

BN. Hence, given that this strategy gave the best results in the remaining experiments we have

used the FF strategy for the local search phase.

16

Experiment C

As seen in the previous experiment, local search can be quite time consuming and, on the average,

consumes more than one third of the total time of the algorithm. As stated in Section 5.4, one way

to speed up the procedure is to use a filter that attempts to avoid applying the local search phase

to unpromising bad solutions generated by the construction phase. To do this, at every iteration

we store the average value β̄, (0 ≤ β̄ ≤ 1), of the ratio (ψ(S) − ψ(S ′))/ψ(S). The value β̄ is the

average reduction obtained by the local search phase with respect to the solution obtained in the

construction phase. After the first 100 iterations, we make use of this information to decide whether

or not each constructed solution is submitted to the local search phase. The idea is based on the

premise that if some reasonable threshold applied to the cost of the constructed solution leads to a

value significantly higher than the cost of the best solution found so far, it is unlikely that the local

search could yield a better solution than the current best. To investigate this, we use as threshold

the value β × (1 − β̄), with 0 ≤ β ≤ 1, and we analyze different values of β: 0.0 (which means no

filtering), 0.6, and 0.8.

Table 4: Evaluation of filtering on instances DS10

500-node instances Filtering G F(β)

Statistic GRASP G F(0.6) G F(0.8)

Objective (dispersity Best 23.60 23.72 24.04

F (S) Average 24.53 24.58 24.97

Worst 25.62 25.33 26.46

Sum of relative infeasibilities Best 0.00 0.00 0.00

G(S) Average 0.00 0.00 0.00

Worst 0.00 0.00 0.00

Number of infeasible solutions 0 0 0

Local search Min 1000 270 146

(number of times invoked) Average 1000 515 244

Max 1000 675 289

Relative LS improvement Average 95.37 94.20 93.34

CPU time (sec) Phase 1 95.25 94.60 97.00

Phase 2 64.75 64.85 64.85

Phase 3 100.15 41.15 19.60

Total 260.15 200.60 181.45

The fixed parameters for this experiment are limit iterations = 1000, limit moves = 200, and

α = 0.3. Results for DS10 and DS05 are shown in Table 4 and Table 5, respectively. In these tables

different columns correspond to different values of β, and the value of β is given in brackets at the

heading of the column.

The results depicted in both tables clearly indicate that the use of a filter to limit the number of

local search phases that are applied, is really worthwhile, since results that are very similar in terms

17

of quality can be obtained with a much smaller work load. In particular, the results in Table 4

show that for the instances in DS10, when β = 0.8, i.e., on the average local search is applied

on about 20% of the iterations, the obtained solutions are similar in terms of feasibility and only

slightly worse in terms of the objective function, with a CPU time reduction of 30% of the total

time, or 52%, if we measure the time reduction with respect to the one required by the local search

phase. The results for DS05 given in Table 5 lead to similar conclusions. It is remarkable that

for so tightly constrained instances, an average reduction of the 60% on the number of times that

the local search is applied (β = 0.6) gives results that are nearly the same as when local search is

applied at all iterations.

Table 5: Evaluation of filtering on instances DS05

500-node instances Filtering G F(β)

Statistic GRASP G F(0.4) G F(0.6) G F(0.8)

Objective (dispersity) Best 24.82 23.56 24.09 23.83

F (S) Average 26.59 26.66 27.20 26.85

Worst 31.20 31.40 34.99 30.91

Sum of relative infeasibilities Best 0.00 0.00 0.00 0.00

G(S) Average 0.00 0.00 0.00 0.01

Worst 0.01 0.02 0.01 0.04

Number of infeasible solutions 2 2 2 8

Local search Min 1000 392 219 153

(number of times invoked) Average 1000 641 272 197

Max 1000 904 329 224

Relative LS improvement Average 93.02 91.17 88.03 85.00

CPU time (sec) Phase 1 90.80 90.80 90.80 90.80

Phase 2 62.85 62.85 62.85 62.85

Phase 3 113.75 64.10 24.20 17.90

Total 267.40 217.75 177.85 171.55

Experiment D

This experiment is focused on the appropriate choice of the quality parameter α in the construction

phase. Recall that this is the parameter that regulates the size of the Restricted Candidate List.

The purpose of this experiment is twofold: on the one hand, to evaluate the algorithmic performance

as a function of the value of α; and, on the other hand, to analyze the effectiveness of a reactive

version of the algorithm when the value of α instead of being fixed as a parameter, is self-adjusted,

based on the history of the search.

For evaluating the performance of the algorithm in terms of α, we set limit iterations = 1000,

limit moves = 200, ρ = 1.0, and β = 0, and we compare the results obtained with the different

values of α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, on data sets DS10 and DS05. A summary of the results is

18

Table 6: Evaluation of quality parameter α.

500-node instances DS10

Statistic α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

Average relative deviation from best 2.19 1.49 2.58 2.72 3.42

Worst relative deviation from best 6.92 5.31 5.81 5.79 10.44

Number of infeasible solutions 0 0 0 0 0

Number of best solutions 7 6 5 3 2

500-node instances DS05

Statistic α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

Average relative gap (*) 3.52 3.89 3.46 3.03 4.89

Worst relative gap (*) 12.06 9.18 9.15 13.40 9.87

Number of infeasible solutions 2 2 1 0 0

Number of best solutions 5 3 4 7 2

(*) Excludes instances d500-03 and d500-06

displayed in Table 6. For each solution, its average relative deviation is computed with respect

to the best known feasible solution as 100 × (fheuristic − fbest)/fbest). Thus, the results for DS05

include only those for which a feasible solution was found (18 out of 20 instances). As can be seen,

for the instances in DS10, the best results were obtained with α = 0.2, both in terms of quality

and feasibility, whereas for instances in DS05, α = 0.4 gave the best results, in terms of feasibility

and average quality, even if the worst relative gap is the largest one. Possibly, α = 0.3 is a better

compromise in this sense. In any case, the obtained results indicate that as the instances become

more tightly constrained and, thus, more difficult to solve in terms of feasibility, a higher value of

α can be preferred.

To conclude this subsection, in Tables 7 and 8 we summarize the numerical results obtained

with the Reactive GRASP (R-GRASP) for the same set of instances DS10 and DS05, respectively.

In any of these tables, for a given instance and a fixed value of α, the corresponding entry depicts

the relative gap of the best solution obtained for this instance with this value of α with respect to

the best known feasible solution for that instance (obtained with any of the tested α’s). The column

under the heading RG gives the relative gaps of the best feasible solution obtained with R-GRASP

(again with respect to the best known feasible solution), whereas the value ᾱ gives the value of α

that gave the best solution in R-GRASP. The results of both tables indicate that R-GRASP is a

very suitable option. Note that even if, on the average, R-GRASP is not the best option neither for

DS10 nor for DS05, it is really a good compromise and it has the clear advantage that no tuning is

needed to find out the better option for the parameter α. For instance, in DS10, it is observed that

lower values of α seem to deliver better solutions; however, this statement does not hold for DS05.

In fact, these lower values of α failed to find feasible solutions in some of the DS05 instances. In

this regard, the Reactive GRASP exhibits a more robust behavior.

19

Table 7: Reactive GRASP comparison on DS10.

GRASP R-GRASP

Instance α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 RG ᾱ

d500-01 6,30 1,52 0,99 6,17 7,94 0,00 0,2

d500-02 0,00 2,41 2,73 0,29 1,51 4,93 0,1

d500-03 4,96 0,00 2,41 2,01 1,25 1,25 0,4

d500-04 0,00 2,01 3,87 3,25 7,06 4,55 0,1

d500-05 2,84 0,72 2,86 5,79 0,00 2,84 0,3

d500-06 3,34 0,31 1,49 2,91 4,67 0,00 0,1

d500-07 0,00 0,00 0,00 3,24 1,39 1,24 0,1

d500-08 3,24 3,19 3,49 2,05 2,93 0,00 0,2

d500-09 0,00 3,67 4,80 4,66 6,21 2,62 0,1

d500-10 0,00 1,50 0,00 5,11 4,01 0,00 0,2

d500-11 1,24 0,00 3,00 5,41 4,58 3,73 0,2

d500-12 5,51 3,78 4,60 0,00 10,44 7,78 0,3

d500-13 2,96 2,96 0,00 3,84 3,60 3,84 0,2

d500-14 6,92 0,00 5,55 2,12 4,01 3,97 0,5

d500-15 5,31 5,31 0,00 1,16 1,20 0,60 0,3

d500-16 2,27 0,91 4,97 2,07 0,00 1,25 0,4

d500-17 5,95 4,54 6,69 4,21 6,22 0,00 0,4

d500-18 0,00 1,83 1,83 0,18 1,09 1,50 0,1

d500-19 0,00 2,76 5,81 2,76 7,24 5,40 0,3

d500-20 0,71 0,00 4,29 4,76 0,75 0,24 0,3

Average 2,58 1,87 2,97 3,10 3,81 2,29

Worst 6,92 5,31 6,69 6,17 10,44 7,78

No. best 7 5 4 1 2 5

20

Table 8: Reactive GRASP comparison on DS05.

GRASP R-GRASP

Instance α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 RG ᾱ

d500-01 6,20 3,39 3,53 5,59 6,98 0,00 0,1

d500-02 8,23 0,00 6,12 10,55 8,17 5,64 0,4

d500-03 F F F 33,10 0,00 F 0,5

d500-04 0,00 4,80 2,74 9,02 4,81 4,15 0,3

d500-05 2,37 1,00 3,93 0,73 3,07 0,00 0,3

d500-06 F F 0,00 9,56 14,28 7,93 0,5

d500-07 12,06 4,90 0,00 5,26 6,34 1,94 0,2

d500-08 0,14 1,42 3,49 3,01 2,51 0,00 0,1

d500-09 4,83 2,02 9,15 0,00 7,44 7,99 0,2

d500-10 5,56 3,42 2,85 0,00 3,43 10,68 0,1

d500-11 0,00 3,13 2,97 5,11 4,72 4,61 0,1

d500-12 3,45 7,77 6,00 0,00 8,05 0,19 0,3

d500-13 6,52 2,99 0,00 2,43 4,98 2,93 0,3

d500-14 0,04 3,97 1,57 1,26 0,78 0,00 0,2

d500-15 8,01 9,18 0,00 1,45 0,00 6,14 0,4

d500-16 0,00 6,52 6,60 13,40 8,32 6,52 0,4

d500-17 1,54 6,73 3,85 0,00 5,77 1,61 0,2

d500-18 5,33 8,44 4,68 0,00 9,87 2,63 0,3

d500-19 3,00 4,73 5,21 0,00 2,75 10,69 0,5

d500-20 0,49 0,00 3,93 1,18 4,46 2,86 0,1

Average (*) 3,77 4,13 3,70 3,28 5,14 3,81

Worst (*) 12,06 9,18 9,15 13,40 9,87 10,69

No. best 4 3 3 7 3 4

F: Failed to find a feasible solution

(*) Excludes instances d500-03 and d500-06

21

Experiment E

In this part of the work, we perform a comparison of the proposed approach with current pratice. To

this end we set up the experiment as follows. We apply a method that reflects the current standard

for building solutions. The procedure works in a constructive fashion building one territory at a

time. In this phase, no attention is paid to the balancing constraints, but only to the compactness

measure. The method builds territories where each territory has about the same number of nodes

(given by n/p). Although this method is not too bad on delivering feasible solutions to the less

restricted problems (such as DS030), it is certainly extremely limited when addressing the more

restricted problems. Thus, in an attempt to improve these solutions, we also apply the local search

phase to each instance.

Table 9: Feasibility effect of local search on firm’s solutions.

500-node instances DS10 DS05

Statistic Firm Firm+LS Firm Firm+LS

Sum of relative infeasibilities Best 0.076 0.000 0.905 0.000

Average 1.420 0.001 2.080 0.028

Worst 2.810 0.021 3.420 0.131

Number of infeasible solutions 20 5 20 18

Table 9 shows a comparison, in terms of the feasibility issue, of the solutions found by the

firm’s method (Firm) and those found by adding the local search (Firm+LS). As can seen, the

local search has a significant improving effect by considerably reducing the average infeasibility,

and finding about 50% of feasible solutions which contrasts with the 0% figure by the current

practice.

Next, we compare the Firm+LS with our Reactive GRASP implementation. Figures 6 and 7

show a comparison between the two in data sets DS10 and DS05, respectively, in terms of the

value of the dispersity function. As can be seen, the proposed approach outperforms the current

practice by a significant margin. Note that, there are only two cases were a better solution was

found by Firm+LS; however, these two rendered infeasible solutions with respecto to the balancing

constraints.

22

DS10

20.0

25.0

30.0

35.0

40.0

45.0

50.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Instance

D
is

p
er

si
ty

 f
u

n
ct

io
n

Firm+LS
R-GRASP

Figure 6: Comparison of dispersity function on DS10.

DS05

20.0

25.0

30.0

35.0

40.0

45.0

50.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Instance

D
is

p
er

si
ty

 f
u

n
ct

io
n

Firm+LS
R-GRASP

Figure 7: Comparison of dispersity function on DS05.

23

Finally, Table 10 shows a comparison between these two methods in terms of their relative

infeasibility. Once again, we can see the proposed apporach behaves in a significantly more robust

way as it was able to deliver feasible instances to all 40 instances tested, but one.

Table 10: Feasibility comparison.

500-node instances DS10 DS05

Statistic Firm+LS R-GRASP Firm+LS R-GRASP

Sum of relative infeasibilities Best 0.000 0.000 0.000 0.000

Average 0.001 0.000 0.028 0.001

Worst 0.021 0.000 0.131 0.010

Number of infeasible solutions 5 0 18 1

7 Conclusions

In this paper we have presented a GRASP approach to a sales territory design problem with

multiple node balance requirements. The problem that is motivated by a real-world application

in the beverage industry, includes several planning criteria such as balancing among territories,

contiguity, and connectivity. Each of the GRASP components was fully evaluated over a range of

instances randomly generated according to real-world scenarios. The reactive GRASP with filtering

was very successfull as it was able to obtain feasible solutions to all instances on data sets DS30,

DS20, and DS10, and all but one of the DS05 data set.

In particular, the local search scheme produced a significant improvement over the quality of

the instances found in the construction phase, producing average improvements of 75-90% with

respect to the construction phase, and doing an excellent job on recovering feasibility with respect

to the balancing constraints.

When compared to current practice, it is clear from the empirical evidence that the proposed

approach finds solutions of significantly better quality, dominating entirely to the best solutions

found by the firm’s method. In addition, the method showed a very robust behavior in finding

feasible solutions in a relatively small computational effort.

Several issues remain to be investigated. While the dominance of the proposed approach is

clear, the development of a lower bound would help assessing the overall quality of the solutions.

The MILP formulation has an exponential number of connectivity constraints, so special care

must be taken to appropriately address this issue. A problem with 500 nodes has 250,000 binary

variables. To this end, it seems possible trying to exploit the underlying structure of the embedded

multicapacitated vertex p-center problem. This study is currently being pursued by the authors.

So far we have developed both construction and local search procedures, which in turn are at

the core of more sophisticated metaheuristics such as tabu search and scatter search, that could be

24

worthwhile the effort.

Acknowledgments: The research of the first and second author is supported by grant SAB2004–

0092 of the Spanish State Secretary for Universities and Research under its Visiting Scholar Program

and by grant MTM2006–14961–C05–01 of the Inter-Ministerial Spanish Commission of Science and

Technology, respectively.

References

[1] F. Bação, V. Lobo, and M. Painho. Applying genetic algorithms to zone design. Soft Com-

puting, 9(5):341–348, 2005.

[2] M. Blais, S. D. Lapierre, and G. Laporte. Solving a home-care districting problem in an urban

setting. Journal of the Operational Research Society, 54(11):1141–1147, 2003.

[3] B. Bozkaya, E. Erkut, and G. Laporte. A tabu search heuristic and adaptive memory procedure

for political districting. European Journal of Operational Research, 144(1):12–26, 2003.

[4] F. Caro, T. Shirabe, M. Guignard, and A. Weintraub. School redistricting: Embedding GIS

tools with integer programming. Journal of the Operational Research Society, 55(8):836–849,

2004.

[5] S. J. D’Amico, S.-J. Wang, R. Batta, and C. M. Rump. A simulated annealing approach to

police district design. Computers & Operations Research, 29(6):667–684, 2002.

[6] H. Delmaire, J. A. Dı́az, E. Fernández, and M. Ortega. Reactive GRASP and tabu search

based heuristcs for the single source capacitated plant location problem. INFOR: Information

Systems and Operational Research, 37(3):194–225, 1999.

[7] A. Drexl and K. Haase. Fast approximation methods for sales force deployment. Management

Science, 45(10):1307–1323, 1999.

[8] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. Journal of

Global Optimization, 6(2):109–133, 1995.

[9] B. Fleischmann and J. N. Paraschis. Solving a large scale districting problem: A case report.

Computers & Operations Research, 15(6):521–533, 1988.

[10] R. S. Garfinkel and G. L. Nemhauser. Solving optimal political districting by implicit enumer-

ation techniques. Management Science, 16(8):B495–B508, 1970.

[11] S. W. Hess and S. A. Samuels. Experiences with a sales districting model: Criteria and

implementation. Management Science, 18(4):998–1006, 1971.

25

[12] S. W. Hess, J. B. Weaver, H. J. Siegfeldt, J. N. Whelan, and P. A. Zitlau. Nonpartisan political

redistring by computer. Operations Research, 13(6):998–1006, 1965.

[13] M. Hojati. Optimal political districting. Computers & Operations Research, 23(12):1147–1161,

1996.

[14] J. Kalcsics, S. Nickel, and M. Schröder. Toward a unified territorial design approach: Appli-

cations, algorithms, and GIS integration. Top, 13(1):1–74, 2005.

[15] O. Kariv and S. L. Hakimi. An algorithmic approach to network location problems. I: the

p-centers. SIAM Journal on Applied Mathematics, 37(3):513–538, 1979.

[16] A. Mehrotra, E. L. Johnson, and G. L. Nemhauser. An optimization based heuristic for

political districting. Management Science, 44(8):1100–1113, 1998.

[17] L. Muyldermans, D. Cattryse, D. Van Oudheusden, and T. Lotan. Districting for salt spreading

operations. European Journal of Operational Research, 139(3):521–532, 2002.

[18] M. Prais and C. C. Ribeiro. Reactive GRASP: An application to a matrix decomposition

problem in TDMA traffic assignment. Journal on Computing, 12(3):164–176, 2000.

[19] M. Segal and D. B. Weinberger. Turfing. Operations Research, 25(3):367–386, 1977.

[20] A. A. Zoltners and P. Sinha. Toward a unified territory alignment: A review and model.

Management Science, 29(11):1237–1256, 1983.

26

