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Abstract

This paper presents a branch-and-bound enumeration scheme for the makespan minimization of
the flowshop scheduling problem with setup times. The algorithm includes the implementation
of both lower and upper bounding procedures, a dominance elimination criterion, and special
features such as a partial enumeration strategy. A computational evaluation of the overall
scheme demonstrates the effectiveness of each component. Test results are provided for a wide

range of problem instances.

Keywords: flowshop scheduling, setup times, branch-and-bound, lower bounds, dominance
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1 Introduction

In this paper, we address the problem of finding a permutation schedule of n jobs in an m-
machine flowshop environment that minimizes the maximum completion time Ci,ax of all jobs,
also known as the makespan. The jobs are available at time zero and have sequence-dependent
setup times on each machine. All parameters, such as processing and setup times, are assumed
to be known with certainty. This problem is regarded in the scheduling literature as the
sequence-dependent setup time flowshop (SDST flowshop) and is evidently AP-hard since the
case where m = 1 is simply a traveling salesman problem (TSP).

Applications of sequence-dependent scheduling are commonly found in most manufactur-
ing environments. In the printing industry, for example, presses must be cleaned and settings
changed when ink color, paper size or receiving medium differ from one job to the next. Setup
times are strongly dependent on the job order. In the container manufacturing industry ma-
chines must be adjusted whenever the dimensions of the containers are changed, while in printed
circuit board assembly, rearranging and restocking component inventories on the magazine rack
is required between batches. In each of these situations, sequence-dependent setup times play
a major role and must be considered explicitly when modeling the problem.

In [17], we approached this problem from a polyhedral perspective; that is, we formulated
the problem as a mathematical program using two different models and studied the convex hull
of the set of feasible solutions. The motivation for that work was to attempt to exploit the
underlying traveling salesman polytope. We developed several classes of valid inequalities and
in [18], implemented them in a branch-and-cut (B&C) framework with limited success. The
main difficulty was the weakness of the lower bound obtained from the linear programming (LP)
relaxation. Despite efforts to improve the polyhedral representation of the SDST flowshop, the
quality of the LP lower bound remained poor.

This motivated the investigation of a series of non-LP-based lower bounding procedures
reported in this paper. By relaxing some machine requirements rather than the integrality
conditions on the mixed-integer programming (MIP) formulations, alternate lower bounding
procedures were devised. The first was a generalized lower bound (GLB) obtained by reducing
the original m-machine problem to a 2-machine problem; the second was a machine-based lower
bound (MBLB) obtained by reducing the original problem to a single machine problem. Both
procedures were found to produce results that were tangibly better than the LP-relaxation lower
bound, with the MBLB being more effective than the GLB. Extending these lower bounding
procedures to handle partial schedules as well, enabled us to develop an effective branch-and-
bound scheme.

The objective of this paper is to present and evaluate our enumeration algorithm for the

SDST flowshop. This includes the development of lower bounding schemes, a dominance elim-



ination rule, and upper bounding procedures. Qur results indicate the effectiveness of the
proposed algorithm when tested on a wide variety of randomly generated instances. We were
able to find optimal solutions in about 50% of the instances tested, and near-optimal solutions
in the others.

The rest of the paper is organized as follows. The most relevant work in the flowshop
scheduling area is presented in Section 2. In Section 3, we introduce notation and formally
define the problem. In Section 4, we give a full description of the branch-and-bound algorithm,
followed in Section 5 by the presentation and evaluation of our computational experience. We

conclude with a discussion of the results.

2 Related Work

For an excellent review of flowshop scheduling in general, including computational complexity
results, see [16]. For an overview on complexity results and optimization and approximation
algorithms involving single-machine, parallel machines, open shops, job shops, and flowshop

scheduling problems, see [11].

2.1 Minimizing Makespan in Regular Flowshops

The flowshop scheduling problem (with no setups) has been studied extensively over the past
25 years. Several exact optimization schemes, mostly based on branch and bound, have been
proposed for F'||Cpax including those of Lageweg et al. [10], Potts [15] and Carlier and Rebai [2].
The 3-machine case is considered by Ignall and Schrage [8] and Lomnicki [12]. Della Croce et

al. [3] present a branch-and-bound approach for the 2-machine case.

2.2 Sequence-Dependent Setup Times

To the best of our knowledge, no effective methods to solve the SDST flowshop optimally
have been developed to date. Efforts to solve this problem have been made by Srikar and
Ghosh [21], and by Stafford and Tseng [22] in terms of solving MIP formulations. Srikar and
Ghosh introduced a formulation that requires only half the number of binary variables as does
the traditional TSP-based formulation. They used this model and the SCICONIC/VM mixed-
integer programming solver (based on branch and bound) to solve several randomly generated
instances of the SDST flowshop. The largest solved was a 6-machine, 6-job problem in about
22 minutes of CPU time on a Prime 550.

Later, Stafford and Tseng corrected an error in the Srikar-Ghosh formulation and using
LINDO solved a 5 x 7 instance in about 6 CPU hours on a PC. They also proposed three new
MIP formulations of related flowshop problems based on the Srikar-Ghosh model.



In [17], we studied the polyhedral structure of the set of feasible solutions based on those
models. We developed several classes of valid inequalities, and showed that some of them
are indeed facets of the SDST flowshop polyhedral. In [18], a branch-and-cut scheme was
implemented to test the effectiveness of the cuts. Even though we found B&C to provide better
solutions than the previously published work (based on straight branch and bound), we were
still unable to solve (or provide a good assessment of the quality of the solutions in terms of its
optimality gap) moderate to large size instances. The largest instance solved to optimality (in
about 60 minutes of CPU on a Sun workstation) was a 6-machine, 8-job problem.

Other approaches have focused on heuristics [19, 20] and variations of the SDST flowshop.
For example, Gupta [5] presents a branch-and-bound algorithm for the case where the objective
is to minimize the total machine setup time. No computational results are reported. All other

work has been restricted to the 1- and 2-machine case.

3 Statement of Problem

In the flowshop environment, a set of n jobs must be scheduled on a set of m machines, where
each job has the same routing. Therefore, without loss of generality, we assume that the
machines are ordered according to how they are visited by each job. Although for a general
flowshop the job sequence may not be the same for every machine, here we assume a permutation
schedule; i.e., a subset of the feasible schedules that requires the same job sequence on every
machine. We suppose that each job is available at time zero and has no due date. We also
assume that there is a setup time which is sequence dependent so that for every machine 7 there
is a setup time that must precede the start of a given task that depends on both the job to
be processed (k) and the job that immediately precedes it (j). The setup time on machine ¢ is
denoted by s;;; and is assumed to be asymmetric; i.e., s;;5 # s;1;. After the last job has been
processed on a given machine, the machine is brought back to an acceptable “ending” state. We
assume that this last operation can be done instantaneously because we are interested in job
completion time rather than machine completion time. Our objective is to minimize the time at
which the last job in the sequence finishes processing on the last machine. In the literature [14]

this problem is denoted by F'm|s;;i, prmu|Cpax or SDST flowshop.

Example 1 Consider the following instance of F2|s;;5, prmu|Cpax with four jobs.

py |1 2 3 4 sk | 1 3 4 sop |12 3 4
116 3 2 1 0 |3 4 1 7 0 |2 3 1 6
2 2 2 4 2 1| - 3 2 1 |- 1 3 5
2 |5 - 3 1 2 |4 - 3 1
3 /2 1 - 5 3 13 4 - 1
4 |3 2 5 - 4 |7 4 -




A schedule S = (3,1,2,4) is shown in Figure 1. The corresponding makespan is 24, which

is optimal. a
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Figure 1: Fzample of a 2 x 4 SDST flowshop

3.1 Notation

In the reminder of the paper, when we refer to the SDST flowshop we make use of the following

notation.

Indices and sets

m number of machines
n number of jobs
i machine index; i € I = {1,2,...,m}

J, k.1 job indices; j,k,le J={1,2,...,n}

Jo = J U {0} extended set of jobs, including a dummy job denoted by 0

Input data

pi;  processing time of job j on machine ;7€ 1,5 € J

si;5 setup time on machine ¢ when job j is scheduled right before jobk;i € I, j € Jo, ke J

A job j (without brackets) refers to the job j itself, whereas job [j] (with brackets) refers
to the index of the job scheduled in the j-th position. In Section 4 indices ¢, 7, k,[ are used to

represent entities of the search tree (subproblems, nodes).

4 Branch and Bound

The feasible set of solutions of the SDST flowshop problem from a combinatorial standpoint can

be represented as X = {set of all possible n-job schedules}. This is a finite set so an optimal



solution can be obtained by a straightforward method that enumerates all feasible solutions in
X and then outputs the one with the minimum objective value. However, complete enumeration
is hardly practical because the number of cases to be considered is usually enormous. Thus any
effective method must be able to detect dominated solutions so that they can be excluded from
explicit consideration.

A branch-and-bound (B&B) algorithm for a minimization problem has the following general

characteristics:
e a branching rule that defines partitions of the set of feasible solutions into subsets

e a lower bounding rule that provides a lower bound on the value of each solution in a subset

generated by the branching rule
e a search strategy that selects a node from which to branch

Additional features such as dominance rules and upper bounding procedures may also be present,
and if fully exploited, could lead to substantial improvements in algorithmic performance.

A diagram representing this process is called an enumeration or search tree. In this tree,
each node represents a subproblem P;. The number of edges in the path to P; is called the
depth or level of P;. The original problem F, is represented by the node at the top of the tree
(root). In our case, the schedule S associated with Fy is the empty schedule.

The fundamentals of B&B can be found in Ibaraki [6, 7]. In this paper we limit the discussion
to our proposed algorithm, BABAS (Branch-and-Bound Algorithm for Scheduling).

4.1 Branching Rule

The following branching rule is used in BABAS. Nodes at level k of the search tree correspond
to initial partial sequences in which jobs in the first k positions have been fixed. More formally,
each node (subproblem) of the search tree can be represented by Py, with associated schedule
Sk, where S, = ([1],...,[k]) is an initial partial sequence of k jobs. Let Uy denote the set of
unscheduled jobs. Then, for Uy # (), an immediate successor of Py has an associated schedule
of the form 5; = ([1],...,[k],j), where j € Uj. Figure 2 illustrates this rule for a 4-job instance.
Node P; represents a problem at level 1 of the enumeration tree; where only one job has been

scheduled; i.e., 51 = (3).

4.2 Lower Bounds

We now develop two lower bounding procedures that turned out to be more effective than the
linear programming relaxation lower bound. These procedures are based on machine completion

times of partial schedules.
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Figure 2: Illustration of the branching rule for a 4-job instance

Given a partial schedule S;, let S; denote a schedule formed by all unscheduled jobs. We
shall now derive lower bounds on the value of the makespan of all possible completions S;5;
of S;, where S;5; represents the concatenation of jobs in §; and S;. We shall be particularly
concerned with the trade-off between the sharpness of a lower bound and its computational
requirements. A stronger bound eliminates relatively more nodes of the search tree, but if its
computational requirements become excessive, it may become advantageous to search through

larger portions of the tree using a weaker bound that can be computed quickly.

Generalized Lower Bounds: The basic idea here is to obtain lower bounds by relaxing the
capacity constraints on some machines, i.e., by assuming a subset of the machines to have
infinite capacity. The only solvable case among flowshop problems is the 2-machine regular (no
setups) flowshop (Johnson [9]). We know that any problem involving three or more bottleneck
machines is likely to be ANP-hard. We therefore restrict ourselves to choosing at most two
machines u and v, 1 < u < v < m, to be bottleneck machines. For any given pair (u,v) we now
develop a lower bound g,, by relaxing the capacity constraints on all machines except u and v.
The development below shows how this lower bound can be reduced to the 2-machine case.

Let the sequence of the first & jobs be S = ([1],]2],...,[k]) and the set of remaining
n — k (unscheduled) jobs be Uy. Given Sy, the problem of determining an optimal sequence
for the remaining jobs is called a subproblem of depth k and is represented by FS(S%). Let
Sk = ([k+1],[k+2],...,[n]) be an arbitrary sequence of jobs in Uy, and let p;(Uy,) = > heu, Pih-
Thus the completion time Cj,,) of job [n] on machine 7 can be derived as follows.

n

Cipg = Cug+ Y sip—y) + pr(Uk)
h=k+1



Cofpp = max {Cz[k] + > sopeagn + p2(Uk)s Cipg + st + le(Sk)}

h=k+1
Cm[n] = max{ —I_ Z —I_ pm(Uk) Cm —1[k] + Sm—1[k][k+1] + Tm—l,m(gk)v
h=k+1
s Chpg) + Sipggpe+1) + T1m(5k)} (1)

where T,,,(S%) is the elapsed time from the start of job [k + 1] on machine u until the finish
of job [n] on machine v. Subproblem FS(S%) is to determine the sequence S that minimizes
Cmax(skgk) =C mn]» the makespan of schedule S35%.

The definition of Ty, (Sk) is consistent with subsequences of Sy, that is, T, (([k+1],...,[5]))
is the elapsed time from the start of job [k 4+ 1] on machine w until the finish of job []] on
machine v, for k+ 1 < j < n. Thus T,W(([k + 1],...,[j])) can be recursively computed as

follows:
Tw(([k+1])) = Pupt
Tw(([k+1])) = Zpi[k-l—l] w=u+1,...,v
Tl ([k+ 1], [3])) = Pupeyy + Z 5+ Pulh] j=k+1,...,n
h=k+2

Tk + 1), ) = mw{ﬂmﬂ%+1L~wU—HD+swpmm

Towmr (k4 e D by = k4 Lieon
w=u+1,...,v

There is an alternate way to look at this recursion. To help understand the computations
we introduce the following directed graph G/, (depicted in Figure 3) which is constructed as
follows: for each operation, say the processing of job [j] on machine ¢, there is a node (:[j])
with a weight that is equal to p;;;). For each machine i, ¢ € {u,u+1,...,0 — 1,v}, there is a
node (i[k+ 1]) that represents the initial or current state (job [k + 1] is the first job in S%). The
setup times s;;);;+1] are represented by an arc going from node (i[j]) to node (i[j + 1]) with a
weight that is equal to s;j;)j41], for i = w,u+1,...,0 = 1,0, j =k +1,...,n — 1. Node (i[j]),
i=uu+1,...,0—1,7=Fk+1,...,n— 1, also has an arc going to node (¢ + 1,[j]) with
zero weight. Note that nodes corresponding to machine v have only one outgoing arc, and that
node (v[n]) (target) has no outgoing arcs. The following proposition establishes the relationship
between T,,(Sy) and the critical path of G,
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Figure 3: Directed graph Gy, for computation of T, in a SDST flwoshop

Proposition 1 T,,(S5%), with Sy = ([k+ 1],...,[n]), is determined by the mazimum length or
critical path from node (ulk + 1]) to node (v[n]).

Proof: The proof is by induction on w + j (second machine index and job index of last job
in subsequence ([k + 1],...,[j]). The trivial case w+ j = u 4+ k 4 1 corresponds to w = u and
Jj = k+1 and is easily verified (only source node (u[k + 1]) involved with length Ty, (([k+ 1]))).

The induction hypothesis assumes that Ty, (([k + 1],...,[j])) is the maximum length path
from node (u[k + 1]) to node (w[j]) holds for w + j < 74 [. It remains to prove that this result
holds for w4 j =7+ [ as well.

Consider T;(([k 4+ 1],...,[l])) given by

Tk, 1)) = max { T [k 1o [ = 1)) 4+ sy Taims (4 1. D) i

Since each of the T),, in the maximization above has w+ j =4+ [—1 < i+ 1, by the induction
hypothesis, those represent maximum length paths from source node to node (i[l — 1]) and
(i — 1,[l]), respectively. Since these are the only two nodes preceding node (i[{]), it follows that
Twi(([k + 1],...,]])) is the maximum length path from the source to node (:[/]) and the result
is established. [

Given the structure of G, the length of the critical path from (u[k + 1]) to (v[n]) (or
equivalently, T, (S))) is also given by



Tow = l )
(Sk) k<tu§tu+1rgn,?)§(tv_1§5vsn {P [k+1] T Z B T Pulh ])

h=k+2

tutl
+ Putiftn] T Z Suti[h=1][k] T Puti[r])

h=ty+1
+ ...
—I_pv—l[t]—l_ Z Sv—1[r—1][ —I_pv 1[])

h= ty—1+1
+ Dufe,) + Z 5+ Dol ])} (2)

h=t,+1

for 1 <u < v < m, where 30_ () = 0 for b < a. Thus the maximization in (2) consists of
finding the t,,ty+1,. . ., tu—1, 1, that define the critical path on Gy, , where #; corresponds to the
index of the job where the critical path crosses from level 7 to level ¢ + 1 on Gy, .

Recall that the maximization on the right-hand side of (2) is only used to find the T, for
a given sequence S, but in fact, the main problem is to find the subsequence S in Uy that
minimizes C,,p,) in (1). As can be seen from (1), minimizing Ty, (Sk) yields a lower bound on
Cran)- 7

The minimization of T, (9%) is as hard as the problem FS(5}) (minimizing C',p,) in (1)),
even for T, ,+1(5%). Hence we consider the minimization of the following lower bound of T, (S)
by considering the case where k < t, =t,+1=...=1,1 = t, =t < n and excluding all other
terms in Ty, (Sk) (note that this is a valid lower bound since this special case corresponds to a

path with length less than or equal to the length of the critical path), i.e

1
Tw(Sk) 2 max ¢ pyfpia) + > (Suppen)in) + Pugp) + Pusrpg + - -
<tsn h=k+2

n

+pocig F P+ YL (Suppon)n) + Pu[h])}
h=ty,+1

¢ i3
= kmax { Z Pulh] + Put1[t] + -« Po—1f] T va[h]
<t<n
h=k+1 h=t

t n
> Supenm Y Sv[h—l][h]}
1

h=k+2 h=t+

13 t n
- krgz%%{ Dbt D Punimgt ot D0 Pooam

h=k+1 h=k+1 h=k+1

+ Zpu+1[h] +...+ ZPU_1[h] + va[h]
h=t h=t h=t



Z Puti[n] =+ — Z Pu—1[n]

h=k+1 h=k+1
1 n
+ D0 sup-up 2 Sv[h—l][h]}

h=k+2 h=t+1

t v—1 n v

= kmaX{ ) (Zpi[h]) +Z( > Pi[h])
<t<n £ .
- h=k+1 1= h=t \i=u+1

t n v—1
+ D0 supenm D Sv[h—l][h]}— D pilSk)

h=k+2 h=t+1

t v—1 n v
> kfg%{ > (Zpim) +Z( > pim)}
- h=k+1 \i=u h=t \i=u+1
v—1
+ Z pi(Sk)
h=k+2 i=u+1

where S[h 0 = min{sy[p_1][h]> Su[h—1][] } - Let

Zu(Sk) = kfg%ﬁ{ Z (Uz_:pi[h]) ‘|'Zn:( ZU: pi[h])}

h=k+1 \i=u t=u+1

The problem of minimizing Z,,(Sk) is reduced to a solvable 2-machine flowshop (Johnson’s

algorithm) with processing times
v—1
Pyo= Py
1=u
v
Pai = D Py
i=u+1

Let Z7,(Sk) be its minimum value.
The problem of minimizing > p_;. S _1jpp) corresponds to finding a shortest tour of an
ATSP on n — k vertices. Let S7,(Sx) be a lower bound for this ATSP. Then

Tuv(gk) > Z;; (Sk)+S§U Sk Z pZ I1<u<v<m
i=u+1

Now note the following valid lower bounds for the starting time of job [k + 1] on machine u

Cum + ffrelﬁ {8 [k]h}

Cue 1[]‘|‘}1£f€1%}1{ 1k]h T+ Pu— 1h}

Cue 2[]‘|‘}1£f€1%}1{ 2[k]h T Pu—2,h + Du— 1h}

10



Cipr + }{felgi {51[k]h +pnt .. -Pu—1,h}

Denote by Tmm1 the minimum elapsed time (among all unscheduled jobs) from the finish of

job [k] on machine i until the finish time of job [k + 1] on machine u — 1, fori = 1,...,u, i.e.,
u—1
Tmln — : .
t,u—1 f{reul}; Si[k]h + qZ:;pqh

where the case 1+ = u corresponds to Tmm1 = minpep, { Sulk ]h}- A lower bound on the starting
time of job [k 4+ 1] on machine u is then given by

lrgla)i {C + T[Zml}

Note that once the last job [n] has finished on machine v, the remaining time until termi-
nation (assuming no idle time) is 3"/ . p;,). This yields the following lower bound for the

elapsed time since the finish of job [n] on machine v until the finish of job [n] on machine m:

We can thus establish the following generalized lower bound gw(Sk) on Chax

v—1 m
Gun(Sy) = jax {C Tﬁf%} + Z5,(Sk) + S5,(Sk) = D il Sk) + }{Ielll}; {Z Pm}
i=ut1 i=v+1

for any 1 < u < v < m. Note that the optimal sequence of the jobs in the embedded 2-machine
flowshop (for given u,v) has to be determined only once for FS((}), the original problem, since
it does not change if some jobs are removed nor it is influenced by the fact that machine » is
not available until .

In summary, for a given pair of machines (u,v), we have derived a generalized lower bound
guw Which may be computed for various machine pairs (u,v). f W = {(ug,v1),..., (2w, vy)} is

a set of machine pairs, then the corresponding overall lower bound GLB(W) is defined by
GLB(W) = max{gu, v+ Guwwve} -

Note that there are m(m—1)/2 possible pairs (u, v); however, the load for computing GL.B based
on all pairs is too heavy. Therefore, we only consider the following subsets of machine pairs
Wo={(1,2),(2,3),...,(m—=1,m)}, Wy = {(1,m),(2,m),...,(m—1,m)},and Wy = WyUWh,
which contains O(m) pairs. Our empirical work (Section 5) has shown that GLB(W7) provides
better results than GLB(W;) and is faster to compute than GLB(Wj;).

Machine-Based Lower Bounds: In the previous section we developed a family of lower bounds

guw for 1 < u < v < m, based on a pair (u,v) of bottleneck machines. Consider now the case

11



u = v; that is, there is only one bottleneck machine and the capacity of all other machines is
relaxed. Thus it is possible to find m additional lower bounds ¢,, 1 < u < m.

Again, let the sequence of the first k& jobs fixed be Sy = ([1],[2],...,[k]) and the set of
remaining = n — k (unscheduled) jobs be Uy. For an arbitrary sequence of jobs in Uy, S), =
([k + 1),[k + 2],...,[n]), let T,(Sk) be the elapsed time from the starting time of job [k + 1]
until the finish time of job [n] on machine u. Then T,(S%) is given by

Tu(Sk) = u[k+1] + Z +pu[])
h=k+2

pu(Sk)+ Zn: S

h=k+2

Since p,(Sy) is constant for any sequence, the problem of minimizing T,(S) corresponds to
finding a sequence that minimizes y"p_j 15 Sy[n—1][r], Which is equivalent to finding the shortest
tour in an ATSP on n — k vertices. Let 57(S5%) be a lower bound for this ATSP. Then

1<e<u

guB1) = max {Cg+ TR} 4+ SIS0 + mm{ 2 pm} 3)

for 1 < u < mis a valid lower bound on C,,x, where the first and last terms on the right-hand
side are a lower bound on the starting time of job [k + 1] on machine u, and a lower bound
on the elapsed time between the finish of job [n] on machine u and the finish of job [n] on
machine m, respectively, as developed in the previous section.

The fact that the setup time between jobs [k] and [k + 1], Sy[x)[k41], is not considered in the
computation of T},(S5%) allows us to use the first term on the right-hand side of (3) as a lower
bound for the starting time of job [k 4 1] on machine u. It might be advantageous, however,
to include this setup time (s,4[s41]) in the computations to improve the lower bound S of
the related ATSP. The trade-off is that by doing so, we no longer can use the first term on the
right-hand side of (3). This alternate bound is expressed as

where L;, is valid lower bound on }75_; 1 Sufp—1][n-

ATSP Lower Bounds: In deriving the GLB and MBLB, we have to deal with solving an ATSP
at some point. The ATSP itself is an A"P-hard problem; however, since we are only interested
in a lower bound, any valid lower bound for the ATSP will suffice.

In our work, we used the assignment problem (AP) lower bound, which is obtained by re-
laxing the connectivity (subtour elimination) constraints for the ATSP. It has been documented
(Balas and Toth [1]) that the AP bound is very sharp for the ATSP. (This is not necessarily
true for the symmetric TSP.)

12



4.3 Search Strategy

The search strategy we use selects the subproblem with the best bound; e.g., the smallest lower
bound in case of a minimization problem. This approach is motivated by the observations that
the subproblem with the best lower bound has to be evaluated anyway and that it is more
likely to contain the optimal solution than any other node. As shown in [6], this strategy has
the characteristic that, if other parts of a branch-and-bound algorithm are not changed, the
number of partial problems decomposed before termination is minimized.

Another well known strategy is depth-first search, which is mostly used in situations where
it is important to find feasible solutions quickly. However, we do not consider it since feasibility

1s not an issue.

4.4 Dominance Rule

We now establish some conditions under which all completions of a partial schedule S} (associ-
ated with subproblem Py) can be eliminated because a schedule at least as good exists among
the completions of another partial schedule 5; (corresponding to subproblem P;). Let J(5;)
and J(Sy) denote the index sets of jobs corresponding to S; and S, respectively; {(.9) denote
the index of the last scheduled job in schedule S; and C;(.9) denote the completion time of the
last scheduled job in S on machine i. Then P; dominates P if for any completion SjSy of
Sk there exists a completion S]Sj of 5; such that CmaX(Sij) < Crmax(SkSk). This is stated

formally in the following theorem.

Theorem 1 If J(S;) = J(Sk), (S;) = (Sk), and C;(S;) < Ci(Sy) for all v € I, then P;

dominates Py,.

Proof: Let @ be a schedule and ¢;(Q) be the elapsed time between the starting of the first
job in ) on machine ¢ and the end of operations. Then for a partial schedule S}, let ¢) be
any schedule formed by the jobs in Uy (set of unscheduled jobs). The makespan of 53 can be

computed as

Cmax(9kQ) = Tglg;({@(sk) +sisn + 6(Q))

where h is the job index of the first job in (). Let P; be a subproblem such that J(S5;) =
J(Sk) (its corresponding partial schedule 5; has the same job indices as those of schedule S}),
[(S;) = I(Sk) (have the same job scheduled last), and C;(5;) < Ci(Sk) for ¢ € I. Since the set
of unscheduled jobs is the same for both subproblems, 5;() is also a valid completion for P;,

and
siis)h T 46(Q) = siysy)n + (@) el
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Therefore

Ci(55) < Ci(Sk) tel = CilSi)+ sius;)n + 6(Q) < Ci(Sk) + siusyn +4:(Q) i€l

= r?ea?({Ci(Sj) + 855, + %(Q)}

< rglg}{Ci(Sk) +sisn + 6(Q))

= CmaX(S]Q) S CmaX(SkQ)

which shows that P; dominates Pj. [ ]

A second dominance rule arises for the special case where there is no idle time between
a subsequence of any three particular jobs in a schedule. This is presented in Lemma 1 in
Appendix A. Two other special cases, the first related to reversing the job sequence and
the second to the independence of processing times and machines, are also discussed in the
Appendix.

In terms of computational effort, determining whether a given subproblem Py is dominated
implies: (a) searching for another subproblem (at the same level), and (b) checking conditions
of Theorem 1. Step (a) can be done in O(logT) time, where T = O(2¢) is the size of search
tree up to depth d (if done efficiently, there is no need to search the whole tree). Operation (b)
takes O(m) time. At level d, there are potentially O(2¢) nodes, thus the worst-case complexity
to determine whether a given subproblem (at depth d) is dominated is O(md2?).

Despite this worst-case complexity, the implementation of this dominance rule has had a
strong positive impact in the performance of BABAS. Computational results are provided in

Section 5.

4.5 Upper Bounds

It is well known that branch-and-bound computations can be reduced by using a heuristic
to find a good solution to act as an upper bound prior to the application of the enumeration
algorithm, as well as at certain nodes of the search tree. With this in mind we have adapted the
GRASP developed in [19] and a hybrid heuristic (described in [16]) to handle partial schedules.

In our basic algorithm, we apply both heuristics with extensive local search at the root
node to obtain a high quality feasible solution. Once the algorithm is started, an attempt is
made to find a better feasible solution every time UPPER_BOUND_LOG nodes are generated,
where UPPER_BOUND_LOG is a user-specified parameter. In our experiments, we set this
parameter to 50. At the intermediate stages, we do not do a full local search but try to balance
the computational load. Once BABAS satisfies the stopping criteria, if the best feasible solution
is not optimal, we apply an extensive local search to ensure that a local minimum has been

obtained.
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4.6 Partial Enumeration

Partial enumeration is a truncated branch-and-bound procedure similar to what is called beam
search [13]. Instead of waiting to discard a portion of the tree that is guaranteed not to contain
the optimum, we may discard parts of the tree that are not likely to contain the optimum. One
essential is to have a good measure of what “likely” means.

The way we handle the partial enumeration is as follows. During the branching process,
every potential child is evaluated with respect to a valuation function h. Those potential sub-
problems whose valuation function do not meet a certain pre-established criterion are discarded.
We implemented this idea by ranking the potential children by increasing value of h and then
discarding the worst pn nodes, where p € [0, 1] is a user-specified parameter. The larger the
value of p, the more nodes that will be eliminated from consideration. The case p = 0 coincides

with regular branch and bound.

4.6.1 A Valuation Function

To develop a valuation function & we make use of the following cost function C;; for each pair

of jobs j, k € J:
Cir = OR]‘k—I—(l—O)Sj

where 6 € [0, 1] is a weight factor, R;; is a term that penalizes a “bad” fit from the flowshop
perspective, and 5, is a term that penalizes large setup times. This cost measure was intro-
duced in [16] where it was used to develop a TSP-based hybrid heuristic for the SDST flowshop
with very good results. A detailed description on how to estimate R;; and S;; is given in that
work.

Let P; be the node from which branching is being considered with corresponding partial
schedule S;. Let [(5;) be the index of the last scheduled job in §;. Then, for every k € U;,
we compute h(k) = Cis,)k and then discard the worst pn potential subproblems (in terms of

Although it is likely that the nodes excluded by this procedure will not be in an optimal
solution, no theoretical guarantee can be established. We should also point out the trade-off
between higher confidence in the quality of the solution and smaller computational effort when

p is set to smaller and larger values, respectively.

5 Computational Experience

All routines were written in C++ and run on a Sun Sparcstation 10 using the CC compiler
version 2.0.1, with the optimization flag set to -O. CPU times were obtained through the C

function clock().
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To conduct our experiments we used randomly generated data. It has been documented [4]
that the main feature in real-world data for this type of problem is the relationship between
processing and setup times. In practice, setup times are about 20-40% of the processing times.
Because the experiments are expensive, we generated one class of random data sets with the

setup times being 20-40% of the processing times: p;; € [20,100] and s;;1, € [20,40].

5.1 Experiment 1: Lower Bounds

The lower bounding procedures developed in Section 4.2 were compared within the branch-and-
bound enumeration framework. In our first experiment, the generalized lower bound (GLB)

was evaluated for three different subsets of machine pairs.

Wo = {(1,2),(2,3),....,(m—1,m)}
Wiy = {(1,m),(2,m),....(m—1,m)}
Wy = WouW,

It is evident that GLB(W;) will dominate the other two; however, it requires more computa-

tional effort.

m =4 m=6
Wo Wi Wa | Wo Wi W
Average relative gap (%) 0.8 03 0.3 1.3 0.3 0.4
Average number of evaluated nodes (1000) | 10.1 9.2 8.7 | 11.0 9.3 9.0
Average CPU time (min) 10.8 9.2 93| 150 11.8 12.1
Optimal solutions found (%) 60 60 60 20 70 60

Table 1: Fvaluation of GLB for 10-job instances

Table 1 shows the average results for 10-job problems with machine settings m = 4,6. Note
that when m = 2, Wy = Wy = Wy = {(1,2)}. The averages are taken over 10 instances with a
stopping limit of 15 CPU minutes. The dominance rule is in effect as well. Each column shows

the statistics for GLB based on Wy, Wy, and Ws, respectively. The relative gap is computed as

best upper bound — best lower bound
best lower bound

x 100%

As can be seen, the quality of GLB(Wj) is inferior to the other two since a larger number
of nodes has to be evaluated, resulting in larger execution times. In addition, under GLB(Wjp),
fewer optimal solutions are found in the allotted time (only 20% in the 6-machine instances
as opposed to 60% using Wiy and W3). When comparing GLB(W;) and GLB(W5), similar

performance is observed in almost every statistic. In fact, GLB(W;) was found to be slightly
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m =2 m =4 m =6
GLB(W;) MBLB | GLB(W:) MBLB | GLB(W,) MBLB
Average relative gap at root (%) 2.7 6.6 6.4 12.1 8.8 14.8
Average relative gap at termination (%) 2.2 3.1 4.1 2.9 5.3 3.1
Times best bound found (%) 40 60 30 80 0 100
Optimal solutions found (%) 30 60 0 50 0 10

Table 2: Lower bound comparison for 15-job instances

better than GLB(W;). This implies that the extra effort used by GLB(W3;) (the dominant
bound) is not paying off.

We now compare GLB(W;) with the machine-based lower bound (MBLB). A stopping limit
of 15 CPU minutes was similarly imposed. Table 2 shows the results of this comparison for
15-job instances. It can be seen from the table that the GLB is actually better at the root
node; however, as branching takes place, the MBLB makes more progress providing, in almost
all cases, a tighter bound. There were even some instances that were solved to optimality under
the MBLB alone.

One possible explanation for this result is that the MBLB, for a given machine, takes into
account all the involved setup times, whereas the GLB, in its attempt to reduce the problem
to a 2-machine case, loses valuable setup time information (recall that for a given machine pair
(u,v), GLB uses min{s,;x, Sy} to represent the setup time between jobs j and k). Because
the MBLB procedure was uniformly better than the GLB scheme, we use it in the remainder

of the experiments.

5.2 Experiment 2: Dominance Elimination Criterion

m =2 m=4 m =6
NDR DR | NDR DR | NDR DR
Average relative gap (%) 0.7 0.0 0.0 0.0 0.1 0.0
Average number of evaluated nodes | 16063 8529 | 5074 2985 | 10879 7924
Average CPU time (min) 18.3 5.8 4.8 2.3 14.2 8.4
Optimal solutions found (%) 50 100 100 100 90 100

Table 3: Fvaluation of dominance rule for 10-job instances

We now evaluate the effectiveness of the dominance rule. Table 3 shows the average statistics
over 10 instances for machine sizes m = 2,4,6. Each instance was run with a CPU time limit
of 30 minutes and optimality gap tolerance of 0.0. The results for the algorithm with and
without the dominance rule in effect are indicated by DR and NDR, respectively. As we can

see, the implementation of the dominance rule has a significant impact on the overall algorithmic
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performance resulting in a considerably smaller number of nodes to be evaluated, and a factor
of 2 reduction in CPU time. In fact, when the dominance rule was in effect, the algorithm found

optimal solutions to all instances, as opposed to only 80% when the rule was not in effect.

5.3 Experiment 3: Partial Enumeration

p=20 p=0.5 p=0.8
Instance UB Gap Time | UB Gap Time | UB Gap Time
fs6x20.1 2022 2.8 30 2020 1.8 30 2029 1.0 1
fs6x20.2 2108 4.4 30 2111 3.2 30 2114 1.0 1
fs6x20.3 2100 5.3 30 2093 4.1 30 2106 1.0 1
fs6x20.4 1967 5.5 30 1966 3.5 30 1972 1.0 1
fs6x20.5 2095 1.5 30 2094 1.0 10 2096 1.0 1
fs6x20.6 2058 6.5 30 2057 5.3 30 2070 1.0 2
fs6x20.7 2088 5.6 30 2082 3.9 30 2088 1.0 2
fs6x20.8 2129 8.1 30 2129 6.8 30 2124 1.0 8
fs6x20.9 2106 3.7 30 2106 2.3 30 2109 1.0 1
fs6x20.10 | 2142 6.1 30 2130 4.2 30 2144 1.0 2

Table 4: Partial enumeration evaluation for 6-machine, 20-job instances

In this experiment, we illustrate the effect of doing partial versus complete enumeration.
We ran the partial search strategy for p = 0 (normal enumeration), p = 0.5 (truncating 50% of
the potential children), and p = 0.8 (truncating 80% of the potential children) for 10, 6 x 20
instances, with a stopping criterion of 30 minutes and relative gap fathoming tolerance of 1.0%.
The overall results are displayed in Table 4. Results for a particular instance are by row. For
each value of p we tabulate upper bound (UB), relative gap percentage (Gap) and CPU time
(Time) rounded to the nearest minute. It should be noted that the relative gap for the truncated
versions (p € {0.5,0.8}) do not correspond to a true optimality gap, but to the best lower bound
without considering the truncated nodes. As can be seen, increasing the value of p results in
a larger number of truncated nodes, hence a quicker execution of the procedure. We can also
observe that the quality of the solution decreases with the size of p. A good compromise seems
to be around p = 0.5, but one must keep in mind that once p assumes a value greater than
zero, the algorithm can no longer be guaranteed to provide an optimal solution to the original

problem.

5.4 Experiment 4: BABAS Overall Performance

Here we show the results when the full algorithm is applied to instances of the SDST flow-
shop. We use the MBLB procedure, dominance elimination rule, and a relative gap fathoming

tolerance of 1%. Maximum CPU time is set at 30 minutes.
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Size Optimality gap (%) Time (sec) Instances
m x n | best average worst | best average worst | solved (%)
2 x 10 0.3 0.9 1.0 1 235 560 100
4 0.8 0.9 1.0 2 68 222 100
6 0.9 1.0 1.0 29 265 450 100
2 x 15 0.0 1.0 2.6 725 1800 70
4 0.9 2.2 4.5 7 1074 1800 50
6 1.0 2.9 4.5 38 1624 1800 10
2 x 20 0.5 1.0 1.6 7 1298 1800 70
4 2.4 4.2 5.1 | 1800 1800 1800 0
6 1.5 5.0 8.1 | 1800 1800 1800 0

Table 5: BABAS evaluation

Table 5 displays the summary statistics which were calculated from 10 problem instances
for each m X n combination. As can be seen, all 10-job instances were solved (within 1%) in
an average time of less than 5 minutes, a notable improvement when compared to previous
published research on this problem, where the size of the largest instances solved optimally was
a 6-machine, 8-job problem. In fact, BABAS was able to solve 43% of the 15-job instances,
and 23% of the 20-job instances. Most of the instances solved corresponded to the 2-machine
case. This is to be expected since the fathoming rules (lower bound and dominance) become

less powerful as the number of machines increases.

Size Optimality gap at root (%) | Optimality gap at end (%) Average Instances
mXxn best  average worst best average worst time (min) | solved (%)
2 x 100 1.2 3.4 8.4 0.6 1.4 2.1 28.1 30
4 3.3 5.1 6.5 2.3 4.2 5.7 30.0 0
6 5.0 7.6 9.4 4.3 6.0 7.2 30.0 0

Table 6: BABAS evaluation on 100-job instances

Finally, Table 6 shows the algorithmic performance when BABAS is applied to 100-job
instances. Thirty percent of the 2-machine instances were solved and 70% finished with a
relative gap of 1.3% or better. In general, the average relative gap from the start to the end
of the algorithm improved by 2.0%, 0.9%, and 1.6% for the 2-, 4-, and 6-machine instances,
respectively. We also observed that the lower bound and the dominance test was less powerful

than the 20 or fewer job cases.
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6 Summary

We have presented and evaluated a branch-and-bound scheme for the SDST flowshop scheduling
problem. Our implementation includes both lower and upper bounding procedures, and a
dominance elimination criterion. The empirical results indicate the positive impact of the
machine-based lower bound procedure and the dominance rule. Significantly better performance
over previously published work (LP-based methods) was also obtained. We were able to solve
(within 1% optimality gap) 100%, 43%, and 23% of the 10-, 15-, and 20-job instances tested.
In addition, for the 100-job instances, our algorithm delivered average relative gaps of 1.4%,
4.2%, and 6.0% when applied to the 2-, 4-, and 6-machine cases, respectively. A salient feature
of our algorithm is that it permits partial enumeration search, which can be used to obtain

approximate solutions with relatively smaller computational effort.

7 Acknowledgments

We thank Matthew Saltzman for allowing us to use his C implementation of the dense shortest

augmenting path algorithm to solve AP.

Appendix A

This appendix contains three lemmas which address special cases of the SDST flowshop.
The first presents a dominance rule, the second discusses the reversibility of the schedule, and
the third considers specific parameter relationships. To simplify the presentation, the bracket
notation for a given schedule will be dropped and we will denote a schedule S by (1,...,n)

rather than ([1],...,[n]).

Lemma 1 Let S = (1,2,...,n) be a feasible schedule of F|s;;, prmu|Cmax. Let e;; be the
earliest completion time of job j on machine 1

eij = max{ei 1, i1+ 81} + i
fori=1,2,....m, j =1,2,...,n, and ;o = eg; = 0. Let q;; be the minimum remaining time
from the start of job j on machine v to the end of operations on the last machine

¢ij = max {Git1,5, Gij+1 + Sijj+1} + Pij

fori=mm—-1,...,1, j=n,n—-1,...,1, and ¢ ny1 = @ny1; = 0. Let j and j+ 1 be any
two adjacent jobs in S (j =1,2,...on—1)andlet " =(1,....5— 1,74+ 1,4, +2,...,n) be the
schedule where jobs j and j 4 1 are exchanged (with completion time e;»]« and remaining time
f]z/'j)'

If all of the following conditions hold for each i =1,2,...,m
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(a) ei; = € j—1+ 5 j—1,; + pij (there is no idle time between jobs j — 1 and j in S)

(b) Gij+1 = i j+2 + Sij41,5+2 + Dij+1 (there is no idle time between jobs j+1 and j+
2inS)

(¢) €41 =€ ;1 + Sij—1 41+ pij+1 (there is no idle time between jobs j—1 and j+
1inS")
(d) q.; = q; ;19 + Sijjv2 + pij (there is no idle time between jobs j and j+2 in S')
(€) Sijm1+ it T Sijarjrz > Sij—1j41 + Sija1j + Sijj+2
then S’ has a lower makespan than S,

Cmax(sl) < Cmax(s)-

Proof: First notice that both S and S’ are identical sequences except for jobs j and j + 1.
This implies that e;;, = €/, forall k=1,2,...,7—1and ¢ = ¢, forall k=j+2,74+3,...,n.

Thus, from (e) we obtain
€ij—1+Si o1+ Pij T Gijra T Sijatjr2 FDijr1 > €1+ Sij—1 41 FDij+1 T 4o+ Si g2 T Pij
for all 7. Conditions (a)-(d) yield
€ij + Sigg+1 + Qg1 > €+ sije1 +ai; foralld
In particular, this is valid for the maximum over
m?X{eij + S5 TG} > mZ;LX{e§7j+1 + Sij+1,5 T qu}
But these expressions correspond to the makespan values of S and S’, respectively. That is,
Cmax(5) > Cinax(57).

|

An appropriate data structure should keep track of both e;; and ¢; for all 7 and j. This
would make it possible to check conditions (a)-(d) in O(m) time.

As seen in Section 4.2, Proposition 1, Ty, (Sy) (the elapsed time between the first job in S}
on machine u and the last job in Sz on machine v) can be computed by finding the critical
path on graph G, (Figure 3). Note that T1,,(.59) is an equivalent form to express the makespan
of schedule S, which implies, by Proposition 1, that its makespan is given by the critical path
from node (1,0) to node (m,n) in graph Gp,.

An interesting property can be obtained when comparing two instances of the SDST flow-

shop with no initial setup times. Let F'S be an instance of Fls;jz, prmu|Cpax with processing
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times p;; and setup times s;;;,. Let us assume that s;op = 0 forall < € I, and k € J. Let FS' be
another instance of the SDST flowshop with processing and setup times given by

/ —_ ..
Pi; = Pm+1-ij and
/

Sijk = SmAl—ikgo
respectively. This basically implies that the first machine in the FS’ is identical to the last
machine in FS; the second machine in F'S’ is identical to machine m — 1 in F'S, and so on. The

following lemma applies to these two flowshops.

Lemma 2 Let S = (1,...,n) be a sequence of jobs in F'S with corresponding makespan Cyax(5).
If the jobs in FS’ follow the sequence 5" = (n,n—1,...,1) (with makespan C| ,.(5")), then

Cmax(s) = Cénax(sl)'

Proof: Let S = (1,...,n) be a feasible sequence in F'S. Then its makespan Cpax(9) is given
by T1m(9), the length of the critical path in Gy,,. Let GY,, be the graph associated to FS'’
under sequence S’ = (n,...,1). By definition of FS’, },, is obtained from G,, by reversing
the sense of all the arcs in G,,. Since the length of the critical path from does not change, it

follows that T4,,(5) = 17,,(5"), where T}, (5") is the length of the critical path in Gf,,, and
the proof is complete. [ |

Lemma 2 states the following reversibility result: the makespan does not change if the jobs
go through the flowshop in the opposite direction in the reverse order.

Another special case of F|s;;5, prmu|Cmax which is of interest is the so-called proportionate
flowshop. In this flowshop the processing times of job j on each machine are equal to p;, that
is, p;j = pj, + = 1,...,m. Minimizing the makespan in a proportionate permutation flowshop
is denoted by F'|p;; = p;, prmu|Cmax. This problem has a very special property when all setup

times are equal to a constant Sijk = S.

Lemma 3 For F|p;; = p;, sijk = 5, prmu|Cax, the makespan is given by
n
Cmax = Zp] + ns + (m - 1) m]ax{p]}
i=1
and is independent of the schedule.

Proof: From Figure 3 we can see that for any sequence of jobs S = (1,2,...,n) the
critical path starts at node (1,0), stays on machine 1 until it reaches node (1,k), where k =
arg max;{p;}, stays on job k until it reaches node (m, k), and ends by reaching node (m,n). m

Similar results on reversibility and proportionate flowshops for F|prmu|Ch.x are discussed

in [14].
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