
A Branch-and-Bound Algorithm for Flowshop Scheduling

with Setup Times

Roger Z. R��os-Mercado1

Graduate Program in Operations Research

University of Texas at Austin

Austin, TX 78712{1063

roger@bajor.me.utexas.edu

Jonathan F. Bard2

Graduate Program in Operations Research

University of Texas at Austin

Austin, TX 78712{1063

jbard@mail.utexas.edu

May 1997

1Research partially supported by the Mexican National Council of Science and Technology

(CONACYT) and by an E. D. Farmer Fellowship from The University of Texas at Austin

2Research partially supported by a grant from the Texas Higher Education Coordinating Board under

the Advanced Research Program, ARP 003658{003

Abstract

This paper presents a branch-and-bound enumeration scheme for the makespan minimization of

the
owshop scheduling problem with setup times. The algorithm includes the implementation

of both lower and upper bounding procedures, a dominance elimination criterion, and special

features such as a partial enumeration strategy. A computational evaluation of the overall

scheme demonstrates the e�ectiveness of each component. Test results are provided for a wide

range of problem instances.

Keywords:
owshop scheduling, setup times, branch-and-bound, lower bounds, dominance

rules, upper bounds

1 Introduction

In this paper, we address the problem of �nding a permutation schedule of n jobs in an m-

machine
owshop environment that minimizes the maximum completion time Cmax of all jobs,

also known as the makespan. The jobs are available at time zero and have sequence-dependent

setup times on each machine. All parameters, such as processing and setup times, are assumed

to be known with certainty. This problem is regarded in the scheduling literature as the

sequence-dependent setup time
owshop (SDST
owshop) and is evidently NP-hard since the

case where m = 1 is simply a traveling salesman problem (TSP).

Applications of sequence-dependent scheduling are commonly found in most manufactur-

ing environments. In the printing industry, for example, presses must be cleaned and settings

changed when ink color, paper size or receiving medium di�er from one job to the next. Setup

times are strongly dependent on the job order. In the container manufacturing industry ma-

chines must be adjusted whenever the dimensions of the containers are changed, while in printed

circuit board assembly, rearranging and restocking component inventories on the magazine rack

is required between batches. In each of these situations, sequence-dependent setup times play

a major role and must be considered explicitly when modeling the problem.

In [17], we approached this problem from a polyhedral perspective; that is, we formulated

the problem as a mathematical program using two di�erent models and studied the convex hull

of the set of feasible solutions. The motivation for that work was to attempt to exploit the

underlying traveling salesman polytope. We developed several classes of valid inequalities and

in [18], implemented them in a branch-and-cut (B&C) framework with limited success. The

main di�culty was the weakness of the lower bound obtained from the linear programming (LP)

relaxation. Despite e�orts to improve the polyhedral representation of the SDST
owshop, the

quality of the LP lower bound remained poor.

This motivated the investigation of a series of non-LP-based lower bounding procedures

reported in this paper. By relaxing some machine requirements rather than the integrality

conditions on the mixed-integer programming (MIP) formulations, alternate lower bounding

procedures were devised. The �rst was a generalized lower bound (GLB) obtained by reducing

the original m-machine problem to a 2-machine problem; the second was a machine-based lower

bound (MBLB) obtained by reducing the original problem to a single machine problem. Both

procedures were found to produce results that were tangibly better than the LP-relaxation lower

bound, with the MBLB being more e�ective than the GLB. Extending these lower bounding

procedures to handle partial schedules as well, enabled us to develop an e�ective branch-and-

bound scheme.

The objective of this paper is to present and evaluate our enumeration algorithm for the

SDST
owshop. This includes the development of lower bounding schemes, a dominance elim-

1

ination rule, and upper bounding procedures. Our results indicate the e�ectiveness of the

proposed algorithm when tested on a wide variety of randomly generated instances. We were

able to �nd optimal solutions in about 50% of the instances tested, and near-optimal solutions

in the others.

The rest of the paper is organized as follows. The most relevant work in the
owshop

scheduling area is presented in Section 2. In Section 3, we introduce notation and formally

de�ne the problem. In Section 4, we give a full description of the branch-and-bound algorithm,

followed in Section 5 by the presentation and evaluation of our computational experience. We

conclude with a discussion of the results.

2 Related Work

For an excellent review of
owshop scheduling in general, including computational complexity

results, see [16]. For an overview on complexity results and optimization and approximation

algorithms involving single-machine, parallel machines, open shops, job shops, and
owshop

scheduling problems, see [11].

2.1 Minimizing Makespan in Regular Flowshops

The
owshop scheduling problem (with no setups) has been studied extensively over the past

25 years. Several exact optimization schemes, mostly based on branch and bound, have been

proposed for F jjCmax including those of Lageweg et al. [10], Potts [15] and Carlier and Rebai [2].

The 3-machine case is considered by Ignall and Schrage [8] and Lomnicki [12]. Della Croce et

al. [3] present a branch-and-bound approach for the 2-machine case.

2.2 Sequence-Dependent Setup Times

To the best of our knowledge, no e�ective methods to solve the SDST
owshop optimally

have been developed to date. E�orts to solve this problem have been made by Srikar and

Ghosh [21], and by Sta�ord and Tseng [22] in terms of solving MIP formulations. Srikar and

Ghosh introduced a formulation that requires only half the number of binary variables as does

the traditional TSP-based formulation. They used this model and the SCICONIC/VM mixed-

integer programming solver (based on branch and bound) to solve several randomly generated

instances of the SDST
owshop. The largest solved was a 6-machine, 6-job problem in about

22 minutes of CPU time on a Prime 550.

Later, Sta�ord and Tseng corrected an error in the Srikar-Ghosh formulation and using

LINDO solved a 5� 7 instance in about 6 CPU hours on a PC. They also proposed three new

MIP formulations of related
owshop problems based on the Srikar-Ghosh model.

2

In [17], we studied the polyhedral structure of the set of feasible solutions based on those

models. We developed several classes of valid inequalities, and showed that some of them

are indeed facets of the SDST
owshop polyhedral. In [18], a branch-and-cut scheme was

implemented to test the e�ectiveness of the cuts. Even though we found B&C to provide better

solutions than the previously published work (based on straight branch and bound), we were

still unable to solve (or provide a good assessment of the quality of the solutions in terms of its

optimality gap) moderate to large size instances. The largest instance solved to optimality (in

about 60 minutes of CPU on a Sun workstation) was a 6-machine, 8-job problem.

Other approaches have focused on heuristics [19, 20] and variations of the SDST
owshop.

For example, Gupta [5] presents a branch-and-bound algorithm for the case where the objective

is to minimize the total machine setup time. No computational results are reported. All other

work has been restricted to the 1- and 2-machine case.

3 Statement of Problem

In the
owshop environment, a set of n jobs must be scheduled on a set of m machines, where

each job has the same routing. Therefore, without loss of generality, we assume that the

machines are ordered according to how they are visited by each job. Although for a general

owshop the job sequence may not be the same for every machine, here we assume a permutation

schedule; i.e., a subset of the feasible schedules that requires the same job sequence on every

machine. We suppose that each job is available at time zero and has no due date. We also

assume that there is a setup time which is sequence dependent so that for every machine i there

is a setup time that must precede the start of a given task that depends on both the job to

be processed (k) and the job that immediately precedes it (j). The setup time on machine i is

denoted by sijk and is assumed to be asymmetric; i.e., sijk 6= sikj . After the last job has been

processed on a given machine, the machine is brought back to an acceptable \ending" state. We

assume that this last operation can be done instantaneously because we are interested in job

completion time rather than machine completion time. Our objective is to minimize the time at

which the last job in the sequence �nishes processing on the last machine. In the literature [14]

this problem is denoted by Fmjsijk ; prmujCmax or SDST
owshop.

Example 1 Consider the following instance of F2jsijk ; prmujCmax with four jobs.

pij 1 2 3 4 s1jk 1 2 3 4 s2jk 1 2 3 4

1 6 3 2 1 0 3 4 1 7 0 2 3 1 6

2 2 2 4 2 1 - 5 3 2 1 - 1 3 5

2 5 - 3 1 2 4 - 3 1

3 2 1 - 5 3 3 4 - 1

4 3 2 5 - 4 7 8 4 -

3

A schedule S = (3; 1; 2; 4) is shown in Figure 1. The corresponding makespan is 24, which

is optimal. 2

Setup time Processing time

25

M1

M2

15 205 10

3

Time

42

421

13

Figure 1: Example of a 2� 4 SDST
owshop

3.1 Notation

In the reminder of the paper, when we refer to the SDST
owshop we make use of the following

notation.

Indices and sets

m number of machines

n number of jobs

i machine index; i 2 I = f1; 2; : : : ; mg

j; k; l job indices; j; k; l 2 J = f1; 2; : : : ; ng

J0 = J [f0g extended set of jobs, including a dummy job denoted by 0

Input data

pij processing time of job j on machine i; i 2 I, j 2 J

sijk setup time on machine i when job j is scheduled right before job k; i 2 I, j 2 J0, k 2 J

A job j (without brackets) refers to the job j itself, whereas job [j] (with brackets) refers

to the index of the job scheduled in the j-th position. In Section 4 indices i; j; k; l are used to

represent entities of the search tree (subproblems, nodes).

4 Branch and Bound

The feasible set of solutions of the SDST
owshop problem from a combinatorial standpoint can

be represented as X = fset of all possible n-job schedulesg. This is a �nite set so an optimal

4

solution can be obtained by a straightforward method that enumerates all feasible solutions in

X and then outputs the one with the minimum objective value. However, complete enumeration

is hardly practical because the number of cases to be considered is usually enormous. Thus any

e�ective method must be able to detect dominated solutions so that they can be excluded from

explicit consideration.

A branch-and-bound (B&B) algorithm for a minimization problem has the following general

characteristics:

� a branching rule that de�nes partitions of the set of feasible solutions into subsets

� a lower bounding rule that provides a lower bound on the value of each solution in a subset

generated by the branching rule

� a search strategy that selects a node from which to branch

Additional features such as dominance rules and upper bounding proceduresmay also be present,

and if fully exploited, could lead to substantial improvements in algorithmic performance.

A diagram representing this process is called an enumeration or search tree. In this tree,

each node represents a subproblem Pi. The number of edges in the path to Pi is called the

depth or level of Pi. The original problem P0 is represented by the node at the top of the tree

(root). In our case, the schedule S0 associated with P0 is the empty schedule.

The fundamentals of B&B can be found in Ibaraki [6, 7]. In this paper we limit the discussion

to our proposed algorithm, BABAS (Branch-and-Bound Algorithm for Scheduling).

4.1 Branching Rule

The following branching rule is used in BABAS. Nodes at level k of the search tree correspond

to initial partial sequences in which jobs in the �rst k positions have been �xed. More formally,

each node (subproblem) of the search tree can be represented by Pk , with associated schedule

Sk, where Sk = ([1]; : : : ; [k]) is an initial partial sequence of k jobs. Let Uk denote the set of

unscheduled jobs. Then, for Uk 6= ;, an immediate successor of Pk has an associated schedule

of the form Sj = ([1]; : : : ; [k]; j), where j 2 Uk. Figure 2 illustrates this rule for a 4-job instance.

Node P1 represents a problem at level 1 of the enumeration tree; where only one job has been

scheduled; i.e., S1 = (3).

4.2 Lower Bounds

We now develop two lower bounding procedures that turned out to be more e�ective than the

linear programming relaxation lower bound. These procedures are based on machine completion

times of partial schedules.

5

P 0

U = {1, 3, 2, 4}0

0S = ()φ

P P P

P

S = (3) U = {1, 2, 4}

S = (3, 1) S = (3, 2) S = (3, 4)

1

11

2

2

3

3

4

4

Figure 2: Illustration of the branching rule for a 4-job instance

Given a partial schedule Si, let �Si denote a schedule formed by all unscheduled jobs. We

shall now derive lower bounds on the value of the makespan of all possible completions Si �Si

of Si, where Si �Si represents the concatenation of jobs in Si and �Si. We shall be particularly

concerned with the trade-o� between the sharpness of a lower bound and its computational

requirements. A stronger bound eliminates relatively more nodes of the search tree, but if its

computational requirements become excessive, it may become advantageous to search through

larger portions of the tree using a weaker bound that can be computed quickly.

Generalized Lower Bounds: The basic idea here is to obtain lower bounds by relaxing the

capacity constraints on some machines, i.e., by assuming a subset of the machines to have

in�nite capacity. The only solvable case among
owshop problems is the 2-machine regular (no

setups)
owshop (Johnson [9]). We know that any problem involving three or more bottleneck

machines is likely to be NP-hard. We therefore restrict ourselves to choosing at most two

machines u and v, 1 � u < v � m, to be bottleneck machines. For any given pair (u; v) we now

develop a lower bound guv by relaxing the capacity constraints on all machines except u and v.

The development below shows how this lower bound can be reduced to the 2-machine case.

Let the sequence of the �rst k jobs be Sk = ([1]; [2]; : : : ; [k]) and the set of remaining

n � k (unscheduled) jobs be Uk. Given Sk, the problem of determining an optimal sequence

for the remaining jobs is called a subproblem of depth k and is represented by FS(Sk). Let

�Sk = ([k+1]; [k+2]; : : : ; [n]) be an arbitrary sequence of jobs in Uk , and let pi(Uk) =
P

h2Uk
pih.

Thus the completion time Ci[n] of job [n] on machine i can be derived as follows.

C1[n] = C1[k] +
nX

h=k+1

s1[h�1][h] + p1(Uk)

6

C2[n] = max

8<
:C2[k] +

nX
h=k+1

s2[h�1][h] + p2(Uk); C1[k] + s1[k][k+1] + T12(�Sk)

9=
;

...

Cm[n] = max

(
Cm[k] +

nX
h=k+1

sm[h�1][h] + pm(Uk); Cm�1[k] + sm�1[k][k+1] + Tm�1;m(�Sk);

: : : ; C1[k] + s1[k][k+1] + T1m(�Sk)

)
(1)

where Tuv(�Sk) is the elapsed time from the start of job [k + 1] on machine u until the �nish

of job [n] on machine v. Subproblem FS(Sk) is to determine the sequence �Sk that minimizes

Cmax(Sk �Sk) � Cm[n], the makespan of schedule Sk �Sk.

The de�nition of Tuv(�Sk) is consistent with subsequences of �Sk, that is, Tuv(([k+1]; : : : ; [j]))

is the elapsed time from the start of job [k + 1] on machine u until the �nish of job [j] on

machine v, for k + 1 � j � n. Thus Tuv(([k + 1]; : : : ; [j])) can be recursively computed as

follows:

Tuu(([k+ 1])) = pu[k+1]

Tuw(([k+ 1])) =
wX
i=u

pi[k+1] w = u+ 1; : : : ; v

Tuu(([k+ 1]; : : : ; [j])) = pu[k+1] +
jX

h=k+2

su[h�1][h] + pu[h] j = k + 1; : : : ; n

Tuw(([k+ 1]; : : : ; [j])) = max
n
Tuw(([k+ 1]; : : : ; [j � 1])) + sw[j�1][j];

Tu;w�1(([k+ 1]; : : : ; [j]))
o
+ pw[j] j = k + 1; : : : ; n;

w = u+ 1; : : : ; v

There is an alternate way to look at this recursion. To help understand the computations

we introduce the following directed graph Guv (depicted in Figure 3) which is constructed as

follows: for each operation, say the processing of job [j] on machine i, there is a node (i[j])

with a weight that is equal to pi[j]. For each machine i, i 2 fu; u+ 1; : : : ; v � 1; vg, there is a

node (i[k+1]) that represents the initial or current state (job [k+1] is the �rst job in �Sk). The

setup times si[j][j+1] are represented by an arc going from node (i[j]) to node (i[j + 1]) with a

weight that is equal to si[j][j+1], for i = u; u+ 1; : : : ; v � 1; v, j = k + 1; : : : ; n� 1. Node (i[j]),

i = u; u + 1; : : : ; v � 1, j = k + 1; : : : ; n � 1, also has an arc going to node (i + 1; [j]) with

zero weight. Note that nodes corresponding to machine v have only one outgoing arc, and that

node (v[n]) (target) has no outgoing arcs. The following proposition establishes the relationship

between Tuv(�Sk) and the critical path of Guv.

7

...

... ...

...

......

u[n]
p

p
i[j+1]

p
i[j]

s
i[j][j+1]

s
i+1,[j][j+1]

p
i+1,[j+1]

p
v[n]

p
i+1,[j]

p
u[k+2]

p
v[k+2]

p
u[k+1]

p
v[k+1]

s
v[k+1][k+2]

s
u[k+1][k+2]

... ...

......

...

...

...

...

Figure 3: Directed graph Guv for computation of Tuv in a SDST
woshop

Proposition 1 Tuv(�Sk), with �Sk = ([k+ 1]; : : : ; [n]), is determined by the maximum length or

critical path from node (u[k+ 1]) to node (v[n]).

Proof: The proof is by induction on w+ j (second machine index and job index of last job

in subsequence ([k + 1]; : : : ; [j]). The trivial case w + j = u+ k + 1 corresponds to w = u and

j = k+1 and is easily veri�ed (only source node (u[k+1]) involved with length Tuu(([k+1]))).

The induction hypothesis assumes that Tuw(([k + 1]; : : : ; [j])) is the maximum length path

from node (u[k+ 1]) to node (w[j]) holds for w+ j < i+ l. It remains to prove that this result

holds for w+ j = i+ l as well.

Consider Tui(([k + 1]; : : : ; [l])) given by

Tui(([k+1]; : : : ; [l])) = max
n
Tui(([k+ 1]; : : : ; [l� 1])) + si[l�1][l]; Tu;i�1(([k+ 1]; : : : ; [l]))

o
+pi[j]

Since each of the Tuv in the maximization above has w+ j = i+ l� 1 < i+1, by the induction

hypothesis, those represent maximum length paths from source node to node (i[l � 1]) and

(i� 1; [l]), respectively. Since these are the only two nodes preceding node (i[l]), it follows that

Tui(([k+ 1]; : : : ; [l])) is the maximum length path from the source to node (i[l]) and the result

is established.

Given the structure of Guv, the length of the critical path from (u[k + 1]) to (v[n]) (or

equivalently, Tuv(�Sk)) is also given by

8

Tuv(�Sk) = max
k<tu�tu+1�:::�tv�1�tv�n

(
pu[k+1] +

tuX
h=k+2

(su[h�1][h] + pu[h])

+ pu+1[tu] +
tu+1X

h=tu+1

(su+1[h�1][h] + pu+1[h])

+ : : :

+ pv�1[tu] +
tvX

h=tv�1+1

(sv�1[h�1][h] + pv�1[h])

+ pv[tv] +
nX

h=tv+1

(sv[h�1][h] + pv[h])

)
(2)

for 1 � u < v � m, where
Pb

h=a(�) = 0 for b < a. Thus the maximization in (2) consists of

�nding the tu; tu+1; : : : ; tv�1; tv that de�ne the critical path on Guv , where ti corresponds to the

index of the job where the critical path crosses from level i to level i+ 1 on Guv .

Recall that the maximization on the right-hand side of (2) is only used to �nd the Tuv for

a given sequence �Sk, but in fact, the main problem is to �nd the subsequence �Sk in Uk that

minimizes Cm[n] in (1). As can be seen from (1), minimizing Tuv(�Sk) yields a lower bound on

Cm[n].

The minimization of Tuv(�Sk) is as hard as the problem FS(Sk) (minimizing Cm[n] in (1)),

even for Tu;u+1(�Sk). Hence we consider the minimization of the following lower bound of Tuv(�Sk)

by considering the case where k < tu = tu+1 = : : := tv�1 = tv = t � n and excluding all other

terms in Tuv(�Sk) (note that this is a valid lower bound since this special case corresponds to a

path with length less than or equal to the length of the critical path), i.e.,

Tuv(�Sk) � max
k<t�n

(
pu[k+1] +

tX
h=k+2

(su[h�1][h] + pu[h]) + pu+1[t] + : : :

+ pv�1[t] + pv[t] +
nX

h=tv+1

(sv[h�1][h] + pv[h])

)

= max
k<t�n

(
tX

h=k+1

pu[h] + pu+1[t] + : : :+ pv�1[t] +
nX

h=t

pv[h]

+
tX

h=k+2

su[h�1][h] +
nX

h=t+1

sv[h�1][h]

)

= max
k<t�n

(
tX

h=k+1

pu[h] +
tX

h=k+1

pu+1[h] + : : :+
tX

h=k+1

pv�1[h]

+
nX

h=t

pu+1[h] + : : :+
nX

h=t

pv�1[h] +
nX

h=t

pv[h]

9

�
nX

h=k+1

pu+1[h] � : : :�
nX

h=k+1

pv�1[h]

+
tX

h=k+2

su[h�1][h] +
nX

h=t+1

sv[h�1][h]

)

= max
k<t�n

(
tX

h=k+1

v�1X
i=u

pi[h]

!
+

nX
h=t

vX

i=u+1

pi[h]

!

+
tX

h=k+2

su[h�1][h] +
nX

h=t+1

sv[h�1][h]

)
�

v�1X
i=u+1

pi(�Sk)

� max
k<t�n

(
tX

h=k+1

v�1X
i=u

pi[h]

!
+

nX
h=t

vX

i=u+1

pi[h]

!)

+
nX

h=k+2

suv[h�1][h] �
v�1X

i=u+1

pi(�Sk)

where suv[h�1][h] = minfsu[h�1][h]; sv[h�1][h]g. Let

Zuv(�Sk) = max
k<t�n

(
tX

h=k+1

v�1X
i=u

pi[h]

!
+

nX
h=t

vX

i=u+1

pi[h]

!)

The problem of minimizing Zuv(�Sk) is reduced to a solvable 2-machine
owshop (Johnson's

algorithm) with processing times

p01j =
v�1X
i=u

pij

p02j =
vX

i=u+1

pij

Let Z�
uv(�Sk) be its minimum value.

The problem of minimizing
Pn

h=k+2 s
uv
[h�1][h] corresponds to �nding a shortest tour of an

ATSP on n� k vertices. Let S�uv(�Sk) be a lower bound for this ATSP. Then

Tuv(�Sk) � Z�
uv(�Sk) + S�uv(�Sk)�

v�1X
i=u+1

pi(�Sk) 1 � u < v � m

Now note the following valid lower bounds for the starting time of job [k+ 1] on machine u

Cu[k] + min
h2Uk

n
su[k]h

o

Cu�1[k] + min
h2Uk

n
su�1[k]h + pu�1;h

o

Cu�2[k] + min
h2Uk

n
su�2[k]h + pu�2;h + pu�1;h

o
...

10

C1[k] + min
h2Uk

n
s1[k]h + p1h + : : :pu�1;h

o

Denote by Tmin
i;u�1 the minimum elapsed time (among all unscheduled jobs) from the �nish of

job [k] on machine i until the �nish time of job [k + 1] on machine u� 1, for i = 1; : : : ; u, i.e.,

Tmin
i;u�1 = min

h2Uk

8<
:si[k]h +

u�1X
q=i

pqh

9=
;

where the case i = u corresponds to Tmin
u;u�1 = minh2Uk

n
su[k]h

o
. A lower bound on the starting

time of job [k + 1] on machine u is then given by

max
1�i�u

n
Ci[k] + Tmin

i;u�1

o

Note that once the last job [n] has �nished on machine v, the remaining time until termi-

nation (assuming no idle time) is
Pm

i=v+1 pi[n]. This yields the following lower bound for the

elapsed time since the �nish of job [n] on machine v until the �nish of job [n] on machine m:

min
h2Uk

8<
:

mX
i=v+1

pih

9=
;

We can thus establish the following generalized lower bound guv(�Sk) on Cmax

guv(�Sk) = max
1�i�u

n
Ci[k] + Tmin

i;u�1

o
+ Z�

uv(
�Sk) + S�uv(

�Sk)�
v�1X

i=u+1

pi(�Sk) + min
h2Uk

8<
:

mX
i=v+1

pih

9=
;

for any 1 � u < v � m. Note that the optimal sequence of the jobs in the embedded 2-machine

owshop (for given u; v) has to be determined only once for FS(;), the original problem, since

it does not change if some jobs are removed nor it is in
uenced by the fact that machine v is

not available until Cv[k].

In summary, for a given pair of machines (u; v), we have derived a generalized lower bound

guv which may be computed for various machine pairs (u; v). If W = f(u1; v1); : : : ; (uw; vw)g is

a set of machine pairs, then the corresponding overall lower bound GLB(W) is de�ned by

GLB(W) = max fgu1 ;v1 ; : : : ; guw;vwg :

Note that there arem(m�1)=2 possible pairs (u; v); however, the load for computing GLB based

on all pairs is too heavy. Therefore, we only consider the following subsets of machine pairs

W0 = f(1; 2); (2; 3); : : : ; (m� 1; m)g,W1 = f(1; m); (2;m); : : : ; (m� 1; m)g, and W2 = W0[W1,

which contains O(m) pairs. Our empirical work (Section 5) has shown that GLB(W1) provides

better results than GLB(W0) and is faster to compute than GLB(W2).

Machine-Based Lower Bounds: In the previous section we developed a family of lower bounds

guv for 1 � u < v � m, based on a pair (u; v) of bottleneck machines. Consider now the case

11

u = v; that is, there is only one bottleneck machine and the capacity of all other machines is

relaxed. Thus it is possible to �nd m additional lower bounds gu, 1 � u � m.

Again, let the sequence of the �rst k jobs �xed be Sk = ([1]; [2]; : : : ; [k]) and the set of

remaining = n � k (unscheduled) jobs be Uk. For an arbitrary sequence of jobs in Uk , �Sk =

([k + 1]; [k + 2]; : : : ; [n]), let Tu(�Sk) be the elapsed time from the starting time of job [k + 1]

until the �nish time of job [n] on machine u. Then Tu(�Sk) is given by

Tu(�Sk) = pu[k+1] +
nX

h=k+2

(su[h�1][h] + pu[h])

= pu(�Sk) +
nX

h=k+2

su[h�1][h]

Since pu(�Sk) is constant for any sequence, the problem of minimizing Tu(�Sk) corresponds to

�nding a sequence that minimizes
Pn

h=k+2 su[h�1][h], which is equivalent to �nding the shortest

tour in an ATSP on n � k vertices. Let S�u(
�Sk) be a lower bound for this ATSP. Then

gu(�Sk) = max
1�i�u

n
Ci[k] + Tmin

i;u�1

o
+ S�u(

�Sk) + min
h2Uk

8<
:

mX
i=u+1

pih

9=
; (3)

for 1 � u � m is a valid lower bound on Cmax, where the �rst and last terms on the right-hand

side are a lower bound on the starting time of job [k + 1] on machine u, and a lower bound

on the elapsed time between the �nish of job [n] on machine u and the �nish of job [n] on

machine m, respectively, as developed in the previous section.

The fact that the setup time between jobs [k] and [k+ 1], su[k][k+1], is not considered in the

computation of Tu(�Sk) allows us to use the �rst term on the right-hand side of (3) as a lower

bound for the starting time of job [k + 1] on machine u. It might be advantageous, however,

to include this setup time (su[k][k+1]) in the computations to improve the lower bound S�u of

the related ATSP. The trade-o� is that by doing so, we no longer can use the �rst term on the

right-hand side of (3). This alternate bound is expressed as

g0u(�Sk) = L0u(�Sk) + min
h2Uk

8<
:

mX
i=u+1

pih

9=
;

where L0u is valid lower bound on
Pn

h=k+1 su[h�1][h].

ATSP Lower Bounds: In deriving the GLB and MBLB, we have to deal with solving an ATSP

at some point. The ATSP itself is an NP-hard problem; however, since we are only interested

in a lower bound, any valid lower bound for the ATSP will su�ce.

In our work, we used the assignment problem (AP) lower bound, which is obtained by re-

laxing the connectivity (subtour elimination) constraints for the ATSP. It has been documented

(Balas and Toth [1]) that the AP bound is very sharp for the ATSP. (This is not necessarily

true for the symmetric TSP.)

12

4.3 Search Strategy

The search strategy we use selects the subproblem with the best bound; e.g., the smallest lower

bound in case of a minimization problem. This approach is motivated by the observations that

the subproblem with the best lower bound has to be evaluated anyway and that it is more

likely to contain the optimal solution than any other node. As shown in [6], this strategy has

the characteristic that, if other parts of a branch-and-bound algorithm are not changed, the

number of partial problems decomposed before termination is minimized.

Another well known strategy is depth-�rst search, which is mostly used in situations where

it is important to �nd feasible solutions quickly. However, we do not consider it since feasibility

is not an issue.

4.4 Dominance Rule

We now establish some conditions under which all completions of a partial schedule Sk (associ-

ated with subproblem Pk) can be eliminated because a schedule at least as good exists among

the completions of another partial schedule Sj (corresponding to subproblem Pj). Let J(Sj)

and J(Sk) denote the index sets of jobs corresponding to Sj and Sk, respectively; l(S) denote

the index of the last scheduled job in schedule S; and Ci(S) denote the completion time of the

last scheduled job in S on machine i. Then Pj dominates Pk if for any completion Sk �Sk of

Sk there exists a completion Sj �Sj of Sj such that Cmax(Sj �Sj) � Cmax(Sk �Sk). This is stated

formally in the following theorem.

Theorem 1 If J(Sj) = J(Sk), l(Sj) = l(Sk), and Ci(Sj) � Ci(Sk) for all i 2 I, then Pj

dominates Pk.

Proof: Let Q be a schedule and qi(Q) be the elapsed time between the starting of the �rst

job in Q on machine i and the end of operations. Then for a partial schedule Sk, let Q be

any schedule formed by the jobs in Uk (set of unscheduled jobs). The makespan of SkQ can be

computed as

Cmax(SkQ) = max
i2I

n
Ci(Sk) + si;l(Sk);h + qi(Q)

o

where h is the job index of the �rst job in Q. Let Pj be a subproblem such that J(Sj) =

J(Sk) (its corresponding partial schedule Sj has the same job indices as those of schedule Sk),

l(Sj) = l(Sk) (have the same job scheduled last), and Ci(Sj) < Ci(Sk) for i 2 I . Since the set

of unscheduled jobs is the same for both subproblems, SjQ is also a valid completion for Pj ,

and

si;l(Sj);h + qi(Q) = si;l(Sk);h + qi(Q) i 2 I

13

Therefore

Ci(Sj) � Ci(Sk) i 2 I) Ci(Sj) + si;l(Sj);h + qi(Q) � Ci(Sk) + si;l(Sk);h + qi(Q) i 2 I

) max
i2I

n
Ci(Sj) + si;l(Sj);h + qi(Q)

o
� max

i2I

n
Ci(Sk) + si;l(Sk);h + qi(Q)

o

) Cmax(SjQ) � Cmax(SkQ)

which shows that Pj dominates Pk .

A second dominance rule arises for the special case where there is no idle time between

a subsequence of any three particular jobs in a schedule. This is presented in Lemma 1 in

Appendix A. Two other special cases, the �rst related to reversing the job sequence and

the second to the independence of processing times and machines, are also discussed in the

Appendix.

In terms of computational e�ort, determining whether a given subproblem Pk is dominated

implies: (a) searching for another subproblem (at the same level), and (b) checking conditions

of Theorem 1. Step (a) can be done in O(logT) time, where T = O(2d) is the size of search

tree up to depth d (if done e�ciently, there is no need to search the whole tree). Operation (b)

takes O(m) time. At level d, there are potentially O(2d) nodes, thus the worst-case complexity

to determine whether a given subproblem (at depth d) is dominated is O(md2d).

Despite this worst-case complexity, the implementation of this dominance rule has had a

strong positive impact in the performance of BABAS. Computational results are provided in

Section 5.

4.5 Upper Bounds

It is well known that branch-and-bound computations can be reduced by using a heuristic

to �nd a good solution to act as an upper bound prior to the application of the enumeration

algorithm, as well as at certain nodes of the search tree. With this in mind we have adapted the

GRASP developed in [19] and a hybrid heuristic (described in [16]) to handle partial schedules.

In our basic algorithm, we apply both heuristics with extensive local search at the root

node to obtain a high quality feasible solution. Once the algorithm is started, an attempt is

made to �nd a better feasible solution every time UPPER BOUND LOG nodes are generated,

where UPPER BOUND LOG is a user-speci�ed parameter. In our experiments, we set this

parameter to 50. At the intermediate stages, we do not do a full local search but try to balance

the computational load. Once BABAS satis�es the stopping criteria, if the best feasible solution

is not optimal, we apply an extensive local search to ensure that a local minimum has been

obtained.

14

4.6 Partial Enumeration

Partial enumeration is a truncated branch-and-bound procedure similar to what is called beam

search [13]. Instead of waiting to discard a portion of the tree that is guaranteed not to contain

the optimum, we may discard parts of the tree that are not likely to contain the optimum. One

essential is to have a good measure of what \likely" means.

The way we handle the partial enumeration is as follows. During the branching process,

every potential child is evaluated with respect to a valuation function h. Those potential sub-

problems whose valuation function do not meet a certain pre-established criterion are discarded.

We implemented this idea by ranking the potential children by increasing value of h and then

discarding the worst �n nodes, where � 2 [0; 1] is a user-speci�ed parameter. The larger the

value of �, the more nodes that will be eliminated from consideration. The case � = 0 coincides

with regular branch and bound.

4.6.1 A Valuation Function

To develop a valuation function h we make use of the following cost function Cjk for each pair

of jobs j; k 2 J :

Cjk = �Rjk + (1� �)Sjk

where � 2 [0; 1] is a weight factor, Rjk is a term that penalizes a \bad" �t from the
owshop

perspective, and Sjk is a term that penalizes large setup times. This cost measure was intro-

duced in [16] where it was used to develop a TSP-based hybrid heuristic for the SDST
owshop

with very good results. A detailed description on how to estimate Rjk and Sjk is given in that

work.

Let Pj be the node from which branching is being considered with corresponding partial

schedule Sj . Let l(Sj) be the index of the last scheduled job in Sj . Then, for every k 2 Uj ,

we compute h(k) = Cl(Sj);k and then discard the worst �n potential subproblems (in terms of

h(k)).

Although it is likely that the nodes excluded by this procedure will not be in an optimal

solution, no theoretical guarantee can be established. We should also point out the trade-o�

between higher con�dence in the quality of the solution and smaller computational e�ort when

� is set to smaller and larger values, respectively.

5 Computational Experience

All routines were written in C++ and run on a Sun Sparcstation 10 using the CC compiler

version 2.0.1, with the optimization
ag set to -O. CPU times were obtained through the C

function clock().

15

To conduct our experiments we used randomly generated data. It has been documented [4]

that the main feature in real-world data for this type of problem is the relationship between

processing and setup times. In practice, setup times are about 20-40% of the processing times.

Because the experiments are expensive, we generated one class of random data sets with the

setup times being 20-40% of the processing times: pij 2 [20; 100] and sijk 2 [20; 40].

5.1 Experiment 1: Lower Bounds

The lower bounding procedures developed in Section 4.2 were compared within the branch-and-

bound enumeration framework. In our �rst experiment, the generalized lower bound (GLB)

was evaluated for three di�erent subsets of machine pairs.

W0 = f(1; 2); (2; 3); : : : ; (m� 1; m)g

W1 = f(1; m); (2;m); : : : ; (m� 1; m)g

W2 = W0 [W1

It is evident that GLB(W2) will dominate the other two; however, it requires more computa-

tional e�ort.

m = 4 m = 6

W0 W1 W2 W0 W1 W2

Average relative gap (%) 0.8 0.3 0.3 1.3 0.3 0.4

Average number of evaluated nodes (1000) 10.1 9.2 8.7 11.0 9.3 9.0

Average CPU time (min) 10.8 9.2 9.3 15.0 11.8 12.1

Optimal solutions found (%) 60 60 60 20 70 60

Table 1: Evaluation of GLB for 10-job instances

Table 1 shows the average results for 10-job problems with machine settings m = 4; 6. Note

that when m = 2, W0 = W1 = W2 = f(1; 2)g. The averages are taken over 10 instances with a

stopping limit of 15 CPU minutes. The dominance rule is in e�ect as well. Each column shows

the statistics for GLB based on W0, W1, and W2, respectively. The relative gap is computed as

best upper bound � best lower bound
best lower bound � 100%

As can be seen, the quality of GLB(W0) is inferior to the other two since a larger number

of nodes has to be evaluated, resulting in larger execution times. In addition, under GLB(W0),

fewer optimal solutions are found in the allotted time (only 20% in the 6-machine instances

as opposed to 60% using W1 and W2). When comparing GLB(W1) and GLB(W2), similar

performance is observed in almost every statistic. In fact, GLB(W1) was found to be slightly

16

m = 2 m = 4 m = 6

GLB(W1) MBLB GLB(W1) MBLB GLB(W1) MBLB

Average relative gap at root (%) 2.7 6.6 6.4 12.1 8.8 14.8

Average relative gap at termination (%) 2.2 3.1 4.1 2.9 5.3 3.1

Times best bound found (%) 40 60 30 80 0 100

Optimal solutions found (%) 30 60 0 50 0 10

Table 2: Lower bound comparison for 15-job instances

better than GLB(W2). This implies that the extra e�ort used by GLB(W2) (the dominant

bound) is not paying o�.

We now compare GLB(W1) with the machine-based lower bound (MBLB). A stopping limit

of 15 CPU minutes was similarly imposed. Table 2 shows the results of this comparison for

15-job instances. It can be seen from the table that the GLB is actually better at the root

node; however, as branching takes place, the MBLB makes more progress providing, in almost

all cases, a tighter bound. There were even some instances that were solved to optimality under

the MBLB alone.

One possible explanation for this result is that the MBLB, for a given machine, takes into

account all the involved setup times, whereas the GLB, in its attempt to reduce the problem

to a 2-machine case, loses valuable setup time information (recall that for a given machine pair

(u; v), GLB uses minfsujk ; svjkg to represent the setup time between jobs j and k). Because

the MBLB procedure was uniformly better than the GLB scheme, we use it in the remainder

of the experiments.

5.2 Experiment 2: Dominance Elimination Criterion

m = 2 m = 4 m = 6

NDR DR NDR DR NDR DR

Average relative gap (%) 0.7 0.0 0.0 0.0 0.1 0.0

Average number of evaluated nodes 16063 8529 5074 2985 10879 7924

Average CPU time (min) 18.3 5.8 4.8 2.3 14.2 8.4

Optimal solutions found (%) 50 100 100 100 90 100

Table 3: Evaluation of dominance rule for 10-job instances

We now evaluate the e�ectiveness of the dominance rule. Table 3 shows the average statistics

over 10 instances for machine sizes m = 2; 4; 6. Each instance was run with a CPU time limit

of 30 minutes and optimality gap tolerance of 0.0. The results for the algorithm with and

without the dominance rule in e�ect are indicated by DR and NDR, respectively. As we can

see, the implementation of the dominance rule has a signi�cant impact on the overall algorithmic

17

performance resulting in a considerably smaller number of nodes to be evaluated, and a factor

of 2 reduction in CPU time. In fact, when the dominance rule was in e�ect, the algorithm found

optimal solutions to all instances, as opposed to only 80% when the rule was not in e�ect.

5.3 Experiment 3: Partial Enumeration

� = 0 � = 0:5 � = 0:8

Instance UB Gap Time UB Gap Time UB Gap Time

fs6x20.1 2022 2.8 30 2020 1.8 30 2029 1.0 1

fs6x20.2 2108 4.4 30 2111 3.2 30 2114 1.0 1

fs6x20.3 2100 5.3 30 2093 4.1 30 2106 1.0 1

fs6x20.4 1967 5.5 30 1966 3.5 30 1972 1.0 1

fs6x20.5 2095 1.5 30 2094 1.0 10 2096 1.0 1

fs6x20.6 2058 6.5 30 2057 5.3 30 2070 1.0 2

fs6x20.7 2088 5.6 30 2082 3.9 30 2088 1.0 2

fs6x20.8 2129 8.1 30 2129 6.8 30 2124 1.0 8

fs6x20.9 2106 3.7 30 2106 2.3 30 2109 1.0 1

fs6x20.10 2142 6.1 30 2130 4.2 30 2144 1.0 2

Table 4: Partial enumeration evaluation for 6-machine, 20-job instances

In this experiment, we illustrate the e�ect of doing partial versus complete enumeration.

We ran the partial search strategy for � = 0 (normal enumeration), � = 0:5 (truncating 50% of

the potential children), and � = 0:8 (truncating 80% of the potential children) for 10, 6 � 20

instances, with a stopping criterion of 30 minutes and relative gap fathoming tolerance of 1.0%.

The overall results are displayed in Table 4. Results for a particular instance are by row. For

each value of � we tabulate upper bound (UB), relative gap percentage (Gap) and CPU time

(Time) rounded to the nearest minute. It should be noted that the relative gap for the truncated

versions (� 2 f0:5; 0:8g) do not correspond to a true optimality gap, but to the best lower bound

without considering the truncated nodes. As can be seen, increasing the value of � results in

a larger number of truncated nodes, hence a quicker execution of the procedure. We can also

observe that the quality of the solution decreases with the size of �. A good compromise seems

to be around � = 0:5, but one must keep in mind that once � assumes a value greater than

zero, the algorithm can no longer be guaranteed to provide an optimal solution to the original

problem.

5.4 Experiment 4: BABAS Overall Performance

Here we show the results when the full algorithm is applied to instances of the SDST
ow-

shop. We use the MBLB procedure, dominance elimination rule, and a relative gap fathoming

tolerance of 1%. Maximum CPU time is set at 30 minutes.

18

Size Optimality gap (%) Time (sec) Instances

m� n best average worst best average worst solved (%)

2� 10 0.3 0.9 1.0 1 235 560 100

4 0.8 0.9 1.0 2 68 222 100

6 0.9 1.0 1.0 29 265 450 100

2� 15 0.0 1.0 2.6 3 725 1800 70

4 0.9 2.2 4.5 7 1074 1800 50

6 1.0 2.9 4.5 38 1624 1800 10

2� 20 0.5 1.0 1.6 7 1298 1800 70

4 2.4 4.2 5.1 1800 1800 1800 0

6 1.5 5.0 8.1 1800 1800 1800 0

Table 5: BABAS evaluation

Table 5 displays the summary statistics which were calculated from 10 problem instances

for each m � n combination. As can be seen, all 10-job instances were solved (within 1%) in

an average time of less than 5 minutes, a notable improvement when compared to previous

published research on this problem, where the size of the largest instances solved optimally was

a 6-machine, 8-job problem. In fact, BABAS was able to solve 43% of the 15-job instances,

and 23% of the 20-job instances. Most of the instances solved corresponded to the 2-machine

case. This is to be expected since the fathoming rules (lower bound and dominance) become

less powerful as the number of machines increases.

Size Optimality gap at root (%) Optimality gap at end (%) Average Instances

m� n best average worst best average worst time (min) solved (%)

2� 100 1.2 3.4 8.4 0.6 1.4 2.1 28.1 30

4 3.3 5.1 6.5 2.3 4.2 5.7 30.0 0

6 5.0 7.6 9.4 4.3 6.0 7.2 30.0 0

Table 6: BABAS evaluation on 100-job instances

Finally, Table 6 shows the algorithmic performance when BABAS is applied to 100-job

instances. Thirty percent of the 2-machine instances were solved and 70% �nished with a

relative gap of 1.3% or better. In general, the average relative gap from the start to the end

of the algorithm improved by 2.0%, 0.9%, and 1.6% for the 2-, 4-, and 6-machine instances,

respectively. We also observed that the lower bound and the dominance test was less powerful

than the 20 or fewer job cases.

19

6 Summary

We have presented and evaluated a branch-and-bound scheme for the SDST
owshop scheduling

problem. Our implementation includes both lower and upper bounding procedures, and a

dominance elimination criterion. The empirical results indicate the positive impact of the

machine-based lower bound procedure and the dominance rule. Signi�cantly better performance

over previously published work (LP-based methods) was also obtained. We were able to solve

(within 1% optimality gap) 100%, 43%, and 23% of the 10-, 15-, and 20-job instances tested.

In addition, for the 100-job instances, our algorithm delivered average relative gaps of 1.4%,

4.2%, and 6.0% when applied to the 2-, 4-, and 6-machine cases, respectively. A salient feature

of our algorithm is that it permits partial enumeration search, which can be used to obtain

approximate solutions with relatively smaller computational e�ort.

7 Acknowledgments

We thank Matthew Saltzman for allowing us to use his C implementation of the dense shortest

augmenting path algorithm to solve AP.

Appendix A

This appendix contains three lemmas which address special cases of the SDST
owshop.

The �rst presents a dominance rule, the second discusses the reversibility of the schedule, and

the third considers speci�c parameter relationships. To simplify the presentation, the bracket

notation for a given schedule will be dropped and we will denote a schedule S by (1; : : : ; n)

rather than ([1]; : : : ; [n]).

Lemma 1 Let S = (1; 2; : : : ; n) be a feasible schedule of F jsijk ; prmujCmax. Let eij be the

earliest completion time of job j on machine i

eij = max fei�1;j ; ei;j�1 + si;j�1;jg+ pij

for i = 1; 2; : : : ; m, j = 1; 2; : : : ; n, and ei0 = e0j = 0. Let qij be the minimum remaining time

from the start of job j on machine i to the end of operations on the last machine

qij = max fqi+1;j ; qi;j+1 + si;j;j+1g+ pij

for i = m;m� 1; : : : ; 1, j = n; n � 1; : : : ; 1, and qi;n+1 = qm+1;j = 0. Let j and j + 1 be any

two adjacent jobs in S (j = 1; 2; :::; n� 1) and let S0 = (1; : : : ; j � 1; j + 1; j; j+ 2; : : : ; n) be the

schedule where jobs j and j + 1 are exchanged (with completion time e0ij and remaining time

q0ij).

If all of the following conditions hold for each i = 1; 2; : : : ; m

20

(a) eij = ei;j�1 + si;j�1;j + pij (there is no idle time between jobs j � 1 and j in S)

(b) qi;j+1 = qi;j+2 + si;j+1;j+2 + pi;j+1 (there is no idle time between jobs j+1 and j+

2 in S)

(c) e0i;j+1 = e0i;j�1 + si;j�1;j+1 + pi;j+1 (there is no idle time between jobs j�1 and j+

1 in S0)

(d) q0i;j = q0i;j+2 + si;j;j+2 + pi;j (there is no idle time between jobs j and j+2 in S 0)

(e) si;j�1;j + si;j;j+1 + si;j+1;j+2 > si;j�1;j+1 + si;j+1;j + si;j;j+2

then S0 has a lower makespan than S,

Cmax(S
0) < Cmax(S):

Proof: First notice that both S and S0 are identical sequences except for jobs j and j + 1.

This implies that eik = e0ik for all k = 1; 2; : : : ; j� 1 and qik = q0ik for all k = j + 2; j+ 3; : : : ; n.

Thus, from (e) we obtain

ei;j�1+si;j�1;j+pij+qi;j+2+si;j+1;j+2+pi;j+1 > e0i;j�1+si;j�1;j+1+pi;j+1+q
0
i;j+2+si;j;j+2+pij

for all i. Conditions (a)-(d) yield

eij + si;j;j+1 + qi;j+1 > e0i;j+1 + si;j+1;j + q0ij for all i

In particular, this is valid for the maximum over i

max
i
feij + si;j;j+1 + qi;j+1g > max

i

n
e0i;j+1 + si;j+1;j + q0ij

o

But these expressions correspond to the makespan values of S and S0, respectively. That is,

Cmax(S) > Cmax(S
0):

An appropriate data structure should keep track of both eij and qij for all i and j. This

would make it possible to check conditions (a)-(d) in O(m) time.

As seen in Section 4.2, Proposition 1, Tuv(�Sk) (the elapsed time between the �rst job in �Sk

on machine u and the last job in �Sk on machine v) can be computed by �nding the critical

path on graph Guv (Figure 3). Note that T1m(S) is an equivalent form to express the makespan

of schedule S, which implies, by Proposition 1, that its makespan is given by the critical path

from node (1; 0) to node (m;n) in graph G1m.

An interesting property can be obtained when comparing two instances of the SDST
ow-

shop with no initial setup times. Let FS be an instance of F jsijk ; prmujCmax with processing

21

times pij and setup times sijk . Let us assume that si0k = 0 for all i 2 I , and k 2 J . Let FS0 be

another instance of the SDST
owshop with processing and setup times given by

p0ij = pm+1�i;j ; and

s0ijk = sm+1�i;k;j ;

respectively. This basically implies that the �rst machine in the FS0 is identical to the last

machine in FS; the second machine in FS0 is identical to machine m� 1 in FS, and so on. The

following lemma applies to these two
owshops.

Lemma 2 Let S = (1; : : : ; n) be a sequence of jobs in FS with corresponding makespan Cmax(S).

If the jobs in FS 0 follow the sequence S0 = (n; n� 1; : : : ; 1) (with makespan C0
max(S

0)), then

Cmax(S) = C0
max(S

0):

Proof: Let S = (1; : : : ; n) be a feasible sequence in FS. Then its makespan Cmax(S) is given

by T1m(S), the length of the critical path in G1m. Let G0
1m be the graph associated to FS0

under sequence S0 = (n; : : : ; 1). By de�nition of FS0, G0
1m is obtained from G1m by reversing

the sense of all the arcs in G1m. Since the length of the critical path from does not change, it

follows that T1m(S) = T 01m(S
0), where T 01m(S

0) is the length of the critical path in G0
1m, and

the proof is complete.

Lemma 2 states the following reversibility result: the makespan does not change if the jobs

go through the
owshop in the opposite direction in the reverse order.

Another special case of F jsijk ; prmujCmax which is of interest is the so-called proportionate

owshop. In this
owshop the processing times of job j on each machine are equal to pj , that

is, pij = pj , i = 1; : : : ; m. Minimizing the makespan in a proportionate permutation
owshop

is denoted by F jpij = pj ; prmujCmax. This problem has a very special property when all setup

times are equal to a constant sijk = s.

Lemma 3 For F jpij = pj ; sijk = s; prmujCmax, the makespan is given by

Cmax =
nX

j=1

pj + ns + (m� 1)max
j
fpjg

and is independent of the schedule.

Proof: From Figure 3 we can see that for any sequence of jobs S = (1; 2; : : : ; n) the

critical path starts at node (1; 0), stays on machine 1 until it reaches node (1; k), where k =

argmaxjfpjg, stays on job k until it reaches node (m; k), and ends by reaching node (m;n).

Similar results on reversibility and proportionate
owshops for F jprmujCmax are discussed

in [14].

22

References

[1] E. Balas and P. Toth. Branch and bound methods. In E. L. Lawler, J. K. Lenstra, A. H.

G. Rinnoy Kan, and D. B. Shmoys, editors, The Traveling Salesman Problem: A Guided

Tour of Combinatorial Optimization, pages 361{401. John Wiley & Sons, Chichester, 1990.

[2] J. Carlier and I. Rebai. Two branch and bound algorithms for the permutation
ow shop

problem. European Journal of Operational Research, 90(2):238{251, 1996.

[3] F. Della Croce, V. Narayan, and R. Tadei. Two-machine total completion time
ow shop

problem. European Journal of Operational Research, 90(2):227{237, 1996.

[4] J. N. D. Gupta and W. P. Darrow. The two-machine sequence dependent
owshop schedul-

ing problem. European Journal of Operational Research, 24(3):439{446, 1986.

[5] S. K. Gupta. n jobs and m machines job-shop problems with sequence-dependent set-up

times. International Journal of Production Research, 20(5):643{656, 1982.

[6] T. Ibaraki. Enumerative approaches to combinatorial optimization: Part I. Annals of

Operations Research, 10(1{4):1{340, 1987.

[7] T. Ibaraki. Enumerative approaches to combinatorial optimization: Part II. Annals of

Operations Research, 11(1{4):341{602, 1987.

[8] E. Ignall and L. Schrage. Application of the branch and bound technique to some
ow-shop

scheduling problems. Operations Research, 13(3):400{412, 1965.

[9] S. M. Johnson. Optimal two- and three-stage production schedules with setup times in-

cluded. Naval Research Logistics Quarterly, 1(1):61{68, 1954.

[10] B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan. A general bounding scheme for

the permutation
ow-shop problem. Operations Research, 26(1):53{67, 1978.

[11] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. Shmoys. Sequencing and

scheduling: Algorithms and complexity. In S. S. Graves, A. H. G. Rinnooy Kan, and

P. Zipkin, editors, Handbook in Operations Research and Management Science, Vol. 4:

Logistics of Production and Inventory, pages 445{522. North-Holland, New York, 1993.

[12] Z. A. Lomnicki. A \branch-and-bound" algorithm for the exact solution of the three-

machine scheduling problem. Operational Research Quarterly, 16(1):89{100, 1965.

[13] T. E. Morton and D. W. Pentico. Heuristic Scheduling Systems. John Wiley & Sons, New

York, 1993.

23

[14] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Englewood Cli�s,

New Jersey, 1995.

[15] C. N. Potts. An adaptive branching rule for the permutation
ow-shop problem. European

Journal of Operational Research, 5(1):19{25, 1980.

[16] R. Z. R��os-Mercado. Optimization of the Flow Shop Scheduling Problem with Setup Times.

PhD thesis, University of Texas at Austin, Austin, TX 78712{1063, August 1997.

[17] R. Z. R��os-Mercado and J. F. Bard. The
owshop scheduling polyhedron with setup times.

Technical Report ORP96{07, Graduate Program in Operations Research, University of

Texas at Austin, Austin, TX 78712{1063, July 1996.

[18] R. Z. R��os-Mercado and J. F. Bard. Computational experience with a branch-and-cut

algorithm for
owshop scheduling with setups. Technical Report ORP97{01, Graduate

Program in Operations Research, University of Texas at Austin, Austin, TX 78712{1063,

May 1997.

[19] R. Z. R��os-Mercado and J. F. Bard. Heuristics for the
ow line problem with setup costs.

European Journal of Operational Research, 1997. Forthcoming.

[20] J. V. Simons Jr. Heuristics in
ow shop scheduling with sequence dependent setup times.

OMEGA The International Journal of Management Science, 20(2):215{225, 1992.

[21] B. N. Srikar and S. Ghosh. A MILP model for the n-job, m-stage
owshop with sequence

dependent set-up times. International Journal of Production Research, 24(6):1459{1474,

1986.

[22] E. F. Sta�ord and F. T. Tseng. On the Srikar-Ghosh MILP model for the N �M SDST

owshop problem. International Journal of Production Research, 28(10):1817{1830, 1990.

24

