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Abstract

This paper presents a branch-and-cut (B&C) algorithm for the problem of minimizing the

makespan associated with scheduling n jobs in an m-machine 
owshop with setup times (SDST


owshop). Two di�erent mathematical formulations are considered. Model A is based on a trav-

eling salesman problem-like formulation. Model B uses fewer binary variables and constraints,

but is less structured than model A. A number of valid inequalities, including facet-inducing

inequalities, for these two di�erent formulations are evaluated. It was found that the B&C

approach outperforms conventional branch and bound. With respect to computational e�ort,

model B proved superior.

Keywords: 
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1 Introduction

The problem we address is one of �nding a permutation schedule of n jobs in an m-machine


owshop environment that minimizes the maximum completion time Cmax of all jobs, also

known as the makespan. The jobs are available at time zero and have sequence-dependent

setup times on each machine. All parameters, such as processing and setup times, are assumed

to be known with certainty. This problem is referred in the scheduling literature as the sequence-

dependent setup time 
owshop (SDST 
owshop) and is evidently NP-hard since the case where

m = 1 is simply a traveling salesman problem (TSP).

Applications of sequence-dependent scheduling are commonly found in most manufacturing

environments. In the container manufacturing industry, for example, machines must be adjusted

whenever the dimensions of the containers are changed, while in printed circuit board assembly,

rearranging and restocking component inventories on the magazine rack is required between

batches. In the printing industry presses must be cleaned and settings changed when ink color,

paper size or receiving medium di�er from one job to the next. Setup times are strongly

dependent on the job order. In each of these situations, sequence-dependent setup times play

a major role and must be considered explicitly when modeling the problem.

One of the solution techniques widely used to solve hard combinatorial optimization prob-

lems is branch and bound (B&B). This method relies on good polyhedral representations of

the convex hull of the set of feasible solutions. An extension of this method (known as branch

and cut) based on generating violated valid inequalities of this convex hull has been found very

e�ective on highly structured problems (e.g., see [5, 13]).

As far as the solution to the SDST 
owshop is concerned, to the best of our knowledge, no

e�ective methods to solve the SDST 
owshop optimally have been developed to date. E�orts

to solve this problem have been made by Srikar and Ghosh [20], and by Sta�ord and Tseng [21]

in terms of solving MIP formulations. Srikar and Ghosh introduced a formulation that requires

only half the number of binary variables as does the traditional TSP-based formulation. They

used this model and the SCICONIC/VM mixed-integer programming solver (based on branch

and bound) to solve several randomly generated instances of the SDST 
owshop. The largest

solved was a 6-machine, 6-job problem in about 22 minutes of CPU time on a Prime 550. Later,

Sta�ord and Tseng corrected an error in the Srikar-Ghosh formulation and using LINDO solved

a 5�7 instance in about 6 CPU hours on a PC. They also proposed three new MIP formulations

of related 
owshop problems based on the Srikar-Ghosh model. Other approaches have focused

on heuristics [17, 19] and variations of the SDST 
owshop.

In [16] we developed several valid inequalities (some of them facet-inducing) for two di�erent

formulations of the SDST 
owshop. The objective of this paper is to empirically evaluate those

valid inequalities within a branch-and-cut (B&C) framework, and to show the e�ectiveness of
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this approach when compared to conventional B&B.

Our computational results demonstrate the superiority of the B&C technique. However, the

size of instances that can be solved optimally is still small due to the weakness of the polyhedral

representation of the convex hull.

The rest of the paper is organized as follows. In Section 2 we introduce two mathematical

formulations. This is followed in Sections 3 and 4 with a summary of the valid inequalities

developed in [16] which are to be evaluated, and a description of the separation procedures,

respectively. In Section 5, we provide background material on B&C and then highlight our

algorithm. The computational experiments are reported in Section 6. We close with a discussion

of the results in Section 7.

2 Mathematical Formulation

2.1 Statement of Problem

In the 
owshop environment, a set of n jobs must be scheduled on a set of m machines, where

each job has the same routing. Therefore, without loss of generality, we assume that the

machines are ordered according to how they are visited by each job. Although for a general


owshop the job sequence may not be the same for every machine, here we assume a permutation

schedule; i.e., a subset of the feasible schedules that requires the same job sequence on every

machine. We suppose that each job is available at time zero and has no due date. We also

assume that there is a setup time which is sequence dependent so that for every machine i there

is a setup time that must precede the start of a given task that depends on both the job to

be processed (k) and the job that immediately precedes it (j). The setup time on machine i is

denoted by sijk and is assumed to be asymmetric; i.e., sijk 6= sikj . After the last job has been

processed on a given machine, the machine is brought back to an acceptable \ending" state.

We assume that this last operation takes zero time because we are interested in job completion

time rather than machine completion time. Our objective is to minimize the time at which the

last job in the sequence �nishes processing on the last machine, also known as makespan. This

problem is denoted by SDST 
owshop or F jsijk ; prmujCmax [14].

In modeling this problem as a mixed-integer program (MIP), we consider two di�erent

formulations. In the �rst case, a set of the binary variables is used to de�ne whether or not

one job is an immediate predecessor of another; in the second case, the binary variables simply

determine whether or not one job precedes another. A set of nonnegative real variables is also

included in the formulations. In either case, they have the same de�nition and are used to

determine the starting time of each job on each machine.

Example 1 Consider the following instance of F2jsijk ; prmujCmax with four jobs.
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pij 1 2 3 4 s1jk 1 2 3 4 s2jk 1 2 3 4

1 6 3 2 1 0 3 4 1 7 0 2 3 1 6

2 2 2 4 2 1 - 5 3 2 1 - 1 3 5

2 5 - 3 1 2 4 - 3 1

3 2 1 - 5 3 3 4 - 1

4 3 2 5 - 4 7 8 4 -

A schedule S = (3; 1; 2; 4) is shown in Figure 1. The corresponding makespan is 24, which

is optimal. 2

Setup time Processing time

25

M1

M2

15 205 10

3

Time

42

421

13

Figure 1: Example of a 2� 4 SDST 
owshop

Triangle inequality: The triangle inequality for the setup times is stated as follows:

sijk + sikl � sijl for i 2 I; j; k; l 2 J: (1)

Throughout the sequel, we will assume that the triangle inequality holds. In most operations

(e.g., see [20, 21]), the time it takes to set up a machine from job j to job l is less than the time

it takes to set up a machine from j to another job k, and then set up the machine from k to

l. Nevertheless, if there really exists a machine i and jobs j; k; l such that sijk + sikl < sijl, we

can always replace sijl with s0ijl = sijk + sikl and force (1) to hold as an equality.

2.2 Notation

In the developments, we make use of the following notation.

Indices and sets

m number of machines

n number of jobs

i machine index; i 2 I = f1; 2; : : : ; mg

j; k; l job indices; j; k; l 2 J = f1; 2; : : : ; ng

J0 = J [ f0g extended set of jobs, including a dummy job denoted by 0

Input data
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pij processing time of job j on machine i; i 2 I, j 2 J

sijk setup time on machine i when job j is scheduled right before job k; i 2 I, j 2 J0, k 2 J

Computed parameters

Ai upper bound on the time at which machine i �nishes processing its last job; i 2 I,

Ai = Ai�1 +
X
j2J

pij +min

8<
:
X
j2J0

max
k2J

fsijkg;
X
k2J

max
j2J0

fsijkg

9=
;

where A0 = 0

Bij lower bound on the starting time of job j on machine i; i 2 I , j 2 J

Bij = max fsi0j ; Bi�1;j + pi�1;jg i 2 I; j 2 J

where B0j = 0 for all j 2 J

Common variables

yij nonnegative real variable equal to the starting time of job j on machine i; i 2 I, j 2 J

Cmax nonnegative real variable equal to the makespan;

Cmax = max
j2J

fymj + pmjg

2.3 Formulation A

Let A = f(j; k) : j; k 2 J0; j 6= kg be the set of arcs in a complete directed graph induced by

the node set J0. We de�ne the decision variables as follows:

xjk =

8<
:

1 if job j is the immediate predecessor of job k; (j; k) 2 A

0 otherwise

In the de�nition of xjk, notice that x0j = 1 (xj0 = 1) implies that job j is the �rst (last)

job in the sequence for j 2 J . Also notice that si0k denotes the initial setup time on machine i

when job k has no predecessor; that is, when job k is scheduled �rst, for k 2 J . This variable

de�nition yields what we call a TSP-based formulation.

Minimize Cmax (2.1)

subject to X
j2J0

xjk = 1 k 2 J0 (2.2)

X
k2J0

xjk = 1 j 2 J0 (2.3)
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yij + pij + sijk � yik +Ai(1� xjk) i 2 I; j; k 2 J (2.4)

ymj + pmj � Cmax j 2 J (2.5)

yij + pij � yi+1;j i 2 I n fmg; j 2 J (2.6)

xjk 2 f0; 1g j; k 2 J0; j 6= k (2.7)

yij � Bij i 2 I; j 2 J (2.8)

Equations (2.2) and (2.3) state that every job must have a predecessor and successor, re-

spectively. Note that one of these 2n+2 assignment constraints is redundant in the description

of the feasible set. Time-based subtour elimination constraints are given by (2.4), and establish

that if job j precedes job k, then the starting time of job k on machine i must not exceed the

completion time of job j on machine i (yij + pij) plus the corresponding setup time. Here, Ai is

a large enough number (an upper bound on the completion time on machine i). Constraint (2.5)

assures that the makespan is greater than or equal to the completion time of all jobs on the

last machine, while (2.6) states that a job cannot start processing on one machine if it has not

�nished processing on the previous one. A lower bound on the starting time for each job on

each machine is set in (2.8).

In formulation (2.1)-(2.8), we assume that sij0, the time required to bring machine i to an

acceptable end state when job j is processed last, is zero for all i 2 I. Thus the makespan is

governed by the completion times of the jobs only. We are also assuming that all jobs need

processing on all machines. If this last condition were not true, then eq. (2.5) could be replaced

by

yij + pij � Cmax i 2 I; j 2 J

at the expense of increasing the number of makespan constraints from n to mn. Note that it is

possible to combine pij + sijk in (2.4) into a single term tijk = pij + sijk , but that we still need

to handle the processing times pij separately in constraints (2.5) and (2.6).

If the triangle inequality does not hold, the lower bound constraint (2.8) must be replaced

by

Bij � yij + Ci(1� x0j) i 2 I; j 2 J;

where Ci is a large number (an upper bound on the initial setup time for machine i).

2.4 Formulation B

Srikar and Ghosh [20] proposed a second MIP formulation for F jsijk ; prmujCmax. A slight error

in the constraints was later corrected by Sta�ord and Tseng [21]. The Srikar-Ghosh model does

not consider the initial setup time si0k for the �rst job in the sequence, that is, it is assumed

to be zero. Our formulation includes this parameter.
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Let Â = f(j; k) : j; k 2 J; j < kg. The decision variables are de�ned as follows:

xjk =

8<
:

1 if job j is scheduled any time before job k; (j; k) 2 Â

0 otherwise

The MIP formulation is

Minimize Cmax (3.1)

subject to

yij + pij + sijk � yik +Ai(1� xjk) i 2 I; (j; k)2 Â (3.2)

yik + pik + sikj � yij +Ai(xjk) i 2 I; (j; k)2 Â (3.3)

ymj + pmj � Cmax j 2 J (3.4)

yij + pij � yi+1;j i 2 I n fmg; j 2 J (3.5)

xjk 2 f0; 1g (j; k) 2 Â (3.6)

yij � Bij i 2 I; j 2 J (3.7)

Constraints (3.2) and (3.3) ensure that time precedence is not violated. They also eliminate

cycles. Equation (3.4) establishes the makespan criterion. Equation (3.5) states that a job

cannot start processing on one machine if it has not �nished processing on the previous machine.

A lower bound on the starting time of each job on each machine is set in (3.7).

Srikar and Ghosh point out that the triangle inequality (1) must hold in order for con-

straints (3.2)-(3.3) to hold. However, Sta�ord and Tseng provide a stronger condition for

constraints (3.2)-(3.3) to be valid; i.e.,

sijk + sikl + pik � sijl for all i 2 I; j; k; l 2 J: (4)

Note that (4) is stronger than the triangle inequality (1), and implies that constraints (3.2)-(3.3)

of the model hold, even if (1) does not hold for setup times. They illustrate this by means of

an example.

If the triangle inequality does not hold, constraints (3.2), (3.3) and (3.7) are no longer valid.

One possible replacement is

yij + pij + sijk � yik + (n+ 1)Ai(1� xjk) + Ai[P (k)� P (j)� 1] i 2 I; (j; k) 2 Â

yij + pij + sijk � yik + (n+ 1)Aixjk +Ai[P (j)� P (k)� 1] i 2 I; (j; k) 2 Â

Bik � yik + Ci[P (k)� 1] i 2 I; k 2 J;

respectively, where Ci is a large enough number (upper bound on the starting processing time

of all jobs on machine i), and P (j) represents the position in the schedule of job j given by

P (j) =
X
p<j

xpj +
X
q>j

(1� xjq) + 1 j 2 J: (5)

In addition, the following constraints must be added to the formulation:
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P (j) + 1 � P (k) + n(1� xjk) (j; k) 2 Â

P (k) + 1 � P (j) + nxjk (j; k) 2 Â

Thus when the triangle inequality does not hold, the problem size increases considerably.

2.5 Model Comparison

Model A Model B

Variables Binary n(n+ 1) Binary 1

2
n(n� 1)

Real mn+ 1 Real mn+ 1

Total n(n+ 1) +mn+ 1 Total 1

2
n(n� 1) +mn+ 1

Constraints (2.2) n + 1 (3.2) 1

2
mn(n� 1)

(2.3) n+ 1 (3.3) 1

2
mn(n� 1)

(2.4) mn(n� 1)

(2.5) mn (3.4) mn

(2.6) n(m� 1) (3.5) n(m� 1)

Total mn2 +mn+ n+ 2 Total mn2 +mn� n

Nonzeros (2.2) n(n+ 1) (3.2) 3

2
mn(n� 1)

(2.3) n(n+ 1) (3.3) 3

2
mn(n� 1)

(2.4) 3mn(n� 1)

(2.5) 2mn (3.4) 2mn

(2.6) 2n(m� 1) (3.5) 2n(m� 1)

Total 3mn2 + 2n2 +mn Total 3mn2 +mn� 2n

Table 1: Problem size for models A and B

Table 1 shows the problem size in terms of number of variables, constraints, and nonzeros

for either model. As can be seen, model B is considerably smaller than model A in terms of

both the number of constraints and the number of binary variables. This would appear to make

it more attractive when considering exact enumeration methods such as branch and bound and

branch and cut. Nevertheless, the fact that much is known about the ATSP polytope gives

added weight to model A. Table 2 displays the number of binary and real variables, number of

constraints, number of nonzeros and density of the matrix of constraints for several values of m

and n.

To date, it has not been possible to tackle even moderate size instances of the SDST 
owshop

with either of these formulations due mainly to the weakness of their LP-relaxation lower

bounds. LP-based enumeration procedures such as B&B and B&C require good LP-relaxation

lower bounds. For example, Sta�ord and Tseng required about 6 hours of CPU time on a

80286-based PC to optimally solve a 5 � 7 instance using LINDO with formulation B. To

improve the polyhedral representation of the relaxed feasible regions it is necessary to generate

valid inequalities, the strongest being facets. One way to achieve this is by looking into the
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m� n Model Binary Real Constraints Nonzeros Density

2� 10 A 110 21 252 840 0.025

B 45 21 230 620 0.041

2� 20 A 420 41 902 3280 0.008

B 190 41 860 2440 0.012

10� 10 A 110 101 1212 3400 0.013

B 45 101 1190 3180 0.018

10� 20 A 420 201 4422 13200 0.005

B 190 201 4380 12360 0.007

Table 2: Problem size examples for models A and B

related subspaces: the ATSP polytope and the Srikar-Ghosh (S-G) polytope for models A and

B, respectively. Many facets have been developed for the ATSP polytope over the last 20 years

(e.g., see [1, 2, 3, 6, 15]). For model B, though, the S-G polytope had remained unexplored.

In an early paper [16], we showed that the facets of either of these polytopes can be extended

to facets of the SDST 
owshop polyhedron. We also developed several mixed-integer cuts for

both models. The main results are summarized in Section 3.

(b)  Model B

0 1

23

1

23

(a)  Model A

Figure 2: Graph representations for schedule (3,1,2)

When comparing the ATSP polytope with the S-G polytope fundamental di�erences can be

observed. In the former, we have a clear picture of what a feasible solution (also called a tour)

looks like in a graph. This makes it easier to visualize, for instance, when certain constraints,

such as the subtour elimination constraints, may be violated. However, for model B, it is not

a straightforward matter to identify in a graph a feasible solution from a given set of arcs.
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Figure 2 shows the graph for a 3-job problem and the solution for schedule S = (3; 1; 2) for

both models. For model B, an undirected graph can be used because xjk is only de�ned for

j < k. The dotted lines represent all feasible arcs (12 for model A and 3 for B); the solid lines

identify the solution.

3 Valid Inequalities

What distinguishes B&C from traditional cutting plane methods is that the inequalities gener-

ated are valid at each node of the search tree. Previously, we developed several valid inequalities

for formulations A and B. We now summarize those results.

For model A, we showed that if fx 2 P : �x = �0g is a facet of P , where P is the convex

hull of the set of feasible solutions of a (n+ 1)-city ATSP, then

f(x; y) 2 PA : (�; 0)(x; y)T = �0g

is a facet of the convex hull of the set of feasible solutions of the SDST 
owshop, where x 2

Bn(n+1) corresponds to an incidence vector of a tour in a (n+ 1)-city ATSP, y 2 Rnm+1 is the

vector of real-variables y in formulation A, and PA denotes the convex hull of the set of feasible

solutions of the SDST 
owshop under formulation A. This result says that any of the facets

developed for the ATSP can be applied to the SDST 
owshop. In our work, we implemented

subtour elimination constrains (SECs) and D+
k and D�

k inequalities (e.g., see [9]) which are two

of the most successful facets developed for the ATSP. Among these, we found that the SECs

were much more e�ective. The D+
k and D�

k inequalities had little or no impact on improving

the polyhedral representation of the SDST 
owshop polyhedron.

We also developed mixed-integer cuts (MICs) of the following form:

(LBMICs) (pij + sijk +Bij � Bik)xjk � yik � �Bik and

(UBMICs) (Ui + sijk)(1� xjk) + yik � yij � pij + sijk

where, Bij is a lower bound on yij as de�ned in Section 2.2, and Ui is an upper bound on the

completion time of machine i.

For model B, we developed 3-subsequence elimination constraints (3-SEC), 4-subsequence

elimination constraints (4-SEC), and both lower and upper bound mixed-integer inequalities.

The k-SEC are inequalities that eliminate \cycles" (in the precedence sense) for any k-job

subsequence. These are shown in Table 3, where Bij and Ui are de�ned as before.

4 Separation Algorithms

For a given class of valid inequalities, the associated separation problem can be stated as follows:

Given a point �x 2 Rp satisfying a certain subset of constraints, and a family F of SDST 
owshop
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Cut type Constraint

3-SECs xjk + xkl � 1 + xjl

xjl + (1 � xkl) � 1 + xjk

4-SECs xjk + xkl + xlm � 2 + xjm

xjk + xkm + (1 � xlm) � 2 + xjl

xjl + (1 � xkl) + xkm � 2 + xjm

xjl + xlm + (1 � xkm) � 2 + xjk

xjm + (1 � xkm) + xkl � 2 + xjl

xjm + (1 � xlm) + (1 � xkl) � 2 + xjk

Lower bound MICs (pij + sijk + Bij �Bik)xjk � yik � �Bik

(pik + sikj + Bik � Bij)(1� xjk)� yij � �Bij

Upper bound MICs (Ui + sijk)(1� xjk) + yik � yij � pij + sijk

(Ui + sikj)xjk + yij � yik � pik + sikj

Table 3: Family of valid inequalities for model B

inequalities, �nd the most violated member of F , i.e., an inequality �x � �0 belonging to F

and maximizing the degree of violation ��x � �0. When this problem is solved optimally, we

say that we have an exact separation algorithm. However, sometimes the separation problem is

as di�cult as the original problem so it is necessary to resort to heuristics to identify violated

inequalities. Below we describe the procedures developed for models A and B.

4.1 Separation Procedures for SECs for Model A

Let (�x; �y) 2 RjAj � Rmn+1 be a point satisfying constraints (2.2)-(2.6). This point is obtained

by relaxing the integrality restriction on the binary variables x and solving the corresponding

LP. As stated in Section 3, any facet for the ATSP is a facet for the SDST 
owshop, where

only the binary variables x are considered. Therefore, we drop the real variables y and are left

with the problem of �nding a violation of the classical TSP subtour elimination constraint

X
(j;k)2A : j;k2W

�xjk � jW j � 1 (6)

for some W � J; 2 � jW j � n � 1, or prove that none exists. Note that (6) is equivalent to

X
j2W

k2JnW

�xjk +
X

j2JnW
k2W

�xjk � 2 (7)

SECs for the ATSP are symmetric inequalities, that is, inequalities of the form �x � �0

with �jk = �kj for all (j; k) 2 A. Symmetric inequalities for the ATSP have a very important

property. It has been shown [9] that there exists a correspondence between valid inequalities

for the ATSP and valid inequalities for the symmetric TSP (STSP). If we de�ne the mapping

f : RA ! RE (A is the arc set of the complete digraph and E is the edge set of the corresponding
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undirected graph) as follows: f(�x) = x̂, where x̂jk = �xjk + �xkj for all j 6= k, then we have

f(P ) = Q, where P and Q are the polytopes of the ATSP and STSP, respectively. In other

words, every inequality
P

e2E �ex̂e � �0 for STSP can be transformed into a valid ATSP

inequality by simply replacing x̂e by xjk+xkj for all e = (j; k) 2 E. This produces the symmetric

inequality �x � �0, where �jk = �kj for all j; k 2 J; j 6= k. Conversely, every symmetric ATSP

inequality �x � �0 corresponds to the valid STSP inequality
P

e2E �ex̂e � �0.

The above correspondence implies that every separation algorithm for STSP can be used,

as a black box, for ATSP as well. Therefore, given the point �x, we �rst de�ne the symmetric

counterpart x̂ of �x by the transformation x̂jk = �xjk + �xkj for all j; k 2 J , and then apply a

STSP separation algorithm to x̂.

Now, let us de�ne the undirected support graph of x̂, denoted G(x̂), as the graph formed

by n + 1 vertices (n jobs plus a dummy job) and an edge (j; k) of weight x̂jk for each x̂jk > 0.

The problem of �nding a violated SEC for STSP is equivalent to �nding a cut in G(x̂) that is

less than 2. That is, given x̂ 2 RE satisfying 0 � x̂jk � 1 for all (j; k) 2 E and the assignment

constraints (2.2)-(2.3), �nd a nonempty proper subset W of J such that

X
j2W

k2JnW

x̂jk < 2 (8)

holds, or prove that no such W � J exists, where (8) is the violated version of (7) for the

symmetric case.

Consequently, what we are interested in is �nding a minimum capacity cut-set in the support

graph G(x̂) where the capacities are given by the weights x̂jk, (j; k) 2 E. If the minimum cut-

set in G(x̂) has a capacity which is greater than or equal to 2, then we conclude that there

exists no SEC that is violated by x̂. Otherwise a vertex set W given by a minimum capacity

cut-set de�nes a violated SEC.

To solve the separation problem, we use the MINCUT algorithm developed by Padberg and

Rinaldi [12]. This algorithm has a time complexity of O(n4), which is the same complexity as

the algorithm developed by Gomory and Hu [8]. However, empirical evidence over a large class

of graphs has demonstrated the superiority of MINCUT over the Gomory-Hu procedure.

Example 2 Consider the following instance of F2jsijk ; prmujCmax with seven jobs.

pij j = 1 2 3 4 5 6 7

i = 1 68 43 95 95 69 66 55

2 44 66 74 92 34 55 52
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s1jk k = 1 2 3 4 5 6 7

j = 0 30 33 25 29 39 32 31

1 - 37 24 26 27 34 39

2 22 - 39 28 31 29 31

3 25 32 - 40 33 23 40

4 35 28 40 - 25 25 27

5 40 28 29 29 - 40 23

6 32 26 32 29 20 - 28

7 37 25 28 37 35 26 -

s2jk k = 1 2 3 4 5 6 7

j = 0 35 33 24 40 21 27 40

1 - 35 20 33 37 20 32

2 27 - 24 28 35 20 33

3 30 20 - 36 24 34 35

4 29 36 25 - 20 40 27

5 35 32 20 38 - 28 29

6 34 26 22 23 39 - 27

7 20 39 20 37 40 25 -

Suppose that at some node in the B&C search tree, the following fractional solution is

obtained (LP relaxation):

�x12 = 0:8540 �x40 = 1:0000 �y11 = 30 �y21 = 98

�x13 = 0:1460 �x53 = 0:8540 �y12 = 33 �y22 = 76

�x25 = 0:9113 �x57 = 0:1460 �y13 = 25 �y23 = 120

�x27 = 0:0887 �x64 = 0:8723 �y14 = 29 �y24 = 124

�x31 = 0:6375 �x67 = 0:1278 �y15 = 39 �y25 = 108

�x32 = 0:0386 �x72 = 0:1074 �y16 = 32 �y26 = 98

�x34 = 0:1278 �x76 = 0:8926 �y17 = 31 �y27 = 164

�x35 = 0:0887 �x01 = 0:3625 �Cmax = 216

�x36 = 0:1074 �x07 = 0:6375

1

0

2

3

4

5

6

7 1

0

2

3

4

5

6

7

(a) (b)

Figure 3: The support graph of x̂

We transform �x into its corresponding symmetric counterpart x̂ using the transformation

x̂jk = �xjk + �xkj and then form G(x̂), its support graph (depicted in Figure 3(a)). The edge

weights are given by
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Edge Weight Edge Weight

(0,1) 0.3625 (2,7) 0.1961

(0,4) 1.0000 (3,4) 0.1278

(0,7) 0.6375 (3,5) 0.9427

(1,2) 0.8540 (3,6) 0.1074

(1,3) 0.7835 (4,6) 0.8723

(2,3) 0.0386 (5,7) 0.1460

(2,5) 0.9113 (6,7) 1.0204

By applying the MINCUT algorithm, we �nd that the minimum cut-set is given by W =

f1; 2; 3; 5g (shown in Figure 3(b)) with cut capacity equal to x01+x27+x34+x36+x57 = 0:9398.

Since 0:9398 < 2, the set W violates the following SEC:

x12 + x13 + x15 + x21 + x23 + x25 + x31 + x32 + x35 + x51 + x52 + x53 � 3 = jW j � 1

for the ATSP. 2

4.2 Separation Procedures for D+
k and D�

k Inequalities

i 3

i 2

i 1

i 4

i k-1

i k

2

1

Figure 4: The Support Multigraph of a D+
k inequality

The following inequalities were derived by Gr�otschel and Padberg [9]:

(D+
k ) xi1ik +

kX
h=2

xihih�1
+ 2

k�1X
h=2

xi1ih +
k�1X
h=3

h�1X
j=2

xijih � k � 1 (9)

(D�
k ) xiki1 +

kX
h=2

xih�1ih + 2
k�1X
h=2

xihi1 +
k�1X
h=3

h�1X
j=2

xihij � k � 1 (10)
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where (i1: : : : ; ik) is any sequence of k 2 f3; : : : ; n � 1g distinct nodes. A D+
k inequality for

k = 6 is depicted in Figure 4, where arcs in dotted and solid line have coe�cient 2 and

1, respectively. D+
k and D�

k inequalities are facet-inducing for the ATSP polytope [6], and

are obtained by lifting the cycle inequality
P

(j;l)2C xjl � k � 1 associated with the circuit

C = f(i1; ik); (ik; ik�1); : : : ; (i2; i1)g and C = f(i1; i2); : : : ; (ik�1; ik); (ik; i1)g, respectively.

The separation problem for D+
k
inequalities consists of �nding a node sequence (i1; : : : ; ik),

3 � k � n� 1, such that (9) is violated. An exact enumeration scheme is proposed by Fischetti

and Toth [7]. Here we use the following procedure. We �rst attempt to �nd all cycles in G(�x).

Although the number of cycles in a complete graph may be large, usually G(�x) (coming from

the SDST 
owshop fractional solution) is relatively sparse, which allows us to identify the cycles

in a relatively short amount of time. Then, for each cycle we attempt to �nd a violated D+
k

and store the one with the largest degree of violation.

As pointed out by Fischetti and Toth [7], the D�
k inequalities can be thought of as derived

from D+
k inequalities by swapping the coe�cient of the two arcs (j; k) and (k; j) for all j; k 2 J ,

j < k. This is called a transposition operation. They show how this transposition enables the

use of the separation procedures designed for D+
k inequalities as a separation procedure for D�

k

inequalities.

After implementing the D+
k and D�

k separation procedures, we found they had very little

impact on the overall performance of our B&C algorithm. Empirically, the SECs did a far

better job in tightening the polyhedral representation. In our computations, only a very small

number of D+
k and D�

k inequalities were identi�ed and, when added to the set of cuts, provided

an insigni�cant improvement in the value of the LP relaxation.

Example 3 (Example 2 continued)

For the same fractional point (�x; �y), consider the following node sequence (3; 5; 2; 1; 0; 4). Eval-

uating eq. (9) for k = 6 and (i1; : : : ; i6) = (3; 5; 2; 1; 0; 4), we see that

�xi1i6 +
6X

h=2

�xihih�1
+ 2

5X
h=2

xi1ih +
5X

h=3

h�1X
j=2

xijih = (�x34 + �x40 + �x01 + �x12 + �x25 + �x53)

+ 2(�x35 + �x32 + �x31 + �x30)

+ (�x52 + �x51 + �x21 + �x50 + �x20 + �x10)

= (4:1096)+ 2(0:7648)+ (0:0)

= 5:6392 > 5 = k � 1

is a violated D+
6 inequality at �x. 2
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4.3 Separation Procedures for 3-SECs and 4-SECs for Model B

Given that there is a polynomial number (O(n3) and O(n4)) of 3-SECs and 4-SECs (see Ta-

ble 3), the corresponding separation problem can be solved optimally by simply looping over all

indices for each type of 3-SECs (2 types) and 4-SECs (6 types). Empirically we found that the

implementation of 4-SECs had very little or no impact at all on the performance of the B&C

algorithm.

4.4 Separation Procedures for LBMICs and UBMICs

From Section 3 we can see that LBMICs for both models can be expressed in the following

form:

�ijkxjk � yik � �ijk (11)

where �ijk and �ijk are constants depending on problem data for i 2 I and (j; k) 2 A (Â) for

model A (B). Thus given a point (�x; �y), by looping over all possible index values i; j; k, we �nd

the inequality such that

�ijk�xjk � �yik � �ijk

is maximized. This can be done in O(mn2) time.

Similarly, the UBMICs for both models can be expressed as


ijkxjk + yik � yij � �ijk

where 
ijk; �ijk are constants that depend on problem data. Again, by looping over all possible

values of indices i; j; k the separation problem is solved exactly in O(mn2) time.

5 The Branch-and-Cut Method

Branch and cut (B&C) was introduced by Crowder and Padberg [5] who successfully solved

large-scale instances of the well-known symmetric traveling salesman problem. It is considered

state-of-the-art for the exact optimization of TSPs. The success of this method depends on

the ability to �nd \strong" valid inequalities of the convex hull of the set of feasible solutions

for a given mixed-integer program. This has been the case for the TSP, where many valid

inequalities have been developed over the past 20 years. The SDST 
owshop, however, has not

been studied from a polyhedral perspective so one of our aims is to assess the e�ectiveness of

B&C on this type of problem.

A typical B&B algorithm maintains a list of subproblems (nodes) whose union of feasible

solutions contains all feasible solutions of the original problem. The list is initialized with the
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original problem itself. In each major iteration the algorithm selects a current subproblem from

the list of unevaluated nodes. Typically in this subproblem, several of the binary variables have

already been �xed to either zero or one when the node was generated. The algorithm solves the

LP relaxation of this subproblem. This relaxation provides a lower bound (for a minimization

problem) for the original problem. Depending on the value of the solution, the node is either

fathomed (e.g., if the relaxed LP is infeasible, or if the lower bound value exceeds the value of the

best known feasible solution), which means that no further processing of the node is necessary,

or split into new subproblems (children nodes) whose union of feasible solutions contains all

feasible solutions of the current subproblem. These newly generated subproblems are added to

the list of unevaluated subproblems.

Iterations are performed until the list of subproblems to be fathomed is empty. The crucial

part of a successful B&B algorithm is the computation of the lower bounds. The better the

LP-representation of the problem, the tighter the lower bound. This has a tremendous impact

on the computational e�ort because it improves the chances that a node will be fathomed.

Thus the corresponding portions of the search tree will not have to be evaluated. One way to

improve the LP-representation of a given problem is by adding valid inequalities (cutting planes

or cuts). B&C is the procedure developed to implement this idea.

Figure 5 shows a 
ow chart of our B&C algorithm which was coded within MINTO [11].

using many of its built-in features. To discuss the relevant steps of the algorithm, the following

notation is used: Zlp is the objective function value of the current subproblem's LP relaxation,

Zbest is the objective function value of the best feasible solution known so far, and Zheur is the

objective function value of a feasible solution delivered by a heuristic.

Read data: Read problem data and initialize the best global feasible solution value Zbest

to in�nity.

Preprocess: After the data have been read in, this stage attempts to improve the original

formulation by removing redundant constraints and applying some probing

techniques. The underlying idea of probing [18] is to analyze each of the

inequalities of the system of inequalities de�ning the feasible region in turn,

trying to establish whether the inequality forces the feasible region to be

empty, whether the inequality is redundant, whether the inequality can be

used to improve the bounds on the variables, whether the inequality can be

strengthened by modifying its coe�cients, or whether the inequality forces

some of the binary variables to either zero or one.

Select: A subproblem is chosen from the list of unevaluated candidates. Here we use

a best-bound node selection strategy, which chooses the subproblem with the

smallest lower bound.
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Figure 5: Flow chart of the B&C algorithm

Solve LP: The LP relaxation of the current subproblem is solved. We call its solution

value Zlp. If the problem is inconsistent or Zlp > Zbest the node is fathomed

and we go back to the selection step. If the solution satis�es integrality

and is feasible, then we update the current best global feasible solution (if

Zlp < Zbest), fathom the node, and go back to the selection step. Otherwise,

we apply a heuristic in an attempt to �nd an integer feasible solution.

Primal heuristic: A heuristic is applied to see if it is possible to convert the current fractional

solution to one that is integral. If successful, we update the current best

global feasible solution (if Zheur < Zbest), fathom the node, and go back to

the selection step. In our implementation, we apply the SETUP heuristic
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(discussed in [17]) to the root node to start with a good feasible solution and

use MINTO's built-in heuristic thereafter (invoked every 25 nodes).

Generate cuts: An attempt is made to identify a violated valid inequality. This is the most

important component of the algorithm. The generated inequalities are SECs

(facet-inducing), D+
k and D�

k inequalities (facet-inducing), LBMICs, and

UBMICs for model A, and 3-SECs (facet-inducing), 4-SECs, UBMICs, and

LBMICs for model B. If successful, we add the generated constraints to the

formulation of the current subproblem and go back to solve the LP.

Branch: We need to specify how to partition (branch) the set of feasible solutions at

the current node. For this type of formulation we do 0-1 variable �xing. This

is based on �xing the value of a binary variable to either 0 or 1; i.e., two nodes

are created. The way we determine the branching variable is by selecting the

one with fractional value closest to 1
2 . The idea behind it is that it �xes a

variable whose value in the optimal solution is hard to determine. The two

newly created subproblems are added to the list of unevaluated nodes.

Although the conceptual algorithm stops when the list of unevaluated nodes is empty, we

apply the following stopping criteria: (i) relative gap percentage; i.e., stop when a global integer

feasible solution is within �% of optimality, (ii) time limit, and (iii) number of evaluated nodes

limit.

6 Computational Evaluation

For the purpose of evaluating the B&C approach, we embedded all algorithmic components

discussed above in MINTO (Mixed INTeger Optimizer [11]). MINTO is a shell that facilitates

the development of implicit enumeration and column generation optimization algorithms that

rely on linear relaxations. The user can enrich its basic features by providing a variety of

specialized application functions to achieve maximum e�ciency for a problem class. CPLEX [4]

was used to solve the LP relaxations. Our functions were written in C++ and linked to

the MINTO 2.2 and CPLEX 4.0 libraries using the Sun compiler CC, version 2.0.1, with the

optimization 
ag set to -O. CPU times were obtained through MINTO. The code was validated

by solving several 100- and 150-job, 1-machine instances to optimality. Recall that the 1-

machine problem is an ATSP.

To conduct our experiments we used randomly generated data. It has been documented [10]

that the main feature in real-world data for the SDST 
owshop problem is the relationship

between processing and setup times. In practice, the setup times are about 20-40% of the

processing times. Because the experiments are expensive, we generated a single class of random
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data sets with the setup times being 20-40% of the processing times: pij 2 [20; 100] and sijk 2

[20; 40].

6.1 Experiment 1: B&B vs. B&C

In the �rst experiment our aim was to compare B&B with B&C. While it is true that B&C

provides a stronger LP-representation, it also true that the size of the linear programs to be

solved grows with the number of added cuts. Thus if the generated cuts are not especially

e�ective, the resulting lower bound improvement will be more than o�set by the corresponding

increase in computational e�ort. To make this comparison, we generated 5 instances for each

machine combination m 2 f2; 4; 6g and n 2 f7; 8g, with a stopping limit of 90 CPU minutes.

In a preliminary experiment we determined the most e�ective cuts for each model within the

B&C framework. The best performance was observed using SECs and UBMICs for model A,

and 3-SECs and the UBMICs for model B. The remaining computations were made with these

cuts only.

Instance size Average performance

m� n NC NV(B) NZ Model Method Nodes Cuts LP rows Time

2� 7 114 71(56) 392 A B&B 22687 0 114 10.1

A B&C 10091 129 236 6.7

98 36(21) 280 B B&B 11457 0 98 2.9

B B&C 7340 72 168 2.9

4� 7 212 85(56) 672 A B&B 21523 0 212 14.1

A B&C 9831 129 328 9.8

196 50(21) 560 B B&B 8392 0 196 3.6

B B&C 5261 73 266 3.4

6� 7 310 99(56) 952 A B&B 21635 0 310 20.2

A B&C 9864 132 435 14.1

294 64(21) 840 B B&B 9137 0 294 7.0

B B&C 5402 74 366 5.4

Table 4: Performance of B&B and B&C on 7-job instances for models A and B

Table 4 displays the results for models A and B for each machine instance. The problem

size is given by number of constraints (NC), number of variables (NV), and number of nonzeros

(NZ). The number of binary variables is given in parenthesis (B). The average algorithmic

performance over the �ve instances is shown in terms of number of evaluated nodes (nodes),

number of cuts added (cuts), maximum number of rows in the LP (LP rows), and CPU time

in minutes. All instances were solved to optimality.

As can be seen, even though the size of the LPs increases (LP rows), the generated cuts are

found to be e�ective on reducing the size of the feasible region as the B&C evaluates far fewer
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nodes and runs signi�cantly faster. For model A the average relative time savings with B&C

are 51%, 44%, and 43%, in the 2-, 4- and 6-machine instances, respectively. For model B, we

observe little di�erence for the 2-, and 4-machine instances. The B&C starts to have an e�ect,

however, as the size of the instance gets large. This can be seen in the 6-machine instances

where B&C results in a relative time savings of 31%.

Instance size Average performance

m� n NC NV(B) NZ Method Nodes Cuts LP rows Time

2� 8 128 45(28) 368 B&B 76096 0 128 61.4

B&C 45072 114 138 46.0

4� 8 256 61(28) 736 B&B 68579 0 256 68.6

B&C 39149 116 366 55.3

6� 8 384 77(28) 1104 B&B 59154 0 384 73.3

B&C 34818 116 493 63.5

Table 5: Comparison of B&B and B&C on 8-job instances for model B

For model B, when we increase the number of jobs, B&C has a more pronounced impact.

This can bee seen in Table 5 where the results for 8-job instances under model B are displayed.

The B&C runs on average 33%, 24%, and 15%, faster than the B&B on the 2-, 4-, and 6-

machine instances, respectively. Table 6 displays the results when model A was used. As can

be seen, the algorithm was unable to solve the problem (after 90 minutes) under either B&B

or B&C. However, the optimality gaps (shown in the last column) are smaller under the latter.

The relative optimality gap in MINTO is computed as follows:

best upper bound � best lower bound
best upper bound � 100%

Instance size Average performance

m� n NC NV(B) NZ Method Nodes Cuts LP rows Time Gap (%)

2 � 8 146 89(72) 512 B&B 50637 0 146 90.0 50.3

B&C 49090 276 354 90.0 38.3

4 � 8 274 105(72) 880 B&B 45329 0 274 90.0 43.6

B&C 39825 289 487 90.0 37.5

6 � 8 402 121(72) 1248 B&B 42719 0 402 90.0 39.6

B&C 32486 287 607 90.0 36.3

Table 6: Comparison of B&B and B&C on 8-job instances for model A

6.2 Experiment 2: Model A vs. Model B

In Section 2.5 we pointed out the trade-o� between models A and B. On one hand, model A

can bene�t from a better structured underlying TSP. In contrast, model B is smaller, using
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only about half the number of the binary variables used by model A.

By looking at the B&C rows for models A and B in Table 4 we can make a comparison of

both models for 7-job instances. It can be seen that the size of the model (especially in terms of

the number of binary variables) plays an important role. Computations are signi�cantly better

when model B is used. In fact, the e�ect is even more dramatic when we attempted to solve

8-job instances. By using model B, we were able to solve 8-job instances (Table 5) in an average

of 46, 55.3, and 63.5 minutes of CPU for 2-, 4-, and 6-machines, respectively. When model A

was used (Table 6), the algorithm stopped after 90 minutes with average optimality gaps of

38%, 37%, and 36%, respectively.

6.3 Experiment 3: Larger Instances

Instance size Average performance

m� n NC NV(B) NZ Nodes Cuts LP rows Gap (%)

2� 10 200 66(45) 580 26428 241 412 34.8

4� 10 400 86(45) 1160 20615 242 612 30.5

6� 10 600 106(45) 1740 16453 241 812 26.7

Table 7: Evaluation of B&C on 10-job instances for model B

The last experiment assesses the limited scope of the polyhedral approach. Table 7 shows

the average performance of B&C on 10-job instances with a 60-minute time limit for model B.

We can see that the optimality gaps are 26-34%.

7 Conclusions

We provide empirical evidence that using model B with B&C yields better results on solving

instances of the SDST 
owshop problem. However, the fact that even with the development

of valid inequalities we are still unable to solve instances with 10 or more jobs shows that LP-

based enumeration methods are wanting. The polyhedral representation of the problem is still

not strong enough. In fact, we made several attempts to improve the performance of the B&C

algorithm, such as changing branching strategies, �xing variables in a preprocessing phase, and

reduced cost �xing, but the improvements were not signi�cant. This di�culty is inherent to

the SDST 
owshop (2 or more machines) since we were able to successfully solve 100- and

150-job instances restricted to the 1-machine case. Recall that minimizing the makespan in

SDST 
owshop is equivalent to �nding the minimum length tour of an (n+1)-city ATSP when

the number of machines is set equal to 1. It is evident that once we start adding machines, the

ATSP structure starts to weaken. One explanation for this is that, unlike the ATSP where we

are looking for a good sequence of nodes, it is di�cult here to characterize fully what a good
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sequence of jobs really is. What might be a good sequence for a certain machine, may be a bad

sequence for the others. This makes this problem extremely nasty.

Further research is necessary to improve the polyhedral representation by developing more

valid inequalities. We should point out that most of the valid inequalities developed in this

work for the SDST 
owshop can actually be applied to other scheduling problems involving

sequence-dependent setup times. With some modi�cations, they could also be applied to the

SDST 
owshop when job ready times and/or due dates are present.

Alternatively, using non-LP-based enumeration schemes such as branch and bound and

dynamic programming could lead to a substantial improvement, provided an e�ective and

better lower bounding procedure (with respect to the LP relaxation lower bound) is developed.

Such an approach is now being pursued.
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