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Abstract

This paper presents the polyhedral structure of two di�erent mixed-integer programming repre-

sentations of the 
owshop scheduling problem with sequence-dependent setup times, denoted by

SDST 
owshop. The �rst is related to the asymmetric traveling salesman problem polytope. The

second is less common and is derived from a model proposed by Srikar and Ghosh, giving what

we call the S-G polytope. It is shown that any facet-de�ning inequality (facet) of either of these

polytopes induces a facet for the SDST 
owshop polyhedron. Facets for the S-G polytope and valid

mixed-integer inequalities based on variable upper-bound 
ow inequalities for either formulation

are developed as well.

Keywords: 
owshop scheduling, setup times, polyhedral combinatorics, facet-de�ning inequalities,

asymmetric traveling salesman problem



1 Introduction

In this paper, we address the problem of �nding a permutation schedule of n jobs in an m-machine


owshop environment that minimizes the maximum completion time Cmax of all jobs, also known

as the makespan. The jobs are available at time zero and have sequence-dependent setup times on

each machine. All parameters, such as processing and setup times, are assumed to be known with

certainty. This problem is regarded in the scheduling literature as the sequence-dependent setup

time 
owshop (SDST 
owshop) and is evidently NP-hard since the case where m = 1 is simply a

traveling salesman problem (TSP).

Applications of sequence-dependent scheduling are commonly found in most manufacturing en-

vironments. In the printing industry, for example, presses must be cleaned and settings changed

when ink color, paper size or receiving medium di�er from one job to the next. Setup times are

strongly dependent on the job order. In the container manufacturing industry machines must be

adjusted whenever the dimensions of the containers are changed, while in printed circuit board

assembly, rearranging and restocking component inventories on the magazine rack is required be-

tween batches. In each of these situations, sequence-dependent setup times play a major role and

must be considered explicitly when modeling the problem.

The objective of this paper is to study the SDST 
owshop polyhedron; i.e., the convex hull

of incidence vectors of all feasible solutions. In so doing, we consider two di�erent models or

formulations. Model A is based on the asymmetric traveling salesman problem (ATSP) and model

B is based on a formulation due to Srikar and Ghosh [14]. In each case, two sets of variables

are identi�ed: a set of binary decision variables which determines the sequence or ordering of the

jobs, and a set of nonnegative real variables which determines the times processing begins for each

job. When the time variables are ignored the binary variables give rise to a subspace of the SDST


owshop consisting of the convex hull of incidence vectors of feasible sequences. For model A, this

subspace is the well known ATSP polytope; for model B, the corresponding subspace (here, called

the S-G polytope) has not been previously studied. In our work, we show how any facet-de�ning

inequality (or facet) for either of these polytopes induces a facet for the SDST 
owshop polyhedron.

We also investigate the facial structure of the S-G polytope and develop several valid inequalities

for the SDST 
owshop polyhedron.

The rest of the paper is organized as follows. In Section 2 we introduce the mathematical models

A and B, and discuss their basic di�erences. A brief literature review is presented in Section 3.

This is followed in Section 4 with some background material on polyhedral theory. Major results

relating to the polyhedral structure of models A and B are given in Sections 5 and 6, respectively.
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2 Mathematical Formulation

In the 
owshop environment, a set of n jobs must be scheduled on a set of m machines, where each

job has the same routing. Therefore, without loss of generality, we assume that the machines are

ordered according to how they are visited by each job. Although for a general 
owshop the job

sequence may not be the same for every machine, here we assume a permutation schedule; i.e., a

subset of the feasible schedules that requires the same job sequence on every machine. We suppose

that each job is available at time zero and has no due date. We also assume that there is a setup

time which is sequence dependent so that for every machine i there is a setup time that must

precede the start of a given task that depends on both the job to be processed (k) and the job that

immediately precedes it (j). The setup time on machine i is denoted by sijk and is assumed to be

asymmetric; i.e., sijk 6= sikj . After the last job has been processed on a given machine, the machine

is brought back to an acceptable \ending" state. We assume that this last operation takes zero

time because we are interested in job completion time rather than machine completion time. Our

objective is to minimize the time at which the last job in the sequence �nishes processing on the

last machine, also known as makespan. This problem is denoted by Fmjsijk; prmujCmax or SDST


owshop.

In modeling this problem as a mixed integer program (MIP), we consider two di�erent formu-

lations. In the �rst case, a set of the binary variables is used to de�ne whether or not one job is

an immediate predecessor of another; in the second case, the binary variables simply determine

whether or not one job precedes another. A set of nonnegative real variables is also included in the

formulations. In either case they have the same de�nition and are used to determine the starting

time of each job on each machine.

Triangle inequality: The triangle inequality for the setup times is stated as follows:

sijk + sikl � sijl for i 2 I; j; k; l 2 J: (1)

Throughout the sequel, we will assume that the triangle inequality holds unless otherwise stated.

In most operations (e.g., see [14, 15]), the time it takes to set up a machine from job j to job l is

less than the time it takes to set up a machine from j to another job k, and then set up the machine

from k to l. Nevertheless, if there really exists a machine i and jobs j; k; l such that sijk+sikl < sijl,

we can always replace sijl with s0ijl = sijk + sikl and force (1) to hold as an equality.

2.1 Notation

In the development of the mathematical model, we make use of the following notation.

Indices and sets

m number of machines
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n number of jobs

i machine index; i 2 I = f1; 2; : : : ; mg

j; k; l job indices; j; k; l 2 J = f1; 2; : : : ; ng

J0 = J [ f0g extended set of jobs, including a dummy job denoted by 0

Input data

pij processing time of job j on machine i; i 2 I, j 2 J

sijk setup time on machine i when job j is scheduled right before job k; i 2 I , j 2 J0, k 2 J

Computed parameters

Ai upper bound on the time at which machine i �nishes processing its last job; i 2 I,

Ai = Ai�1 +
X
j2J

pij + min

8<
:
X
j2J0

max
k2J
fsijkg;

X
k2J

max
j2J0
fsijkg

9=
;

where A0 = 0

Bij lower bound on the starting time of job j on machine i; i 2 I , j 2 J

Bij = max fsi0j ; Bi�1;j + pi�1;jg i 2 I; j 2 J

where B0j = 0 for all j 2 J

Common variables

yij nonnegative real variable equal to the starting time of job j on machine i; i 2 I , j 2 J

Cmax nonnegative real variable equal to the makespan;

Cmax = max
j2J
fymj + pmjg

2.2 Formulation A

Let A = f(j; k) : j; k 2 J0; j 6= kg the set of arcs in a complete directed graph induced by the

node set J0. We de�ne the decision variables as follows:

xjk =

8<
: 1 if job j is the immediate predecessor of job k; (j; k) 2 A

0 otherwise

In the de�nition of xjk, notice that x0j = 1 (xj0 = 1) implies that job j is the �rst (last) job

in the sequence for j 2 J . Also notice that si0k denotes the initial setup time on machine i when
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job k has no predecessor; that is, when job k is scheduled �rst, for k 2 J . This variable de�nition

yields what we call a TSP-based formulation.

Minimize Cmax (2.1)

subject to X
j2J0

xjk = 1 k 2 J0 (2.2)

X
k2J0

xjk = 1 j 2 J0 (2.3)

yij + pij + sijk � yik + Ai(1� xjk) i 2 I; j; k 2 J (2.4)

ymj + pmj � Cmax j 2 J (2.5)

yij + pij � yi+1;j i 2 I n fmg; j 2 J (2.6)

xjk 2 f0; 1g j; k 2 J0; j 6= k (2.7)

yij � Bij i 2 I; j 2 J (2.8)

Equations (2.2) and (2.3) state that every job must have a predecessor and successor, respec-

tively. Note that one of these 2n+ 2 assignment constraints is redundant in the description of the

feasible set. Time-based subtour elimination constraints are given by (2.4). This establishes that if

job j precedes job k, then the starting time of job k on machine i must not exceed the completion

time of job j on machine i (yij + pij) plus the corresponding setup time. Here, Ai is a large enough

number (an upper bound on the completion time on machine i). Constraint (2.5) assures that the

makespan is greater than or equal to the completion time of all jobs on the last machine, while

(2.6) states that a job cannot start processing on one machine if it has not �nished processing on

the previous one. A lower bound on the starting time for each job on each machine is set in (2.8).

In formulation (2.1)-(2.8), we assume that sij0, the time required to bring machine i to an

acceptable end state when job j is processed last, is zero for all i 2 I . Thus the makespan is

governed by the completion times of the jobs only. We are also assuming that all jobs need

processing on all machines. If this last condition were not true, then eq. (2.5) could be replaced by

yij + pij � Cmax i 2 I; j 2 J

at the expense of increasing the number of makespan constraints from n to mn. Note that it is

possible to combine pij + sijk in (2.4) into a single term tijk = pij + sijk , but that we still need to

handle the processing times pij separately in constraints (2.5) and (2.6).

If the triangle inequality does not hold, the lower bound constraint (2.8) must be replaced by

Bij � yij + Ci(1� x0j) i 2 I; j 2 J;

where Ci is a large enough number (an upper bound on the initial setup time for machine i).
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2.3 Formulation B

Srikar and Ghosh [14] proposed a second MIP formulation for F jsijk ; prmujCmax. Their formulation

contained a slight error that was later corrected by Sta�ord and Tseng [15]. The Srikar-Ghosh model

does not consider the initial setup time si0k for the �rst job in the sequence, that is, it is assumed

to be zero. Our formulation includes this parameter.

Let Â = f(j; k) : j; k 2 J; j < kg. The decision variables are de�ned as follows:

xjk =

8<
: 1 if job j is scheduled any time before job k; (j; k) 2 Â

0 otherwise

The MIP formulation is

Minimize Cmax (3.1)

subject to

yij + pij + sijk � yik +Ai(1� xjk) i 2 I; (j; k) 2 Â (3.2)

yik + pik + sikj � yij + Ai(xjk) i 2 I; (j; k) 2 Â (3.3)

ymj + pmj � Cmax j 2 J (3.4)

yij + pij � yi+1;j i 2 I n fmg; j 2 J (3.5)

xjk 2 f0; 1g (j; k) 2 Â (3.6)

yij � Bij i 2 I; j 2 J (3.7)

Constraints (3.2) and (3.3) ensure that time precedence is not violated. They also eliminate

cycles. Equation (3.4) establishes the makespan criterion. Equation (3.5) states that a job cannot

start processing on one machine if it has not �nished processing on the previous machine. A lower

bound on the starting time of each job on each machine is set in (3.7).

Srikar and Ghosh point out that the triangle inequality must hold in order for constraints (3.2)-

(3.3) to hold. However, Sta�ord and Tseng provide a stronger condition for constraints (3.2)-(3.3)

to be valid; i.e.,

sijk + sikl + pik � sijl for all i 2 I; j; k; l 2 J: (4)

Note that (4) is stronger than the triangle inequality (1), and implies that constraints (3.2)-(3.3)

of the model hold, even if (1) does not hold for setup times. They illustrate this by means of an

example.

If the triangle inequality does not hold, constraints (3.2), (3.3) and (3.7) are no longer valid.

One possible replacement is

yij + pij + sijk � yik + (n+ 1)Ai(1� xjk) +Ai[P (k)� P (j)� 1] i 2 I; (j; k) 2 Â

yij + pij + sijk � yik + (n+ 1)Aixjk +Ai[P (j)� P (k)� 1] i 2 I; (j; k) 2 Â

Bik � yik + Ci[P (k)� 1] i 2 I; k 2 J;
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respectively, where Ci is a large enough number (upper bound on the starting processing time of

all jobs on machine i), and P (j) represents the position in the schedule of job j, given by

P (j) =
X
p<j

xpj +
X
q>j

(1� xjq) + 1 j 2 J: (5)

In addition, the following constraints must be added to the formulation:

P (j) + 1 � P (k) + n(1� xjk) (j; k) 2 Â

P (k) + 1 � P (j) + nxjk (j; k) 2 Â

Thus, when the triangle inequality does not hold, the problem size increases considerably.

2.4 Model Comparison

Model A Model B

Variables binary n(n + 1) binary 1
2n(n� 1)

real mn+ 1 real mn + 1

TOTAL n(n + 1) +mn+ 1 TOTAL 1
2n(n� 1) +mn + 1

Constraints (2.2) n+ 1 (3.2) 1
2mn(n� 1)

(2.3) n+ 1 (3.3) 1
2mn(n� 1)

(2.4) mn(n � 1)

(2.5) mn (3.4) mn

(2.6) n(m� 1) (3.5) n(m� 1)

TOTAL mn2 +mn + n+ 2 TOTAL mn2 +mn� n

Nonzeros (2.2) n(n + 1) (3.2) 3
2mn(n� 1)

(2.3) n(n + 1) (3.3) 3
2mn(n� 1)

(2.4) 3mn(n� 1)

(2.5) 2mn (3.4) 2mn

(2.6) 2n(m� 1) (3.5) 2n(m� 1)

TOTAL 3mn2 + 2n2 +mn TOTAL 3mn2 +mn� 2n

Table 1: Problem size for models A and B

Table 1 shows the problem size in terms of number of variables, constraints, and nonzeros for

either model. As can be seen, model B is considerably smaller than model A in terms of both

the number of constraints and the number of binary variables. This would appear to make it

more attractive when considering exact enumeration methods such as branch-and-bound (B&B)

and branch-and-cut (B&C). Nevertheless, the fact that much is known about the ATSP polytope

gives added weight to model A. Table 2 displays the number of binary and real variables, number

of constraints, number of nonzeros and density of the matrix of constraints for several values of m

and n.
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m� n model binary real constraints nonzeros density

2� 10 A 110 21 252 840 0.025

B 45 21 230 620 0.041

2� 20 A 420 41 902 3280 0.008

B 190 41 860 2440 0.012

10� 10 A 110 101 1212 3400 0.013

B 45 101 1190 3180 0.018

10� 20 A 420 201 4422 13200 0.005

B 190 201 4380 12360 0.007

Table 2: Problem size examples for models A and B

To date, it has not been possible to tackle even moderate size instances of the SDST 
owshop

with either of these formulations due mainly to the weakness of their LP-relaxation lower bounds.

LP-based enumeration procedures such as B&B and B&C require good LP-relaxation lower bounds.

For example, Sta�ord and Tseng required about 6 hours of CPU time on a 80286-based PC to

optimally solve a 5 � 7 instance using LINDO with formulation B. To improve the polyhedral

representation of the relaxed feasible regions it is necessary to generate valid inequalities, the

strongest being facets. One way to achieve this is by looking into the related subspaces: the ATSP

polytope and the S-G polytope for models A and B, respectively. Many facets have been developed

for the ATSP polytope over the last 20 years (e.g., see [1, 6, 2, 3, 11]). For model B, though, the

S-G polytope remains unexplored. As we show presently, the facets of either of these polytopes can

be extended to facets of the SDST 
owshop polyhedron.

When comparing the ATSP polytope with the S-G polytope fundamental di�erences can be

observed. In the former, we have a clear picture of what a feasible solution (also called a tour)

looks like in a graph. This makes it easier to visualize, for instance, when certain constraints,

such as the subtour eliminate constraints, may be violated. However, for model B, it is not a

straightforward matter to identify in a graph a feasible solution from a given set of arcs. Figure 1

shows the graph for a 3-job problem and the solution for schedule S = (3; 1; 2) for both models.

For model B, an undirected graph can be used because xjk is only de�ned for j < k. The dotted

lines represent all feasible arcs (12 for model A and 3 for B); the solid lines identify the solution.

Figure 2 shows how a solution for model B can be built from a solution for model A. Note that

each arc ê 2 Â (Step 2) is visited just once so the procedure is O(jÂj) = O(n2). In Step 1, a node

(job) within brackets ([j]) denotes the job scheduled in the j-th position.

Likewise, a solution for model A can be easily constructed from a feasible solution for model B.

Let T̂ be an arc set representing a feasible schedule under model B. Let x̂ 2 BjÂj be its corresponding

characteristic vector; that is, xjk = 1 if (j; k) 2 T̂ , and xjk = 0 otherwise. For each job j, its position
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(b)  Model B

0 1

23

1

23

(a)  Model A

Figure 1: Graph representations for schedule (3,1,2)

in the schedule P (j) is determined by eq. (5) in n(n � 1) operations. The schedule S is found by

sorting the jobs by increasing value of P (j) and a feasible tour T is easily built from S in O(n)

time so that the complete conversion takes O(n2) time.

3 Related Research

We now highlight some previous work on the SDST 
owshop and related problems.

Exact optimization: Formulation B was introduced by Srikar and Ghosh [14]. They used this model

and the SCICONIC/VM mixed integer programming solver (based on branch-and-bound) to solve

several randomly generated instances of the SDST 
owshop. The largest solved was a 6-machine,

6-job problem, in about 22 minutes of CPU in a Prime 550 computer.

Later, Sta�ord and Tseng [15] corrected an error in the S-G formulation and using LINDO

solved a 5 � 7 instance in about 6 hours of CPU on a PC. They also proposed three new MIP

formulations of related 
owshop problems based on the S-G model.

To the best of our knowledge, there have been no other attempts to solve the problem optimally

using either formulation. However, Gupta [9] presents a branch-and-bound algorithm for the case

where the objective is to minimize the total machine setup time. No computational results are

reported. All other work has centered on variations of the 1- or 2-machine case, with the former

being analogous to the TSP.

2-machine case: Work on F2jsijk; prmujCmax includes Corwin and Esogbue [4], who consider a

subclass of this problem that arises when one of the machines has no setup times. After estab-
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Procedure A-to-B()

Input: An arc set T (or directed tour, jT j = n + 1) corresponding to a

feasible schedule for the SDST 
owshop under model A.

Output: An arc set T̂ corresponding to the equivalent schedule under

model B.

Step 0. Initialize mark(ê)=UNVISITED for ê 2 Â and set T̂ = ;

Step 1. Sort T as T = f(0; [1]); ([1]; [2]); : : : ; ([n� 1]; [n]); ([n]; 0)g

Step 2. for j = 1 to n do

Step 2a. Choose the j-th arc in T

Step 2b. for each unvisited arc ê 2 Â incident to [j] do

Step 2c. mark mark(ê)=VISITED

Step 2d. for each unvisited arc ê 2 Â incident from [j] do

Step 2e. mark mark(ê)=VISITED

Step 2f. T̂  T̂ + ê

Step 3. Output T̂

Figure 2: Procedure to go from solution of A to solution of B

lishing the optimality of permutation schedules, they develop an e�cient dynamic programming

formulation which they show is comparable, from a computational standpoint, to the corresponding

formulation of the traveling salesman problem whose complexity is O(n22n) [5]. No computations

were performed.

Gupta and Darrow [8] establish the NP-hardness of the problem and show that permutation

schedules do not always minimize makespan. They derive su�cient conditions for a permutation

schedule to be optimal, and propose and evaluate empirically four heuristics. They observe that the

procedures perform quite well for problems where setup times are an order of magnitude smaller

than processing times. However, when the magnitude of the setup times was in the same range as

the processing times, the performance of the �rst two proposed algorithms decreased sharply.

Szwarc and Gupta [16] develop a polynomially bounded approximate method for the special

case where the sequence-dependent setup times are additive. Their computational experiments on

instances of up to 7 jobs show optimal results for the 2-machine case.

Heuristics: Most of the recent work for F jsijk ; prmujCmax has focused on heuristics. Simons [13]

describes four heuristics and compares them with three benchmarks that represent generally prac-

ticed approaches to scheduling in this environment. Experimental results for problems with up to
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15 machines and 15 jobs are presented. His �ndings indicate that two of the proposed heuristics

(SETUP and TOTAL) produce substantially better results than the other methods tested.

In [12], we developed a new greedy randomized adaptive search procedure (GRASP) and compared

it to Simons' SETUP heuristic on a series of randomly generated problems of size up to 6 � 100.

In the computations, GRASP outperformed SETUP on those instances where the setup times were

an order of magnitude smaller than the processing times. When both parameters were identically

distributed, SETUP was seen to be more e�ective.

4 Polyhedral Theory Background

The following de�nitions and well known theoretical results (e.g., see [10]) will be used in the

developments.

A polyhedron P � Rn is the set of points that satis�es a �nite number of linear inequalities; i.e.,

P = fx 2 Rn : Ax � bg, where (A; b) is an m � (n+ 1) matrix. A polyhedron P is of dimension

k, denoted dim(P ) = k, if the maximum number of a�nely independent points in P is k + 1. A

polyhedron P � Rn is full-dimensional if dim(P ) = n. Let M = f1; 2; : : : ; mg;M= = fi 2 M :

aix = bi for all x 2 P g and let M� = fi 2M : aix < bi for some x 2 Pg = M nM=. Let (A=; b=),

(A�; b�) be the corresponding rows of (A; b), referred as the equality and inequality sets of the

representation (A; b) of P . A point x 2 P is called an interior point of P is aix < bi for all i 2M .

Lemma 1 Let P be a polyhedron and let (A=; b=) be its equality set. If P � Rn, then dim(P ) +

rank(A=; b=) = n.

Corollary 1 A polyhedron P is full-dimensional if and only if it has an interior point.

The inequality �x � �0 [or (�; �0)] is called a valid inequality for P if it is satis�ed by all points

in P . If (�; �0) is a valid inequality for P and F = fx 2 P : �x = �0g, F is called a face of P ,

and we say that (�; �0) represents F . A face F is said to be proper if F 6= ; and F 6= P . A face F

of P is a facet of P if dim(F ) = dim(P )� 1.

Theorem 1 Let (A=; b=) be the equality set of P � Rn and let F = fx 2 P : �x = �0g be a proper

face of P , where � 2 Rn; �0 2 R. Then the following two statements are equivalent:

(i) F is a facet of P .

(ii) If �x = �0 for all x 2 F then

(�; �0) = (�� + uA=; ��0 + ub=)

for some � 2 R and some u 2 RjM=j.
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Lemma 1 and Theorem 1 provide two di�erent methods of characterizing facets of a polyhedron.

We will also make use use of the following results on valid inequalities for variable upper-bound


ow models to develop mixed-integer cuts.

Let

T = fx 2 Bn; z 2 Rn
+ :

X
j2N+

zj �
X
j2N�

zj � b; zj � ajxj for j 2 Ng (6)

where N+ [N� = N . Here aj 2 R+ for j 2 N and b 2 R. We say that C � N+ is a dependent set

if
P

j2C aj > b.

Proposition 1 If C � N+ is a dependent set, � =
P

j2C aj � b, and L � N�, then

X
j2C

[zj + (aj � �)+(1� xj)] � b+
X
j2L

�xj +
X

j2N�nL

zj (7)

is a valid inequality for T given by (6).

5 Polyhedral Results for Formulation A

Consider the MIP model of the SDST 
owshop given by (2.1)-(2.8). We are interested in the

polyhedral description of the convex hull of the set of feasible solutions. Let Gn+1 = (Vn+1; An+1)

be a directed graph on n + 1 nodes, where each node in the set Vn+1 is associated with a job in

J0. We assume that Gn+1 is complete. Thus jAn+1j = n(n + 1). Let Xn+1 = fx 2 Bn(n+1) :

x is the incidence vector of a tour in Gn+1g.

Let SA = f(x; y) 2 Bn(n+1) � Rmn+1 : (x; y) is a feasible solution to (2.2)-(2.8)g, where the y

vector includes themn time variables (2.8) plus the makespan variable Cmax. Then SA can be repre-

sented as follows: SA = f(x; y) : x 2 Xn+1; (x; y) 2 CA; y 2 Y g, whereXn+1 is the set of constraints

involving the binary variables only, CA = f(x; y) : (x; y) satis�es (2.4)g is the set of coupling con-

straints involving both binary and real variables, and Y = fy : y satis�es (2.5), (2.6), and (2.8)g

is the set of constraints involving the real variables only. It is well known that the set Xn+1 (the

ATSP polytope on n + 1 nodes) is characterized by (i) assignment constraints and (ii) subtour

elimination constraints. In the formulation (2.2)-(2.8), the latter were omitted because they are

implied by (2.4) which can be viewed as time-based subtour elimination constraints.

We are interested in the polyhedral structure of PA = conv(SA), the convex hull of SA. We have

n(n + 1) binary variables (xjk's), and mn + 1 nonnegative real variables (yij 's and Cmax) giving

a total of N = n(n +m + 1) + 1 variables. Note that once a feasible incidence vector x 2 Xn+1

has been determined, that is, once a given sequence is known, the computation of the associated

y 2 Rmn+1 that minimizes the makespan can be done recursively in O(mn) operations.

The following proposition will be used for the main theorem which shows that PA is full-

dimensional.
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Proposition 2 Let � be a positive real number, y0 2 Rt be a vector given by y0 = � (1; 2; : : : ; t �

1; t)T , and yu 2 Rt be given by yu = y0 + eu, where eu is the u-th unit vector in Rt. Then, the

vectors in the set fy0; y1; y2; : : : ; ytg are a�nely independent.

Proof: For �0; �1; : : : ; �p 2 R, we prove that the following system of linear equations

tX
u=0

�uy
u = 0 (8)

tX
u=0

�u = 0 (9)

implies �u = 0 for all u = 0; : : : ; t.

From (8) we have

tX
u=0

�uy
u = 0 ) �0y

0 +
tX

u=1

�u(y
0 + eu) = 0

)
tX

u=0

�uy
0 +

tX
u=1

�ue
u = 0

) y0
tX

u=0

�u +
tX

u=1

�ue
u = 0

From (9), we now have
tX

u=1

�ue
u = 0

so �1 = �2 = : : := �n = 0 and hence �0 = 0, which completes the proof.

We now state and prove the theorem de�ning the dimension of PA.

Theorem 2 Let PA = conv(SA) be the convex hull of SA. Then dim(PA) = n(n +m� 1)

Proof: The proof consists of two parts.

(a) It is known that one of the 2(n + 1) assignment constraints (2.2)-(2.3) is redundant. This

implies that rank(A=; b=) � 2n + 1, where (A=; b=) is the equality set of PA. It follows from

Lemma 1 that

dim(PA) � N � (2n+ 1)

= n(n+m+ 1) + 1� (2n+ 1)

= n(n+m� 1)

(b) To prove dim(PA) � n(n +m � 1) we will show that there exists a set of n(n +m � 1) + 1

a�nely independent vectors in RN . In this regard, consider the subspace Xn+1 of PA. The

dimension of the ATSP polyhedron on n+ 1 vertices is n2 � n � 1 (e.g., see [7]). This implies

12



that there exists a set of K = n2 � n a�nely independent vectors x1; : : : ; xK in Rn(n+1), each

being the incident vector of a tour. Also note that for any given xt 2 Xn+1, there exists a

corresponding in�nite number of feasible assignments of the time variables for PA. For each

xt, t = 2; : : : ; K, let yt 2 Rmn+1 be any corresponding feasible assignment of the time variables

on PA. Here, yt includes the mn time variables yij , and the makespan variable Cmax. Hence,

the set S1 given by

S1 =

( 
x2

y2

!
; : : : ;

 
xK

yK

!)

is a set of feasible (and a�nely independent) vectors in RN , with jS1j = K � 1 = n2 � n � 1.

For x1 we construct the corresponding y1 as follows. Assume for simplicity that x1 de�nes the

job schedule (1; 2; : : : ; n); that is, xj;j+1 = 1 for all j = 0; 1; : : : ; n (indices 0 and n + 1 are the

same), and xjk = 0 otherwise. Assume also that the mn+1 components of y1 are given in the

order

y1 =

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

y111
...

y1m1

y112
...

y1m2
...

y11n

y1mn

Cmax

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

That is, all the time variables associated with job 1 come �rst, then those for job 2, and so

on, up to job n (the last in the sequence). The makespan variable comes at the end. Now, it

is possible to select a large enough number � such that the following yields a feasible solution

for PA:
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0
BBBBBBBBBBBBBBBBBBBBBB@

y111

y121
...

y1m1
...

y11n
...

y1mn

Cmax

1
CCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBBB@

�

2�
...

m�
...

((n� 1)m+ 1)�
...

mn�

(mn+ 1)�

1
CCCCCCCCCCCCCCCCCCCCCCA

Let eu be the u-th unit vector in Rmn+1, for all u = 1; : : : ; mn + 1, and denote the vector

y1 + eu by y1;u. By choosing � as

� = max
ijk
fpij + sijkg+ 1

we ensure not only the feasibility of y1 but the feasibility of y1;u for all u = 1; : : : ; mn+ 1, as

well. Using Proposition 2 with t = mn + 1 and y1 as the base vector, we conclude that the

mn+2 vectors in fy1; y1;1; y1;2; : : : ; y1;mn+1g are a�nely independent in Rmn+1, which in turn

implies a�ne independence in RN for the points in the set

S2 =

( 
x1

y1

!
;

 
x1

y1;1

!
;

 
x1

y1;2

!
; : : : ;

 
x1

y1;mn+1

!)

with jS2j = mn+ 2.

It is left to show that the vectors in S1[S2 are a�nely independent. Let �t; �u be real numbers

for t 2 J1 = f1; : : : ; Kg, and u 2 J2 = f1; : : : ; mn+ 1g such that

X
t2J1

�t

 
xt

yt

!
+
X
u2J2

�u

 
x1

y1;u

!
= 0 (10)

X
t2J1

�t +
X
u2J2

�u = 0 (11)

This is a linear system of equations for (�t; �u). We now prove that this system has a unique

zero solution. We distinguish three cases:

Case 1: �t = 0 for all t 2 J1

System (10)-(11) reduces to

X
u2J2

�u

 
x1

y1;u

!
= 0
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X
u2J2

�u = 0

Due to the a�ne independence of S2, it follows that �u = 0 for u 2 J2. Hence, an

all-zero solution for (�t; �u) is obtained.

Case 2: �u = 0 for all u 2 J2

The linear system (10)-(11) becomes

X
t2J1

�t

 
xt

yt

!
= 0

X
t2J1

�t = 0

which leads to �t = 0 for t 2 J1 due to the a�ne independence of the vectors in S1.

Case 3: There exists I1; I2 6= ; such that �t 6= 0 for all t 2 I1 � J1 and �u 6= 0 for all

u 2 I2 � J2. Here we have �t = 0 for all t 2 J1 n I1 and �u = 0 for all u 2 J2 n I2. We

show that Case 3 cannot occur. The corresponding linear system is

X
t2I1

�t

 
xt

yt

!
+
X
u2I2

�u

 
x1

y1;u

!
= 0

X
t2I1

�t +
X
u2I2

�u = 0

which can be rewritten as

X
t2I1

�tx
t + x1

X
u2I2

�u = 0 (12)

X
t2I1

�ty
t +

X
u2I2

�uy
1;u = 0 (13)

X
t2I1

�t +
X
u2I2

�u = 0 (14)

We �rst note that �0 �
P

u2I2
�u 6= 0. Otherwise (12) and (14) would become

X
t2I1

�tx
t = 0

X
t2I1

�t = 0

which implies, due to the a�ne independence of fxtg, that jI1j = 0. This is clearly a

contradiction.

Now consider the following two subcases:
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Case 3a: 1 =2 I1

Equations (12) and (14) become

�0x1 +
X
t2I1

�tx
t = 0

�0 +
X
t2I1

�t = 0

However, this contradicts the a�ne independence of fxtg.

Case 3b: 1 2 I1

System (12)-(14) is rewritten as

(�1 + �0)x1 +
X

t2I1nf1g

�tx
t = 0 (15)

X
t2I1

�ty
t +

X
u2I2

�uy
1;u = 0 (16)

(�1 + �0) +
X

t2I1nf1g

�t = 0 (17)

Equations (15) and (17), and the a�ne independence of fxtg imply that

I1 n f1g = ;; that is, I1 = f1g consists only of one index. Thus eqs. (16)

and (17) become

�1y
1 +

X
u2I2

�uy
1;u = 0

�1 +
X
u2I2

�u = 0

which contradicts the a�ne independence of fy1; y1;ug (by Proposition 2).

This proves that Case 3 cannot occur.

The results from Cases 1 and 2 prove that S1 [ S2 is an a�ne independent set in RN , the size

of set being n(n +m� 1) + 1. We conclude that dim(PA) � n(n+m� 1).

Thus dim(PA) = n(n+m� 1).

Corollary 2 The equality set of PA is given by the assignment constraints (2.2)-(2.3); that is,

(A=; b=) = ((A=
ATSP; O); b

=)

where A=
ATSP is the equality set of the associated ATSP on n+ 1 vertices.
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Proof: Lemma 1 and Theorem 2 imply that rank(A=; b=) = 2n + 1, which is the rank of the

equality set de�ned by the assignment constraints.

When a proper face F of PA is found to have dimension dim(F ) = n(n+m� 1)� 1, Theorem 2

implies that F is a facet of PA. We now establish the following relationship between facets of

conv(Xn+1) (the ATSP polytope on n + 1 nodes) and facets of PA.

Theorem 3 Let FATSP = fx 2 P : �x = �0g be a facet of conv(Xn+1). Then

FA = f(x; y) 2 PA : (�; 0)(x; y)T = �0g

is a facet of PA.

Proof: Let FATSP be a facet of conv(Xn+1). Then dim(FATSP) = dim(Tn+1)� 1, or, expressed

in terms of the rank of its equality set,

rank

  
A=
ATSP

�

!
;

 
b=

�0

!!
= rank(A=

ATSP; b
=) + 1

= 2n+ 2

That is, (�; �0) is linearly independent of the rows of (A=
ATSP; b

=). Note that ((�; 0); �0) is a valid

inequality for PA and a nonempty face of PA. Let (A=; b=) be the equality set of PA. Then

rank(A=; b=) = 2n+ 1. The equality set of FA is then given by

(A=
F ; b

=
F ) =

  
A=

�0

!
;

 
b=

�0

!!

where �0 = (�; 0). The rank of this equality set either stays the same at (2n + 1) or increases by

one to (2n+ 2). Assume the former; i.e., that rank(A=
F ; b

=
F ) = 2n+ 1. This would imply that

rank

0
@
0
@ A=

ATSP 0

� 0

1
A ;

 
b=

�0

!1A = 2n+ 1

yielding

rank

  
A=
ATSP

�

!
;

 
b=

�0

!!
= 2n+ 1;

which is a contradiction. Therefore, rank(A=
F ; b

=
F ) = 2n + 2, which gives dim(FA) = dim(PA) � 1;

i.e., FA is a facet of PA.

This result is very important in the sense that any known facet of conv(Xn+1) can be easily

transformed into a facet of PA by just adding the corresponding zero vector (0 2 Rnm+1) to the

inequality de�ning the facet in Rn(n+1). The identi�cation of such facets would be at the core of

any B&C scheme devised to solve the SDST 
owshop problem.
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5.1 Mixed-Integer Cuts

For the purpose of developing cuts, we rewrite eqs. (2.4) and (2.8) as follows:

yij � yik + (Ai + �ijk)xjk � Ai i 2 I; j; k 2 J (18)

Bij � yij i 2 I; j 2 J (19)

where �ijk = pij + sijk accounts for both the processing and setup times on machine i. Let

zij = yij �Bij , so that 0 � zij and de�ne �ijk = (Ai + �ijk)xjk . Substituting into (18) gives

zij � zik + �ijk � Ai �Bij + Bik (20)

Now, we apply Proposition 1 with N+ = fij; ijkg, N� = fikg, C = fijg, and L = ;. If C is a

dependent set; that is, if � = �ijk + Bij �Bik > 0, then (20) gives rise to the valid inequality

�ijk + (Ai � Bij +Bik)
+(1� xjk) � Ai �Bij + Bik + zik (21)

Assuming (Ai �Bij + Bik)+ > 0, (21) becomes

�ijk � (Ai �Bij +Bik)xjk � zik or

(pij + sijk +Bij �Bik)xjk � yik � �Bik (22)

which is the desired result. Inequality (22) will have an e�ect only if (pij+sijk+Bij�Bik) > 0; that

is, if C, as chosen, is a dependent set. Note that when xjk = 1, (22) becomes Bij + pij + sijk � yik

as expected and when xjk = 0, it reduces to Bik � yik , the default bound.

6 Polyhedral Results for Formulation B

Now consider the MIP model of the SDST 
owshop given by (3.1)-(3.7). Let S = fSig, for i =

1; 2; : : : ; n!, be the set of all feasible schedules. For every schedule Si 2 S there exists an incidence

vector xi 2 Bn(n�1)=2. Let ~Xn = fx 2 B
n(n�1)=2 : x is the incidence vector of a scheduleg.

Paralleling the notation in the previous section, let

SB = f(x; y) 2 Bn(n�1)=2 � Rmn+1 : (x; y) is a feasible solution to (3.2)-(3.7)g

Again, the y vector includes the mn time variables (3.7) plus the makespan variable Cmax. The set

SB can be represented as follows: SB = f(x; y) : x 2 X̂n; (x; y) 2 CB; y 2 Y g, where X̂n is the set

of constraints involving the binary variables only, CB = f(x; y) : (x; y) satis�es (3.2)-(3.3)g is the

set of coupling constraints involving both binary and real variables, and Y = fy : y satis�es (3.4),

(3.5), and (3.7)g is the set of constraints involving the real variables only. Note that this set Y is

the same as de�ned in the previous section.
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We are interested in the polyhedral structure of PB = conv(SB), the convex hull of SB. Of

particular interest is conv(X̂n), the convex hull of X̂n and its relationship to PB. In contrast with

formulation A, and the related polytope conv(Xn+1), the corresponding subspace X̂n in formulation

B has yet to be unexplored. In this section we �rst provide a more detailed study of the scheduling

polyhedron conv(X̂n). Subsequently, we give some results that link conv(X̂n) with PB, which in a

sense, parallel those that allowed us to extend the polyhedral structure of conv(Xn+1) to PA in the

previous section.

6.1 The conv(X̂n) Polyhedron

Throughout this section, we assume that the components of a feasible x 2 X̂n are stored columnwise;

i.e., in the following order:

x = (x12; x13; x23; : : : ; x1;n�1; x2;n�1; : : : ; xn�2;n�1; x1;n; x2;n; : : : ; xn�1;n)
T

so x 2 Bn(n�1)=2.

Lemma 2 Conv(X̂n) is full-dimensional; i.e., dim(X̂n) =
n(n�1)

2 .

Proof: By induction on n. For n = 2 there are only two schedules, S1 = (1; 2) and S2 = (2; 1),

with corresponding incidence one-dimensional vectors x1 = (1) and x2 = (0), respectively. Hence,

conv(X̂2) is given by conv(X̂2) = fx 2 R : 0 � x � 1g. Clearly, x = 1=2 is an interior point of

conv(X̂2). It follows from Corollary 1 that X̂2 is full-dimensional.

Now assume the induction hypothesis; that is, that conv(X̂n) is full-dimensional. By implication

there exists a set of N + 1 a�nely independent points fx1; : : : ; xN ; xN+1g, where N = dim(X̂n) =
n(n�1)

2 and each xi 2 X̂n in the set is the incidence vector of a schedule. We need to prove that

conv(X̂n+1) is full-dimensional.

In X̂n+1 there is an extra job to be scheduled (job n+1). The corresponding points have n addi-

tional coordinates with respect to the points in X̂n given by the variables x1;n+1; x2;n+1; : : : ; xn;n+1.

Note that for any xi 2 X̂n, the assignment xi1;n+1 = xi2;n+1 = : : : = xin;n+1 = 0 (which correspond

to scheduling job n+ 1 at the beginning of Si) yields a feasible schedule for X̂n+1 so( 
x1

0

!
;

 
x2

0

!
; : : : ;

 
xN+1

0

!)
� X̂n+1 � conv(X̂n+1):

Moreover, these vectors are a�nely independent.

For a given xi 2 Xn, say x1, we build n vectors in Xn+1 as follows. Taking x1 2 Xn as a common

base, we append the n-dimensional vector vj = (xj1;n+1; : : : ; x
j
n;n+1)

T , such that (x1; vj)T 2 X̂n+1,

for j = 1; : : : ; n. Here, the components of vj are determined when job n+1 is scheduled right after

the j-th scheduled job in S1, for j = 1; : : : ; n. For instance, assuming for simplicity that x1 is the

incidence vector of S1 = (1; 2; : : : ; n), then
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Insert n+ 1 after 1 ) (1; n+ 1; 2; : : : ; n) ) v1 = (1; 0; : : : ; 0)

Insert n+ 1 after 2 ) (1; 2; n+ 1; 3; : : : ; n) ) v2 = (1; 1; 0; : : : ; 0)
...

Insert n+ 1 after n ) (1; : : : ; n; n+ 1) ) vn = (1; 1; : : : ; 1):

Note that the vectors in fvjg are linearly independent. The set( 
x1

0

!
; : : : ;

 
xN+1

0

!
;

 
x1

v1

!
; : : : ;

 
x1

vn

!)

has dimension N + 1 + n = n(n � 1)=2 + 1 + n = (n + 1)n=2 + 1 = dim(X̂n+1) + 1. It remains

to prove that these N + 1 + n vectors are a�nely independent. To do so, consider the following

system of linear equations in (�i; �j), for i = 1; : : : ; N + 1, j = 1; : : : ; n:

X
i

�i

 
xi

0

!
+
X
j

�j

 
x1

vj

!
= 0

X
i

�i +
X
j

�j = 0

This system can be rewritten as X
i

�ix
i +

X
j

�jx
1 = 0 (23)

X
j

�jv
j = 0 (24)

X
i

�i +
X
j

�j = 0: (25)

Equation (24) and the fact that fvjg are linearly independent imply �j = 0 for all j. Thus (23)-(25)

reduces to X
i

�ix
i = 0

X
i

�i = 0

It follows from the a�ne independence of fxig that �i = 0 for all i. Therefore, the (n+ 1)n=2 + 1

vectors are a�nely independent so dim(conv(X̂n+1)) = (n + 1)n=2 implying that conv(X̂n+1) is

full-dimensional.

6.2 Facets of conv(X̂n)

We observe that X̂n has certain symmetry in the sense that if x 2 X̂n then �x 2 X̂n, where

�x = (1� x12; : : : ; 1� x1n; : : : ; 1� xn�1;n) is the componentwise complement of x. This leads to the

following lemma.
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Lemma 3 F = fx 2 conv(X̂n) : �x = �0g is a facet of conv(X̂n) if and only if �F = fx 2 conv(X̂n) :

��x = �0 �
P

jk �jkg is a facet of conv(X̂n), where
P

jk �jk is the sum of all components of vector

�.

Proof: Since F is a facet of conv(X̂n), dim(F ) = dim(conv(X̂n))� 1 (by Lemma 1). Hence,

there exists K = dim(conv(X̂n)) a�ne independent vectors xi 2 F . Consider the vectors f�xig. It

is easy to verify that �xi 2 �F . Furthermore, all the �xi are a�nely independent as well, as shown

below. X
i

�i�x
i = 0 and

X
i

�i = 0 =)
X
i

�i(1� xi) = 0 and
X
i

�i = 0

=) 1
X
i

�i �
X
i

�ix
i = 0 and

X
i

�i = 0

=)
X
i

�ix
i = 0 and

X
i

�i = 0

=) �i = 0 for all i

due to the a�ne independence of the xi vectors, where 1 is a vector with each component equal

to 1. It follows that dim( �F ) = K � 1 and that �F is a facet of conv(X̂n). The converse is shown

similarly.

Basically, Lemma 3 establishes that for every facet of conv(X̂n) there is a symmetric counterpart

which is also a facet of conv(X̂n) and tells us how to �nd it.

Proposition 3 The nonnegativity constraints

xjk � 0 j; k 2 J; j < k

give facets of conv(Xn) for n � 2.

Proof: Let j; k 2 J; j < k. Let �x � 0 represent the constraint �xjk � 0, that is, � =

(0; : : : ; 0;�1; 0; : : : ; 0) and �0 = 0 where the -1 component in � corresponds to �jk . Note that

(a) �x � �0 is a valid inequality of conv(X̂n), so F = fx 2 conv(X̂n) : �x = �0g is a face of

conv(Xn).

(b) F is a proper face since �x � �0 is satis�ed at equality by some xi 2 X̂n and is a strict

inequality for some other xi 2 X̂n. In fact, any schedule Si where job j is after (before) job k

satis�es �x � 0 as an equality (strict inequality).

We prove the result by showing that conditions of Theorem 1 hold. Here �x � �0 represents a

nonnegativity constraint, the equality set (A=; b=) does not exist since conv(Xn) is full-dimensional,

and we are concerned with solutions to the linear system

�xi = �0; (26)
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where xi is the incidence vector of schedule Si (with components stored row-wise) and fSig is the

set of schedules that satisfy �xi = �0. Hence, it su�ces to demonstrate that all solutions (�; �0)

to (26) for all i are of the form � = ��; �0 = ��0 for some � 2 R.

Because fSig is the set of schedules satisfying �x
i = �0, that is x

i
jk = 0, then fSig contains all

schedules where job k is scheduled before job j. In particular, S0 = (n; n�1; : : : ; k; : : : ; j; : : : ; 2; 1) 2

fSig and x0 = 0 2 B
n(n�1)

2 . Thus

�x0 = �0 , � � 0 = �0 , �0 = 0

so system (26) reduces to �x = 0. To determine the solution � = (�12; �13; : : : ; �1n; : : : ; �n�1;n) 2

R
n(n�1)

2 we proceed as follows. From S0 we obtain S1 by swapping jobs 2 and 1 such that

S1 = (n; n� 1; : : : ; k; : : : ; j; : : : ; 3; 1; 2)2 fSig

with corresponding incidence vector x1 = (1; 0; : : : ; 0). Thus

�x1 = 0, �12 = 0:

Similarly, we obtain S2 by swapping jobs 3 and 1:

S2 = (n; n� 1; : : : ; k; : : : ; j; : : : ; 4; 1; 3; 2) 2 fSig

with x2 = (1; 1; 0; : : : ; 0). Thus

�x1 = 0, �13 = 0

because we already have found that �12 = 0.

Observe that every time we swap two adjacent jobs u; v, the corresponding incidence vectors

are equal except for the component associated with these jobs xuv . Also, as long as jobs j and k

are not swapped, the resulting schedule remains feasible and satis�es �x = �0. Therefore, by

swapping job 1 with jobs 4; 5; : : : ; n (one at a time), we arrive at the schedule Sn�1 = (1; n; n �

1; : : : ; k; : : : ; j; : : : ; 3; 2), �nding along the way that �14 = : : : = �1n = 0; that is, �1q = 0 for all

q = 2; : : : ; n.

Proceeding similarly with jobs 2; 3; : : : ; j� 1, and evaluating (26) for each generated xi, we �nd

�pq = 0 for all p = 1; : : : ; j � 1 and q = p+ 1; : : : ; n. After the �nal swap, we have

Sl = (1; 2; : : : ; j � 2; j � 1; n; n� 1; : : : ; k; : : : ; j)

for some l.

By shifting one at a time the jobs in S0 scheduled after job j, and by substituting the corre-

sponding xi in system (26), we have recursively found that �pq = 0 for all p; q such that p < j. If

instead of shifting the jobs at the end of the schedule (after job j), we carry out the same procedure
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starting with the jobs at the beginning of the schedule (before job k) we arrive at the conclusion

that �pq = 0 for all p; q such that q > k. That is, given Sl, swap jobs n and n � 1 to get

Sl+1 = (1; : : : ; j � 1; n� 1; n; n� 2; : : : ; k; : : : ; j)

Then, �xl+1 = 0 implies �n�1;n = 0. Keep on swapping job n with each of the jobs n�2; n�3; : : : ; j

one at a time to obtain �n�2;n = �n�3;n = : : : = �j+1;n; �j;n = 0. After the last exchange, we have

the schedule Sl+n�j = (1; : : : ; j � 1; n � 1; n � 2; : : : ; k; : : : ; j; n). Repeat recursively this shifting

procedure for jobs n�1; n�2; : : : ; k+1, to obtain �pq = 0 for all p; q such that q = n; n�1; : : : ; k+1,

with �nal schedule Sr = (1; : : : ; j � 1; k; k� 1; : : : ; j + 1; j; k+ 1; k+ 2; : : : ; n� 1; n), for some r.

It remains to determine �pq for all p; q such that p = j; j + 1; : : : ; k � 1 and q = p + 1; : : : ; k.

However, by applying the same reasoning, we swap job k and k�1 to get �k�1;k = 0. Then we swap

job k with k� 2 and so on up to job j+1. This leads to �k�2;k = �k�3;k = : : : ; �j+1;k = 0 with the

corresponding schedule Sr+k�j = (: : : ; k� 1; k� 2; k� 3; : : : ; j+1; k; j; k� 1; : : :). Repeating these

operations for job k� 2; k� 3; : : : ; j+1, but shifting all the way up to job j, we �nd �pq = 0 for all

remaining (p; q) pairs except (j; k). The resulting schedule is Ss = (1; : : : ; j � 1; k; j; j+ 1; : : : ; k �

1; k+ 1; : : : ; n), for some s. Therefore, �pq = 0 for all (p; q) 6= (j; k).

Hence, a solution for (26) is given by (�; 0), where � = (0; : : : ; 0; �jk; 0; : : : ; 0). It is straightfor-

ward to check that � = ��jk satis�es

� = �� and �0 = ��0

as was to be shown.

Corollary 3 The inequalities

xjk � 1 j; k 2 J; j < k

give facets of conv(Xn) for all n � 2.

Proof: Follows from Proposition 3 and Lemma 3.

In contrast withXn+1 in model A, it is not possible to identify analogous ATSP valid inequalities

such as subtour elimination constraints, comb inequalities, and D+
k , D

�
k inequalities for model B.

One set of valid inequalities that we can identify, though, corresponds to precedence violations for

a sequence of jobs. Table 3 shows the valid inequalities that eliminate \cycles" (in the precedence

sense) for any 3-job subsequence. We call these inequalities, for a subsequence of size t, the t-

subsequence elimination constraint (or t-SEC). For t = 3 we show below that the 3-SEC are facets

of conv(X̂n).

Lemma 4 The inequalities (3-subsequence elimination constraints)

xjk � xjl + xkl � 0 j; k; l 2 J; j < k < l (27)

give facets of conv(X̂n) for all n � 2.
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sequence constraint

j ! k ! l ) j ! l xjk + xkl � 1 + xjl

j ! l! k ) j ! k xjl + (1� xkl) � 1 + xjk

Table 3: 3-SECs for conv(X̂n)

Proof: Each inequality in (27) represents a proper face of conv(X̂n) since it is satis�ed as an

equality by some schedule (e.g., S = (l; k; j; : : :)) and as a strict inequality for some other schedule

(e.g., S = (l; j; k; : : :)).

Again we prove the result by showing the conditions of Theorem 1. Here, �x � �0 is given by

� = (0; : : : ; 0; �jk; 0; : : : ; 0; �jl; 0; : : : ; 0; �kl; 0; : : : ; 0) and �0 = 0, where �jk = �jl = �1 and �kl = 1.

Note that because conv(X̂n) is full-dimensional, there is no equality set (A=; b=).

Let fSig be the set of schedules that satisfy �xi = �0, for all i. We are concerned with solutions

to the linear system

�xi = �0 (28)

where xi is the incidence vector corresponding to schedule Si. It su�ces to demonstrate that all

solutions (�; �0) to (28) are of the form � = ��; �0 = ��0 for some � 2 R.

Equation �x = �0 (that is, xjk � xjl + xkl = 0) is satis�ed if one of the following three cases

occur:

(i) xjk = xjl = xkl = 0, which corresponds to Si = (: : : ; l; : : : ; k; : : : ; j; : : :).

(ii) xjk = 0; xjl = xkl = 1 which corresponds to Si = (: : : ; k; : : : ; j; : : : ; l; : : :).

(iii) xjk = xjl = 1; xkl = 0, which corresponds to Si = (: : : ; j; : : : ; l; : : : ; k; : : :).

Since S0 = (n; n� 1; : : : ; 2; 1) 2 fSig (case (i)), then

�x0 = �0 , � � 0 = �0 , �0 = 0:

By performing the same job shifting procedure we used in the proof of Proposition 3 for the

schedules associated with case (i), we �nd �pq = 0 for all (p; q) 62 f(j; k); (j; l); (k; l)g. Thus, (28)

becomes

�jkxjk + �jlxjl + �klxkl = 0:

Case (ii) and (iii) imply

�jl + �kl = 0

�jk + �jl = 0
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which is a 2 � 3 system with solution �jl = �; �jk = �kl = �� for any � 2 R. Hence, by taking

� = �, (�; �0) is given by (�; �0) = (��; ��0). This completes the proof.

Lemma 5 The inequalities

xjk � xjl + xkl � 1 j; k; l 2 J; j < k < l

give facets of conv(X̂n) for all n � 2.

Proof: Follows from Lemma 4 and Lemma 3.

All 4-SECs are shown in Table 4 for all j; k; l;m 2 J; j < k < l < m. These valid inequalities,

however, do not de�ne facets of conv(X̂n). In fact, because dim(X̂n) = n(n � 1)2 and each 4-SEC

can be expressed as the intersection of two of the previously developed facets of conv(X̂n) (i.e.,

combinations of xjk � 0; xjk � 1, and 3-SEC), they de�ne faces of dimension n(n � 1)=2� 2.

sequence constraint

j ! k ! l! m ) j ! m xjk + xkl + xlm � 2 + xjm

j ! k ! m! l ) j ! l xjk + xkm + (1� xlm) � 2 + xjl

j ! l! k! m ) j ! m xjl + (1� xkl) + xkm � 2 + xjm

j ! l! m! k ) j ! k xjl + xlm + (1� xkm) � 2 + xjk

j ! m! k ! l ) j ! l xjm + (1� xkm) + xkl � 2 + xjl

j ! m! l! k ) j ! k xjm + (1� xlm) + (1� xkl) � 2 + xjk

Table 4: 4-SECs for conv(X̂n)

The conv(X̂n) polytope can be used to model other scheduling problems, such as single-machine

and permutation 
owshops problems, where every schedule is feasible. When real variables are

introduced in the scheduling model, it remains to be determined whether the valid inequalities

discussed above de�ne facets of the complete polyhedron. In the next section we prove that this is

the case for the SDST 
owshop polyhedron.

6.3 The PB Polyhedron

We now state and prove the theorem de�ning the dimension of PB . The proof is very similar to

the proof of Theorem 2 because a point x 2 X̂n de�nes a given feasible sequence for PB just as

x 2 Xn+1 de�nes a feasible sequence for PA; moreover, the de�nition of y 2 Rmn+1 is the same for

both polyhedrons.

Theorem 4 Let PB = conv(SB) be the convex hull of SB. Then PB is full-dimensional; i.e.,

dim(PB) = n(n � 1)=2 +mn + 1
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Proof: Let N = n(n � 1)=2 +mn + 1. We will show that there exists a set of N + 1 a�nely

independent vectors in RN .

Consider the subspace X̂n of PB. We proved in Lemma 2 that conv(X̂n) is full-dimensional.

This implies that there exists a set of K = n(n � 1)=2 + 1 a�nely independent vectors x1; : : : ; xK

in Rn(n+1), each being the incidence vector of a schedule. Also note that for any given xt 2 X̂n,

there exists a corresponding in�nite number of feasible assignments of the time variables for PB .

From this point on the rest of the proof follows that of Theorem 2, part (b). We will just sketch

the arguments. From the set fx1; : : : ; xKg we build two disjoint sets S1; S2 � RN given by

S1 =

( 
x2

y2

!
; : : : ;

 
xK

yK

!)

S2 =

( 
x1

y1

!
;

 
x1

y1;1

!
;

 
x1

y1;2

!
; : : : ;

 
x1

y1;mn+1

!)

where S1 and S2 are sets of feasible (and a�nely independent) vectors in RN , with jS1j = K � 1 =

n(n � 1)=2 and jS2j = mn + 2, so that jS1 [ S2j = n(n� 1)=2 +mn + 2. We then can prove that

the points in S1 [ S2 are a�nely independent by showing that the linear system

X
t2J1

�t

 
xt

yt

!
+
X
u2J2

�u

 
x1

y1;u

!
= 0

X
t2J1

�t +
X
u2J2

�u = 0

admits the unique solution �t = �u = 0 for t 2 J1 = f1; : : : ; Kg, and u 2 J2 = f1; : : : ; mn + 1g.

This leads to conclude that dim(PB) = n(n� 1)=2 +mn+ 1.

We now establish the following relationship between facets of conv(X̂n) and facets of PB.

Theorem 5 Let FX = fx 2 conv(X̂n) : �x = �0g be a facet of conv(X̂n). Then FB = f(x; y) 2

PB : (�; 0)(x; y)T = �0g is a facet of PB.

Proof: Let FX be a facet of conv(X̂n). Let (�0; �0) represent the inequality �0z � �0 where

�0 = (�; 0) 2 RN and z = (x; y) 2 PB . Hence FB can be rewritten as FB = fz 2 PB : �0z = �0g.

Given that FX is a facet of conv(X̂n), it follows that FB is a proper face of PB .

We prove the result by showing that conditions of Theorem 1 hold. Here, the equality set

(A=; b=) does not exist since PB is full-dimensional, and we are concerned with solutions to the

linear system

�z = �0 (29)

where z is any point in PB satisfying �0z = �0. Hence, it su�ces to demonstrate that all solutions

(�; �0) to (29) are of the form � = ��; �0 = ��0 for some � 2 R.
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Since z = (x; y) 2 PB , the system in (29) can be rewritten as

�xx+ �yy = �0: (30)

Let x1 2 FX . According to the procedure described in the proof of Theorem 4, it is possible

to construct mn + 2 feasible a�nely independent points y0; y1; : : : ; ymn+1, where yu = y0 + eu

for all u = 1; : : : ; mn + 1. Here eu denotes the u-th unit vector in Rmn+1. It easy to see that

zi = (x1; yi) 2 PB for all i = 0; : : : ; mn+ 1. Moreover, zi satis�es �0zi = �x1 = �0 for all i so that

zi 2 FB. Substituting these mn+ 2 points in system (29) we have

�xx
1 + �yy

0 = �0 (31)

�xx
1 + �yy

1 = �0 (32)
...

�xx
1 + �yy

mn+1 = �0 (33)

By subtracting (31) from all other eqs. (32)-(33), we obtain the following system of order mn+ 1:

�y(y
1 � y0) = 0
...

�y(y
mn+1 � y0) = 0

Since yi � y0 = ei it follows that �y = 0 2 Rmn+1. This reduces (29) to

�xx = �0

where x satis�es �x = �0. Given that FX is a facet, it follows that there is � 2 R such that

�x = ��; �0 = ��0. This implies that � = (�x; �y) = (��; �0) = �(�; 0) = ��0 and the proof is

complete.

6.4 Mixed-Integer Cuts

Note that inequalities (3.2) and (3.7) in model B have the same structure as inequalities (2.4) and

(2.8) in model A. Thus the valid inequality derived from these equations for model A also applies

for model B; that is,

(pij + sijk +Bij � Bik)xjk � yik � �Bik (34)

is a valid inequality for model B. Recall that (34) will have an e�ect only if (pij+sijk+Bij�Bik) > 0.

Note that when xjk = 1, (34) becomes Bij + pij + sijk � yik as expected and when xjk = 0, it

reduces to Bik � yik , the default bound.

In a similar fashion, we use inequalities (3.3) and (3.7), a change of variable x0jk = 1 � xjk in

(3.3), and the same procedure to derive the valid inequality

(pik + sikj +Bik � Bij)(1� xjk)� yij � �Bij

for model B, where again we must have (pik + sikj +Bik �Bij) > 0 for the inequality to be useful.
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