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Abstract

This paper presents the polyhedral structure of two different mixed-integer programming repre-
sentations of the flowshop scheduling problem with sequence-dependent setup times, denoted by
SDST flowshop. The first is related to the asymmetric traveling salesman problem polytope. The
second is less common and is derived from a model proposed by Srikar and Ghosh, giving what
we call the S-G polytope. It is shown that any facet-defining inequality (facet) of either of these
polytopes induces a facet for the SDST flowshop polyhedron. Facets for the S-G polytope and valid
mixed-integer inequalities based on variable upper-bound flow inequalities for either formulation

are developed as well.

Keywords: flowshop scheduling, setup times, polyhedral combinatorics, facet-defining inequalities,

asymmetric traveling salesman problem



1 Introduction

In this paper, we address the problem of finding a permutation schedule of n jobs in an m-machine
flowshop environment that minimizes the maximum completion time Cp,.x of all jobs, also known
as the makespan. The jobs are available at time zero and have sequence-dependent setup times on
each machine. All parameters, such as processing and setup times, are assumed to be known with
certainty. This problem is regarded in the scheduling literature as the sequence-dependent setup
time flowshop (SDST flowshop) and is evidently A"P-hard since the case where m = 1 is simply a
traveling salesman problem (TSP).

Applications of sequence-dependent scheduling are commonly found in most manufacturing en-
vironments. In the printing industry, for example, presses must be cleaned and settings changed
when ink color, paper size or receiving medium differ from one job to the next. Setup times are
strongly dependent on the job order. In the container manufacturing industry machines must be
adjusted whenever the dimensions of the containers are changed, while in printed circuit board
assembly, rearranging and restocking component inventories on the magazine rack is required be-
tween batches. In each of these situations, sequence-dependent setup times play a major role and
must be considered explicitly when modeling the problem.

The objective of this paper is to study the SDST flowshop polyhedron; i.e., the convex hull
of incidence vectors of all feasible solutions. In so doing, we consider two different models or
formulations. Model A is based on the asymmetric traveling salesman problem (ATSP) and model
B is based on a formulation due to Srikar and Ghosh [14]. In each case, two sets of variables
are identified: a set of binary decision variables which determines the sequence or ordering of the
jobs, and a set of nonnegative real variables which determines the times processing begins for each
job. When the time variables are ignored the binary variables give rise to a subspace of the SDST
flowshop consisting of the convex hull of incidence vectors of feasible sequences. For model A, this
subspace is the well known ATSP polytope; for model B, the corresponding subspace (here, called
the S-G polytope) has not been previously studied. In our work, we show how any facet-defining
inequality (or facet) for either of these polytopes induces a facet for the SDST flowshop polyhedron.
We also investigate the facial structure of the S-G polytope and develop several valid inequalities
for the SDST flowshop polyhedron.

The rest of the paper is organized as follows. In Section 2 we introduce the mathematical models
A and B, and discuss their basic differences. A brief literature review is presented in Section 3.
This is followed in Section 4 with some background material on polyhedral theory. Major results

relating to the polyhedral structure of models A and B are given in Sections 5 and 6, respectively.



2 Mathematical Formulation

In the flowshop environment, a set of n jobs must be scheduled on a set of m machines, where each
job has the same routing. Therefore, without loss of generality, we assume that the machines are
ordered according to how they are visited by each job. Although for a general flowshop the job
sequence may not be the same for every machine, here we assume a permutation schedule; i.e., a
subset of the feasible schedules that requires the same job sequence on every machine. We suppose
that each job is available at time zero and has no due date. We also assume that there is a setup
time which is sequence dependent so that for every machine 7 there is a setup time that must
precede the start of a given task that depends on both the job to be processed (k) and the job that
immediately precedes it (7). The setup time on machine ¢ is denoted by s;;; and is assumed to be
asymmetric; i.e., s;;5 # si;. After the last job has been processed on a given machine, the machine
is brought back to an acceptable “ending” state. We assume that this last operation takes zero
time because we are interested in job completion time rather than machine completion time. Our
objective is to minimize the time at which the last job in the sequence finishes processing on the
last machine, also known as makespan. This problem is denoted by Fm|s;;r, prmu|Cpax or SDST
flowshop.

In modeling this problem as a mixed integer program (MIP), we consider two different formu-
lations. In the first case, a set of the binary variables is used to define whether or not one job is
an immediate predecessor of another; in the second case, the binary variables simply determine
whether or not one job precedes another. A set of nonnegative real variables is also included in the
formulations. In either case they have the same definition and are used to determine the starting

time of each job on each machine.
Triangle inequality: The triangle inequality for the setup times is stated as follows:
Sijk + sip > s foree D, jokle J. (1)

Throughout the sequel, we will assume that the triangle inequality holds unless otherwise stated.
In most operations (e.g., see [14, 15]), the time it takes to set up a machine from job j to job [ is
less than the time it takes to set up a machine from j to another job k, and then set up the machine
from k to l. Nevertheless, if there really exists a machine ¢ and jobs 7, k, [ such that s;;1 4 s < 5451,

we can always replace s;;; with sgﬂ = Sijk + sig and force (1) to hold as an equality.

2.1 Notation

In the development of the mathematical model, we make use of the following notation.

Indices and sets

m number of machines



n number of jobs
i machine index; i € I = {1,2,...,m}
J, k.1 job indices; j,k,le J={1,2,...,n}
Jo = J U {0} extended set of jobs, including a dummy job denoted by 0
Input data
pi;  processing time of job j on machine ;7€ 1,5 € J
si;5 setup time on machine ¢ when job j is scheduled right before job k; 1€ I, j € Jo, k€ J

Computed parameters

A; upper bound on the time at which machine ¢ finishes processing its last job; 7 € I,

A = A+ Y pij+min {
jeJ

> max{sir}, Y max{s;z}
feTo keJ keJJEJo
where Ag = 0
B;; lower bound on the starting time of job 7 on machine ¢;¢ €1, j € J
Bi; = max{sij, Bi—1;+pi-1,;} el jeld
where By; =0 forall j € J

Common variables

Yij nonnegative real variable equal to the starting time of job j on machine ¢; 2 € I, 7€ J
Cmax mnonnegative real variable equal to the makespan;
Cmax = mnax {ym] + pm]}
J€J

2.2 Formulation A

Let A ={(j,k) : j,k € Jo, 7 # k} the set of arcs in a complete directed graph induced by the

node set Jy. We define the decision variables as follows:

1 if job j is the immediate predecessor of job k; (j,k) € A
T =
! 0 otherwise

In the definition of z i, notice that zg; = 1 (2;0 = 1) implies that job j is the first (last) job

in the sequence for j € J. Also notice that s;0; denotes the initial setup time on machine ¢ when



job k has no predecessor; that is, when job k is scheduled first, for k£ € .J. This variable definition
yields what we call a TSP-based formulation.

Minimize Chax (2.1)
subject to
day o= 1 ke Jo (2.2)
J€Jo
ok = 1 J € Jo (2.3)
keJy
Yi; + i +sur < v+ A(lox) el j kel (2.4)
Ymj T Pmj < Chmax jeJ (2.5)
Yij T Pi; < Yig1,j tel\{m},jeJ (2.6)
;. € {0,1} Jok€Jo, jF£k (2.7)
vi; = Bij iel,jeld (2.8)

Equations (2.2) and (2.3) state that every job must have a predecessor and successor, respec-
tively. Note that one of these 2n 4 2 assignment constraints is redundant in the description of the
feasible set. Time-based subtour elimination constraints are given by (2.4). This establishes that if
job j precedes job k., then the starting time of job k£ on machine ¢ must not exceed the completion
time of job j on machine ¢ (y;; + p;;) plus the corresponding setup time. Here, A; is a large enough
number (an upper bound on the completion time on machine ¢). Constraint (2.5) assures that the
makespan is greater than or equal to the completion time of all jobs on the last machine, while
(2.6) states that a job cannot start processing on one machine if it has not finished processing on
the previous one. A lower bound on the starting time for each job on each machine is set in (2.8).

In formulation (2.1)-(2.8), we assume that s;;0, the time required to bring machine 7 to an
acceptable end state when job j is processed last, is zero for all 7 € I. Thus the makespan is
governed by the completion times of the jobs only. We are also assuming that all jobs need

processing on all machines. If this last condition were not true, then eq. (2.5) could be replaced by

3/2]‘|‘sz < Cmax ZGI,]EJ

at the expense of increasing the number of makespan constraints from n to mn. Note that it is
possible to combine p;; + s;;% in (2.4) into a single term ¢;;5 = p;; + si;, but that we still need to
handle the processing times p;; separately in constraints (2.5) and (2.6).

If the triangle inequality does not hold, the lower bound constraint (2.8) must be replaced by

By < oy +Ci(lero;) i€l,j€,

where C; is a large enough number (an upper bound on the initial setup time for machine 7).



2.8 Formulation B

Srikar and Ghosh [14] proposed a second MIP formulation for F'|s;;x, prmu|Chyax. Their formulation
contained a slight error that was later corrected by Stafford and Tseng [15]. The Srikar-Ghosh model
does not consider the initial setup time s;o; for the first job in the sequence, that is, it is assumed
to be zero. Our formulation includes this parameter.

Let A = {(4,k) : j,k € J, j <k}. The decision variables are defined as follows:

{ 1 if job j is scheduled any time before job k; (j, k) € A

0 otherwise

The MIP formulation is

Minimize  Ciyax (3.1)
subject to

i+ i+ sige < v+ Al ery) i€l (jk)eA (3.2)

Yie + pie + sy < i + Ai(xgr) iel, (jk)e A (3.3)

Ynj T Pmj < Crmax jeJ (3.4)

Yij T Pij < Yigj iel\{m}, jeJ (3.5)

vk € {0,1} (j,k)e A (3.6)

vi; = Bij iel,jeld (3.7)

Constraints (3.2) and (3.3) ensure that time precedence is not violated. They also eliminate
cycles. Equation (3.4) establishes the makespan criterion. Equation (3.5) states that a job cannot
start processing on one machine if it has not finished processing on the previous machine. A lower
bound on the starting time of each job on each machine is set in (3.7).

Srikar and Ghosh point out that the triangle inequality must hold in order for constraints (3.2)-
(3.3) to hold. However, Stafford and Tseng provide a stronger condition for constraints (3.2)-(3.3)

to be valid; i.e.,
Sijk + Sip Fpik > sy foralleel, gk leJ. (4)

Note that (4) is stronger than the triangle inequality (1), and implies that constraints (3.2)-(3.3)
of the model hold, even if (1) does not hold for setup times. They illustrate this by means of an
example.

If the triangle inequality does not hold, constraints (3.2), (3.3) and (3.7) are no longer valid.

One possible replacement is

Yii +pij +sije < g+ (n+ DAL )+ A[P(R) &P el] icl, (jk) e A
Yi; +0ij T sk < Y+ (n+ DAz, + A [P(7) < P(k) 1] iel, (j,k)€ A
Bir <y + Ci[P(k) &1] icl, ke,



respectively, where C; is a large enough number (upper bound on the starting processing time of
all jobs on machine 7), and P(j) represents the position in the schedule of job j, given by
P(j) = Y wpi+ ) (L) +1 je . (5)
p<J q>j

In addition, the following constraints must be added to the formulation:

P(H+1 < Pk)y+n(lezy) (k) eA
P(E)+1 < P(j)+ nwj (k)€ A

Thus, when the triangle inequality does not hold, the problem size increases considerably.

2.4 Model Comparison

Model A Model B
Variables binary n(n 4 1) | binary In(nel)
real mn + 1 | real mn + 1
TOTAL n(n+1)+mn+1 | TOTAL %n(n Sl)+mn+1
Constraints | (2.2) n+1]|(3.2) Imn(n <1)
(2.3) n+1](3.3) Tmn(n 1)
(2.4) mn(n <1)
(2.5) mn | (3.4) mn
(2.6) n(m<1) | (3.5) n(m <1)
TOTAL mn?+mn+n+2 | TOTAL mn? 4+ mn <n
Nonzeros (2.2) n(n+1)|(3.2) Smn(n <1)
(2.3) n(n+1) | (3.3) Smn(n 1)
(2.4) 3mn(n <1)
(2.5) 2mn | (3.4) 2mn
(2.6) 2n(m <1) | (3.5) 2n(m <1)
TOTAL  3mn® +2n2 +mn | TOTAL 3mn? + mn <2n

Table 1: Problem size for models A and B

Table 1 shows the problem size in terms of number of variables, constraints, and nonzeros for
either model. As can be seen, model B is considerably smaller than model A in terms of both
the number of constraints and the number of binary variables. This would appear to make it
more attractive when considering exact enumeration methods such as branch-and-bound (B&B)
and branch-and-cut (B&C). Nevertheless, the fact that much is known about the ATSP polytope
gives added weight to model A. Table 2 displays the number of binary and real variables, number
of constraints, number of nonzeros and density of the matrix of constraints for several values of m

and n.



m xXn model  binary real constraints  nonzeros density
2x 10 A 110 21 252 840 0.025
B 45 21 230 620 0.041

2 %20 A 420 41 902 3280 0.008
B 190 41 860 2440 0.012

10 x 10 A 110 101 1212 3400 0.013
B 45 101 1190 3180 0.018

10 x 20 A 420 201 4422 13200 0.005
B 190 201 4380 12360 0.007

Table 2: Problem size examples for models A and B

To date, it has not been possible to tackle even moderate size instances of the SDST flowshop
with either of these formulations due mainly to the weakness of their LP-relaxation lower bounds.
LP-based enumeration procedures such as B&B and B&C require good I.P-relaxation lower bounds.
For example, Stafford and Tseng required about 6 hours of CPU time on a 80286-based PC to
optimally solve a 5 x 7 instance using LINDO with formulation B. To improve the polyhedral
representation of the relaxed feasible regions it is necessary to generate valid inequalities, the
strongest being facets. One way to achieve this is by looking into the related subspaces: the ATSP
polytope and the S-G polytope for models A and B, respectively. Many facets have been developed
for the ATSP polytope over the last 20 years (e.g., see [1, 6, 2, 3, 11]). For model B, though, the
S-G polytope remains unexplored. As we show presently, the facets of either of these polytopes can
be extended to facets of the SDST flowshop polyhedron.

When comparing the ATSP polytope with the S-G polytope fundamental differences can be
observed. In the former, we have a clear picture of what a feasible solution (also called a tour)
looks like in a graph. This makes it easier to visualize, for instance, when certain constraints,
such as the subtour eliminate constraints, may be violated. However, for model B, it is not a
straightforward matter to identify in a graph a feasible solution from a given set of arcs. Figure 1
shows the graph for a 3-job problem and the solution for schedule S = (3,1,2) for both models.
For model B, an undirected graph can be used because x;; is only defined for j < k. The dotted
lines represent all feasible arcs (12 for model A and 3 for B); the solid lines identify the solution.

Figure 2 shows how a solution for model B can be built from a solution for model A. Note that
each arc é € A (Step 2) is visited just once so the procedure is O(|A|) = O(n?). In Step 1, a node
(job) within brackets ([j]) denotes the job scheduled in the j-th position.

Likewise, a solution for model A can be easily constructed from a feasible solution for model B.
Let 7' be an arc set representing a feasible schedule under model B. Let & € Bl be its corresponding

characteristic vector; that is, z;, = 1if (4, k) € T, and zj;, = 0 otherwise. For each job j, its position



(@ Model A (b) Model B

Figure 1: Graph representations for schedule (3,1,2)

in the schedule P(j) is determined by eq. (5) in n(n < 1) operations. The schedule S is found by
sorting the jobs by increasing value of P(j) and a feasible tour 7' is easily built from S in O(n)

time so that the complete conversion takes O(n?) time.

3 Related Research

We now highlight some previous work on the SDST flowshop and related problems.

Fzact optimization: Formulation B was introduced by Srikar and Ghosh [14]. They used this model
and the SCICONIC/VM mixed integer programming solver (based on branch-and-bound) to solve
several randomly generated instances of the SDST flowshop. The largest solved was a 6-machine,
6-job problem, in about 22 minutes of CPU in a Prime 550 computer.

Later, Stafford and Tseng [15] corrected an error in the S-G formulation and using LINDO
solved a 5 x 7 instance in about 6 hours of CPU on a PC. They also proposed three new MIP
formulations of related flowshop problems based on the S-G model.

To the best of our knowledge, there have been no other attempts to solve the problem optimally
using either formulation. However, Gupta [9] presents a branch-and-bound algorithm for the case
where the objective is to minimize the total machine setup time. No computational results are
reported. All other work has centered on variations of the 1- or 2-machine case, with the former

being analogous to the TSP.

2-machine case: Work on F2|s;;, prmu|Cpax includes Corwin and Esogbue [4], who consider a

subclass of this problem that arises when one of the machines has no setup times. After estab-



Procedure A-to-B()

Input: An arc set T (or directed tour, |T'| = n 4 1) corresponding to a
feasible schedule for the SDST flowshop under model A.

Output: An arc set T corresponding to the equivalent schedule under

model B.

Step 0. Initialize mark (é)=UNVISITED for é € Aand set T =0
Step 1. Sort T as T = {(0,[1]), ([1],[2]), ..., ([n &1],[n]), ([n],0)}
Step 2. for j =1to n do

Step 2a. Choose the j-th arcin T

Step 2b. for each unvisited arc é € A incident to [j] do
Step 2c. mark mark(é€)=VISITED

Step 2d. for each unvisited arc é € A incident from [j] do
Step 2e. mark mark(é€)=VISITED

Step 2f. T —T +é

Step 3. Output T

Figure 2: Procedure to go from solution of A to solution of B

lishing the optimality of permutation schedules, they develop an efficient dynamic programming
formulation which they show is comparable, from a computational standpoint, to the corresponding
formulation of the traveling salesman problem whose complexity is O(n?2") [5]. No computations
were performed.

Gupta and Darrow [8] establish the A/P-hardness of the problem and show that permutation
schedules do not always minimize makespan. They derive sufficient conditions for a permutation
schedule to be optimal, and propose and evaluate empirically four heuristics. They observe that the
procedures perform quite well for problems where setup times are an order of magnitude smaller
than processing times. However, when the magnitude of the setup times was in the same range as
the processing times, the performance of the first two proposed algorithms decreased sharply.

Szwarc and Gupta [16] develop a polynomially bounded approximate method for the special
case where the sequence-dependent setup times are additive. Their computational experiments on

instances of up to 7 jobs show optimal results for the 2-machine case.

Heuristics: Most of the recent work for F|s;;x, prmu|Cpax has focused on heuristics. Simons [13]
describes four heuristics and compares them with three benchmarks that represent generally prac-

ticed approaches to scheduling in this environment. Experimental results for problems with up to



15 machines and 15 jobs are presented. His findings indicate that two of the proposed heuristics
(SETUP and TOTAL) produce substantially better results than the other methods tested.

In [12], we developed a new greedy randomized adaptive search procedure (GRASP) and compared
it to Simons’ SETUP heuristic on a series of randomly generated problems of size up to 6 x 100.
In the computations, GRASP outperformed SETUP on those instances where the setup times were
an order of magnitude smaller than the processing times. When both parameters were identically

distributed, SETUP was seen to be more effective.

4 Polyhedral Theory Background

The following definitions and well known theoretical results (e.g., see [10]) will be used in the
developments.

A polyhedron P C R"™ is the set of points that satisfies a finite number of linear inequalities; i.e.,
P={xzeR": Az < b}, where (A,b) is an m X (n 4 1) matrix. A polyhedron P is of dimension
k, denoted dim(P) = k, if the maximum number of affinely independent points in P is £+ 1. A
polyhedron P C R"™ is full-dimensional if dim(P) =n. Let M = {1,2,.... m}, M= ={i € M :
a'z = b; for all 2 € P} andlet M< = {i € M : a'z < b; for some z € P} = M \ M=. Let (A=,b7),
(AS,0S) be the corresponding rows of (A,b), referred as the equality and inequality sets of the
representation (A,b) of P. A point @ € P is called an interior point of P is a’z < b; for all i € M.

Lemma 1 Let P be a polyhedron and let (A=,b%) be its equality set. If P C R", then dim(P) +
rank(A=,67) = n.

Corollary 1 A polyhedron P is full-dimensional if and only if it has an interior point.

The inequality 7o < mq [or (7, 70)] is called a valid inequality for P if it is satisfied by all points
in P. If (7,7) is a valid inequality for P and ' = {2z € P : waz = 7o}, F is called a face of P,
and we say that (7, 7o) represents F. A face F is said to be proper if F'# () and F # P. A face F
of Pis a facet of P if dim(F) = dim(P) < 1.

Theorem 1 Let (A=,0%) be the equality set of P C R™ and let F' = {x € P : wa = 7w} be a proper

face of P, where 1 € R",mg € R. Then the following two statements are equivalent:
(i) F is a facet of P.
(ii) If e = Ao for all x € F then

(A, Ao) = (am + uA™, amg + ub™)

for some a € R and some u € RM™I,

10



Lemma 1 and Theorem 1 provide two different methods of characterizing facets of a polyhedron.
We will also make use use of the following results on valid inequalities for variable upper-bound
flow models to develop mixed-integer cuts.

Let

T'={rxeB",z€ R} : 22j<:>22j§b,2j§ajxj forj e N} (6)
JENT JEN—
where Nt UN~ = N. Here a; € Ry for j € N and b € R. We say that C C N7 is a dependent set
if Zjec a; > b.
Proposition 1 If C C N7 is a dependent set, A = Yjec aj b, and L C N~ then
Yl (apeNtler)] < b+) A+ Y % (7)
JeC JEL JEN-\L

is a valid inequality for T' given by (6).

5 Polyhedral Results for Formulation A

Consider the MIP model of the SDST flowshop given by (2.1)-(2.8). We are interested in the
polyhedral description of the convex hull of the set of feasible solutions. Let G411 = (Viig1, Apg1)
be a directed graph on n + 1 nodes, where each node in the set V, 11 is associated with a job in
Jo. We assume that G411 is complete. Thus |A,41| = n(n +1). Let X,,41 = {2 € Br(ntl)

z is the incidence vector of a tour in G,41}.

Let §4 = {(z,y) € B*(*+1) x Rm»+1 . (2. y) is a feasible solution to (2.2)-(2.8)}, where the y
vector includes the mn time variables (2.8) plus the makespan variable Cp,ac. Then S4 can be repre-
sented as follows: 54 = {(z,y) : @ € X1, (2,y) € Cy,y € Y}, where X, 11 is the set of constraints
involving the binary variables only, C'4 = {(z,y) : (z,y) satisfies (2.4)} is the set of coupling con-
straints involving both binary and real variables, and Y = {y : y satisfies (2.5), (2.6), and (2.8)}
is the set of constraints involving the real variables only. It is well known that the set X, 11 (the
ATSP polytope on n + 1 nodes) is characterized by (i) assignment constraints and (ii) subtour
elimination constraints. In the formulation (2.2)-(2.8), the latter were omitted because they are
implied by (2.4) which can be viewed as time-based subtour elimination constraints.

We are interested in the polyhedral structure of P4y = conv(.Sy4), the convex hull of 54. We have
n(n + 1) binary variables (z;;’s), and mn + 1 nonnegative real variables (y;;’s and Cpax) giving
a total of N = n(n 4+ m + 1) 4+ 1 variables. Note that once a feasible incidence vector z € X, 41
has been determined, that is, once a given sequence is known, the computation of the associated
y € R™™*1 that minimizes the makespan can be done recursively in O(mn) operations.

The following proposition will be used for the main theorem which shows that P4 is full-

dimensional.

11



Proposition 2 Let 8 be a positive real number, y° € R’ be a vector given by y° = 6(1,2,...,t &
1,t)T, and y* € R! be given by y* = y° + e¥, where e* is the u-th unit vector in R'. Then, the
vectors in the set {y°, yl, y%, ..., y'} are affinely independent.

Proof: For ag,ay,...,a, € R, we prove that the following system of linear equations

¢
Zauy“ = 0 (8)
u=0

Z_: Qy, = 0 (9)

implies a,, = 0 for all v =0,...,t.

From (8) we have

¢ ¢
Z a gt =0 = agy’ + Z (P +e)=0
u=0

u=1
t t
= Zauyo—l—Zaue“ =0
u=0 u=1
t t
= yOZau—l—Zaue“ =0
u=0 u=1
From (9), we now have

¢
g auet =0
u=1

80 ay = ag = ...= a, = 0 and hence ag = 0, which completes the proof. [ ]

We now state and prove the theorem defining the dimension of Pg4.
Theorem 2 Let Py = conv(S4) be the convex hull of S4. Then dim(P4) = n(n + m <1)

Proof: The proof consists of two parts.

(a) It is known that one of the 2(n + 1) assignment constraints (2.2)-(2.3) is redundant. This
implies that rank(A=,56=) > 2n + 1, where (A=, 57) is the equality set of P4. It follows from
Lemma 1 that

dim(Ps) < N&(2n+1)
= nn+tm+1)+1&2n+1)
= n(n+m&l)

(b) To prove dim(P4) > n(n + m <1) we will show that there exists a set of n(n+ m <1)+ 1
affinely independent vectors in R™. In this regard, consider the subspace X,y of P4. The
dimension of the ATSP polyhedron on n + 1 vertices is n? &n <1 (e.g., see [7]). This implies

12



that there exists a set of K = n? <n affinely independent vectors z*, ..., 25 in R"("t1) each
being the incident vector of a tour. Also note that for any given x! € X, 1, there exists a
corresponding infinite number of feasible assignments of the time variables for P4. For each
i, t=2,...,K,let y' € R™"*! be any corresponding feasible assignment of the time variables

on Pys. Here, y' includes the mn time variables y;;, and the makespan variable Ciyax. Hence,

s={(2)()}

is a set of feasible (and affinely independent) vectors in RV, with |$| = K &1 = n? &n & 1.

the set 57 given by

For 2! we construct the corresponding y' as follows. Assume for simplicity that 2! defines the
job schedule (1,2,...,n); that is, 2; ;44 = 1 for all j =0,1,...,n (indices 0 and n + 1 are the
same), and zj; = 0 otherwise. Assume also that the mn + 1 components of y' are given in the

order

3/%1

3/71711
3/%2

3/71712

1
Yin

1
Ymn

Cmax

That is, all the time variables associated with job 1 come first, then those for job 2, and so
on, up to job n (the last in the sequence). The makespan variable comes at the end. Now, it

is possible to select a large enough number # such that the following yields a feasible solution

for Py:

13



3/%1 Y
3/%1 26
Y1 mo
Yin ((n=1)m+1)8
yL mné
Cmax (mn + 1)0
Let e* be the u-th unit vector in R™"*!, for all w = 1,...,mn + 1, and denote the vector

yt + e* by y'*. By choosing 6 as
6 = max {pi; + siji} + 1
i

we ensure not only the feasibility of y' but the feasibility of y** forall u =1,...,mn + 1, as
well. Using Proposition 2 with t = mn 4+ 1 and y' as the base vector, we conclude that the

1,2
.

mn + 2 vectors in {y!,yll, y ., ybm L are affinely independent in ™71, which in turn

implies affine independence in R for the points in the set
B x! x! x! x!
Sy = yl )7 \gtt Jo Ayt )7 ytmntt

It is left to show that the vectorsin 57U55 are affinely independent. Let ay, 3, be real numbers

forte Jy={1,...,K},and u € Jo = {1,...,mn+ 1} such that

Zat(§§)+2ﬂu($l) =0 (10)

with |S3] = mn + 2.

1w
teJq u€.Jo Yy
dSar+ Y B =0 (11)
teJy u€Jy

This is a linear system of equations for (a4, 3,). We now prove that this system has a unique

zero solution. We distinguish three cases:

Case 1: a; =0 forall t € Jy

System (10)-(11) reduces to

() -

1w
uEJ2 y

14



Case 2:

Case 3:

uEJ2

Due to the affine independence of 55, it follows that 5, = 0 for u € J;. Hence, an

all-zero solution for (ay, 3,) is obtained.

8. =0 forall u € .Jy

The linear system (10)-(11) becomes

$t
Z agl ] =0
teJq y
Z Qg =0
tEJl

which leads to a; = 0 for t € J; due to the affine independence of the vectors in 5.

There exists I1,Iy # 0 such that ay # 0 for all t € Iy C J; and 3, # 0 for all
u € Iy C Jy. Here we have ay = 0 for all t € Jy \ [y and 5, = 0 for all w € Jy \ I5. We

show that Case 3 cannot occur. The corresponding linear system is

$t $1
Z O yt + Z ﬁu yl,u =0
teh u€ls
Z oy + Z ﬁu =0

teh u€ls

which can be rewritten as

Zatxt—l—xIZﬁu =0 (12)

teh u€ls

Sayt+ > Byt = 0 (13)
teh u€ls

dart+ Y B =0 (14)
teh u€ls

We first note that 3’ = 3~ - B, # 0. Otherwise (12) and (14) would become

Zatxt =0

te[l

Zat =0

te[l

which implies, due to the affine independence of {z'}, that |I;| = 0. This is clearly a

contradiction.

Now consider the following two subcases:

15



Case 3a: 1¢ I
Equations (12) and (14) become

Bl + Zatxt = 0

te[l

ﬁ/+zat = 0

te[l
However, this contradicts the affine independence of {'}.

Case 3b: 1€ 1

System (12)-(14) is rewritten as

(ay + B2t + Z azt = 0 (15)
te\{1}
Yo+ Y Buyt =0 (16)
teh uElp
(aa+8)+ Y o =0 (17)
te\{1}

Equations (15) and (17), and the affine independence of {z'} imply that
L\ {1} = 0; that is, Iy = {1} consists only of one index. Thus eqs. (16)
and (17) become

ary' + Y Buytt = 0
UGIQ

a1+2ﬁu =0

UGIQ

which contradicts the affine independence of {y',y'*} (by Proposition 2).
This proves that Case 3 cannot occur.

The results from Cases 1 and 2 prove that §; U S5 is an affine independent set in R, the size
of set being n(n + m <1)+ 1. We conclude that dim(P4) > n(n 4+ m <1).

Thus dim(Ps) = n(n 4+ m<1). |
Corollary 2 The equality set of Py is given by the assignment constraints (2.2)-(2.3); that is,

(sz b:) = ((AXTSPv O)v b:)

where Axypgp 15 the equality set of the associated ATSP on n + 1 vertices.
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Proof: Lemma 1 and Theorem 2 imply that rank(A=,b7) = 2n + 1, which is the rank of the
equality set defined by the assignment constraints. [ |

When a proper face F' of P4 is found to have dimension dim(F) = n(n+m 1) <1, Theorem 2
implies that F' is a facet of P4. We now establish the following relationship between facets of
conv(X,41) (the ATSP polytope on n + 1 nodes) and facets of P4.

Theorem 3 Let Fyrsp ={z € P : ma = mo} be a facet of conv(X,41). Then
Fy= {(w,y) € Py : (7T,0)($,y)T = 7T-0}
s a facet of Py.

Proof: Let Fyrsp be a facet of conv(X,,41). Then dim(Farsp) = dim(7},41) <1, or, expressed

in terms of the rank of its equality set,
AR b= _ _
rank (( ATSP), ( )) = rank(Axpgp,b7)+ 1
T o
= 2n+2

That is, (7, m) is linearly independent of the rows of (AFrgp,b™). Note that ((7,0), 7o) is a valid
inequality for P4 and a nonempty face of P4. Let (AT,07) be the equality set of P4. Then
rank(A=,6) = 2n 4 1. The equality set of F4 is then given by

aem=((5)(2)

where ' = (7,0). The rank of this equality set either stays the same at (2n 4 1) or increases by
one to (2n 4 2). Assume the former; i.e., that rank( A%, b%) = 2n + 1. This would imply that

AT 0 =
rank(( ATSP ),(b )):Qn—l—l
T 0 o
rank ((AKTSP), (b_)) =2n+ 1;
T o

which is a contradiction. Therefore, rank( A%, b%) = 2n 4 2, which gives dim(F4) = dim(Py) < 1;

yielding

i.e., 4 is a facet of Py. [ ]

This result is very important in the sense that any known facet of conv(X,11) can be easily
transformed into a facet of P4 by just adding the corresponding zero vector (0 € R"™*1) to the
inequality defining the facet in R™"+1)  The identification of such facets would be at the core of
any B&C scheme devised to solve the SDST flowshop problem.
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5.1 Mixed-Integer Cuts

For the purpose of developing cuts, we rewrite eqs. (2.4) and (2.8) as follows:

Yii Sy + (A + e < A del, j kel (18)
Bij < Yij vel,j€eJ (19)
where 7, = p;; + si;1 accounts for both the processing and setup times on machine 7. Let

zii = Yi; < B;j, so that 0 < z;; and define & = (A; 4 7ij5)2 ;5. Substituting into (18) gives
Zij &z + &ijp < A &Bi + By (20)

Now, we apply Proposition 1 with N* = {ij,i5k}, N= = {ik}, C = {ij},and L = 0. If C is a
dependent set; that is, if A = 75 + B;; By, > 0, then (20) gives rise to the valid inequality

i+ (A &B +B)T(1eaj) < A By + Bu + 2 (21)
Assuming (A4; & Bi; + Bip)t > 0, (21) becomes

Eisk © (A ©Bi; + Big)z

IN

2k or

(pis + Sijp + Bij ©Bin)zje <y < By (22)

which is the desired result. Inequality (22) will have an effect only if (p;; + si;1 + B;; ©Bsx) > 0; that
is, if C, as chosen, is a dependent set. Note that when z;; = 1, (22) becomes B;; + pi; + sijk < Yik

as expected and when z;;, = 0, it reduces to B;; < y;i, the default bound.

6 Polyhedral Results for Formulation B

Now consider the MIP model of the SDST flowshop given by (3.1)-(3.7). Let S = {S5;}, for i =
1,2,...,n!, be the set of all feasible schedules. For every schedule S; € 5 there exists an incidence
vector ' € BM"=D/2 Let X, = {& € B""~1/2 : 2 is the incidence vector of a schedule}.

Paralleling the notation in the previous section, let
Sp = {(x,y) € B"/2 5 R (g y) s a feasible solution to (3.2)-(3.7)}

Again, the y vector includes the mn time variables (3.7) plus the makespan variable Cyax. The set
Sp can be represented as follows: S = {(z,y) : z € X,, (z,y) € Cp,y € Y}, where X, is the set
of constraints involving the binary variables only, Cp = {(z,y) : (z,y) satisfies (3.2)-(3.3)} is the
set of coupling constraints involving both binary and real variables, and Y = {y : y satisfies (3.4),
(3.5), and (3.7)} is the set of constraints involving the real variables only. Note that this set Y is

the same as defined in the previous section.
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We are interested in the polyhedral structure of Pg = conv(Sp), the convex hull of Sg. Of
particular interest is conv(f(n), the convex hull of X,, and its relationship to Pg. In contrast with
formulation A, and the related polytope conv(X,,+1), the corresponding subspace X, in formulation
B has yet to be unexplored. In this section we first provide a more detailed study of the scheduling
polyhedron conv(f(n). Subsequently, we give some results that link conv(f(n) with Pg, which in a
sense, parallel those that allowed us to extend the polyhedral structure of conv(X, 1) to P4 in the

previous section.

6.1 The conv(X,) Polyhedron

Throughout this section, we assume that the components of a feasible z € X, are stored columnwise;

i.e., in the following order:
_ T
r = (96127 T13, X235+« s LLn—1sL2n—15++ s Tn—2n—1,L1,nsL2ny-- -aﬂfn—l,n)

so x € BMn=1)/2,

Lemma 2 Conv(X,) is full-dimensional; i.e., dim(X,,) = n(nz_l).

Proof: By induction on n. For n = 2 there are only two schedules, S1 = (1,2) and 53 = (2, 1),
with corresponding incidence one-dimensional vectors 2! = (1) and 2% = (0), respectively. Hence,
conv(Xy) is given by conv(Xy) = {& € R : 0 <z < 1}. Clearly, z = 1/2 is an interior point of
conv(Xy). Tt follows from Corollary 1 that X is full-dimensional.

Now assume the induction hypothesis; that is, that conv(f(n) is full-dimensional. By implication
there exists a set of N 4 1 affinely independent points {z',..., 2", 2V}, where N = dim(f(n) =

ﬂnz—_ll and each 2' € X, in the set is the incidence vector of a schedule. We need to prove that

conv(X,,4+1) is full-dimensional.

In Xn—l—l there is an extra job to be scheduled (job n+1). The corresponding points have n addi-
tional coordinates with respect to the points in Xn given by the variables 21 41, %2041, ) Trng1-
Note that for any 2* € X,,, the assignment xin_l_l = wé,n-l—l =...= xf%n_l_l = 0 (which correspond

to scheduling job n + 1 at the beginning of 5;) yields a feasible schedule for Xn—l—l 50

$1 $2 $N+1 . R
(NG ] EE—

Moreover, these vectors are affinely independent.

For a given 2t € X,,, say «', we build n vectors in X141 as follows. Taking 2 € X, as a common
base, we append the n-dimensional vector v/ = (${7n+1’ .. .,xf;m_l_l)T, such that (2',v)" € X1,
for j = 1,...,n. Here, the components of v/ are determined when job n + 1 is scheduled right after
the j-th scheduled job in $;, for j = 1,...,n. For instance, assuming for simplicity that 2! is the

incidence vector of S7 = (1,2,...,n), then
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Insert n+4 1 after 1 = (1,n+1,2,...,n) = o' =(1,0,...,0)
Insert n + 1 after 2 = (1,2,n+1,3,...,n) = v*=(1,1,0,...,0)
Insert n 4 1 aftern = (1,....,n,n+1) = " =(1,1,...,1).
Note that the vectors in {v7} are linearly independent. The set
21 LN+ 21 21

has dimension N + 1+ n=n(n<l)/24+1+n=n+1)n/2+1= dim(f(n“) + 1. It remains
to prove that these N + 1 4+ n vectors are affinely independent. To do so, consider the following

system of linear equations in (oy, 3;), fore=1,.... N+ 1,j=1,...,m
! x!
sa5) + £ (3)
doait+)y f; = 0
@ J

0

This system can be rewritten as
Z oz + Z Bizt = 0 (23)
4 J
g = 0 (24)
J
Yo+ B = 0. (25)
4 J

Equation (24) and the fact that {v/} are linearly independent imply 3; = 0 for all j. Thus (23)-(25)

reduces to

Zaixi =0
Zai =0

It follows from the affine independence of {z'} that a; = 0 for all i. Therefore, the (n + 1)n/2 + 1

vectors are affinely independent so dim(conv(X,1+1)) = (n 4 1)n/2 implying that conv(X,11) is

full-dimensional. []

6.2 Facets of conv(Xn)

We observe that X,, has certain symmetry in the sense that if @ € X, then z € X, where
T=(1&w1,...,121,,...,12,4,) is the componentwise complement of z. This leads to the

following lemma.
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Lemma 3 F = {z € con(X,,) : 72 = 70} is a facet of conv(X,,) if and only if F = {z € conu(X,,) :
STT = To )ik Tk} is a facet of conv(f(n), where 3. Tji is the sum of all components of vector

.

Proof: Since I is a facet of conv(X,,), dim(F) = dim(conv(X,)) <1 (by Lemma 1). Hence,
there exists K = dim(conv(X,,)) affine independent vectors 2° € F. Consider the vectors {Z'}. It
is easy to verify that z° € F. Furthermore, all the Z' are affinely independent as well, as shown

below.

Zax_O and ZO[Z—O = Zazlﬁx )=0 and Zaz_O
= 12%@20496 =0 and Zaz_O

Z
= Zaw —0 and ZO[Z_O
— ai:O for all ¢
due to the affine independence of the z* vectors, where 1 is a vector with each component equal
to 1. Tt follows that dim(F) = K <1 and that F is a facet of conv(X,). The converse is shown
similarly. [ |
Basically, Lemma 3 establishes that for every facet of conv(f(n) there is a symmetric counterpart

which is also a facet of conv(X,) and tells us how to find it.
Proposition 3 The nonnegativity constraints

x5 >0 JkeJ jg<k
give facets of conv(X,) for n > 2.

Proof: Let j,k € J,j < k. Let ma < 0 represent the constraint <=, < 0, that is, 7 =

(0,...,0,41,0,...,0) and mg = 0 where the -1 component in 7 corresponds to 7;;. Note that

(a) ma < 7o is a valid inequality of conv(X,), so F = {z € conv(X,) : ma = mo} is a face of

conv(X,,).

(b) Fis a proper face since ma < 7g is satisfied at equality by some 2 € X, and is a strict
inequality for some other 2* € X,,. In fact, any schedule S; where job j is after (before) job k

satisfies 72 < 0 as an equality (strict inequality).

We prove the result by showing that conditions of Theorem 1 hold. Here 72 < 7y represents a
nonnegativity constraint, the equality set (A=, 57) does not exist since conv(X,,) is full-dimensional,

and we are concerned with solutions to the linear system

Azt = Ao, (26)
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where z* is the incidence vector of schedule §; (with components stored row-wise) and {5;} is the
set of schedules that satisfy 72! = my. Hence, it suffices to demonstrate that all solutions (A, Ao)
to (26) for all ¢ are of the form A = aw, Ay = amg for some a € R.

Because {5;} is the set of schedules satisfying ma! = 7o, that is x;k = 0, then {S5;} contains all
schedules where job k is scheduled before job j. In particular, 5o = (n,nel, ...k, ..., 4,...,2,1) €
{S5;} and 2° =0 € B Thus

/\$OI/\0<:>/\'OI/\0<:>/\OIO

so system (26) reduces to Az = 0. To determine the solution A = (A12, A3, ., Ay ooy Adpm1n) €
A we proceed as follows. From Sy we obtain 57 by swapping jobs 2 and 1 such that

Si=(mnel,. k.o g,.0.,3,1,2) € {5}
with corresponding incidence vector = = (1,0,...,0). Thus
Ml =0e Ay =0.
Similarly, we obtain S5 by swapping jobs 3 and 1:
So=(n,nel, . koo, jy.,4,1,3,2) € {5}

with 2 = (1,1,0,...,0). Thus
Azt = 0< A3=0
because we already have found that A5 = 0.

Observe that every time we swap two adjacent jobs wu, v, the corresponding incidence vectors

are equal except for the component associated with these jobs z,,. Also, as long as jobs j and k

are not swapped, the resulting schedule remains feasible and satisfies 7z = mp. Therefore, by
swapping job 1 with jobs 4,5,...,n (one at a time), we arrive at the schedule S,y = (1,n,n <
1,....k,...,7,...,3,2), finding along the way that Ay = ... = Ay, = 0; that is, Ay, = 0 for all
qg=2,...,n.

Proceeding similarly with jobs 2,3,...,7 <1, and evaluating (26) for each generated z*, we find
Apg=0forall p=1,...,5&1land ¢=p+1,...,n. After the final swap, we have

Si=(1,2,...,5e2,jel,n,nel, k. ])

for some [.

By shifting one at a time the jobs in Sy scheduled after job j, and by substituting the corre-
sponding @' in system (26), we have recursively found that Apg = 0 for all p,q such that p < 7. If
instead of shifting the jobs at the end of the schedule (after job j), we carry out the same procedure
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starting with the jobs at the beginning of the schedule (before job k) we arrive at the conclusion

that A,y = 0 for all p,q such that ¢ > k. That is, given 5;, swap jobs n and n <1 to get
Sipi=,..jel,nelnne2, . k... 7)

Then, Azt = 0 implies An—1,n = 0. Keep on swapping job n with each of the jobs n&2,n&3,...,)
one at a time to obtain A,_2, = A3, = ... = Ajp10,Ajn = 0. After the last exchange, we have
the schedule S;,—; = (1,...,7&l,n&l,ne2,...k,...,j,n). Repeat recursively this shifting
procedure for jobs n&1,n62,...,k+1, to obtain A,;, = 0 for all p,gsuch that ¢ = n,n&l,... k+1,
with final schedule S, = (1,...,7&l kkel,...,j+ 1, 5,k+ 1,k+2,...,n<1,n), for some r.

It remains to determine A,, for all p,¢ such that p = 7,7+ 1,....,.k&land ¢ =p+1,...,k.
However, by applying the same reasoning, we swap job k and k<1 to get Ay_q r = 0. Then we swap
job k with k <2 and so on up to job j+1. This leads to Ay_2p = A\p—3 ik = ..., Ajq1,1 = 0 with the
corresponding schedule S, 4x—; = (..., kol k&2, k<3,...,j+1,k,j,k<1,...). Repeating these
operations for job k£ <2,k <3,...,j+1, but shifting all the way up to job j, we find A,, = 0 for all
remaining (p, q) pairs except (j, k). The resulting schedule is 5, = (1,...,j <1,k j,j+1,....k&
1,k+1,...,n), for some s. Therefore, Ay, = 0 for all (p,q) # (4, k).

Hence, a solution for (26) is given by (A,0), where A = (0,...,0,;%,0,...,0). It is straightfor-
ward to check that a = ©Aj;, satisfies

A=ar and A= amg
as was to be shown. [
Corollary 3 The inequalities
T <1 Jked,j<k
give facets of conv(X,) for all n > 2.
Proof: Follows from Proposition 3 and Lemma 3. [ |
In contrast with X,,+1 in model A, it is not possible to identify analogous ATSP valid inequalities
such as subtour elimination constraints, comb inequalities, and D,;", D, inequalities for model B.
One set of valid inequalities that we can identify, though, corresponds to precedence violations for
a sequence of jobs. Table 3 shows the valid inequalities that eliminate “cycles” (in the precedence

sense) for any 3-job subsequence. We call these inequalities, for a subsequence of size ¢, the ¢-

subsequence elimination constraint (or {-SEC). For ¢t = 3 we show below that the 3-SEC are facets

of conv(X,).
Lemma 4 The inequalities (3-subsequence elimination constraints)
T x5 t+ay > 0 gk leld, j<k<l (27)

give facets of conv(f(n) for all n > 2.
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sequence constraint

J—k—=1l=j—=1 i ta < 1+ay
j—=1l—k=75—k le—|—(1<:>ka) < 1—|—$]‘k

Table 3: 3-SECs for conv(f(n)

Proof: Each inequality in (27) represents a proper face of conv(.X,,) since it is satisfied as an
equality by some schedule (e.g., S = (I, k,J,...)) and as a strict inequality for some other schedule
(e.g., S=(1,7,k,...).

Again we prove the result by showing the conditions of Theorem 1. Here, 72 < 7y is given by
7=1(0,...,0,74,0,...,0,7;1,0,...,0,7,0,...,0) and 79 = 0, where m;;, = 7;; = <1 and 7 = 1.
Note that because conv(X,) is full-dimensional, there is no equality set (A=,b%).

Let {S;} be the set of schedules that satisfy 7' = m, for all i. We are concerned with solutions

to the linear system
A= A (28)

where 2% is the incidence vector corresponding to schedule S;. It suffices to demonstrate that all
solutions (A, Ag) to (28) are of the form A = am, A\g = amy for some a € R.
Equation 7z = 7o (that is, 2, < + zi = 0) is satisfied if one of the following three cases

occur:
(i) ;= xj =z = 0, which corresponds to S; = (..., ,...,k,...,7,...).
(ii) x5 = 0,25 = x5 = 1 which corresponds to S; = (..., k,....7,....0,...).
(i) x5 = x5 = 1,25 = 0, which corresponds to S; = (..., j,....L ..., k,...).
Since So = (n,n<1,...,2,1) € {9;} (case (i)), then
Al =X & A 0=X & A =0.

By performing the same job shifting procedure we used in the proof of Proposition 3 for the
schedules associated with case (i), we find Ay, = 0 for all (p,q) € {(4,k),(4,0),(k,[)}. Thus, (28)

becomes
A%k + Ajirs + Apeg = 0.

Case (ii) and (iii) imply

|
=)

At 4 Aw
Ajet A =0
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which is a 2 X 3 system with solution A\;; = 3, = Ay = &8 for any 8 € R. Hence, by taking
a = f, (A, Ao) is given by (A, A\g) = (am,amp). This completes the proof. [

Lemma 5 The inequalities
T STt an <1 gk led j<k<l
give facets of conv(f(n) for all n > 2.

Proof: Follows from Lemma 4 and Lemma 3. [ ]

All 4-SECs are shown in Table 4 for all 5.k, l,m € J, j < k <l < m. These valid inequalities,

however, do not define facets of conv(X,,). In fact, because dim(X,,) = n(n <1)2 and each 4-SEC

can be expressed as the intersection of two of the previously developed facets of conv(X,) (i.e.,

combinations of z;; > 0,2, < 1, and 3-SEC), they define faces of dimension n(n <1)/2 2.

sequence constraint
j—k—=l—-m=j5—-m Tip F T+ T < 24 25,
j—ok—-m—I1l=j—=1 Tip + Thm + (1 S2y,) < 2425
jol—=k—m=j—m i+ (1eey)+2rm < 24z,
jol—-m—=k=>j—k i1+ Ty + (L Sah,) < 2425
jom—=k—l=j—=1 Tim + (L eam)+aom < 242
jom—=Il—k=>j—k zjpt+(ler,)+lery) < 24z

Table 4: 4-SECs for conv(f(n)

The conv(X,,) polytope can be used to model other scheduling problems, such as single-machine
and permutation flowshops problems, where every schedule is feasible. When real variables are
introduced in the scheduling model, it remains to be determined whether the valid inequalities
discussed above define facets of the complete polyhedron. In the next section we prove that this is

the case for the SDST flowshop polyhedron.

6.3 The Pg Polyhedron

We now state and prove the theorem defining the dimension of Pg. The proof is very similar to
the proof of Theorem 2 because a point = € X,, defines a given feasible sequence for Pp just as
2 € X, 41 defines a feasible sequence for P4; moreover, the definition of y € R™"*! is the same for

both polyhedrons.

Theorem 4 Let Pg = conv(Sg) be the convex hull of Sg. Then Pg is full-dimensional; i.e.,
dim(Pg) = n(n <1)/24+ mn+1
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Proof: Let N = n(n<1)/2+4+ mn 4+ 1. We will show that there exists a set of N + 1 affinely
independent vectors in R,

Consider the subspace Xn of Pg. We proved in Lemma 2 that conv(f(n) is full-dimensional.
This implies that there exists a set of K = n(n <1)/2+ 1 affinely independent vectors z!,.. Lk
in R™"+1) each being the incidence vector of a schedule. Also note that for any given z € X,
there exists a corresponding infinite number of feasible assignments of the time variables for Pp.

From this point on the rest of the proof follows that of Theorem 2, part (b). We will just sketch

the arguments. From the set {z',..., 2%} we build two disjoint sets 51,52 C RV given by

() ()}
s AE) GG ()

where §7 and S are sets of feasible (and affinely independent) vectors in RY, with | S| = K <1 =
n(n <1)/2 and |S2| = mn + 2, so that |57 U S2| = n(n<1)/2 + mn + 2. We then can prove that

51

the points in 57 U 55 are affinely independent by showing that the linear system

zt z!
Z R + Z ﬁu 1u =0
tEJl y uEJ2 y
Z oy + Z ﬁu = 0

teJy u€Jy

admits the unique solution a; = g, = 0fort € J; = {1,...,K},and v € Jo = {1,...,mn + 1}.
This leads to conclude that dim(Pg) = n(n<1)/2 + mn + 1. |

We now establish the following relationship between facets of conv(X,,) and facets of Pg.

Theorem 5 Let Fx = {z € com(X,) : ma = 7w} be a facet of conv(X,). Then Fg = {(x,y) €
Pg : (7,0)(z,y)" = mo} is a facet of Pp.

Proof: Let Fx be a facet of conv(X,,). Let (7/,7g) represent the inequality 7’z < mg where
' = (7,0) € RN and z = (z,y) € Pg. Hence Fg can be rewritten as Fg = {2 € Pg : 7'z = mg}.
Given that Fx is a facet of conv(f(n), it follows that Fp is a proper face of Pg.

We prove the result by showing that conditions of Theorem 1 hold. Here, the equality set
(A=,07) does not exist since Pg is full-dimensional, and we are concerned with solutions to the

linear system
Az = AO (29)

where z is any point in Pg satisfying 7’z = 79. Hence, it suffices to demonstrate that all solutions

(A, Ao) to (29) are of the form A = am, A\g = amg for some a € R.
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Since z = (z,y) € Pp, the system in (29) can be rewritten as
Az + Ay = Ao (30)

Let 2! € Fy. According to the procedure described in the proof of Theorem 4, it is possible

to construct mn + 2 feasible affinely independent points 3%, y',...,y™"*!, where y* = y° + ¥
for all w = 1,...,mn + 1. Here e¢* denotes the u-th unit vector in R™"*!. It easy to see that
2= (xl,yi) € Pgforall i =0,...,mn+ 1. Moreover, 2' satisfies 7'2* = wa! = 7 for all 7 so that

2 € Fg. Substituting these mn + 2 points in system (29) we have

Aeat A0 = X (31)
At + A0t = Ao (32)
Azzt Ay = ) (33)

By subtracting (31) from all other eqs. (32)-(33), we obtain the following system of order mn + 1:

’\y(yl <:>3/0) =0

Ay eyt) = 0

Since y' <y” = ' it follows that A, = 0 € R™"*+1. This reduces (29) to

where z satisfies mx = mp. Given that Fy is a facet, it follows that there is @ € R such that
Ay = am, g = amg. This implies that A = (A;, \,) = (a7, a0) = a(7,0) = ar’ and the proof is

complete. [ |

6.4 Mixed-Integer Cuts

Note that inequalities (3.2) and (3.7) in model B have the same structure as inequalities (2.4) and
(2.8) in model A. Thus the valid inequality derived from these equations for model A also applies
for model B; that is,
(pi; + sije + Bij ©Big)zir ©yie < By (34)

is a valid inequality for model B. Recall that (34) will have an effect only if (p;;+s;;1+ B;; <Bi) > 0.
Note that when z;;, = 1, (34) becomes B;; 4+ p;; + sijx < yir as expected and when z;, = 0, it
reduces to B;; < ¥k, the default bound.

In a similar fashion, we use inequalities (3.3) and (3.7), a change of variable 2%; = 1 &) in
(3.3), and the same procedure to derive the valid inequality

(Pir + sikj + Bir © B ) (1 &) Sy < By

for model B, where again we must have (p;x + six; + Bix < Bi;) > 0 for the inequality to be useful.
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