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Abstract

This paper presents two new heuristics for the 
owshop scheduling problem with sequence-

dependent setup times and makespan minimization objective. The �rst is an extension of a pro-

cedure that has been very successful for the general 
owshop scheduling problem. The other is

a greedy randomized adaptive search procedure (GRASP) which is a technique that has achieved

good results on a variety of combinatorial optimization problems. Both heuristics are compared to

a previously proposed algorithm based on the traveling salesman problem (TSP). In addition, local

search procedures are developed and adapted to each of the heuristics. A two-phase lower bounding

scheme is presented as well. The �rst phase �nds a lower bound based on the assignment relaxation

for the asymmetric TSP. In phase two, attempts are made to improve the bound by inserting idle

time. All procedures are compared for two di�erent classes of randomly generated instances. In the

�rst case where setup times are an order of magnitude smaller than the processing times, the new

approaches prove superior to the TSP-based heuristic; for the case where both processing and setup

times are identically distributed, the TSP-based heuristic outperforms the proposed procedures.

Keywords: 
owshop scheduling, setup times, makespan, heuristics, GRASP, local search, lower

bounds



1 Introduction

In this paper, we address the problem of �nding a permutation schedule of n jobs in an m-machine


owshop environment that minimizes the maximum completion time Cmax of all jobs, also known

as the makespan. The jobs are available at time zero and have sequence-dependent setup times on

each machine. All problem parameters, such as processing times and setup times, are assumed to

be known with certainty. This problem is regarded in the scheduling literature as the sequence-

dependent setup time 
owshop (SDST 
owshop). Another way to represent scheduling problems

is by using the standard �j�j
 notation (Pinedo [17]). In this regard, our problem is written as

F jsijk ; prmujCmax, where the �rst �eld describes the machine environment (F stands for an m-

machine 
owshop), the second �eld provides details of processing characteristics and constraints

(sijk stands for sequence-dependent setup times and prmu means that the order or permutation

in which the jobs go through the �rst machine is maintained throughout the system; that is, the

queues in front of each machine operate according to the FIFO discipline), and the third �eld

contains the objective to be minimized. The SDST 
owshop is NP-hard. We can see this by

noting that the one machine version of the problem with zero processing times corresponds to an

instance of the well-known asymmetric traveling salesman problem (ATSP).

The SDST 
owshop is encountered in many manufacturing environments such as those arising

in the chemical and pharmaceutical industries. For example, the use of a single system to produce

di�erent chemical compounds may require some cleansing between process runs, while the time to

set up a facility for the next task may be strongly dependent on its immediate predecessor. Thus

it is not always acceptable to assume that the time required to perform any task is independent of

its position in the sequence.

Sequence-dependent properties are relevant in other �elds as well. For example, the scheduling

of aircraft approaching or leaving a terminal area can be modeled as a single-machine scheduling

problem. Because the time separations between successive aircraft belonging to di�erent 
eets vary

according to their respective position, sequence-dependent processing times must be allowed for a

more realistic description of the problem.

Our work includes the development of two new heuristics and a local search phase. One of the

proposed heuristics is based in an idea due to Nawaz et al. [15] that has been very successful for the

general 
owshop scheduling problem with no setup times. We extend their approach to handle this

feature. The other algorithm we develop is called a greedy randomized adaptive search procedure

(GRASP), which is a heuristic approach to combinatorial optimization problems that combines

greedy heuristics, randomization, and local search techniques. GRASP has been applied successfully

to set covering problems (Feo and Resende [6]), airline 
ight scheduling and maintenance base

planning (Feo and Bard [5]), scheduling on parallel machines (Laguna and Gonz�alez-Velarde [13]),

and vehicle routing problems with time windows (Kontoravdis and Bard [12]). The proposed
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procedures are compared to a previously developed algorithm due to Simons [21]. His algorithm

attempts to exploit the strong relationship bewteen the SDST 
owshop and the ATSP.

Another contribution of this work is the development of a lower bounding scheme for the SDST


owshop. The proposed scheme consists of two phases: in phase one, a lower bound based on the

assignment (AP) relaxation of the ATSP is computed. In phase two, we attempt to improve this

bound by inserting idle time. All the procedures are evaluated for two di�erent classes of randomly

generated instances. For the case where the setup times are an order of magnitude smaller that the

processing times, the proposed algorithms prove superior to Simon's heuristic (SETUP()). For the

case where both processing and setup times are identically distributed, SETUP() outperforms the

proposed heuristics. We also found that the latter type of instances were more \di�cult" to solve

in the sense that the relative gap between the heuristic solution and the lower bound is signi�cantly

larger than the gap found for the former type of instances. In many of those cases near-optimal

solutions were obtained.

The rest of the paper is organized as follows. A brief literature review is presented in Section 2.

In Section 3 we formally describe and formulate the problem as a mixed-integer program. Heuristics

and local search procedures are described in Sections 4 and 5, respectively. The lower bounding

scheme is presented in Section 6. We then highlight our computational experience in Section 7 and

conclude with a discussion of the results.

2 Related Work

For an excellent review of 
owshop scheduling in general, including computational complexity

results, see [19]. For a more general overview on complexity results and optimization and approxi-

mation algorithms involving single-machine, parallel machines, open shops, job shops, and 
owshop

scheduling problems, the reader is referred to Lawler et al. [14].

2.1 Minimizing Makespan on Regular Flowshops

The 
owshop scheduling problem (with no setups) has been an intense subject of study over the

past 25 years. Several exact optimization schemes, mostly based on branch-and-bound, have been

proposed for F jjCmax including those of Potts [18] and Carlier and Rebai [3].

Heuristic approaches for F jjCmax can be divided into (a) quick procedures [15, 20] and (b)

extensive search procedures [25, 16] (including techniques such as tabu search). Several studies

have shown (e.g., [24]) that the most e�ective quick procedure is the heuristic due to Nawaz et

al. [15]. In our work, we attempt to take advantage of this result and extend their algorithm to

the case where setup times are included. Our implementation, NEHT-RB(), is further described in

Section 4.2.
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2.2 Sequence-Dependent Setup Times

Heuristics: The most relevant work on heuristics for F jsijk ; prmujCmax is due to Simons [21].

He describes four heuristics and compares them with three benchmarks that represent generally

practiced approaches to scheduling in this environment. Experimental results for problems with up

to 15 machines and 15 jobs are presented. His �ndings indicate that two of the proposed heuristics

(SETUP() and TOTAL()) produce substantially better results than the other methods tested. This

is the procedure we use as a benchmark to test our algorithms.

Exact optimization: To the best of our knowledge, no exact methods have been proposed for the

SDST 
owshop. However, Gupta [11] presents a branch-and-bound algorithm for the case where

the objective is to minimize the total machine setup time. No computational results are reported.

All other work is restricted to the 1- and 2-machine case.

2-machine case: Work on F2jsijk; prmujCmax includes Corwin and Esogbue [4], who consider a

subclass of this problem that arises when one of the machines has no setup times. After estab-

lishing the optimality of permutation schedules, they develop an e�cient dynamic programming

formulation which they show is comparable, from a computational standpoint, to the corresponding

formulation of the traveling salesman problem. No algorithm is developed.

Gupta and Darrow [10] establish the NP-hardness of the problem and show that permutation

schedules do not always minimize makespan. They derive su�cient conditions for a permutation

schedule to be optimal, and propose and evaluate empirically four heuristics. They observe that the

procedures perform quite well for problems where setup times are an order of magnitude smaller

than the processing times. However, when the magnitude of the setup times was in the same range

as the processing times, the performance of the �rst two proposed algorithms decreased sharply.

Szwarc and Gupta [22] develop a polynomially bounded approximate method for the special

case where the sequence-dependent setup times are additive. Their computational experiments

show optimal results for the 2-machine case. Work on the 1-machine case is reviewed in [19].

3 Mixed Integer Programming Formulation

In the 
owshop environment, a set of n jobs must be scheduled through a set of m machines, where

each job has the same routing. Therefore, without loss of generality, we assume that the machines

are ordered according to how they are visited by each job. Although for a general 
owshop the job

sequence may not be the same for every machine, here we assume a permutation schedule; i.e., a

subset of the feasible schedules that requires the same job sequence on every machine. We suppose

that each job is available at time zero and has no due date (i.e., for job j ready time rj = 0 and

due date dj = 1). We also assume that there is a setup time which is sequence-dependent so

that for every machine i there is a setup time that must precede the start of a given task that
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depends on both the job to be processed (k) and the job that immediately precedes it (j). The

setup time on machine i is denoted by sijk and is assumed to be asymmetric; i.e., sijk 6= sikj . After

the last job has been processed on a given machine, the machine is brought back to an acceptable

\ending" state. We assume that this last operation takes zero time because we are interested in job

completion time rather than machine completion time. Our objective is to minimize the time at

which the last job in the sequence �nishes processing on the last machine, also known as makespan.

As pointed out in Section 1, this problem is denoted by F jsijk ; prmujCmax or SDST 
owshop.

Example 3.1 Consider the following instance of F2jsijk ; prmujCmax with four jobs.

pij 1 2 3 4 s1jk 1 2 3 4 s2jk 1 2 3 4

1 6 3 2 1 0 3 4 1 7 0 2 3 1 6

2 2 2 4 2 1 - 5 3 2 1 - 1 3 5

2 5 - 3 1 2 4 - 3 1

3 2 1 - 5 3 3 4 - 1

4 3 2 5 - 4 7 8 4 -

A schedule S = (3; 1; 2; 4) is shown in Figure 1. The corresponding makespan is 24i, which is

optimal. 2

Setup time Processing time

25

M1

M2

15 205 10

3

Time

42

421

13

Figure 1: Example of a 2� 4 SDST 
owshop

3.1 Notation

In the development of the mathematical model, we make use of the following notation.

� Indices and sets

m number of machines

n number of jobs

i machine index; i 2 I = f1; 2; : : : ; mg

j; k job indices; j 2 J = f1; 2; : : : ; ng

J0 = J [ f0g extended set of jobs, including a dummy job denoted by 0
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� Input data

pij processing time of job j on machine i; i 2 I , j 2 J

sijk setup time on machine i when job j is scheduled right before job k; i 2 I , j 2 J0, k 2 J

� Computed parameters

Ai upper bound on the time at which machine i �nishes processing its last job; i 2 I ,

Ai = Ai�1 +
X
j2J

pij + min

8<
:
X
j2J0

max
k2J
fsijkg;

X
k2J

max
j2J0
fsijkg

9=
;

where A0 = 0

Bi upper bound on the initial setup time for machine i; i 2 I ,

Bi = max
j2J
fsi0jg

� Auxiliary variables

Cj non-negative real variable equal to the completion time of job j; j 2 J

Cmax non-negative real variable equal to the makespan; Cmax = maxj2JfCjg

3.2 Mixed Integer Programming Formulation

We de�ne the decision variables as follows:

xjk =

8<
: 1 if job j is the immediate predecessor of job k; j; k 2 J0

0 otherwise

yij = starting time of job j on machine i; i 2 I; j 2 J

In the de�nition of xjk, notice that x0j = 1 (xj0 = 1) implies that job j is the �rst (last) job in

the sequence for j 2 J . Also notice that si0k denotes the initial setup time on machine i when job k

has no predecessor; that is, when job k is scheduled �rst, for all k 2 J . This variable de�nition

yields what we call a TSP-based formulation.

(FS) Minimize Cmax (1.1)

subject to X
j2J0
j 6=k

xjk = 1 k 2 J0 (1.2)

X
k2J0
k 6=j

xjk = 1 j 2 J0 (1.3)

yij + pij + sijk � yik + Ai(1� xjk) i 2 I; j; k 2 J; j 6= k (1.4)
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si0k � yik + Bi(1� x0k) i 2 I; k 2 J (1.5)

ymj + pmj � Cmax j 2 J (1.6)

yij + pij � yi+1;j i 2 I n fmg; j 2 J (1.7)

xjk 2 f0; 1g j; k 2 J0; j 6= k (1.8)

yij � 0 i 2 I; j 2 J (1.9)

Equations (1.2) and (1.3) state that every job must have a predecessor and successor, respec-

tively. Subtour elimination constraints are given by eqs. (1.4) and (1.5). The former establishes

that if job j precedes job k, then the starting time of job k on machine i must not exceed the

completion time of job j on machine i (yij + pij) plus the corresponding setup time. The latter

says that if job k is the �rst job scheduled on machine i, then it must start after the initial setup

time si0k . Constraint (1.6) assures that the makespan is greater than or equal to the completion

time of the last machine, while (1.7) states that a job cannot start processing on one machine if it

has not �nished processing on the previous one.

In formulation (1.1)-(1.9), we assume that sij0, the time required to bring machine i to an

acceptable end state when job j is processed last, is zero for all i 2 I . Thus the makespan is

governed by the completion times of the jobs only. Note that it is possible to combine pij + sijk

in (1.4) into a single term tijk = pij + sijk , but that we still need to handle the processing times

pij separately in constraints (1.6) and (1.7).

3.3 Special Cases

Lemma 1 Let S = (1; 2; : : : ; n) be a feasible schedule of F jsijk ; prmujCmax. Let eij be the earliest

completion time of job j on machine i

eij = max fei�1;j ; ei;j�1 + si;j�1;jg+ pij

for i = 1; 2; : : : ; m, j = 1; 2; : : : ; n, and ei0 = e0j = 0. Let qij be the minimum remaining time from

the start of job j on machine i to the end of operations on the last machine

qij = max fqi+1;j ; qi;j+1 + si;j;j+1g+ pij

for i = m;m � 1; : : : ; 1, j = n; n � 1; : : : ; 1, and qi;n+1 = qm+1;j = 0. Let j and j + 1 be any two

adjacent jobs in S (j = 1; 2; :::; n� 1) and let S0 = (1; : : : ; j � 1; j + 1; j; j + 2; : : : ; n) be the schedule

where jobs j and j + 1 are exchanged (with completion time e0ij and remaining time q0ij).

If all of the following conditions hold for each i = 1; 2; : : : ; m

(a) There is no idle time between jobs j � 1 and j in S (eij = ei;j�1 + si;j�1;j + pij)

(b) There is no idle time between jobs j+1 and j+2 in S (qi;j+1 = qi;j+2 + si;j+1;j+2 + pi;j+1)

(c) There is no idle time between jobs j�1 and j+1 in S0 (e0i;j+1 = e0i;j�1 + si;j�1;j+1 + pi;j+1)
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(d) There is no idle time between jobs j and j + 2 in S0 (q0i;j = q0i;j+2 + si;j;j+2 + pi;j)

(e) si;j�1;j + si;j;j+1 + si;j+1;j+2 > si;j�1;j+1 + si;j+1;j + si;j;j+2

then S0 has a lower makespan than S,

Cmax(S
0) < Cmax(S):

Proof: First notice that both S and S 0 are identical sequences except for jobs j and j + 1. This

implies that eik = e0ik for all k = 1; 2; : : : ; j � 1 and qik = q0ik for all k = j + 2; j + 3; : : : ; n. Thus,

from (e) we obtain

ei;j�1 + si;j�1;j + pij + qi;j+2 + si;j+1;j+2 + pi;j+1 > e0i;j�1 + si;j�1;j+1 + pi;j+1 + q0i;j+2 + si;j;j+2 + pij

for all i. Conditions (a)-(d) yield

eij + si;j;j+1 + qi;j+1 > e0i;j+1 + si;j+1;j + q0ij for all i

In particular, this is valid for the maximum over i

max
i
feij + si;j;j+1 + qi;j+1g > max

i

n
e0i;j+1 + si;j+1;j + q0ij

o

But these expresions correspond to the makespan values of S and S0, respectively, as it can be seen

from equation (2), in Section 4.2 (with eij = fij); that is,

Cmax(S) > Cmax(S
0):

An appropiate data structure should keep track of both eij and qij for all i and j. This would

make it possible to check conditions (a)-(d) in O(m) time.

Another way to compute the makespan of a given schedule S = (1; 2; : : : ; n) is by determining

the critical path in a direct graph corresponding to the schedule. The graph, depicted in Figure 2,

is constructed as follows: for each operation, say the processing of job j on machine i, there is

a node (i; j) with a weight that is equal to pij . For each machine i, there is a node (i; 0) that

represents the initial or \zero" state. The setup times sij;j+1 are represented by arc going from

node (i; j) to node (i; j+ 1) with a weight that is equal to sij;j+1, for i = 1; : : : ; m, j = 0; : : : ; n� 1.

Node (i; j), i = 1; : : : ; m� 1, j = 0; : : : ; n, has also an arc going to node (i+ 1; j) with zero weight.

Note that nodes corresponding to machine m have only one outgoing arc, and that node (m;n) has

no outgoing arcs. The total weight of the maximum weight path from node (1; 0) to node (m;n)

corresponds to the makespan under the schedule S.

An interesting property can be obtained when comparing two instances of the SDST 
owshop

with no initial setup times. Let FS be an instance of F jsijk ; prmujCmax with processing times pij
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Figure 2: Directed graph for makespan computation in a SDST 
woshop

and setup times sijk . Let us assume that si0k = 0 for all i = 1; : : : ; m, and k = 1; : : : ; n. Let FS0

another instance of the SDST 
owshop with processing and setup times given by

p0ij = pm+1�i;j ; and

s0ijk = sm+1�i;k;j ;

respectively. This basically implies that the �rst machine in the FS0 is identical to the last machine

in FS; the second machine in FS' is identical to machine m � 1 in FS, and so on. The following

lemma applies to these two 
owshops.

Lemma 2 Let S = (1; : : : ; n) be a sequence of jobs in FS with corresponding makespan Cmax(S).

If the jobs in FS0 follow the sequence S0 = (n; n� 1; : : : ; 1) (with makespan C0
max(S

0)), then

Cmax(S) = C0
max(S

0):

Proof: If FS under sequence S = (1; : : : ; n) corresponds to the diagram in Figure 2 (with all

nodes (i; 0) and incident arcs deleted), then FS0 under S0 = (n; : : : ; 1) corresponds to the same

diagram with all the arcs reversed. The weight of the maximum weight path from one corner node

to the other corner node does not change.

Lemma 2 states the following reversibility result: the makespan does not change if the jobs go

through the 
owshop in the opposite direction in the reverse order.

Another special case of F jsijk ; prmujCmax which is of interest is the so-called proportionate


owshop. In this 
owshop the processing times of job j on each machine are equal to pj , that
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is, pij = pj , i = 1; : : : ; m. Minimizing the makespan in a proportionate permutation 
owshop is

denoted by F jpij = pj ; prmujCmax. This problem has a very special property when all setup times

are equal to a constant sijk = s.

Lemma 3 For F jpij = pj ; sijk = s; prmujCmax, the makespan is given by

Cmax =
nX

j=1

pj + ns+ (m� 1) max
j
fpjg

and is independent of the schedule.

Proof: From Figure 2 we can see that for any sequence of jobs S = (1; 2; : : : ; n) the critical path

starts at node (1; 0), stays on machine 1 until it reaches node (1; k), where k = arg maxjfpjg, stays

on job k until it reaches node (m; k), and ends by reaching node (m;n).

Similar results on reversibility and proportionate 
owshops for F jprmujCmax are discussed

in [17].

4 Heuristics

We study the following heuristics for F jsijk ; prmujCmax.

� SETUP(): This is the only previously existing procedure of which we are aware for the SDST


owshop [21].

� NEHT-RB(): This is a modi�ed version of a heuristic (NEH) proposed by Nawaz, Enscore and

Ham [15] for F jjCmax. We extend the NEH heuristic to handle setup times.

� GRASP(): Our proposed greedy randomized adaptive search procedure.

4.1 Simons' SETUP() Heuristic

In the �rst of two phases of Simons' heuristics, an instance of the ATSP is built as follows. Every

job is identi�ed with a \city." Procedure TOTAL() computes the entries in the distance (cost)

matrix as the sum of both the processing and setup times over all the machines. Procedure SETUP()

considers the sum of setup times only. In the second phase, a feasible tour is obtained by invoking a

heuristic for the ATSP. This heuristic uses the well-known Vogel's approximation method (VAM) for

obtaining good initial solutions to transportation problems with a slight modi�cation to eliminate

the possibility of subtours.

It should be noted that Simons does not include a setup time for the �rst job to be processed.

In our formulation, this initial setup is considered so modi�cations were necessary to account for

it.
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Procedure TOTAL()

Input: Instance of the SDST 
owshop.

Output: Feasible schedule S.

Step 1. Compute (n+ 1)� (n+ 1) cost matrix as ajk =
P

i sijk +
P

i pik

Step 2. Apply VAM to (ajk) to obtain a tour S

Step 3. Output S

Step 4. Stop

Figure 3: Pseudocode of Simons' TOTAL() heuristic

Figure 3 shows the pseudocode for the TOTAL() heuristic. The SETUP() heuristic is given by the

same pseudocode, except for a modi�cation in Step 1 that excludes the sum of processing times,P
i pik .

Computational complexity: The computation of the cost matrix performed in Step 1 takes O(mn2)

time. The application of Voguel's method to a (n+ 1)-city problem is O(n2) and hence the overall

procedures TOTAL() and SETUP() have worst-case complexity of O(mn2).

4.2 NEHT-RB() Heuristic

The best known heuristic for the general 
owshop scheduling problem with makespan minimization

is NEH, due to Nawaz et al. [15]. This procedure consists of inserting a job into the best available

position of a set of partially scheduled jobs; that is, in the position that would cause the smallest

increment to the value of the makespan. The original worst-case complexity of the heuristic was

O(mn3). Taillard [23] subsequently proposed a better way to perform the computations and came

up with a complexity of O(mn2). Here we extend the NEH heuristic to handle setup times as well

while maintaining the same complexity of O(mn2). We call this procedure NEHT-RB() (Nawaz-

Enscore-Ham, modi�ed by Taillard, extended by R��os-Mercado and Bard).

The NEHT-RB() idea of building a feasible schedule is very simple. At each iteration of the

algorithm there is a partial schedule S. A job h is selected from a priority list P of unscheduled

jobs. Nawaz et al. suggest an LPT (largest processing time) rule; that is, a list where the jobs

are ordered from largest to smallest total processing time. The partial schedule S and the job h

de�ne a unique greedy function  (j) : f1; 2; : : : ; jS + 1jg ! R, where  (j) is the makespan of the

new schedule S0 resulting from inserting job h at the j-th position (right before the j-th job) in S.
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Here, position jS+ 1j means an insertion at the end of the schedule. Job h is inserted into position

k = argminj=1;:::;jS+1j f (j)g ;

that is, the position in S that has the lowest makespan value.

Procedure NEHT-RB()

Input: Set P of unscheduled jobs.

Output: Feasible schedule S.

Step 0. Set S = ;

Step 1. Sort the jobs in P to form an LPT priority list

Step 2. while jP j > 0 do

Step 2a. Remove h, the �rst job from P

Step 2b. Compute  (j) for every position j = 1; : : : ; jS + 1j

Step 2c. Find k = argminjf (j)g

Step 2d. Insert job h at position k in S

Step 3. Output S

Step 4. Stop

Figure 4: Pseudocode of procedure NEHT-RB()

Figure 4 shows the pseudocode for the procedure. In Step 1 of NEHT-RB(), we form an LPT list

with respect to the sum of the processing times of each job over all machines. In Step 2b, we use

Taillard's modi�cation. Our modi�cation incorporates sequence-dependent setup times.

Computing the partial makespans: We now describe how to e�ciently compute the greedy function

 (j) given in Step 2b of procedure NEHT-RB() (Figure 4). Assume for simplicity that a current

schedule is given by S = (1; 2; : : : ; k� 1) and let k denote the job to be inserted. In the following

formulas, a job index without brackets j denotes the job in position j, whereas a job index with

brackets [k] refers to job k itself. De�ne the following parameters:

� eij = the earliest completion time of job j on machine i; (i = 1; : : : ; m) and (j = 1; : : : ; k � 1).

These parameters are recursively computed as

ei0 = 0

e0j = rj

eij = max fei�1;j ; ei;j�1 + si;j�1;jg+ pij

where rj denotes the release time of job j. Here rj is assumed to be zero.
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� qij = the duration between the starting time of the job j on machine i and the end of

operations; (i = m;m� 1; : : : ; 1) and (j = k � 1; k� 2; : : : ; 1).

qik = 0

qm+1;j = 0

qij = max fqi+1;j ; qi;j+1 + si;j;j+1g+ pij

� fij = the earliest relative completion time on machine i of job k inserted at the j-th position;

(i = 1; 2; : : : ; m) and (j = 1; 2; : : : ; k).

fi0 = 0

f0j = rk

fij = maxffi�1;j ; ei;j�1 + si;j�1;[k]g+ pi[k]

�  (j) = the value of the partial makespan when adding job k at the j-th position; (j = 1; : : : ; k).

 (j) = max
i=1;:::;m

ffij + si;[k];j + qijg (2)

where si;[k];j = qij = 0 for j = k.

Procedure Makespans()

Input: Partial schedule S = (1; 2; : : : ; k � 1) and job k to be inserted.

Output: Vector  (j) with the value of the makespan when job k is in-

serted in the j-th position of schedule S.

Step 1. Compute the earliest completion times eij

Step 2. Compute the tails qij

Step 3. Compute the relative completion times fij

Step 4. Compute values of partial makespan  (j)

Step 5. Output vector  (j)

Step 6. Stop

Figure 5: Pseudocode of procedure for computing partial makespans

Figure 5 shows how these computations are performed in procedure Makespans(). Steps 1, 2,

and 3 of take O(km) time each. Step 4 is O(k logm). Therefore, this procedure is executed in

O(km) time. Figure 6 illustrates the procedure when job h is inserted at position 3 (between jobs

2 and 3) in a partial 4-job schedule.

12



31

q32

q31f 31

f 32 q32

21e

e22

Setup time to be removed

Setup time to be added

Setup time Processing time

q

Time

1 32

3 4

M1

M2

4

21

(b)

1 2

1 2

M1

M2

3 4

3 4

h

h

(c)

1 32 4

31 2 4

M1

M2

(a) Time

Time

Figure 6: Illustration of partial makespan computation

Computational complexity: The complexity of Step 1 of NEHT-RB() (Figure 4) is O(n logn). At

the k-th iteration of Step 2; that is, k jobs already scheduled, Step 2a takes O(1), Step 2b takes

O(km), complexity of Step 2c is O(k log k), and Step 2d takes O(km) time. Thus, the complexity

of Step 2 at the k-th iteration is O(km). This yields an overall time complexity of O(mn2) for one

execution of NEHT-RB().

Example 4.1 (Example 3.1 continued)

We will now illustrate how algorithm NEHT-RB() procedes.

Step 0: Initialize the set of scheduled jobs S = ;.

Step 1: Given the total processing time for each job

j 1 2 3 4P
i pij 8 5 6 3

form the LPT priority list as follows: P = (1; 3; 2; 4).
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Step 2: (Iteration 1) Job 1 is selected (and removed) from P . Now P = (3; 2; 4).

Because there are no scheduled jobs, insert job 1 into S = (1) and go to the

next iteration.

(Iteration 2) Job 3 is selected (and removed) from P . Now P = (2; 4), jSj = 1,

and  (k) (makespan value when job 3 is inserted in position k in S) is computed

as follows

k 1 2

 (k) 13 18

Thus job 3 is inserted in position k = 1 (at the begining of S). S = (3; 1).

(Iteration 3) Job 2 is selected (and removed) from P . Now P = (4), jSj = 2,

and  (k) is computed as follows

k 1 2 3

 (k) 22 20 23

Thus job 2 is inserted in position k = 2 (immediatly preceding job 1). S =

(3; 2; 1).

(Iteration 4) Job 4 is selected (and removed) from P . Now P = ;, jSj = 3, and

 (k) is computed as follows

k 1 2 3 4

 (k) 32 27 25 27

Thus job 4 is inserted in position k = 3 (immediatly preceding job 1). S =

(3; 2; 4; 1).

Step 3: Output schedule S = (3; 2; 4; 1) with corresponding Cmax(S) = 25.

Note that the optimal schedule is S� = (3; 1; 2; 4) with Cmax(S
�) = 24. 2

4.3 GRASP

GRASP consists of two phases: a construction phase and a postprocessing phase. During the

construction phase, a feasible solution is built, one element (job) at a time. At each iteration, all

feasible moves are ranked and one is randomly selected from a restricted candidate list (RCL). The

ranking is done according to a greedy function that adaptively takes into account changes in the

current state.

One way to limit the RCL is by its cardinality where only the top � elements are included. A

di�erent approach is by considering only those elements whose greedy function value is within a

�xed percentage of the best move. Sometimes both approaches are applied simultaneosuly; i.e.,

only the top � elements whose greedy function value is within a given percentage � of the value

14



of the best move are considered. The choice of the parameters � and � requires insight into the

problem. A compromise has to be made between being too restrictive or being too inclusive. If

the criterion used to form the list is too restrictive, only a few candidates will be available. The

extreme case is when only one element is allowed. This corresponds to a pure greedy approach

so the same solution will be obtained every time GRASP is executed. The advantage of being

restrictive in forming the candidate list is that the greedy objective is not overly compromised; the

disadvantage is that the optimum and many very good solutions may be overlooked.

GRASP phase 1 is applied N times, using di�erent initial seed values to generate a solution

(schedule) to the problem. In general, a solution delivered in phase 1 is not guaranteed to be

locally optimal with respect to simple neighborhood de�nitions. Hence it is often bene�cial to

apply a postprocessing phase (phase 2) where a local search technique is used to improve the

current solution. In our implementation, we apply the local search every K = 10 iterations to the

best phase 1 solution in that subset. The procedure outputs the best of the N=K local optimal

solutions. Figure 7 shows a 
ow chart of our implementation.

L = EMPTY (list of schedules in working subset)

i = 0 (phase 1 counter)

Tbest = EMPTY (best schedule)

Makespan(Tbest) = INFINITY

i > N ?

|L| = K ?

Output Tbest
STOP

i + 1i Empty L

Makespan(T) < Makespan(Tbest) ?

TTbest
Replace Tbest with T

Phase 2:  Apply local search to 
best schedule in L to
obtain schedule T

Phase 1:  Construct feasible
schedule S(i)

L + S(i)

Initialization

L

K = subset size for phase 2

YesNo

Yes

Yes

No
No

Append S(i) to L

Assume N is multiple of K

N = number of phase 1 instances

Figure 7: Flow chart of complete GRASP algorithm

The fundamental di�erence between GRASP and other metaheuristics such as tabu search and
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simulated annealing is that GRASP relies on high quality phase 1 solutions (due to the inherent

worst-case complexity of the local search) whereas the other methods do not require good feasible

solutions. They spend practically all of their time improving the incumbent solution and attempting

to overcome local optimality. For a GRASP tutorial, the reader is referred to [7].

Below we present a GRASP for F jsijk ; prmujCmax based on job insertion. This approach was

found to be signi�cantly more successful than a GRASP based on appending jobs to the partial

schedule.

GRASP for the SDST Flowshop: The GRASP construction phase follows the same insertion idea

as algorithm NEHT-RB() discussed in Section 4.2. The di�erence between them is the selection

strategy for inserting the next unscheduled job into the partial schedule. Recall that NEHT-RB()

always inserts the job in the best available position.

Procedure GRASP()

Input: Set P of unscheduled jobs and size � of the restricted candidate

list.

Output: Feasible schedule S.

Step 0. Set S = ;

Step 1. Sort the jobs in P to form an LPT priority list

Step 2. while jP j > 0 do

Step 2a. Remove h, the �rst job from P

Step 2b. Compute  (j) for every position j = 1; : : : ; jS + 1j

Step 2c. Construct the RCL with the best � positions

Step 2d. Choose randomly a position k from RCL

Step 2e. Insert job h at position k in S

Step 3. Output S

Step 4. Stop

Figure 8: Pseudocode of GRASP() phase 1

In GRASP(), the positions available for insertion are sorted by nondecreasing values of  (j) and

a restricted candidate list is formed with the best � positions. Preliminary testing has shown that

for this type of scheduling problem, � = 2 works best. The probabilistic strategy of GRASP() selects

one of the positions in the RCL randomly with equal probability. The job h is inserted at the

selected position into the current partial schedule S and the completion times Cij for all jobs in

the schedule are updated. Figure 8 shows the pseudocode of the procedure (phase 1). Notice that
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GRASP() reduces to NEHT-RB() for the extreme case � = 1.

In Step 1 of GRASP(), we form an LPT (largest processing time) priority list with respect to

the sum of the processing times of each job over all the machines. In Step 2b, we use procedure

Makespans(), which was seen in Section 4.2 to require O(km) time.

Computational complexity: The complexity of Step 1 is O(n logn). At the k-th iteration of Step

2 (k jobs already scheduled), Step 2a takes O(1), Step 2b takes O(km), complexity of Step 2c is

O(k log �), Step 2d can be done in O(log�) time, and Step 2e in O(km). Thus, the complexity of

Step 2 at the k-th iteration is O(km). This yields a time complexity of O(mn2) for one execution

of GRASP() phase 1. Therefore, the overall phase 1 time complexity is O(Nmn2).

Example 4.2 (Example 3.1 continued)

We now illustrate the GRASP construction phase with RCL cardinality limitation � = 2.

Step 0: Initialize the set of scheduled jobs S = ;.

Step 1: Given the total processing time for each job

j 1 2 3 4P
i pij 8 5 6 3

form the LPT priority list as follows: P = (1; 3; 2; 4).

Step 2: (Iteration 1) Job 1 is selected (and removed) from P . Now P = (3; 2; 4). Since

there are no scheduled jobs, insert job 1 into S = (1) and go to the next

iteration.

(Iteration 2) Job 3 is selected (and removed) from P . Now P = (2; 4), jSj = 1,

and  (k) (makespan value when job 3 is inserted in position k in S) is computed

as.

k 1 2

 (k) 13 18

Because � = 2, RCL = f1; 2g. One is selected at random, say k = 1. Thus,

job 3 is inserted in position k = 1 (at the begining of S). S = (3; 1).

(Iteration 3) Job 2 is selected (and removed) from P . Now P = (4), jSj = 2,

and  (k) is computed as follows

k 1 2 3

 (k) 22 20 23

Form RCL=f1; 2g and select one at random, say k = 1. Job 2 is inserted in

position k = 1 (at the beginning of S). S = (2; 3; 1).
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(Iteration 4) Job 4 is selected (and removed) from P . Now P = ;. For jSj = 3,

 (k) is computed as follows

k 1 2 3 4

 (k) 30 26 29 30

Form RCL = f2; 3g and select one at random, say k = 3. Job 4 is inserted in

position k = 3 (immediatly succeding job 3). S = (2; 3; 4; 1).

Step 3: Output schedule S = (2; 3; 4; 1) with corresponding Cmax(S) = 29.

Recall that the optimal schedule is S� = (3; 1; 2; 4) with Cmax(S
�) = 24. 2

5 Local Search Procedures

Neighborhoods can be de�ned in a number of di�erent ways, which have di�erent computational

implications. Consider, for instance, a 2-opt neighborhood de�nition which consists of exchanging

two edges in a given tour or sequence of jobs. For this neighborhood, a move in a TSP takes O(1)

time to evaluate whereas a move in the SDST 
owshop takes O(mn2). One of the most common

neighborhoods for scheduling problems is the 2-job exchange which has been used by Widmer and

Hertz [25] and by Taillard [23] for F jjCmax. Here we extend this procedure to handle setup times.

In addition, we generalize the 1-job reinsertion neighborhood proposed by Taillard [23] for F jjCmax

to develop an L-job string reinsertion procedure (including the setup times).

5.1 2-Job Exchange

Let S be a given schedule and let NS(j; k) be the schedule formed from S by exchanging the jobs

in the j-th and k-th position. Thus the neighborhood of S is de�ned as

N(S) = fNS(j; k) : 1 � j < k � ng

A neighbor of S is entirely de�ned by j and k. The size of N(S) is given by

jN(S)j =
n(n � 1)

2

An example is shown in Figure 9. The dotted lines represent the link from the last job in the

schedule to the start of the sequence (dummy job 0). The sequence on the right S' represents the

neighbor NS(2; 5); that is, the jobs in S in the 2-nd (job 3) and 5-th (job 2) positions are exchanged.

It takes O(mn) to calculate the makespan of an individual two-job exchange and there are

O(n2) neighbors. Therefore, the evaluation of the makespan for all the neighbors of S is done in

O(n3m) operations.
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S’ = (1, 2, 5, 4, 3)

Position 2

Position 5

S = (1, 3, 5, 4, 2)

0

2 4

5

31

0

1 3

5

42

S’ = N   (2, 5) = swap jobs in positions 2 and 5S

Figure 9: Illustration of 2-job exchange neighborhood

5.2 L-Job String Reinsertion

Given a feasible schedule S, let NL
S (j; k) be the schedule formed from S by removing a string of L

jobs starting at the j-th position and reinserting the string at position k. The neighborhood of S

is given by

N(�) =
n
NL

S (j; k) : 1 � j; k � n + 1� L
o

For a given value of L, N(S) is entirely de�ned by j and k. The size of N(S) is

jN(S)j = (n� L)2

An example of a 2-job string reinsertion neighbor is shown in Figure 10. The sequence on the

right S' = N2
S(3; 1) is formed from S by removing the 2-job string starting at the 3-rd position (jobs 5

and 4) and reinserting it at the position 1 (immediatley preceding job 2). The evaluation of all

makespans can be executed in O(n2m), using the Makespans() algorithm described in Section 4.2.

SS’ = N   (3,1) = move 2-string at position 3 to position 12

S’ = (5, 4, 2, 3, 1)

0

2 3

5

41

2 3

5

41

0

Position 1

Position 3

S = (2, 3, 5, 4, 1)

Figure 10: Illustration of 2-job string reinsertion neighborhood

5.3 Implementation Considerations

There are a few issues concerning the implementation of local search procedures. The �rst one is

how to \move" from the current feasible solution to a neighbor solution with a better objective
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function value. There are two fundamental ways of doing this. The �rst is to examine the whole

neighborhood and then make a move to the \best" neighbor. The second is to examine one neighbor

at a time and make a move as soon as a better solution is found. The trade-o� is that in the �rst

case we expect the incrementeal improvement in the objective value to be greater; however, the

computational e�ort is higher.

When the choice is to examine the neighborhood one element at a time, we must have a criterion

for selecting the \next" element. The neighbor selection criteria (NSC) de�nes a way of choosing the

next element to be examined in the neighborhood of current feasible solution S. Typical examples

of NSC are a lexicographic strategy and a random strategy. In the former, one sorts all unexamined

neighbors of � according to a given lexicographic rule. A lexicographic �rst (last) rule selects the

�rst (last) element of the sorted list and removes it from the list of unexamined neighbors. In a

random strategy, the next neighbor is chosen randomly among all unexamined candidates.

Heuristic String size NSC

SETUP() 3 Lexicographic (last)

NEHT-RB() 1 Lexicographic (last)

GRASP() 1 Lexicographic (�rst)

Table 1: Parameter selection for string reinsertion procedure

In our local search procedures we explore the neighborhood one element at a time. Preliminary

computations designed to �ne-tune and compare the local search procedures described in this

section found that the string reinsertion uniformly outperformed the 2-job exchange procedure.

We also observed a very small improvement when the 2-job exchange procedure was applied to

the heuristic solutions delivered by algorithms NEHT-RB() and GRASP(). This led us to conclude

that these heuristics yield near local optima with respect to this neighborhood. The solution

given by SETUP() realized a marginal improvement with the 2-job exchange procedure, but still,

this improvement was very small when compared to the one obtained by the string reinsertion

procedure. For the string reinsertion procedure, the best choices of both NSC and string size

selection criteria for a particular heuristic are shown in Table 1.

6 Lower Bounds

Recall the MIP formulation (1.1)-(1.9) presented in Section 3. Constraint (1.7) implies that

yij + pij � yi�1;j + pi�1;j i 2 I n fmg; j 2 J:

Therefore, the makespan constraint (1.6) can also be written as

yij + pij � Cmax i 2 I; j 2 J:
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By relaxing the machine link constraints (1.7), the starting time for a job j on a given machine i

is no longer linked to the �nishing time on the previous machine. We call this new problem SFS

(separable 
ow shop), with optimal objective function value v(SFS). It is clear that v(SFS) � v(FS),

where v(FS) is the optimal value of problem FS.

Let SFS(i) be the SFS problem where all the subtour elimination and makespan constraints

not related to machine i are removed. Let S = (1; : : : ; n) be a feasible schedule for SFS(i). Here

we assume for simplicity that the jobs in S are sequenced in order so the makespan of is given by

Cmax(S) = si01 + p1 + si12 + p2 + : : :+ si;n�1;n + pn + sin0

=
nX

j=1

pj +
nX

j=0

sij;j+1xj;j+1

where index n+ 1 corresponds to index 0 and sin0 = 0. Thus SFS(i) can be expressed as

(SFS(i)) Minimize
X
j2J0

pij +
X
j2J0

X
k2J0
k 6=j

sijkxjk (3.1)

subject to X
j2J0
j 6=k

xjk = 1 k 2 J0 (3.2)

X
k2J0

k 6=j

xjk = 1 j 2 J0 (3.3)

yij � yik + pij + sijk � Ai(1� xjk) j; k 2 J; j 6= k (3.4)

�yik + si0k � Bi(1� x0k) k 2 J (3.5)

xjk 2 f0; 1g j; k 2 J0; j 6= k (3.6)

yij � 0 j 2 J (3.7)

for all i 2 I .

6.1 A Lower Bounding Scheme for the SDST Flowshop

For a �xed machine i,
P

j pij in (3.1) is constant so problem SFS(i) reduces to an instance of the

ATSP, where J0 is the set of vertices and sijk is the distance between vertices j and k. Equa-

tions (3.2) and (3.3) correspond to the assignment constraints. Time-based subtour elimination

constraints are given by (3.4) and (3.5). From the imposed relaxations we have

v(SFS(i)) � v(SFS) � v(FS)

for all i 2 I . Because any valid lower bound for SFS(i), call it Li, is a valid lower bound for FS,

we then proceed to compute a lower bound for every subproblem SFS(i) and obtain a lower bound

on v(FS) by

CLB
max = max

i2I
fLig
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The suggested lower bounding procedure for FS is outlined in Figure 11, where procedure

lower bound ATSP(cjk) in Step 1c is any valid lower bound for SFS(i) (ATSP with cost ma-

trix (cjk)).

Procedure lower bound FS() (Phase 1)

Input: An instance of the SDST 
owshop with corresponding setup time

matrix (sijk) and processing time matrix (pij).

Output: Lower bound CLB
max for the value of the makespan Cmax.

Step 1. for i = 1 to m do

Step 1a. Let Pi =
P

j pij

Step 1b. Let cjk = sijk be the input cost matrix for the ATSP SFS(i)

Step 1c. Li = Pi + lower bound ATSP(cjk)

Step 2. Output CLB
max = maxifLig

Step 3. Stop

Figure 11: Pseudocode of lower bounding procedure for SDST 
owshop (phase 1)

We have observed that in all of the randomly generated instances this lower bound CLB
max is

considerably better than the value v(LP ) of the linear programming (LP) relaxation of problem

FS. However, the following example shows that this is not always the case.

Example 6.1 Consider the following 2� 3 instance of the SDST 
owshop.

pij 1 2 3 s1jk 1 2 3 s2jk 1 2 3

1 1 1 1 0 1 20 20 0 20 20 1

2 1 1 1 1 { 1 20 1 { 20 20

2 20 { 1 2 1 { 20

3 20 20 { 3 20 1 {

An optimal solution is given by S� = (1; 3; 2) with Cmax(S�) = 45. The lower bound de-

livered by lower bound FS() is 6 when an exact procedure is used at Step 1c in every call to

lower bound ATSP(). The LP relaxation lower bound is 8.333. 2

6.2 Lower Bounds for the ATSP

Several lower bounding schemes have been proposed for ATSP. Approaches based on the assign-

ment problem (AP) (obtained when subtour elimination constraints are relaxed), r-arborescence
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problem (r-ARB) (obtained when the assignment constraints are relaxed) as well as on Lagrangean

relaxation are extensively discussed in [2].

It has been observed that for randomly generated instances, the AP relaxation provides a very

tight bound [2]. The improvement obtained by any other scheme is very slim compared to the

related computational e�ort. This makes AP an attractive approach when strong asymmetry is

present. However, for symmetric problems (cjk � ckj) the results are not as good. Computational

experience shows that the loss of e�ectiviness of exact algorithms for the symmetric case is mainly

due to the weakness of the available lower bounds.

To deal with harder cases, schemes based on additive approaches have been developed. Balas

and Christo�des [1] proposed an additive approach based on Lagrangean relaxation. Most recently,

Fischetti and Toth [8] have implemented an additive scheme that outperformed the restricted

Lagrangean approach of Balas and Christo�des. Their procedure yields a sequence of increasing

lower bounds within a general framework that exploits several substructures of the ATSP including

AP and r-ARB. We compared two lower bounding schemes for the SDST 
owshop. One is based on

the AP relaxation and the other on the additive approach of Fischetti and Toth. In our experiments,

we observed that the improvement obtained by the latter was very small. This is attributed to the

fact that for the instances having setup times that are completely asymmetric, the AP bound is very

tight. This phenomenon was also observed by Fischetti and Toth for the ATSP. As the problem

becomes less asymmetric the results yielded by the additive approach improve considerably. Since

the data sets we are working with are assumed to have asymmetric setup times, we use the lower

bounding approach based on the AP relaxation.

6.3 Improving the Lower Bound for SDST Flowshop

Let Cij be the completion time of job j on machine i. In particular, let Ti be the completion of

time of last job on machine i; that is, Ti is the time at which machine i �nishes processing. Then

we have the following relation

Cij = max fCi�1;j; Ci;j�1 + si;j�1;jg+ pij

In particular, if n represents the last job in the sequence, we have

Cin = max fCi�1;n; Ci;n�1 + si;n�1;ng+ pin

Because Ti = Cin we have that Ti � pin � Ti�1. This is valid for job n, and certainly it

is also valid for pmin
i = minj2Jfpijg; i 2 I . This suggests the following recursive improvement

for a set fLig, where Li is a valid lower bound on the completion time on machine i; i 2 I.

If � = Li�1 � (Li � pmin
i ) > 0, then Li can be improved by �; that is, Li  Li + �. Hence

CLB
max = Lm is a valid lower bound for Cmax.
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Procedure lower bound FS()

Input: An instance of the SDST 
owshop with corresponding setup time

matrix (sijk) and processing time matrix (pij).

Output: Lower bound CLB
max for the value of the makespan Cmax.

Step 1. for i = 1 to m do

Step 1a. Let Pi =
P

j pij

Step 1b. Let cjk = sijk be the input cost matrix for the ATSP SFS(i)

Step 1c. Li = Pi + lower bound ATSP(cjk)

Step 2. for i = 2 to m do

Step 2a. if � = Li�1 � (Li � p
min
i ) > 0

Step 2b then Li  Li + �

Step 2. Output CLB
max = Lm

Step 3. Stop

Figure 12: Pseudocode of lower bounding procedure for SDST 
owshop

We have observed that this improvement step has achieved up to a 5% reduction on the relative

gap for most of the instances examined. The modi�ed procedure is shown in Figure 12.

7 Experimental Work

All procedures were coded in C++ and compiled with the Sun C++ compiler CC version 2.0.1

and optimization 
ag set to -O. CPU times were obtained by calling the clock() function on

a SPARCStation 10. To evaluate the various schemes, 20 instances of the SDST 
owshop were

randomly generated for every combination

m� n 2 f(2; 4; 6)� (20; 50; 100)g

for two di�erent classes of data sets (available from authors).

� Data set A: pij 2 [1; 99] and sijk 2 [1; 10]

� Data set B: pij 2 [1; 99] and sijk 2 [1; 99]

It has been reported that many real-world instances match data set A (e.g., [10]). Data set B is

included to allow us to investigate the e�ect on the algorithms when the setup times assume a

wider range.

For each set of instances we performed several comparisons:
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� Summary statistics. To identify dominating characteristics we compiled the following objec-

tive function value statistics

{ Number of times heuristic is best or tied for best

{ Average percentage above lower bound

and time related statistics

{ Average CPU time

{ Worst CPU time

� Friedman test. This is a nonparametric test, analogous to the classical ANOVA test of

homogenity, which we apply to the null hypothesis:

H0 : E[S] = E[N ] = E[G]

under the assumption of normal distributions with a common variance, where S;N , and G are

random variables corresponding to percentages above the lower bound generated by heuristics

SETUP(), NEHT-RB, and GRASP(), respectively. The test statistic is given by

TF =
(r � 1)fBF � rq(q + 1)2=4g

AF � BF

(r = 20; q = 3) where

AF =
rX

i=1

qX
j=1

(Rij)
2

BF =
1

r

qX
j=1

 
rX

i=1

Rij

!2

with Rij being the rank (from 1 to q) assigned to heuristic j (j = SETUP(), NEHT-RB(), and

GRASP()) on problem i (lowest value gets rank of 1). In the case of ties, average ranks are

used. The null hypothesis is rejected at level � if the test statistic exceeds the 1�� quantile

of the F -distribuition with q � 1 and (r � 1)(q � 1) degrees of freedom.

� Wilcoxon test. If Friedman test is signi�cant, that is, the null hypothesis is rejected, we at-

tempt to identify the \best" heuristic by performing a pairwise test among all candidates. We

apply the Wilcoxon signed rank test, a well-known nonparametric statistical test, to compare

any two of the three heuristics. For the two heuristics NEHT-RB() and GRASP(), for instance,

the null hypothesis is E[N ] = E[G]; and the alternate hypothesis is either E[N ]> E[G] or

E[N ]< E[G]. The Wilcoxon test uses signed ranks of di�erences to assess the di�erence in

location of two populations. The Wilcoxon statistic W is computed in the following way.
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First, rank the absolute di�erences of the original measurements, jdij = jNi � Gij. If any

di = 0, drop it from consideration and decrease r by one. If ties occur, average the ranks

of the items involved in the tie and use the average as the rank of each tied item. Second,

attach the sign of Ni �Gi to the rank on the i-th absolute di�erence, and denote this signed

rank by Ri. Finally, obtain the sum W of the signed ranks:

W = R1 + : : :+Rr

The null hypothesis should be rejected at the � signi�cance level if W > W1�� (W < W1��)

if the alternate hypothesis is E[N ] > E[G] (E[N ]< E[G]). For r � 10, the critical value W�

can be approximated by

W� = Z(�)
q
r(r+ 1)(2r+ 1)=6

where Z(�) is the standard normal fractile such that the proportion � of the area is to the

left of Z(�).

� Expected utility. This approach for comparing two or more heuristics is based on the notion

that we seek a heuristic that performs well on the average and that very rarely performs

poorly; that is, it is concerned with downside risk as well as expected accuracy. The procedure

incorporates this attitude towards risk in a risk-averse utility function. As suggested by

Golden and Stewart, we calculate the expected utility for each heuristic as

�� �(1� b̂t)�ĉ

where b̂ = s2=�x; ĉ = (�x=s)2 are estimated parameters of a gamma distribution; � = 600,

� = 100 are arbitrarily chosen parameters and t = 0:05 gives a measure of risk aversion for

the utility function. It should be pointed out that t must be less than 1=b̂ for each heuristic.

The application of the Friedman test, Wilcoxon test, and the expected utility approach to evaluate

heuristics is proposed by Golden and Stewart [9] for the TSP.

The GRASP() heuristic settings used are � = 2 (which was found to be the best choice in a

preliminary study) and N = 100 iterations with a partial search strategy subset of size K = 10;

that is, we apply the construction phase N = 100 times and then we do the local search once every

K = 10 iterations on the most promising solution in that subset (see Section 4.3). To evaluate the

quality of the heuristics we compared the results with those obtained from our AP-based two-phase

lower bounding procedure discussed in Section 6.
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7.1 Experiment 1: Data Set A

n = 20 n = 50 n = 100

m LB UB RG H LB UB RG H LB UB RG H

2 Best 1193 1197 0.3 G 2495 2505 0.4 G 5554 5573 0.3 N

Average 1088 1103 1.4 G 2706 2736 1.1 G 5274 5316 0.8 S

Worst 1041 1073 3.1 G 2539 2593 2.1 S 4686 4754 1.5 S

4 Best 1196 1214 5.5 G 3136 3172 1.1 G 5349 5417 1.3 G

Average 1180 1252 6.1 G 2766 2855 3.2 G 5378 5523 2.7 G

Worst 1056 1188 12.5 N 2542 2700 6.2 N 5223 5481 4.9 N

6 Best 1293 1402 8.4 G 3138 3249 3.5 S 5629 5781 2.7 G

Average 1243 1407 13.2 G 2879 3054 6.1 G 5448 5704 4.7 G

Worst 1168 1391 19.1 G 2710 2990 10.3 N 5230 5621 7.5 G

Table 2: Lower bound computations for data set A

Table 2 shows the lower bound (LB), upper bound (UB), relative gap percentage (RG) between

upper and lower bound. Also indicated is the heuristic (H) that found the upper bound for both

the best and worst instances (out of 20) in terms of their relative gap. Average values are shown

as well. Values are computed for each combination of m and n. Heuristics are identi�ed by their

initials (S, N, and G). We observe that most of the 2-machine instances were solved within a 1%

relative gap. As the number of machines grow, the relative gap increases too.

n = 20 n = 50 n = 100

m Statistic S N G S N G S N G

2 Best 0 3 17 5 2 14 14 3 5

Average % deviation 2.6 2.1 1.4 1.2 1.4 1.1 0.8 1.2 1.0

4 Best 0 2 18 1 3 16 1 1 18

Average % deviation 9.1 7.0 6.1 4.3 3.7 3.2 3.5 3.2 2.7

6 Best 1 4 15 0 2 18 0 2 18

Average % deviation 17.7 14.1 13.2 8.4 6.8 6.1 6.2 5.1 4.7

Table 3: Heuristic comparison for data set A

Summary statistics on the makespan are shown in Table 3. For each cell, entries in the �rst

(Best) row indicate the number of times each heuristic found the best (or tied for best) solution.

Entries in the second row show the average percentage above the lower bound. We �rst point

out that the di�erence between the makespans delivered by the algorithms is very small, although

GRASP() dominates in practically all instances, the only exception being the 2� 100 data sets.
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CPU time (sec)

n = 20 n = 50 n = 100

m Statistic S N G S N G S N G

2 Average 0.12 0.11 2.45 1.87 1.21 18.40 12.62 8.86 114.29

Worst 0.38 0.26 2.80 3.13 2.13 22.71 20.49 14.24 149.26

4 Average 0.40 0.22 4.12 4.21 2.56 33.26 23.62 18.92 219.00

Worst 0.81 0.39 4.92 8.46 5.07 37.45 45.94 36.61 265.53

6 Average 0.54 0.31 5.95 6.99 3.56 49.48 43.07 30.21 328.76

Worst 0.85 0.60 6.69 13.55 6.65 60.15 67.67 52.15 437.94

Table 4: Time statistics for data set A

CPU time statistics are presented in Table 4. For these data sets, NEHT-RB() is on average 30%

to 70% faster than SETUP() and considerably faster that GRASP(). NEHT-RB() also provides the

best results regarding worst-case CPU time.

m n = 20 n = 50 n = 100

2 GRASP() best GRASP() best SETUP() best

(p < 0:0004) (p < 0:0444) (p < 0:0149)

4 GRASP() best GRASP() best GRASP() best

(p < 0:0011) (p < 0:0011) (p < 0:0006)

6 GRASP() best GRASP() best GRASP() best

(p < 0:0005) (p < 0:0011) (p < 0:0004)

Table 5: Wilcoxon test results for data set A

The Friedman test was signi�cant (at � = 0:01) for each m�n combination. We then performed

a pairwise Wilcoxon test on each combination with results displayed in Table 5. The p-value shown

in the second row in every cell is the probability that the sample outcome could have been more

extreme than the observed one when the null hypothesis hold. Large p-values support the null

hypothesis while small p-values support the alternate hypothesis. As can be seen, all the tests are

signi�cant at � = 0:05. Procedure SETUP() is found to be statistically best for the 2 � 100 data

set, whereas in all other cases GRASP() dominates.

Comparisons between heuristics using the expected utility approach are given in Table 6, which

indicates that expected utility values are nearly identical. This supports the hypothesis that no

signi�cant di�erence exists among the heuristics.
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Expected utility

n = 20 n = 50 n = 100

m S N G S N G S N G

2 493.4 494.6 496.4 496.8 496.5 497.2 498.1 497.0 497.5

4 473.9 480.6 483.1 488.6 490.2 491.5 490.7 491.8 492.9

6 443.6 457.2 460.5 476.4 481.3 483.3 483.3 486.3 487.5

Table 6: Expected utility comparison of heuristics for data set A

7.2 Experiment 2: Data Set B

n = 20 n = 50 n = 100

m LB UB RG H LB UB RG H LB UB RG H

2 Best 1269 1392 9.7 G 3155 3529 11.9 S 5458 6139 12.5 S

Average 1214 1468 20.9 G 2837 3328 17.3 S 5386 6167 14.5 S

Worst 1057 1375 30.1 S 2668 3281 23.0 S 4792 5705 19.1 S

4 Best 1283 1613 25.7 G 3167 4109 29.7 S 5706 7350 28.8 S

Average 1314 1823 38.7 G 2945 4079 38.5 S 5488 7431 35.4 S

Worst 1208 1852 53.3 S 2840 4187 47.4 S 5235 7373 40.8 S

6 Best 1505 2132 41.7 N 3254 4614 41.8 G 5679 8186 44.1 S

Average 1374 2095 52.5 G 3004 4557 51.7 G 5558 8248 48.4 S

Worst 1261 2114 67.6 G 2700 4379 62.2 G 5348 8173 52.8 S

Table 7: Lower bound computations for data set B

Table 7 shows the lower bound, upper bound, relative gap percentage between upper and lower

bound, and the heuristic that found the upper bound for both the best and worst instances (out of

20) in terms of their relative gap. The average relative gap percentage is shown as well. Values are

computed for each combination of m and n. We observe larger relative gaps; however, the quality

of the lower bound remains to be further investigated.

Summary statistics on the makespan are shown in Table 8. Entries have the same meaning as

those described in the previous section. As can be seen, SETUP() clearly dominates the other two

for the 100-job data sets. This tendency is observed in 50-job instances as well. However, as the

number of machines gets large, GRASP() tends to do better, which can be observed in the 6 � 50

data set. For the smallest sized instances (20-job data sets) GRASP() delivers better solutions than

the other two.

CPU time statistics are presented in Table 9. We observe that, on average, NEHT-RB() and

SETUP() take the same amount of time, both of them being considerably faster than GRASP(). It
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n = 20 n = 50 n = 100

m Statistic S N G S N G S N G

2 Best 7 0 13 20 0 1 20 0 0

Average % deviation 22.4 24.8 20.9 17.3 24.5 21.3 14.5 23.8 22.0

4 Best 2 0 18 15 1 4 20 0 0

Average % deviation 43.7 43.4 38.7 38.5 43.0 40.2 35.4 44.1 42.2

6 Best 1 2 17 4 1 15 20 0 0

Average % deviation 58.1 56.7 52.5 52.7 54.3 51.7 48.4 55.4 53.8

Table 8: Heuristic comparison for data set B

CPU time (sec)

n = 20 n = 50 n = 100

m Statistic S N G S N G S N G

2 Average 0.11 0.12 2.50 1.19 1.53 19.95 6.75 9.58 130.79

Worst 0.17 0.21 2.76 1.80 3.60 23.70 9.56 14.91 146.75

4 Average 0.23 0.20 3.96 1.85 2.12 29.52 10.43 13.71 178.83

Worst 0.37 0.46 4.34 2.95 4.99 33.44 18.16 30.24 205.56

6 Average 0.28 0.27 5.20 2.57 2.44 37.42 15.92 16.86 219.23

Worst 0.50 0.78 5.90 4.31 4.42 46.78 24.28 38.83 259.28

Table 9: Time statistics for data set B

can also be learned from the table that SETUP() has a better empirical worst-case time behavior

than NEHT-RB().

The Friedman test was signi�cant at the � = 0:01 level for each combination of m and n.

Wilcoxon test was then performed between each pair of heuristics (for every combination). These

results are shown in Table 10. It is found that SETUP() outperforms the other two heuristics in all

the 100-job instances. This is also true for the 2� 50 and 4� 50 instances. For the 6� 50, and all

the 20-job data sets, GRASP() is superior.

Comparisons between heuristics using the expected utility approach are given in Table 11. From

this table, we observe that SETUP() is the most accurate (in the 2� 50, 4� 50, and all the 100-job

instances) and that the rankings coincide with those determined from the previous results.
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m n = 20 n = 50 n = 100

2 GRASP() best SETUP() best SETUP() best

(p < 0:0071) (p < 0:0005) (p < 0:0004)

4 GRASP() best SETUP() best SETUP() best

(p < 0:0006) (p < 0:0085) (p < 0:0004)

6 GRASP() best GRASP() best SETUP() best

(p < 0:0004) (p < 0:0242) (p < 0:0004)

Table 10: Wilcoxon test results for data set B

Expected utility

n = 20 n = 50 n = 100

m S N G S N G S N G

2 423.7 411.9 429.6 445.4 413.5 428.5 456.0 418.1 426.3

4 298.7 299.6 331.5 334.4 303.1 323.4 357.0 297.2 311.3

6 162.1 174.8 220.9 221.6 205.9 231.9 263.6 198.5 214.9

Table 11: Expected utility comparison of heuristics for data set B

8 Conclusions

We have proposed two new insertion-based heuristics for F jsijk ; prmujCmax. Both procedures,

NEHT-RB() and GRASP(), were extensively evaluated and compared with the only existing heuristic,

TSP-based SETUP(), for this class of scheduling problem.

As part of the study two di�erent local search procedures were also evaluated. It was found

that the string reinsertion procedure worked better in all cases. Another contribution of this work

centered on the development of a lower bounding scheme derived from the additive approach for

the ATSP. An improvement phase based on idle time insertion was included as well. The lower

bound obtained by the enhanced scheme was found to be marginally better than the LP relaxation

lower bound.

For data set A, the TSP-based heuristic worked better on the larger 2-machine instances; how-

ever, when the number of machines grows, the insertion-based heuristics NEHT-RB() and GRASP()

dominated. This stems from the fact that the fewer the number of machines, the more the problem

resembles an ATSP so a TSP-based procedure should do well. Recall that in SETUP() the distance

between jobs is computed as the sum of the setup times between jobs over all the machines. In

the extreme case where there is only one machine, the problem reduces entirely to an instance of

the ATSP. As more machines are added, the sum of setup times becomes less representative of
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the \distance" between the jobs. How small does the number of machines have to be for SETUP()

to do better than the insertion-based heuristics depends not only on the number of jobs, but on

the magnitude of the setup times as well. In data set A, we observe a threshold value of m = 2

or 3. However, for data set B, SETUP() was found to outperform the others with respect to both

makespan (especially for the 50- and 100-job data sets) and CPU time. This implies a threshold

value of m > 6.

SETUP() and NEHT-RB() run considerably faster that GRASP(). This is to be expected because

they are deterministic algorithms and will deliver a unique solution for each instance. By increasing

the iteration counter in GRASP(), more and perhaps better solutions can be found.

Our computational study also revealed that data set B instances appeared to be harder to solve.

We observed that while our heuristics delivered near-optimal solutions for several of the data set A

instances, the best solution (for data set B) had a relative gap on the average of 15-22%, 35-42%,

and 48-55% for the 2-, 4-, and 6-machine instances, respectively. Nevertheless, further work remains

to be done to determine the quality of the lower bound.
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