

New Heuristics for the Flow Line Problem with Setup Costs

Roger Z. Ríos-Mercado

Graduate Program in Operations Research

University of Texas at Austin

Austin, TX 78712-1063

roger@bajor.me.utexas.edu

Jonathan F. Bard

Graduate Program in Operations Research

University of Texas at Austin

Austin, TX 78712-1063

jbard@mail.utexas.edu

February 1996

Abstract

This paper presents two new heuristics for the flowshop scheduling problem with sequence-dependent setup times and makespan minimization objective. The first is an extension of a procedure that has been very successful for the general flowshop scheduling problem. The other is a greedy randomized adaptive search procedure (GRASP) which is a technique that has achieved good results on a variety of combinatorial optimization problems. Both heuristics are compared to a previously proposed algorithm based on the traveling salesman problem (TSP). In addition, local search procedures are developed and adapted to each of the heuristics. A two-phase lower bounding scheme is presented as well. The first phase finds a lower bound based on the assignment relaxation for the asymmetric TSP. In phase two, attempts are made to improve the bound by inserting idle time. All procedures are compared for two different classes of randomly generated instances. In the first case where setup times are an order of magnitude smaller than the processing times, the new approaches prove superior to the TSP-based heuristic; for the case where both processing and setup times are identically distributed, the TSP-based heuristic outperforms the proposed procedures.

Keywords: flowshop scheduling, setup times, makespan, heuristics, GRASP, local search, lower bounds

1 Introduction

In this paper, we address the problem of finding a permutation schedule of n jobs in an m -machine flowshop environment that minimizes the maximum completion time C_{\max} of all jobs, also known as the makespan. The jobs are available at time zero and have sequence-dependent setup times on each machine. All problem parameters, such as processing times and setup times, are assumed to be known with certainty. This problem is regarded in the scheduling literature as the sequence-dependent setup time flowshop (SDST flowshop). Another way to represent scheduling problems is by using the standard $\alpha|\beta|\gamma$ notation (Pinedo [17]). In this regard, our problem is written as $F|s_{ijk}, prmu|C_{\max}$, where the first field describes the machine environment (F stands for an m -machine flowshop), the second field provides details of processing characteristics and constraints (s_{ijk} stands for sequence-dependent setup times and $prmu$ means that the order or permutation in which the jobs go through the first machine is maintained throughout the system; that is, the queues in front of each machine operate according to the FIFO discipline), and the third field contains the objective to be minimized. The SDST flowshop is \mathcal{NP} -hard. We can see this by noting that the one machine version of the problem with zero processing times corresponds to an instance of the well-known asymmetric traveling salesman problem (ATSP).

The SDST flowshop is encountered in many manufacturing environments such as those arising in the chemical and pharmaceutical industries. For example, the use of a single system to produce different chemical compounds may require some cleansing between process runs, while the time to set up a facility for the next task may be strongly dependent on its immediate predecessor. Thus it is not always acceptable to assume that the time required to perform any task is independent of its position in the sequence.

Sequence-dependent properties are relevant in other fields as well. For example, the scheduling of aircraft approaching or leaving a terminal area can be modeled as a single-machine scheduling problem. Because the time separations between successive aircraft belonging to different fleets vary according to their respective position, sequence-dependent processing times must be allowed for a more realistic description of the problem.

Our work includes the development of two new heuristics and a local search phase. One of the proposed heuristics is based in an idea due to Nawaz et al. [15] that has been very successful for the general flowshop scheduling problem with no setup times. We extend their approach to handle this feature. The other algorithm we develop is called a greedy randomized adaptive search procedure (GRASP), which is a heuristic approach to combinatorial optimization problems that combines greedy heuristics, randomization, and local search techniques. GRASP has been applied successfully to set covering problems (Feo and Resende [6]), airline flight scheduling and maintenance base planning (Feo and Bard [5]), scheduling on parallel machines (Laguna and González-Velarde [13]), and vehicle routing problems with time windows (Kontoravdis and Bard [12]). The proposed

procedures are compared to a previously developed algorithm due to Simons [21]. His algorithm attempts to exploit the strong relationship between the SDST flowshop and the ATSP.

Another contribution of this work is the development of a lower bounding scheme for the SDST flowshop. The proposed scheme consists of two phases: in phase one, a lower bound based on the assignment (AP) relaxation of the ATSP is computed. In phase two, we attempt to improve this bound by inserting idle time. All the procedures are evaluated for two different classes of randomly generated instances. For the case where the setup times are an order of magnitude smaller than the processing times, the proposed algorithms prove superior to Simon's heuristic (**SETUP()**). For the case where both processing and setup times are identically distributed, **SETUP()** outperforms the proposed heuristics. We also found that the latter type of instances were more "difficult" to solve in the sense that the relative gap between the heuristic solution and the lower bound is significantly larger than the gap found for the former type of instances. In many of those cases near-optimal solutions were obtained.

The rest of the paper is organized as follows. A brief literature review is presented in Section 2. In Section 3 we formally describe and formulate the problem as a mixed-integer program. Heuristics and local search procedures are described in Sections 4 and 5, respectively. The lower bounding scheme is presented in Section 6. We then highlight our computational experience in Section 7 and conclude with a discussion of the results.

2 Related Work

For an excellent review of flowshop scheduling in general, including computational complexity results, see [19]. For a more general overview on complexity results and optimization and approximation algorithms involving single-machine, parallel machines, open shops, job shops, and flowshop scheduling problems, the reader is referred to Lawler et al. [14].

2.1 Minimizing Makespan on Regular Flowshops

The flowshop scheduling problem (with no setups) has been an intense subject of study over the past 25 years. Several exact optimization schemes, mostly based on branch-and-bound, have been proposed for $F||C_{\max}$ including those of Potts [18] and Carlier and Rebai [3].

Heuristic approaches for $F||C_{\max}$ can be divided into (a) quick procedures [15, 20] and (b) extensive search procedures [25, 16] (including techniques such as tabu search). Several studies have shown (e.g., [24]) that the most effective quick procedure is the heuristic due to Nawaz et al. [15]. In our work, we attempt to take advantage of this result and extend their algorithm to the case where setup times are included. Our implementation, **NEHT-RB()**, is further described in Section 4.2.

2.2 Sequence-Dependent Setup Times

Heuristics: The most relevant work on heuristics for $F|s_{ijk}, prmu|C_{\max}$ is due to Simons [21]. He describes four heuristics and compares them with three benchmarks that represent generally practiced approaches to scheduling in this environment. Experimental results for problems with up to 15 machines and 15 jobs are presented. His findings indicate that two of the proposed heuristics (`SETUP()` and `TOTAL()`) produce substantially better results than the other methods tested. This is the procedure we use as a benchmark to test our algorithms.

Exact optimization: To the best of our knowledge, no exact methods have been proposed for the SDST flowshop. However, Gupta [11] presents a branch-and-bound algorithm for the case where the objective is to minimize the total machine setup time. No computational results are reported. All other work is restricted to the 1- and 2-machine case.

2-machine case: Work on $F2|s_{ijk}, prmu|C_{\max}$ includes Corwin and Esogbue [4], who consider a subclass of this problem that arises when one of the machines has no setup times. After establishing the optimality of permutation schedules, they develop an efficient dynamic programming formulation which they show is comparable, from a computational standpoint, to the corresponding formulation of the traveling salesman problem. No algorithm is developed.

Gupta and Darrow [10] establish the \mathcal{NP} -hardness of the problem and show that permutation schedules do not always minimize makespan. They derive sufficient conditions for a permutation schedule to be optimal, and propose and evaluate empirically four heuristics. They observe that the procedures perform quite well for problems where setup times are an order of magnitude smaller than the processing times. However, when the magnitude of the setup times was in the same range as the processing times, the performance of the first two proposed algorithms decreased sharply.

Szwarc and Gupta [22] develop a polynomially bounded approximate method for the special case where the sequence-dependent setup times are additive. Their computational experiments show optimal results for the 2-machine case. Work on the 1-machine case is reviewed in [19].

3 Mixed Integer Programming Formulation

In the flowshop environment, a set of n jobs must be scheduled through a set of m machines, where each job has the same routing. Therefore, without loss of generality, we assume that the machines are ordered according to how they are visited by each job. Although for a general flowshop the job sequence may not be the same for every machine, here we assume a *permutation schedule*; i.e., a subset of the feasible schedules that requires the same job sequence on every machine. We suppose that each job is available at time zero and has no due date (i.e., for job j ready time $r_j = 0$ and due date $d_j = \infty$). We also assume that there is a setup time which is sequence-dependent so that for every machine i there is a setup time that must precede the start of a given task that

depends on both the job to be processed (k) and the job that immediately precedes it (j). The setup time on machine i is denoted by s_{ijk} and is assumed to be *asymmetric*; i.e., $s_{ijk} \neq s_{ikj}$. After the last job has been processed on a given machine, the machine is brought back to an acceptable “ending” state. We assume that this last operation takes zero time because we are interested in job completion time rather than machine completion time. Our objective is to minimize the time at which the last job in the sequence finishes processing on the last machine, also known as *makespan*. As pointed out in Section 1, this problem is denoted by $F|s_{ijk}, \text{prmu}|C_{\max}$ or SDST flowshop.

Example 3.1 Consider the following instance of $F2|s_{ijk}, \text{prmu}|C_{\max}$ with four jobs.

p_{ij}	1	2	3	4	s_{1jk}	1	2	3	4	s_{2jk}	1	2	3	4
1	6	3	2	1	0	3	4	1	7	0	2	3	1	6
2	2	2	4	2	1	-	5	3	2	1	-	1	3	5

A schedule $S = (3, 1, 2, 4)$ is shown in Figure 1. The corresponding makespan is 24i, which is optimal. \square

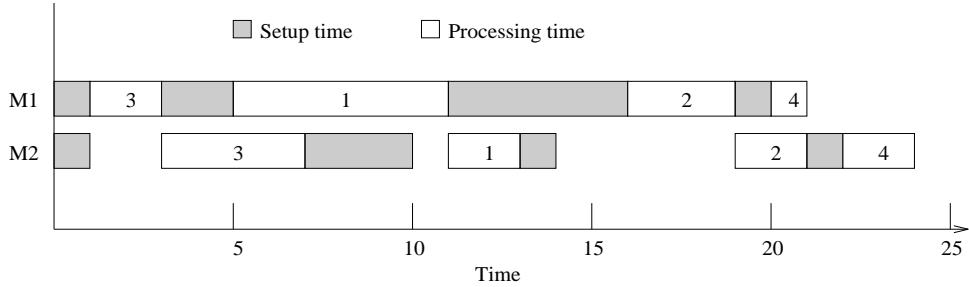


Figure 1: Example of a 2×4 SDST flowshop

3.1 Notation

In the development of the mathematical model, we make use of the following notation.

- *Indices and sets*

m number of machines

n number of jobs

i machine index; $i \in I = \{1, 2, \dots, m\}$

j, k job indices; $j \in J = \{1, 2, \dots, n\}$

$J_0 = J \cup \{0\}$ extended set of jobs, including a dummy job denoted by 0

- *Input data*

p_{ij} processing time of job j on machine i ; $i \in I, j \in J$

s_{ijk} setup time on machine i when job j is scheduled right before job k ; $i \in I, j \in J_0, k \in J$

- *Computed parameters*

A_i upper bound on the time at which machine i finishes processing its last job; $i \in I$,

$$A_i = A_{i-1} + \sum_{j \in J} p_{ij} + \min \left\{ \sum_{j \in J_0} \max_{k \in J} \{s_{ijk}\}, \sum_{k \in J} \max_{j \in J_0} \{s_{ijk}\} \right\}$$

where $A_0 = 0$

B_i upper bound on the initial setup time for machine i ; $i \in I$,

$$B_i = \max_{j \in J} \{s_{i0j}\}$$

- *Auxiliary variables*

C_j non-negative real variable equal to the completion time of job j ; $j \in J$

C_{\max} non-negative real variable equal to the makespan; $C_{\max} = \max_{j \in J} \{C_j\}$

3.2 Mixed Integer Programming Formulation

We define the decision variables as follows:

$$\begin{aligned} \mathbf{x}_{jk} &= \begin{cases} 1 & \text{if job } j \text{ is the immediate predecessor of job } k; j, k \in J_0 \\ 0 & \text{otherwise} \end{cases} \\ \mathbf{y}_{ij} &= \text{starting time of job } j \text{ on machine } i; i \in I, j \in J \end{aligned}$$

In the definition of \mathbf{x}_{jk} , notice that $\mathbf{x}_{0j} = 1$ ($\mathbf{x}_{j0} = 1$) implies that job j is the first (last) job in the sequence for $j \in J$. Also notice that s_{i0k} denotes the initial setup time on machine i when job k has no predecessor; that is, when job k is scheduled first, for all $k \in J$. This variable definition yields what we call a TSP-based formulation.

$$\begin{aligned} (\text{FS}) \quad & \text{Minimize} && C_{\max} \\ & \text{subject to} && \end{aligned} \tag{1.1}$$

$$\sum_{\substack{j \in J_0 \\ j \neq k}} \mathbf{x}_{jk} = 1 \quad k \in J_0 \tag{1.2}$$

$$\sum_{\substack{k \in J_0 \\ k \neq j}} \mathbf{x}_{jk} = 1 \quad j \in J_0 \tag{1.3}$$

$$\mathbf{y}_{ij} + p_{ij} + s_{ijk} \leq \mathbf{y}_{ik} + A_i(1 - \mathbf{x}_{jk}) \quad i \in I, j, k \in J, j \neq k \tag{1.4}$$

$$s_{i0k} \leq \mathbf{y}_{ik} + B_i(1 - \mathbf{x}_{0k}) \quad i \in I, k \in J \quad (1.5)$$

$$\mathbf{y}_{mj} + p_{mj} \leq C_{\max} \quad j \in J \quad (1.6)$$

$$\mathbf{y}_{ij} + p_{ij} \leq \mathbf{y}_{i+1,j} \quad i \in I \setminus \{m\}, j \in J \quad (1.7)$$

$$\mathbf{x}_{jk} \in \{0, 1\} \quad j, k \in J_0, j \neq k \quad (1.8)$$

$$\mathbf{y}_{ij} \geq 0 \quad i \in I, j \in J \quad (1.9)$$

Equations (1.2) and (1.3) state that every job must have a predecessor and successor, respectively. Subtour elimination constraints are given by eqs. (1.4) and (1.5). The former establishes that if job j precedes job k , then the starting time of job k on machine i must not exceed the completion time of job j on machine i ($\mathbf{y}_{ij} + p_{ij}$) plus the corresponding setup time. The latter says that if job k is the first job scheduled on machine i , then it must start after the initial setup time s_{i0k} . Constraint (1.6) assures that the makespan is greater than or equal to the completion time of the last machine, while (1.7) states that a job cannot start processing on one machine if it has not finished processing on the previous one.

In formulation (1.1)-(1.9), we assume that s_{ij0} , the time required to bring machine i to an acceptable end state when job j is processed last, is zero for all $i \in I$. Thus the makespan is governed by the completion times of the jobs only. Note that it is possible to combine $p_{ij} + s_{ijk}$ in (1.4) into a single term $t_{ijk} = p_{ij} + s_{ijk}$, but that we still need to handle the processing times p_{ij} separately in constraints (1.6) and (1.7).

3.3 Special Cases

Lemma 1 *Let $S = (1, 2, \dots, n)$ be a feasible schedule of $F|s_{ijk}, \text{prmu}|C_{\max}$. Let e_{ij} be the earliest completion time of job j on machine i*

$$e_{ij} = \max \{e_{i-1,j}, e_{i,j-1} + s_{i,j-1,j}\} + p_{ij}$$

for $i = 1, 2, \dots, m$, $j = 1, 2, \dots, n$, and $e_{i0} = e_{0j} = 0$. Let q_{ij} be the minimum remaining time from the start of job j on machine i to the end of operations on the last machine

$$q_{ij} = \max \{q_{i+1,j}, q_{i,j+1} + s_{i,j,j+1}\} + p_{ij}$$

for $i = m, m-1, \dots, 1$, $j = n, n-1, \dots, 1$, and $q_{i,n+1} = q_{m+1,j} = 0$. Let j and $j+1$ be any two adjacent jobs in S ($j = 1, 2, \dots, n-1$) and let $S' = (1, \dots, j-1, j+1, j, j+2, \dots, n)$ be the schedule where jobs j and $j+1$ are exchanged (with completion time e'_{ij} and remaining time q'_{ij}).

If all of the following conditions hold for each $i = 1, 2, \dots, m$

- (a) *There is no idle time between jobs $j-1$ and j in S ($e_{ij} = e_{i,j-1} + s_{i,j-1,j} + p_{ij}$)*
- (b) *There is no idle time between jobs $j+1$ and $j+2$ in S ($q_{i,j+1} = q_{i,j+2} + s_{i,j+1,j+2} + p_{i,j+1}$)*
- (c) *There is no idle time between jobs $j-1$ and $j+1$ in S' ($e'_{i,j+1} = e'_{i,j-1} + s_{i,j-1,j+1} + p_{i,j+1}$)*

(d) There is no idle time between jobs j and $j + 2$ in S' ($q'_{i,j} = q'_{i,j+2} + s_{i,j,j+2} + p_{i,j}$)

(e) $s_{i,j-1,j} + s_{i,j,j+1} + s_{i,j+1,j+2} > s_{i,j-1,j+1} + s_{i,j+1,j} + s_{i,j,j+2}$

then S' has a lower makespan than S ,

$$C_{\max}(S') < C_{\max}(S).$$

Proof: First notice that both S and S' are identical sequences except for jobs j and $j + 1$. This implies that $e_{ik} = e'_{ik}$ for all $k = 1, 2, \dots, j - 1$ and $q_{ik} = q'_{ik}$ for all $k = j + 2, j + 3, \dots, n$. Thus, from (e) we obtain

$$e_{i,j-1} + s_{i,j-1,j} + p_{ij} + q_{i,j+2} + s_{i,j+1,j+2} + p_{i,j+1} > e'_{i,j-1} + s_{i,j-1,j+1} + p_{i,j+1} + q'_{i,j+2} + s_{i,j,j+2} + p_{ij}$$

for all i . Conditions (a)-(d) yield

$$e_{ij} + s_{i,j,j+1} + q_{i,j+1} > e'_{i,j+1} + s_{i,j+1,j} + q'_{ij} \quad \text{for all } i$$

In particular, this is valid for the maximum over i

$$\max_i \{e_{ij} + s_{i,j,j+1} + q_{i,j+1}\} > \max_i \{e'_{i,j+1} + s_{i,j+1,j} + q'_{ij}\}$$

But these expresions correspond to the makespan values of S and S' , respectively, as it can be seen from equation (2), in Section 4.2 (with $e_{ij} = f_{ij}$); that is,

$$C_{\max}(S) > C_{\max}(S').$$

■

An appropiate data structure should keep track of both e_{ij} and q_{ij} for all i and j . This would make it possible to check conditions (a)-(d) in $O(m)$ time.

Another way to compute the makespan of a given schedule $S = (1, 2, \dots, n)$ is by determining the critical path in a direct graph corresponding to the schedule. The graph, depicted in Figure 2, is constructed as follows: for each operation, say the processing of job j on machine i , there is a node (i, j) with a weight that is equal to p_{ij} . For each machine i , there is a node $(i, 0)$ that represents the initial or “zero” state. The setup times $s_{ij,j+1}$ are represented by arc going from node (i, j) to node $(i, j + 1)$ with a weight that is equal to $s_{ij,j+1}$, for $i = 1, \dots, m$, $j = 0, \dots, n - 1$. Node (i, j) , $i = 1, \dots, m - 1$, $j = 0, \dots, n$, has also an arc going to node $(i + 1, j)$ with zero weight. Note that nodes corresponding to machine m have only one outgoing arc, and that node (m, n) has no outgoing arcs. The total weight of the maximum weight path from node $(1, 0)$ to node (m, n) corresponds to the makespan under the schedule S .

An interesting property can be obtained when comparing two instances of the SDST flowshop with no initial setup times. Let FS be an instance of $F|s_{ijk}, \text{prmu}|C_{\max}$ with processing times p_{ij}

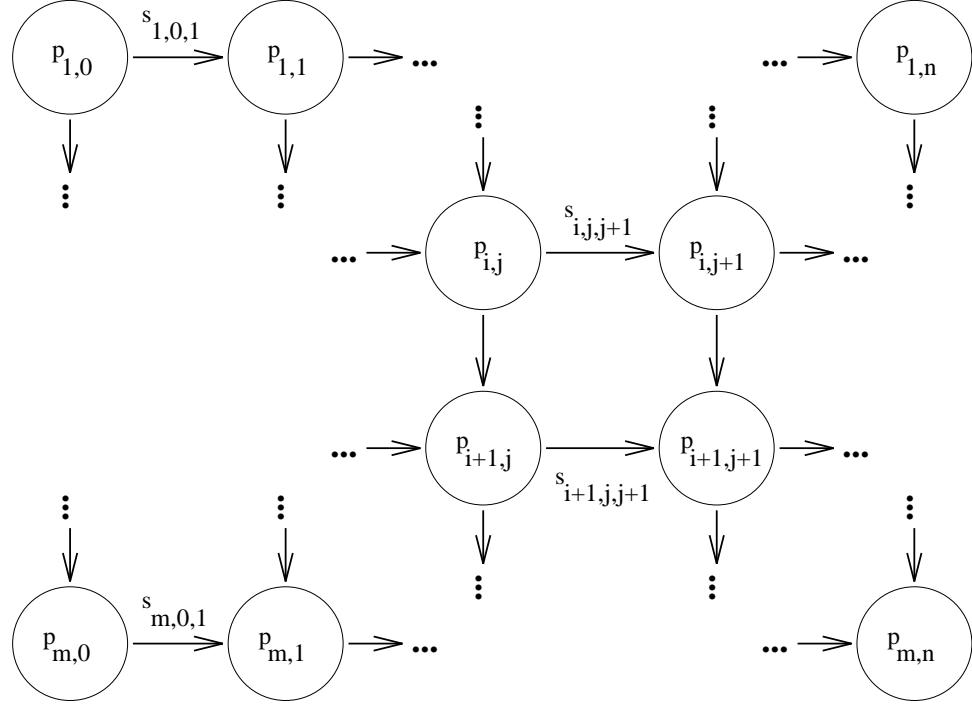


Figure 2: *Directed graph for makespan computation in a SDST flowshop*

and setup times s_{ijk} . Let us assume that $s_{i0k} = 0$ for all $i = 1, \dots, m$, and $k = 1, \dots, n$. Let FS' another instance of the SDST flowshop with processing and setup times given by

$$\begin{aligned} p'_{ij} &= p_{m+1-i,j}, \quad \text{and} \\ s'_{ijk} &= s_{m+1-i,k,j}, \end{aligned}$$

respectively. This basically implies that the first machine in the FS' is identical to the last machine in FS ; the second machine in FS' is identical to machine $m - 1$ in FS , and so on. The following lemma applies to these two flowshops.

Lemma 2 *Let $S = (1, \dots, n)$ be a sequence of jobs in FS with corresponding makespan $C_{\max}(S)$. If the jobs in FS' follow the sequence $S' = (n, n-1, \dots, 1)$ (with makespan $C'_{\max}(S')$), then*

$$C_{\max}(S) = C'_{\max}(S').$$

Proof: If FS under sequence $S = (1, \dots, n)$ corresponds to the diagram in Figure 2 (with all nodes $(i, 0)$ and incident arcs deleted), then FS' under $S' = (n, \dots, 1)$ corresponds to the same diagram with all the arcs reversed. The weight of the maximum weight path from one corner node to the other corner node does not change. \blacksquare

Lemma 2 states the following reversibility result: the makespan does not change if the jobs go through the flowshop in the opposite direction in the reverse order.

Another special case of $F|s_{ijk}, \text{prmu}|C_{\max}$ which is of interest is the so-called proportionate flowshop. In this flowshop the processing times of job j on each machine are equal to p_j , that

is, $p_{ij} = p_j$, $i = 1, \dots, m$. Minimizing the makespan in a proportionate permutation flowshop is denoted by $F|p_{ij} = p_j, \text{prmu}|C_{\max}$. This problem has a very special property when all setup times are equal to a constant $s_{ijk} = s$.

Lemma 3 *For $F|p_{ij} = p_j, s_{ijk} = s, \text{prmu}|C_{\max}$, the makespan is given by*

$$C_{\max} = \sum_{j=1}^n p_j + ns + (m-1) \max_j \{p_j\}$$

and is independent of the schedule.

Proof: From Figure 2 we can see that for any sequence of jobs $S = (1, 2, \dots, n)$ the critical path starts at node $(1, 0)$, stays on machine 1 until it reaches node $(1, k)$, where $k = \arg \max_j \{p_j\}$, stays on job k until it reaches node (m, k) , and ends by reaching node (m, n) . ■

Similar results on reversibility and proportionate flowshops for $F|\text{prmu}|C_{\max}$ are discussed in [17].

4 Heuristics

We study the following heuristics for $F|s_{ijk}, \text{prmu}|C_{\max}$.

- **SETUP()**: This is the only previously existing procedure of which we are aware for the SDST flowshop [21].
- **NEHT-RB()**: This is a modified version of a heuristic (NEH) proposed by Nawaz, Enscore and Ham [15] for $F||C_{\max}$. We extend the NEH heuristic to handle setup times.
- **GRASP()**: Our proposed greedy randomized adaptive search procedure.

4.1 Simons' SETUP() Heuristic

In the first of two phases of Simons' heuristics, an instance of the ATSP is built as follows. Every job is identified with a “city.” Procedure **TOTAL()** computes the entries in the distance (cost) matrix as the sum of both the processing and setup times over all the machines. Procedure **SETUP()** considers the sum of setup times only. In the second phase, a feasible tour is obtained by invoking a heuristic for the ATSP. This heuristic uses the well-known Vogel’s approximation method (VAM) for obtaining good initial solutions to transportation problems with a slight modification to eliminate the possibility of subtours.

It should be noted that Simons does not include a setup time for the first job to be processed. In our formulation, this initial setup is considered so modifications were necessary to account for it.

Procedure **TOTAL()**

Input: Instance of the SDST flowshop.

Output: Feasible schedule S .

- Step 1. Compute $(n + 1) \times (n + 1)$ cost matrix as $a_{jk} = \sum_i s_{ijk} + \sum_i p_{ik}$
- Step 2. Apply VAM to (a_{jk}) to obtain a tour S
- Step 3. Output S
- Step 4. Stop

Figure 3: *Pseudocode of Simons' TOTAL() heuristic*

Figure 3 shows the pseudocode for the **TOTAL()** heuristic. The **SETUP()** heuristic is given by the same pseudocode, except for a modification in Step 1 that excludes the sum of processing times, $\sum_i p_{ik}$.

Computational complexity: The computation of the cost matrix performed in Step 1 takes $O(mn^2)$ time. The application of Voguel's method to a $(n + 1)$ -city problem is $O(n^2)$ and hence the overall procedures **TOTAL()** and **SETUP()** have worst-case complexity of $O(mn^2)$.

4.2 NEHT-RB() Heuristic

The best known heuristic for the general flowshop scheduling problem with makespan minimization is NEH, due to Nawaz et al. [15]. This procedure consists of inserting a job into the best available position of a set of partially scheduled jobs; that is, in the position that would cause the smallest increment to the value of the makespan. The original worst-case complexity of the heuristic was $O(mn^3)$. Taillard [23] subsequently proposed a better way to perform the computations and came up with a complexity of $O(mn^2)$. Here we extend the NEH heuristic to handle setup times as well while maintaining the same complexity of $O(mn^2)$. We call this procedure **NEHT-RB()** (Nawaz-Enscore-Ham, modified by Taillard, extended by Ríos-Mercado and Bard).

The **NEHT-RB()** idea of building a feasible schedule is very simple. At each iteration of the algorithm there is a partial schedule S . A job h is selected from a priority list P of unscheduled jobs. Nawaz et al. suggest an LPT (largest processing time) rule; that is, a list where the jobs are ordered from largest to smallest total processing time. The partial schedule S and the job h define a unique greedy function $\psi(j) : \{1, 2, \dots, |S + 1|\} \rightarrow R$, where $\psi(j)$ is the makespan of the new schedule S' resulting from inserting job h at the j -th position (right before the j -th job) in S .

Here, position $|S + 1|$ means an insertion at the end of the schedule. Job h is inserted into position

$$k = \operatorname{argmin}_{j=1, \dots, |S+1|} \{\psi(j)\};$$

that is, the position in S that has the lowest makespan value.

Procedure NEHT-RB()

Input: Set P of unscheduled jobs.

Output: Feasible schedule S .

- Step 0. Set $S = \emptyset$
- Step 1. Sort the jobs in P to form an LPT priority list
- Step 2. **while** $|P| > 0$ **do**
 - Step 2a. Remove h , the first job from P
 - Step 2b. Compute $\psi(j)$ for every position $j = 1, \dots, |S + 1|$
 - Step 2c. Find $k = \operatorname{argmin}_j \{\psi(j)\}$
 - Step 2d. Insert job h at position k in S
- Step 3. Output S
- Step 4. Stop

Figure 4: *Pseudocode of procedure NEHT-RB()*

Figure 4 shows the pseudocode for the procedure. In Step 1 of **NEHT-RB()**, we form an LPT list with respect to the sum of the processing times of each job over all machines. In Step 2b, we use Taillard's modification. Our modification incorporates sequence-dependent setup times.

Computing the partial makespans: We now describe how to efficiently compute the greedy function $\psi(j)$ given in Step 2b of procedure **NEHT-RB()** (Figure 4). Assume for simplicity that a current schedule is given by $S = (1, 2, \dots, k - 1)$ and let k denote the job to be inserted. In the following formulas, a job index without brackets j denotes the job in position j , whereas a job index with brackets $[k]$ refers to job k itself. Define the following parameters:

- e_{ij} = the earliest completion time of job j on machine i ; ($i = 1, \dots, m$) and ($j = 1, \dots, k - 1$).

These parameters are recursively computed as

$$\begin{aligned} e_{i0} &= 0 \\ e_{0j} &= r_j \\ e_{ij} &= \max \{e_{i-1,j}, e_{i,j-1} + s_{i,j-1,j}\} + p_{ij} \end{aligned}$$

where r_j denotes the release time of job j . Here r_j is assumed to be zero.

- q_{ij} = the duration between the starting time of the job j on machine i and the end of operations; ($i = m, m-1, \dots, 1$) and ($j = k-1, k-2, \dots, 1$).

$$\begin{aligned} q_{ik} &= 0 \\ q_{m+1,j} &= 0 \\ q_{ij} &= \max \{q_{i+1,j}, q_{i,j+1} + s_{i,j,j+1}\} + p_{ij} \end{aligned}$$

- f_{ij} = the earliest relative completion time on machine i of job k inserted at the j -th position; ($i = 1, 2, \dots, m$) and ($j = 1, 2, \dots, k$).

$$\begin{aligned} f_{i0} &= 0 \\ f_{0j} &= r_k \\ f_{ij} &= \max\{f_{i-1,j}, e_{i,j-1} + s_{i,j-1,[k]}\} + p_{i[k]} \end{aligned}$$

- $\psi(j)$ = the value of the partial makespan when adding job k at the j -th position; ($j = 1, \dots, k$).

$$\psi(j) = \max_{i=1, \dots, m} \{f_{ij} + s_{i,[k],j} + q_{ij}\} \quad (2)$$

where $s_{i,[k],j} = q_{ij} = 0$ for $j = k$.

Procedure Makespans()

Input: Partial schedule $S = (1, 2, \dots, k-1)$ and job k to be inserted.

Output: Vector $\psi(j)$ with the value of the makespan when job k is inserted in the j -th position of schedule S .

- Step 1. Compute the earliest completion times e_{ij}
- Step 2. Compute the tails q_{ij}
- Step 3. Compute the relative completion times f_{ij}
- Step 4. Compute values of partial makespan $\psi(j)$
- Step 5. Output vector $\psi(j)$
- Step 6. Stop

Figure 5: Pseudocode of procedure for computing partial makespans

Figure 5 shows how these computations are performed in procedure **Makespans()**. Steps 1, 2, and 3 of take $O(km)$ time each. Step 4 is $O(k \log m)$. Therefore, this procedure is executed in $O(km)$ time. Figure 6 illustrates the procedure when job h is inserted at position 3 (between jobs 2 and 3) in a partial 4-job schedule.

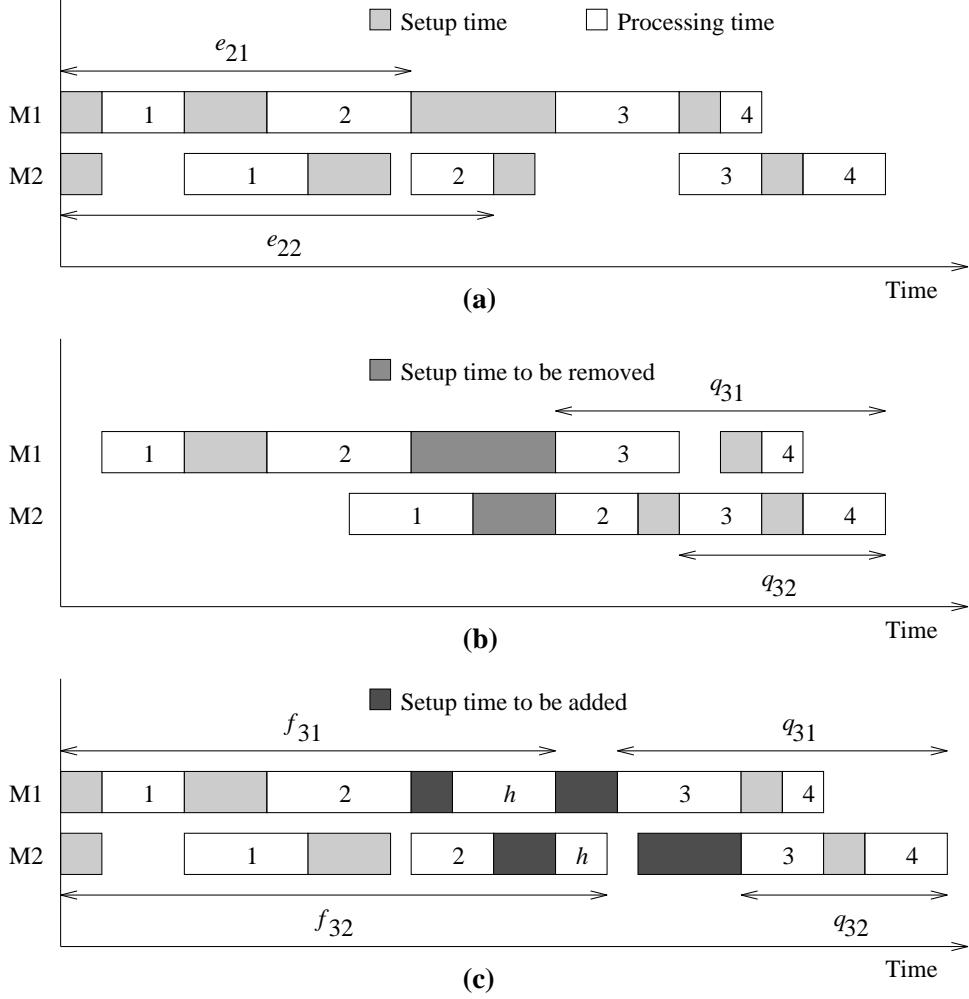


Figure 6: Illustration of partial makespan computation

Computational complexity: The complexity of Step 1 of **NEHT-RB()** (Figure 4) is $O(n \log n)$. At the k -th iteration of Step 2; that is, k jobs already scheduled, Step 2a takes $O(1)$, Step 2b takes $O(km)$, complexity of Step 2c is $O(k \log k)$, and Step 2d takes $O(km)$ time. Thus, the complexity of Step 2 at the k -th iteration is $O(km)$. This yields an overall time complexity of $O(mn^2)$ for one execution of **NEHT-RB()**.

Example 4.1 (Example 3.1 continued)

We will now illustrate how algorithm **NEHT-RB()** procedes.

Step 0: Initialize the set of scheduled jobs $S = \emptyset$.

Step 1: Given the total processing time for each job

j	1	2	3	4
$\sum_i p_{ij}$	8	5	6	3

form the LPT priority list as follows: $P = (1, 3, 2, 4)$.

Step 2: (Iteration 1) Job 1 is selected (and removed) from P . Now $P = (3, 2, 4)$.

Because there are no scheduled jobs, insert job 1 into $S = (1)$ and go to the next iteration.

(Iteration 2) Job 3 is selected (and removed) from P . Now $P = (2, 4)$, $|S| = 1$, and $\psi(k)$ (makespan value when job 3 is inserted in position k in S) is computed as follows

k	1	2
$\psi(k)$	13	18

Thus job 3 is inserted in position $k = 1$ (at the begining of S). $S = (3, 1)$.

(Iteration 3) Job 2 is selected (and removed) from P . Now $P = (4)$, $|S| = 2$, and $\psi(k)$ is computed as follows

k	1	2	3
$\psi(k)$	22	20	23

Thus job 2 is inserted in position $k = 2$ (immediatly preceding job 1). $S = (3, 2, 1)$.

(Iteration 4) Job 4 is selected (and removed) from P . Now $P = \emptyset$, $|S| = 3$, and $\psi(k)$ is computed as follows

k	1	2	3	4
$\psi(k)$	32	27	25	27

Thus job 4 is inserted in position $k = 3$ (immediatly preceding job 1). $S = (3, 2, 4, 1)$.

Step 3: Output schedule $S = (3, 2, 4, 1)$ with corresponding $C_{\max}(S) = 25$.

Note that the optimal schedule is $S^* = (3, 1, 2, 4)$ with $C_{\max}(S^*) = 24$. \square

4.3 GRASP

GRASP consists of two phases: a construction phase and a postprocessing phase. During the construction phase, a feasible solution is built, one element (job) at a time. At each iteration, all feasible moves are ranked and one is randomly selected from a restricted candidate list (RCL). The ranking is done according to a greedy function that adaptively takes into account changes in the current state.

One way to limit the RCL is by its cardinality where only the top λ elements are included. A different approach is by considering only those elements whose greedy function value is within a fixed percentage of the best move. Sometimes both approaches are applied simultaneosuly; i.e., only the top λ elements whose greedy function value is within a given percentage ρ of the value

of the best move are considered. The choice of the parameters λ and ρ requires insight into the problem. A compromise has to be made between being too restrictive or being too inclusive. If the criterion used to form the list is too restrictive, only a few candidates will be available. The extreme case is when only one element is allowed. This corresponds to a pure greedy approach so the same solution will be obtained every time GRASP is executed. The advantage of being restrictive in forming the candidate list is that the greedy objective is not overly compromised; the disadvantage is that the optimum and many very good solutions may be overlooked.

GRASP phase 1 is applied N times, using different initial seed values to generate a solution (schedule) to the problem. In general, a solution delivered in phase 1 is not guaranteed to be locally optimal with respect to simple neighborhood definitions. Hence it is often beneficial to apply a postprocessing phase (phase 2) where a local search technique is used to improve the current solution. In our implementation, we apply the local search every $K = 10$ iterations to the best phase 1 solution in that subset. The procedure outputs the best of the N/K local optimal solutions. Figure 7 shows a flow chart of our implementation.

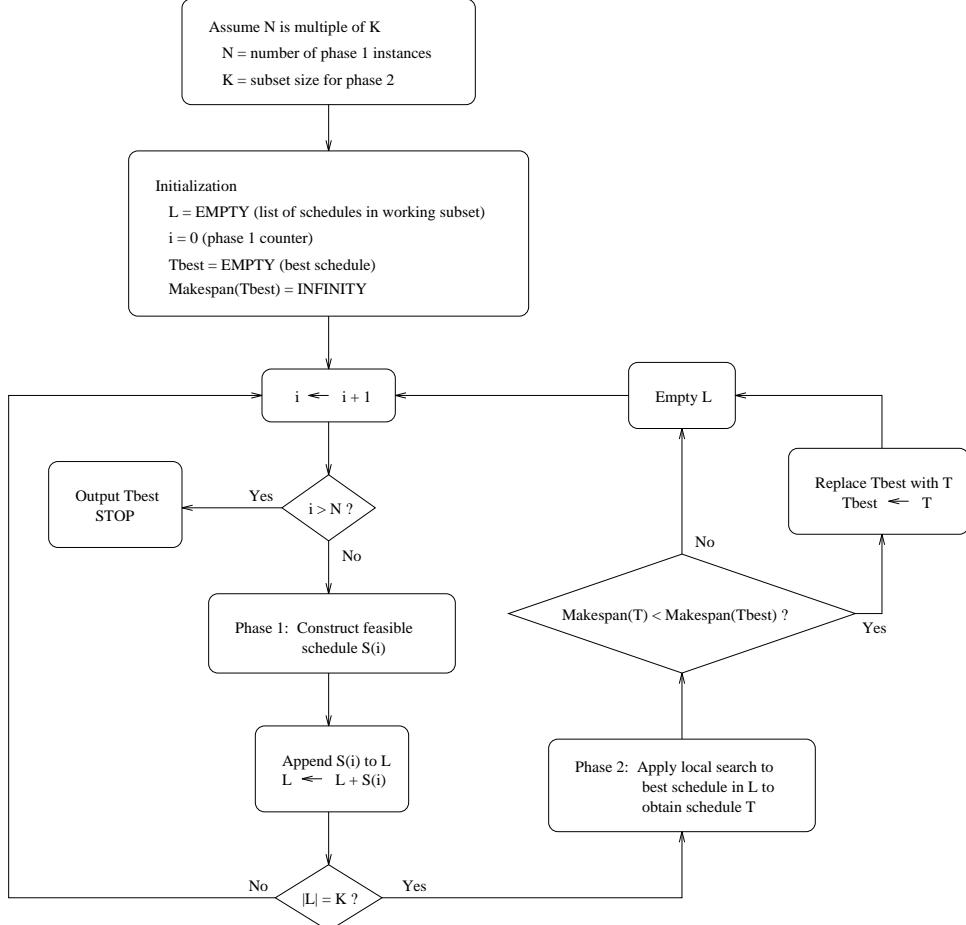


Figure 7: Flow chart of complete GRASP algorithm

The fundamental difference between GRASP and other metaheuristics such as tabu search and

simulated annealing is that GRASP relies on high quality phase 1 solutions (due to the inherent worst-case complexity of the local search) whereas the other methods do not require good feasible solutions. They spend practically all of their time improving the incumbent solution and attempting to overcome local optimality. For a GRASP tutorial, the reader is referred to [7].

Below we present a GRASP for $F|s_{ijk}, prmu|C_{\max}$ based on job insertion. This approach was found to be significantly more successful than a GRASP based on appending jobs to the partial schedule.

GRASP for the SDST Flowshop: The GRASP construction phase follows the same insertion idea as algorithm **NEHT-RB()** discussed in Section 4.2. The difference between them is the selection strategy for inserting the next unscheduled job into the partial schedule. Recall that **NEHT-RB()** always inserts the job in the best available position.

Procedure **GRASP()**

Input: Set P of unscheduled jobs and size λ of the restricted candidate list.

Output: Feasible schedule S .

- Step 0. Set $S = \emptyset$
- Step 1. Sort the jobs in P to form an LPT priority list
- Step 2. **while** $|P| > 0$ **do**
 - Step 2a. Remove h , the first job from P
 - Step 2b. Compute $\psi(j)$ for every position $j = 1, \dots, |S + 1|$
 - Step 2c. Construct the RCL with the best λ positions
 - Step 2d. Choose randomly a position k from RCL
 - Step 2e. Insert job h at position k in S
- Step 3. Output S
- Step 4. Stop

Figure 8: *Pseudocode of GRASP() phase 1*

In **GRASP()**, the positions available for insertion are sorted by nondecreasing values of $\psi(j)$ and a restricted candidate list is formed with the best λ positions. Preliminary testing has shown that for this type of scheduling problem, $\lambda = 2$ works best. The probabilistic strategy of **GRASP()** selects one of the positions in the RCL randomly with equal probability. The job h is inserted at the selected position into the current partial schedule S and the completion times C_{ij} for all jobs in the schedule are updated. Figure 8 shows the pseudocode of the procedure (phase 1). Notice that

GRASP() reduces to **NEHT-RB()** for the extreme case $\lambda = 1$.

In Step 1 of **GRASP()**, we form an LPT (largest processing time) priority list with respect to the sum of the processing times of each job over all the machines. In Step 2b, we use procedure **Makespans()**, which was seen in Section 4.2 to require $O(km)$ time.

Computational complexity: The complexity of Step 1 is $O(n \log n)$. At the k -th iteration of Step 2 (k jobs already scheduled), Step 2a takes $O(1)$, Step 2b takes $O(km)$, complexity of Step 2c is $O(k \log \lambda)$, Step 2d can be done in $O(\log \lambda)$ time, and Step 2e in $O(km)$. Thus, the complexity of Step 2 at the k -th iteration is $O(km)$. This yields a time complexity of $O(mn^2)$ for one execution of **GRASP()** phase 1. Therefore, the overall phase 1 time complexity is $O(Nmn^2)$.

Example 4.2 (Example 3.1 continued)

We now illustrate the GRASP construction phase with RCL cardinality limitation $\lambda = 2$.

Step 0: Initialize the set of scheduled jobs $S = \emptyset$.

Step 1: Given the total processing time for each job

j	1	2	3	4
$\sum_i p_{ij}$	8	5	6	3

form the LPT priority list as follows: $P = (1, 3, 2, 4)$.

Step 2: (Iteration 1) Job 1 is selected (and removed) from P . Now $P = (3, 2, 4)$. Since there are no scheduled jobs, insert job 1 into $S = (1)$ and go to the next iteration.

(Iteration 2) Job 3 is selected (and removed) from P . Now $P = (2, 4)$, $|S| = 1$, and $\psi(k)$ (makespan value when job 3 is inserted in position k in S) is computed as.

k	1	2
$\psi(k)$	13	18

Because $\lambda = 2$, RCL = $\{1, 2\}$. One is selected at random, say $k = 1$. Thus, job 3 is inserted in position $k = 1$ (at the begining of S). $S = (3, 1)$.

(Iteration 3) Job 2 is selected (and removed) from P . Now $P = (4)$, $|S| = 2$, and $\psi(k)$ is computed as follows

k	1	2	3
$\psi(k)$	22	20	23

Form RCL = $\{1, 2\}$ and select one at random, say $k = 1$. Job 2 is inserted in position $k = 1$ (at the beginning of S). $S = (2, 3, 1)$.

(Iteration 4) Job 4 is selected (and removed) from P . Now $P = \emptyset$. For $|S| = 3$, $\psi(k)$ is computed as follows

k	1	2	3	4
$\psi(k)$	30	26	29	30

Form $\text{RCL} = \{2, 3\}$ and select one at random, say $k = 3$. Job 4 is inserted in position $k = 3$ (immediately succeeding job 3). $S = (2, 3, 4, 1)$.

Step 3: Output schedule $S = (2, 3, 4, 1)$ with corresponding $C_{\max}(S) = 29$.

Recall that the optimal schedule is $S^* = (3, 1, 2, 4)$ with $C_{\max}(S^*) = 24$. \square

5 Local Search Procedures

Neighborhoods can be defined in a number of different ways, which have different computational implications. Consider, for instance, a 2-opt neighborhood definition which consists of exchanging two edges in a given tour or sequence of jobs. For this neighborhood, a move in a TSP takes $O(1)$ time to evaluate whereas a move in the SDST flowshop takes $O(mn^2)$. One of the most common neighborhoods for scheduling problems is the 2-job exchange which has been used by Widmer and Hertz [25] and by Taillard [23] for $F||C_{\max}$. Here we extend this procedure to handle setup times. In addition, we generalize the 1-job reinsertion neighborhood proposed by Taillard [23] for $F||C_{\max}$ to develop an L -job string reinsertion procedure (including the setup times).

5.1 2-Job Exchange

Let S be a given schedule and let $N_S(j, k)$ be the schedule formed from S by exchanging the jobs in the j -th and k -th position. Thus the neighborhood of S is defined as

$$N(S) = \{N_S(j, k) : 1 \leq j < k \leq n\}$$

A neighbor of S is entirely defined by j and k . The size of $N(S)$ is given by

$$|N(S)| = \frac{n(n-1)}{2}$$

An example is shown in Figure 9. The dotted lines represent the link from the last job in the schedule to the start of the sequence (dummy job 0). The sequence on the right S' represents the neighbor $N_S(2, 5)$; that is, the jobs in S in the 2-nd (job 3) and 5-th (job 2) positions are exchanged.

It takes $O(mn)$ to calculate the makespan of an individual two-job exchange and there are $O(n^2)$ neighbors. Therefore, the evaluation of the makespan for all the neighbors of S is done in $O(n^3m)$ operations.

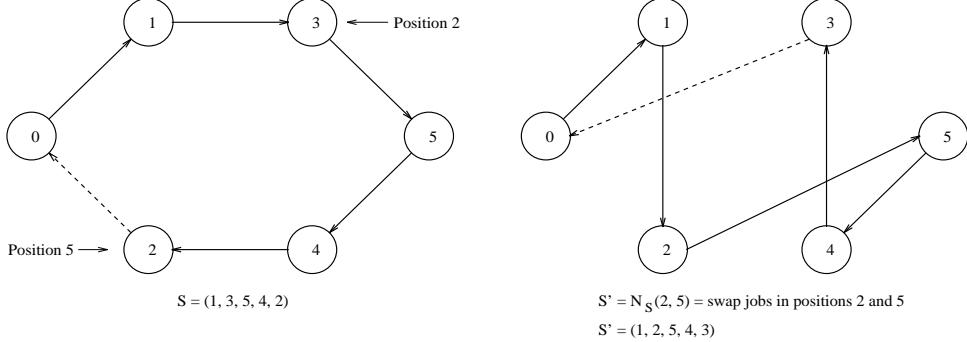


Figure 9: Illustration of 2-job exchange neighborhood

5.2 L-Job String Reinsertion

Given a feasible schedule S , let $N_S^L(j, k)$ be the schedule formed from S by removing a string of L jobs starting at the j -th position and reinserting the string at position k . The neighborhood of S is given by

$$N(\sigma) = \left\{ N_S^L(j, k) : 1 \leq j, k \leq n + 1 - L \right\}$$

For a given value of L , $N(S)$ is entirely defined by j and k . The size of $N(S)$ is

$$|N(S)| = (n - L)^2$$

An example of a 2-job string reinsertion neighbor is shown in Figure 10. The sequence on the right $S' = N_S^2(3, 1)$ is formed from S by removing the 2-job string starting at the 3-rd position (jobs 5 and 4) and reinserting it at the position 1 (immediately preceding job 2). The evaluation of all makespans can be executed in $O(n^2m)$, using the `Makespans()` algorithm described in Section 4.2.

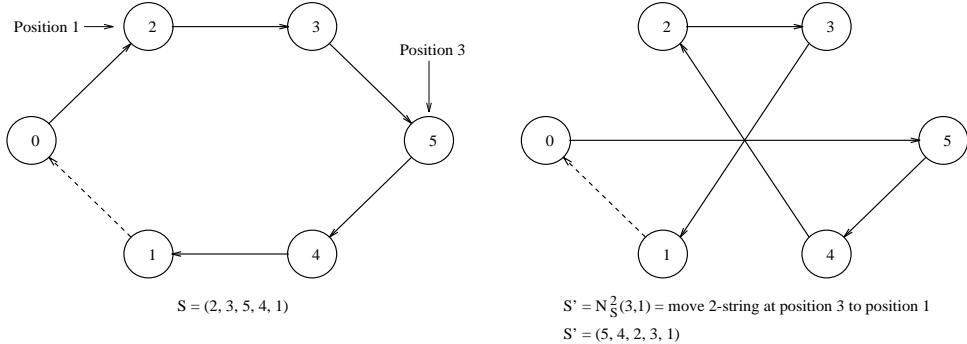


Figure 10: Illustration of 2-job string reinsertion neighborhood

5.3 Implementation Considerations

There are a few issues concerning the implementation of local search procedures. The first one is how to “move” from the current feasible solution to a neighbor solution with a better objective

function value. There are two fundamental ways of doing this. The first is to examine the whole neighborhood and then make a move to the “best” neighbor. The second is to examine one neighbor at a time and make a move as soon as a better solution is found. The trade-off is that in the first case we expect the incremental improvement in the objective value to be greater; however, the computational effort is higher.

When the choice is to examine the neighborhood one element at a time, we must have a criterion for selecting the “next” element. The neighbor selection criteria (NSC) defines a way of choosing the next element to be examined in the neighborhood of current feasible solution S . Typical examples of NSC are a lexicographic strategy and a random strategy. In the former, one sorts all unexamined neighbors of σ according to a given lexicographic rule. A lexicographic first (last) rule selects the first (last) element of the sorted list and removes it from the list of unexamined neighbors. In a random strategy, the next neighbor is chosen randomly among all unexamined candidates.

Heuristic	String size	NSC
SETUP()	3	Lexicographic (last)
NEHT-RB()	1	Lexicographic (last)
GRASP()	1	Lexicographic (first)

Table 1: *Parameter selection for string reinsertion procedure*

In our local search procedures we explore the neighborhood one element at a time. Preliminary computations designed to fine-tune and compare the local search procedures described in this section found that the string reinsertion uniformly outperformed the 2-job exchange procedure. We also observed a very small improvement when the 2-job exchange procedure was applied to the heuristic solutions delivered by algorithms `NEHT-RB()` and `GRASP()`. This led us to conclude that these heuristics yield near local optima with respect to this neighborhood. The solution given by `SETUP()` realized a marginal improvement with the 2-job exchange procedure, but still, this improvement was very small when compared to the one obtained by the string reinsertion procedure. For the string reinsertion procedure, the best choices of both NSC and string size selection criteria for a particular heuristic are shown in Table 1.

6 Lower Bounds

Recall the MIP formulation (1.1)-(1.9) presented in Section 3. Constraint (1.7) implies that

$$\mathbf{y}_{ij} + p_{ij} \geq \mathbf{y}_{i-1,j} + p_{i-1,j} \quad i \in I \setminus \{m\}, j \in J.$$

Therefore, the makespan constraint (1.6) can also be written as

$$\mathbf{y}_{ij} + p_{ij} \leq C_{\max} \quad i \in I, j \in J.$$

By relaxing the machine link constraints (1.7), the starting time for a job j on a given machine i is no longer linked to the finishing time on the previous machine. We call this new problem SFS (separable flow shop), with optimal objective function value $v(\text{SFS})$. It is clear that $v(\text{SFS}) \leq v(\text{FS})$, where $v(\text{FS})$ is the optimal value of problem FS.

Let $\text{SFS}(i)$ be the SFS problem where all the subtour elimination and makespan constraints not related to machine i are removed. Let $S = (1, \dots, n)$ be a feasible schedule for $\text{SFS}(i)$. Here we assume for simplicity that the jobs in S are sequenced in order so the makespan of is given by

$$\begin{aligned} C_{\max}(S) &= s_{i01} + p_1 + s_{i12} + p_2 + \dots + s_{i,n-1,n} + p_n + s_{in0} \\ &= \sum_{j=1}^n p_j + \sum_{j=0}^n s_{ij,j+1} \mathbf{x}_{j,j+1} \end{aligned}$$

where index $n + 1$ corresponds to index 0 and $s_{in0} = 0$. Thus $\text{SFS}(i)$ can be expressed as

$$(\text{SFS}(i)) \quad \text{Minimize} \quad \sum_{j \in J_0} p_{ij} + \sum_{j \in J_0} \sum_{\substack{k \in J_0 \\ k \neq j}} s_{ijk} \mathbf{x}_{jk} \quad (3.1)$$

subject to

$$\sum_{\substack{j \in J_0 \\ j \neq k}} \mathbf{x}_{jk} = 1 \quad k \in J_0 \quad (3.2)$$

$$\sum_{\substack{k \in J_0 \\ k \neq j}} \mathbf{x}_{jk} = 1 \quad j \in J_0 \quad (3.3)$$

$$\mathbf{y}_{ij} - \mathbf{y}_{ik} + p_{ij} + s_{ijk} \leq A_i(1 - \mathbf{x}_{jk}) \quad j, k \in J, j \neq k \quad (3.4)$$

$$-\mathbf{y}_{ik} + s_{i0k} \leq B_i(1 - \mathbf{x}_{0k}) \quad k \in J \quad (3.5)$$

$$\mathbf{x}_{jk} \in \{0, 1\} \quad j, k \in J_0, j \neq k \quad (3.6)$$

$$\mathbf{y}_{ij} \geq 0 \quad j \in J \quad (3.7)$$

for all $i \in I$.

6.1 A Lower Bounding Scheme for the SDST Flowshop

For a fixed machine i , $\sum_j p_{ij}$ in (3.1) is constant so problem $\text{SFS}(i)$ reduces to an instance of the ATSP, where J_0 is the set of vertices and s_{ijk} is the distance between vertices j and k . Equations (3.2) and (3.3) correspond to the assignment constraints. Time-based subtour elimination constraints are given by (3.4) and (3.5). From the imposed relaxations we have

$$v(\text{SFS}(i)) \leq v(\text{SFS}) \leq v(\text{FS})$$

for all $i \in I$. Because any valid lower bound for $\text{SFS}(i)$, call it L_i , is a valid lower bound for FS, we then proceed to compute a lower bound for every subproblem $\text{SFS}(i)$ and obtain a lower bound on $v(\text{FS})$ by

$$C_{\max}^{LB} = \max_{i \in I} \{L_i\}$$

The suggested lower bounding procedure for FS is outlined in Figure 11, where procedure `lower_bound_ATSP(c_{jk})` in Step 1c is any valid lower bound for $SFS(i)$ (ATSP with cost matrix (c_{jk})).

Procedure `lower_bound_FS()` (Phase 1)

Input: An instance of the SDST flowshop with corresponding setup time matrix (s_{ijk}) and processing time matrix (p_{ij}) .

Output: Lower bound C_{\max}^{LB} for the value of the makespan C_{\max} .

Step 1. **for** $i = 1$ **to** m **do**

Step 1a. Let $P_i = \sum_j p_{ij}$

Step 1b. Let $c_{jk} = s_{ijk}$ be the input cost matrix for the ATSP $SFS(i)$

Step 1c. $L_i = P_i + \text{lower_bound_ATSP}(c_{jk})$

Step 2. Output $C_{\max}^{\text{LB}} = \max_i\{L_i\}$

Step 3. Stop

Figure 11: Pseudocode of lower bounding procedure for SDST flowshop (phase 1)

We have observed that in all of the randomly generated instances this lower bound C_{\max}^{LB} is considerably better than the value $v(LP)$ of the linear programming (LP) relaxation of problem FS. However, the following example shows that this is not always the case.

Example 6.1 Consider the following 2×3 instance of the SDST flowshop.

p_{ij}	1	2	3	s_{1jk}	1	2	3	s_{2jk}	1	2	3
1	1	1	1	0	1	20	20	0	20	20	1
2	1	1	1	1	—	1	20	1	—	20	20

An optimal solution is given by $S^* = (1, 3, 2)$ with $C_{\max}(S^*) = 45$. The lower bound delivered by `lower_bound_FS()` is 6 when an exact procedure is used at Step 1c in every call to `lower_bound_ATSP()`. The LP relaxation lower bound is 8.333. \square

6.2 Lower Bounds for the ATSP

Several lower bounding schemes have been proposed for ATSP. Approaches based on the assignment problem (AP) (obtained when subtour elimination constraints are relaxed), r -arborescence

problem (r -ARB) (obtained when the assignment constraints are relaxed) as well as on Lagrangean relaxation are extensively discussed in [2].

It has been observed that for randomly generated instances, the AP relaxation provides a very tight bound [2]. The improvement obtained by any other scheme is very slim compared to the related computational effort. This makes AP an attractive approach when strong asymmetry is present. However, for symmetric problems ($c_{jk} \approx c_{kj}$) the results are not as good. Computational experience shows that the loss of effectiveness of exact algorithms for the symmetric case is mainly due to the weakness of the available lower bounds.

To deal with harder cases, schemes based on additive approaches have been developed. Balas and Christofides [1] proposed an additive approach based on Lagrangean relaxation. Most recently, Fischetti and Toth [8] have implemented an additive scheme that outperformed the restricted Lagrangean approach of Balas and Christofides. Their procedure yields a sequence of increasing lower bounds within a general framework that exploits several substructures of the ATSP including AP and r -ARB. We compared two lower bounding schemes for the SDST flowshop. One is based on the AP relaxation and the other on the additive approach of Fischetti and Toth. In our experiments, we observed that the improvement obtained by the latter was very small. This is attributed to the fact that for the instances having setup times that are completely asymmetric, the AP bound is very tight. This phenomenon was also observed by Fischetti and Toth for the ATSP. As the problem becomes less asymmetric the results yielded by the additive approach improve considerably. Since the data sets we are working with are assumed to have asymmetric setup times, we use the lower bounding approach based on the AP relaxation.

6.3 Improving the Lower Bound for SDST Flowshop

Let C_{ij} be the completion time of job j on machine i . In particular, let T_i be the completion time of last job on machine i ; that is, T_i is the time at which machine i finishes processing. Then we have the following relation

$$C_{ij} = \max \{C_{i-1,j}, C_{i,j-1} + s_{i,j-1,j}\} + p_{ij}$$

In particular, if n represents the last job in the sequence, we have

$$C_{in} = \max \{C_{i-1,n}, C_{i,n-1} + s_{i,n-1,n}\} + p_{in}$$

Because $T_i = C_{in}$ we have that $T_i - p_{in} \geq T_{i-1}$. This is valid for job n , and certainly it is also valid for $p_i^{\min} = \min_{j \in J} \{p_{ij}\}$; $i \in I$. This suggests the following recursive improvement for a set $\{L_i\}$, where L_i is a valid lower bound on the completion time on machine i ; $i \in I$. If $\Delta = L_{i-1} - (L_i - p_i^{\min}) > 0$, then L_i can be improved by Δ ; that is, $L_i \leftarrow L_i + \Delta$. Hence $C_{\max}^{\text{LB}} = L_m$ is a valid lower bound for C_{\max} .

Procedure lower_bound_FS()

Input: An instance of the SDST flowshop with corresponding setup time matrix (s_{ijk}) and processing time matrix (p_{ij}).

Output: Lower bound C_{\max}^{LB} for the value of the makespan C_{\max} .

Step 1. **for** $i = 1$ **to** m **do**

Step 1a. Let $P_i = \sum_j p_{ij}$

Step 1b. Let $c_{jk} = s_{ijk}$ be the input cost matrix for the ATSP SFS(i)

Step 1c. $L_i = P_i + \text{lower_bound_ATSP}(c_{jk})$

Step 2. **for** $i = 2$ **to** m **do**

Step 2a. **if** $\Delta = L_{i-1} - (L_i - p_i^{\min}) > 0$

Step 2b **then** $L_i \leftarrow L_i + \Delta$

Step 2. Output $C_{\max}^{\text{LB}} = L_m$

Step 3. Stop

Figure 12: Pseudocode of lower bounding procedure for SDST flowshop

We have observed that this improvement step has achieved up to a 5% reduction on the relative gap for most of the instances examined. The modified procedure is shown in Figure 12.

7 Experimental Work

All procedures were coded in C++ and compiled with the Sun C++ compiler CC version 2.0.1 and optimization flag set to `-O`. CPU times were obtained by calling the `clock()` function on a SPARCStation 10. To evaluate the various schemes, 20 instances of the SDST flowshop were randomly generated for every combination

$$m \times n \in \{(2, 4, 6) \times (20, 50, 100)\}$$

for two different classes of data sets (available from authors).

- Data set A: $p_{ij} \in [1, 99]$ and $s_{ijk} \in [1, 10]$
- Data set B: $p_{ij} \in [1, 99]$ and $s_{ijk} \in [1, 99]$

It has been reported that many real-world instances match data set A (e.g., [10]). Data set B is included to allow us to investigate the effect on the algorithms when the setup times assume a wider range.

For each set of instances we performed several comparisons:

- *Summary statistics.* To identify dominating characteristics we compiled the following objective function value statistics

- Number of times heuristic is best or tied for best
- Average percentage above lower bound

and time related statistics

- Average CPU time
- Worst CPU time

- *Friedman test.* This is a nonparametric test, analogous to the classical ANOVA test of homogeneity, which we apply to the null hypothesis:

$$H_0 : E[S] = E[N] = E[G]$$

under the assumption of normal distributions with a common variance, where S , N , and G are random variables corresponding to percentages above the lower bound generated by heuristics `SETUP()`, `NEHT-RB`, and `GRASP()`, respectively. The test statistic is given by

$$T_F = \frac{(r-1)\{B_F - rq(q+1)^2/4\}}{A_F - B_F}$$

($r = 20$, $q = 3$) where

$$\begin{aligned} A_F &= \sum_{i=1}^r \sum_{j=1}^q (R_{ij})^2 \\ B_F &= \frac{1}{r} \sum_{j=1}^q \left(\sum_{i=1}^r R_{ij} \right)^2 \end{aligned}$$

with R_{ij} being the rank (from 1 to q) assigned to heuristic j ($j = \text{SETUP}()$, `NEHT-RB()`, and `GRASP()`) on problem i (lowest value gets rank of 1). In the case of ties, average ranks are used. The null hypothesis is rejected at level α if the test statistic exceeds the $1 - \alpha$ quantile of the F -distribution with $q - 1$ and $(r - 1)(q - 1)$ degrees of freedom.

- *Wilcoxon test.* If Friedman test is significant, that is, the null hypothesis is rejected, we attempt to identify the “best” heuristic by performing a pairwise test among all candidates. We apply the Wilcoxon signed rank test, a well-known nonparametric statistical test, to compare any two of the three heuristics. For the two heuristics `NEHT-RB()` and `GRASP()`, for instance, the null hypothesis is $E[N] = E[G]$; and the alternate hypothesis is either $E[N] > E[G]$ or $E[N] < E[G]$. The Wilcoxon test uses signed ranks of differences to assess the difference in location of two populations. The Wilcoxon statistic W is computed in the following way.

First, rank the absolute differences of the original measurements, $|d_i| = |N_i - G_i|$. If any $d_i = 0$, drop it from consideration and decrease r by one. If ties occur, average the ranks of the items involved in the tie and use the average as the rank of each tied item. Second, attach the sign of $N_i - G_i$ to the rank on the i -th absolute difference, and denote this signed rank by R_i . Finally, obtain the sum W of the signed ranks:

$$W = R_1 + \dots + R_r$$

The null hypothesis should be rejected at the α significance level if $W > W_{1-\alpha}$ ($W < W_{1-\alpha}$) if the alternate hypothesis is $E[N] > E[G]$ ($E[N] < E[G]$). For $r \geq 10$, the critical value W_α can be approximated by

$$W_\alpha = Z(\alpha)\sqrt{r(r+1)(2r+1)/6}$$

where $Z(\alpha)$ is the standard normal fractile such that the proportion α of the area is to the left of $Z(\alpha)$.

- *Expected utility.* This approach for comparing two or more heuristics is based on the notion that we seek a heuristic that performs well on the average and that very rarely performs poorly; that is, it is concerned with downside risk as well as expected accuracy. The procedure incorporates this attitude towards risk in a *risk-averse* utility function. As suggested by Golden and Stewart, we calculate the expected utility for each heuristic as

$$\alpha - \beta(1 - \hat{b}t)^{-\hat{c}}$$

where $\hat{b} = s^2/\bar{x}$, $\hat{c} = (\bar{x}/s)^2$ are estimated parameters of a gamma distribution; $\alpha = 600$, $\beta = 100$ are arbitrarily chosen parameters and $t = 0.05$ gives a measure of risk aversion for the utility function. It should be pointed out that t must be less than $1/\hat{b}$ for each heuristic.

The application of the Friedman test, Wilcoxon test, and the expected utility approach to evaluate heuristics is proposed by Golden and Stewart [9] for the TSP.

The **GRASP()** heuristic settings used are $\lambda = 2$ (which was found to be the best choice in a preliminary study) and $N = 100$ iterations with a partial search strategy subset of size $K = 10$; that is, we apply the construction phase $N = 100$ times and then we do the local search once every $K = 10$ iterations on the most promising solution in that subset (see Section 4.3). To evaluate the quality of the heuristics we compared the results with those obtained from our AP-based two-phase lower bounding procedure discussed in Section 6.

7.1 Experiment 1: Data Set A

m		n = 20				n = 50				n = 100			
		LB	UB	RG	H	LB	UB	RG	H	LB	UB	RG	H
2	Best	1193	1197	0.3	G	2495	2505	0.4	G	5554	5573	0.3	N
	Average	1088	1103	1.4	G	2706	2736	1.1	G	5274	5316	0.8	S
	Worst	1041	1073	3.1	G	2539	2593	2.1	S	4686	4754	1.5	S
4	Best	1196	1214	5.5	G	3136	3172	1.1	G	5349	5417	1.3	G
	Average	1180	1252	6.1	G	2766	2855	3.2	G	5378	5523	2.7	G
	Worst	1056	1188	12.5	N	2542	2700	6.2	N	5223	5481	4.9	N
6	Best	1293	1402	8.4	G	3138	3249	3.5	S	5629	5781	2.7	G
	Average	1243	1407	13.2	G	2879	3054	6.1	G	5448	5704	4.7	G
	Worst	1168	1391	19.1	G	2710	2990	10.3	N	5230	5621	7.5	G

Table 2: *Lower bound computations for data set A*

Table 2 shows the lower bound (LB), upper bound (UB), relative gap percentage (RG) between upper and lower bound. Also indicated is the heuristic (H) that found the upper bound for both the best and worst instances (out of 20) in terms of their relative gap. Average values are shown as well. Values are computed for each combination of m and n . Heuristics are identified by their initials (S, N, and G). We observe that most of the 2-machine instances were solved within a 1% relative gap. As the number of machines grow, the relative gap increases too.

m	Statistic	n = 20			n = 50			n = 100		
		S	N	G	S	N	G	S	N	G
2	Best	0	3	17	5	2	14	14	3	5
	Average % deviation	2.6	2.1	1.4	1.2	1.4	1.1	0.8	1.2	1.0
4	Best	0	2	18	1	3	16	1	1	18
	Average % deviation	9.1	7.0	6.1	4.3	3.7	3.2	3.5	3.2	2.7
6	Best	1	4	15	0	2	18	0	2	18
	Average % deviation	17.7	14.1	13.2	8.4	6.8	6.1	6.2	5.1	4.7

Table 3: *Heuristic comparison for data set A*

Summary statistics on the makespan are shown in Table 3. For each cell, entries in the first (Best) row indicate the number of times each heuristic found the best (or tied for best) solution. Entries in the second row show the average percentage above the lower bound. We first point out that the difference between the makespans delivered by the algorithms is very small, although GRASP() dominates in practically all instances, the only exception being the 2×100 data sets.

		CPU time (sec)								
		n = 20			n = 50			n = 100		
m	Statistic	S	N	G	S	N	G	S	N	G
	Average	0.12	0.11	2.45	1.87	1.21	18.40	12.62	8.86	114.29
2	Worst	0.38	0.26	2.80	3.13	2.13	22.71	20.49	14.24	149.26
	Average	0.40	0.22	4.12	4.21	2.56	33.26	23.62	18.92	219.00
4	Worst	0.81	0.39	4.92	8.46	5.07	37.45	45.94	36.61	265.53
	Average	0.54	0.31	5.95	6.99	3.56	49.48	43.07	30.21	328.76
6	Worst	0.85	0.60	6.69	13.55	6.65	60.15	67.67	52.15	437.94

Table 4: *Time statistics for data set A*

CPU time statistics are presented in Table 4. For these data sets, **NEHT-RB()** is on average 30% to 70% faster than **SETUP()** and considerably faster than **GRASP()**. **NEHT-RB()** also provides the best results regarding worst-case CPU time.

m	$n = 20$	$n = 50$	$n = 100$
2	GRASP() best ($p < 0.0004$)	GRASP() best ($p < 0.0444$)	SETUP() best ($p < 0.0149$)
4	GRASP() best ($p < 0.0011$)	GRASP() best ($p < 0.0011$)	GRASP() best ($p < 0.0006$)
6	GRASP() best ($p < 0.0005$)	GRASP() best ($p < 0.0011$)	GRASP() best ($p < 0.0004$)

Table 5: *Wilcoxon test results for data set A*

The Friedman test was significant (at $\alpha = 0.01$) for each $m \times n$ combination. We then performed a pairwise Wilcoxon test on each combination with results displayed in Table 5. The p -value shown in the second row in every cell is the probability that the sample outcome could have been more extreme than the observed one when the null hypothesis hold. Large p -values support the null hypothesis while small p -values support the alternate hypothesis. As can be seen, all the tests are significant at $\alpha = 0.05$. Procedure **SETUP()** is found to be statistically best for the 2×100 data set, whereas in all other cases **GRASP()** dominates.

Comparisons between heuristics using the expected utility approach are given in Table 6, which indicates that expected utility values are nearly identical. This supports the hypothesis that no significant difference exists among the heuristics.

Expected utility												
m	n = 20			n = 50			n = 100			S	N	G
	S	N	G	S	N	G	S	N	G			
2	493.4	494.6	496.4	496.8	496.5	497.2	498.1	497.0	497.5			
4	473.9	480.6	483.1	488.6	490.2	491.5	490.7	491.8	492.9			
6	443.6	457.2	460.5	476.4	481.3	483.3	483.3	486.3	487.5			

Table 6: *Expected utility comparison of heuristics for data set A*

7.2 Experiment 2: Data Set B

m	n = 20				n = 50				n = 100				
	LB	UB	RG	H	LB	UB	RG	H	LB	UB	RG	H	
2	Best	1269	1392	9.7	G	3155	3529	11.9	S	5458	6139	12.5	S
	Average	1214	1468	20.9	G	2837	3328	17.3	S	5386	6167	14.5	S
	Worst	1057	1375	30.1	S	2668	3281	23.0	S	4792	5705	19.1	S
4	Best	1283	1613	25.7	G	3167	4109	29.7	S	5706	7350	28.8	S
	Average	1314	1823	38.7	G	2945	4079	38.5	S	5488	7431	35.4	S
	Worst	1208	1852	53.3	S	2840	4187	47.4	S	5235	7373	40.8	S
6	Best	1505	2132	41.7	N	3254	4614	41.8	G	5679	8186	44.1	S
	Average	1374	2095	52.5	G	3004	4557	51.7	G	5558	8248	48.4	S
	Worst	1261	2114	67.6	G	2700	4379	62.2	G	5348	8173	52.8	S

Table 7: *Lower bound computations for data set B*

Table 7 shows the lower bound, upper bound, relative gap percentage between upper and lower bound, and the heuristic that found the upper bound for both the best and worst instances (out of 20) in terms of their relative gap. The average relative gap percentage is shown as well. Values are computed for each combination of m and n . We observe larger relative gaps; however, the quality of the lower bound remains to be further investigated.

Summary statistics on the makespan are shown in Table 8. Entries have the same meaning as those described in the previous section. As can be seen, **SETUP()** clearly dominates the other two for the 100-job data sets. This tendency is observed in 50-job instances as well. However, as the number of machines gets large, **GRASP()** tends to do better, which can be observed in the 6×50 data set. For the smallest sized instances (20-job data sets) **GRASP()** delivers better solutions than the other two.

CPU time statistics are presented in Table 9. We observe that, on average, **NEHT-RB()** and **SETUP()** take the same amount of time, both of them being considerably faster than **GRASP()**. It

m	Statistic	n = 20			n = 50			n = 100		
		S	N	G	S	N	G	S	N	G
2	Best	7	0	13	20	0	1	20	0	0
	Average % deviation	22.4	24.8	20.9	17.3	24.5	21.3	14.5	23.8	22.0
4	Best	2	0	18	15	1	4	20	0	0
	Average % deviation	43.7	43.4	38.7	38.5	43.0	40.2	35.4	44.1	42.2
6	Best	1	2	17	4	1	15	20	0	0
	Average % deviation	58.1	56.7	52.5	52.7	54.3	51.7	48.4	55.4	53.8

Table 8: *Heuristic comparison for data set B*

CPU time (sec)										
m	Statistic	n = 20			n = 50			n = 100		
		S	N	G	S	N	G	S	N	G
2	Average	0.11	0.12	2.50	1.19	1.53	19.95	6.75	9.58	130.79
	Worst	0.17	0.21	2.76	1.80	3.60	23.70	9.56	14.91	146.75
4	Average	0.23	0.20	3.96	1.85	2.12	29.52	10.43	13.71	178.83
	Worst	0.37	0.46	4.34	2.95	4.99	33.44	18.16	30.24	205.56
6	Average	0.28	0.27	5.20	2.57	2.44	37.42	15.92	16.86	219.23
	Worst	0.50	0.78	5.90	4.31	4.42	46.78	24.28	38.83	259.28

Table 9: *Time statistics for data set B*

can also be learned from the table that **SETUP()** has a better empirical worst-case time behavior than **NEHT-RB()**.

The Friedman test was significant at the $\alpha = 0.01$ level for each combination of m and n . Wilcoxon test was then performed between each pair of heuristics (for every combination). These results are shown in Table 10. It is found that **SETUP()** outperforms the other two heuristics in all the 100-job instances. This is also true for the 2×50 and 4×50 instances. For the 6×50 , and all the 20-job data sets, **GRASP()** is superior.

Comparisons between heuristics using the expected utility approach are given in Table 11. From this table, we observe that **SETUP()** is the most accurate (in the 2×50 , 4×50 , and all the 100-job instances) and that the rankings coincide with those determined from the previous results.

m	$n = 20$	$n = 50$	$n = 100$
2	GRASP() best ($p < 0.0071$)	SETUP() best ($p < 0.0005$)	SETUP() best ($p < 0.0004$)
4	GRASP() best ($p < 0.0006$)	SETUP() best ($p < 0.0085$)	SETUP() best ($p < 0.0004$)
6	GRASP() best ($p < 0.0004$)	GRASP() best ($p < 0.0242$)	SETUP() best ($p < 0.0004$)

Table 10: *Wilcoxon test results for data set B*

Expected utility									
m	$n = 20$			$n = 50$			$n = 100$		
	S	N	G	S	N	G	S	N	G
2	423.7	411.9	429.6	445.4	413.5	428.5	456.0	418.1	426.3
4	298.7	299.6	331.5	334.4	303.1	323.4	357.0	297.2	311.3
6	162.1	174.8	220.9	221.6	205.9	231.9	263.6	198.5	214.9

Table 11: *Expected utility comparison of heuristics for data set B*

8 Conclusions

We have proposed two new insertion-based heuristics for $F|s_{ijk}, prmu|C_{\max}$. Both procedures, **NEHT-RB()** and **GRASP()**, were extensively evaluated and compared with the only existing heuristic, TSP-based **SETUP()**, for this class of scheduling problem.

As part of the study two different local search procedures were also evaluated. It was found that the string reinsertion procedure worked better in all cases. Another contribution of this work centered on the development of a lower bounding scheme derived from the additive approach for the ATSP. An improvement phase based on idle time insertion was included as well. The lower bound obtained by the enhanced scheme was found to be marginally better than the LP relaxation lower bound.

For data set A, the TSP-based heuristic worked better on the larger 2-machine instances; however, when the number of machines grows, the insertion-based heuristics **NEHT-RB()** and **GRASP()** dominated. This stems from the fact that the fewer the number of machines, the more the problem resembles an ATSP so a TSP-based procedure should do well. Recall that in **SETUP()** the distance between jobs is computed as the sum of the setup times between jobs over all the machines. In the extreme case where there is only one machine, the problem reduces entirely to an instance of the ATSP. As more machines are added, the sum of setup times becomes less representative of

the “distance” between the jobs. How small does the number of machines have to be for `SETUP()` to do better than the insertion-based heuristics depends not only on the number of jobs, but on the magnitude of the setup times as well. In data set A, we observe a threshold value of $m = 2$ or 3. However, for data set B, `SETUP()` was found to outperform the others with respect to both makespan (especially for the 50- and 100-job data sets) and CPU time. This implies a threshold value of $m > 6$.

`SETUP()` and `NEHT-RB()` run considerably faster than `GRASP()`. This is to be expected because they are deterministic algorithms and will deliver a unique solution for each instance. By increasing the iteration counter in `GRASP()`, more and perhaps better solutions can be found.

Our computational study also revealed that data set B instances appeared to be harder to solve. We observed that while our heuristics delivered near-optimal solutions for several of the data set A instances, the best solution (for data set B) had a relative gap on the average of 15-22%, 35-42%, and 48-55% for the 2-, 4-, and 6-machine instances, respectively. Nevertheless, further work remains to be done to determine the quality of the lower bound.

9 Acknowledgments

The research of Roger Ríos-Mercado was partly supported by the Mexican National Council of Science and Technology (CONACyT) and by a fellowship from The University of Texas at Austin. Jonathan Bard was supported by a grant from the Texas Higher Education Coordinating Boards’ Advanced Research Program. We also thank Matthew Saltzman for allowing us to use his C implementation of the dense shortest augmenting path algorithm to solve AP, and Mateo Fischetti and Paolo Toth for providing their FORTRAN code to solve r -SAP.

References

- [1] E. Balas and N. Christofides. A restricted Lagrangean approach to the traveling salesman problem. *Mathematical Programming*, 21(1):19–46, 1981.
- [2] E. Balas and P. Toth. Branch and bound methods. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, and D. B. Shmoys, editors, *The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization*, pages 361–401. John Wiley & Sons, Chichester, 1990.
- [3] J. Carlier and I. Rebai. Two exact methods for the permutation flow shop problem. *European Journal of Operational Research*, 1996. (To appear).
- [4] B. D. Corwin and A. O. Esogbue. Two machine flow shop scheduling problems with sequence dependent setup times: A dynamic programming approach. *Naval Research Logistics Quarterly*, 21(3):515–524, 1974.

- [5] T. A. Feo and J. F. Bard. Flight scheduling and maintenance base planning. *Management Science*, 35(12):1415–1432, 1989.
- [6] T. A. Feo and M. G. C. Resende. A probabilistic heuristic for a computationally difficult set covering problem. *Operations Research Letters*, 8(2):67–71, 1989.
- [7] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. *Journal of Global Optimization*, 6:109–133, 1995.
- [8] M. Fischetti and P. Toth. An additive bounding procedure for the asymmetric traveling salesman problem. *Mathematical Programming*, 53(2):173–197, 1992.
- [9] B. L. Golden and W. R. Stewart. Empirical analysis of heuristics. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors, *The Traveling Salesman Problem*, chapter 7, pages 207–249. John Wiley & Sons, New York, 1990.
- [10] J. N. D. Gupta and W. P. Darrow. The two-machine sequence dependent flowshop scheduling problem. *European Journal of Operational Research*, 24(3):439–446, 1986.
- [11] S. K. Gupta. n jobs and m machines job-shop problems with sequence-dependent set-up times. *International Journal of Production Research*, 20(5):643–656, 1982.
- [12] G. Kontoravdis and J. F. Bard. A randomized adaptive search procedure for the vehicle routing problem with time windows. *ORSA Journal on Computing*, 7(1):10–23, 1995.
- [13] M. Laguna and J. L. González-Velarde. A search heuristic for just-in-time scheduling in parallel machines. *Journal of Intelligent Manufacturing*, 2:253–260, 1991.
- [14] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. Shmoys. Sequencing and scheduling: Algorithms and complexity. In S. S. Graves, A. H. G. Rinnooy Kan, and P. Zipkin, editors, *Handbook in Operations Research and Management Science, Vol. 4: Logistics of Production and Inventory*, pages 445–522. North-Holland, New York, 1993.
- [15] M. Nawaz, E. E. Enscore Jr., and I. Ham. A heuristic algorithm for the m -machine, n -job flow-shop sequencing problem. *OMEGA The International Journal of Management Science*, 11(1):91–95, 1983.
- [16] E. Nowicki and C. Smutnicki. A fast tabu search algorithm for the flow shop problem. Report 8/94, Institute of Engineering Cybernetics, Technical University of Wrocław, 1994.
- [17] M. Pinedo. *Scheduling: Theory, Algorithms, and Systems*. Prentice-Hall, Englewood Cliffs, New Jersey, 1995.

- [18] C. N. Potts. An adaptive branching rule for the permutation flow-shop problem. *European Journal of Operational Research*, 5(1):19–25, 1980.
- [19] R. Z. Ríos-Mercado and J. F. Bard. Flowshop scheduling with sequence-dependent setup times: Heuristics, local search, and lower bounds. Working Paper, Operations Research Program, University of Texas at Austin, November 1995.
- [20] S. Sarin and M. Lefoka. Scheduling heuristics for the n -job m -machine flow shop. *OMEGA The International Journal of Management Science*, 21(2):229–234, 1993.
- [21] J. V. Simons Jr. Heuristics in flow shop scheduling with sequence dependent setup times. *OMEGA The International Journal of Management Science*, 20(2):215–225, 1992.
- [22] W. Szwarc and J. N. D. Gupta. A flow-shop with sequence-dependent additive setup times. *Naval Research Logistics Quarterly*, 34(5):619–627, 1987.
- [23] E. Taillard. Some efficient heuristic methods for the flow shop sequencing problem. *European Journal of Operational Research*, 47(1):65–74, 1990.
- [24] S. Turner and D. Booth. Comparison of heuristics for flow shop sequencing. *OMEGA The International Journal of Management Science*, 15(1):75–85, 1987.
- [25] M. Widmer and A. Hertz. A new heuristic method for the flow shop sequencing problem. *European Journal of Operational Research*, 41(2):186–193, 1989.