New Heuristics for the Flow Line Problem

with Setup Costs

Roger 7. Rios-Mercado
Graduate Program in Operations Research
University of Texas at Austin
Austin, TX 78712-1063

roger@bajor.me.utexas.edu

Jonathan F. Bard
Graduate Program in Operations Research
University of Texas at Austin
Austin, TX 78712-1063

jbard@mail. utexas. edu

February 1996

Abstract

This paper presents two new heuristics for the flowshop scheduling problem with sequence-
dependent setup times and makespan minimization objective. The first is an extension of a pro-
cedure that has been very successful for the general flowshop scheduling problem. The other is
a greedy randomized adaptive search procedure (GRASP) which is a technique that has achieved
good results on a variety of combinatorial optimization problems. Both heuristics are compared to
a previously proposed algorithm based on the traveling salesman problem (TSP). In addition, local
search procedures are developed and adapted to each of the heuristics. A two-phase lower bounding
scheme is presented as well. The first phase finds a lower bound based on the assignment relaxation
for the asymmetric TSP. In phase two, attempts are made to improve the bound by inserting idle
time. All procedures are compared for two different classes of randomly generated instances. In the
first case where setup times are an order of magnitude smaller than the processing times, the new
approaches prove superior to the TSP-based heuristic; for the case where both processing and setup

times are identically distributed, the TSP-based heuristic outperforms the proposed procedures.

Keywords: flowshop scheduling, setup times, makespan, heuristics, GRASP, local search, lower

bounds

1 Introduction

In this paper, we address the problem of finding a permutation schedule of n jobs in an m-machine
flowshop environment that minimizes the maximum completion time Cp,.x of all jobs, also known
as the makespan. The jobs are available at time zero and have sequence-dependent setup times on
each machine. All problem parameters, such as processing times and setup times, are assumed to
be known with certainty. This problem is regarded in the scheduling literature as the sequence-
dependent setup time flowshop (SDST flowshop). Another way to represent scheduling problems
is by using the standard «|8|y notation (Pinedo [17]). In this regard, our problem is written as
Flsik, prmu|Cpax, where the first field describes the machine environment (F' stands for an m-
machine flowshop), the second field provides details of processing characteristics and constraints
(s;;% stands for sequence-dependent setup times and prmu means that the order or permutation
in which the jobs go through the first machine is maintained throughout the system; that is, the
queues in front of each machine operate according to the FIFO discipline), and the third field
contains the objective to be minimized. The SDST flowshop is NP-hard. We can see this by
noting that the one machine version of the problem with zero processing times corresponds to an
instance of the well-known asymmetric traveling salesman problem (ATSP).

The SDST flowshop is encountered in many manufacturing environments such as those arising
in the chemical and pharmaceutical industries. For example, the use of a single system to produce
different chemical compounds may require some cleansing between process runs, while the time to
set up a facility for the next task may be strongly dependent on its immediate predecessor. Thus
it is not always acceptable to assume that the time required to perform any task is independent of
its position in the sequence.

Sequence-dependent properties are relevant in other fields as well. For example, the scheduling
of aircraft approaching or leaving a terminal area can be modeled as a single-machine scheduling
problem. Because the time separations between successive aircraft belonging to different fleets vary
according to their respective position, sequence-dependent processing times must be allowed for a
more realistic description of the problem.

Our work includes the development of two new heuristics and a local search phase. One of the
proposed heuristics is based in an idea due to Nawaz et al. [15] that has been very successful for the
general flowshop scheduling problem with no setup times. We extend their approach to handle this
feature. The other algorithm we develop is called a greedy randomized adaptive search procedure
(GRASP), which is a heuristic approach to combinatorial optimization problems that combines
greedy heuristics, randomization, and local search techniques. GRASP has been applied successfully
to set covering problems (Feo and Resende [6]), airline flight scheduling and maintenance base
planning (Feo and Bard [5]), scheduling on parallel machines (Laguna and Gonzalez-Velarde [13]),

and vehicle routing problems with time windows (Kontoravdis and Bard [12]). The proposed

procedures are compared to a previously developed algorithm due to Simons [21]. His algorithm
attempts to exploit the strong relationship bewteen the SDST flowshop and the ATSP.

Another contribution of this work is the development of a lower bounding scheme for the SDST
flowshop. The proposed scheme consists of two phases: in phase one, a lower bound based on the
assignment (AP) relaxation of the ATSP is computed. In phase two, we attempt to improve this
bound by inserting idle time. All the procedures are evaluated for two different classes of randomly
generated instances. For the case where the setup times are an order of magnitude smaller that the
processing times, the proposed algorithms prove superior to Simon’s heuristic (SETUP()). For the
case where both processing and setup times are identically distributed, SETUP() outperforms the
proposed heuristics. We also found that the latter type of instances were more “difficult” to solve
in the sense that the relative gap between the heuristic solution and the lower bound is significantly
larger than the gap found for the former type of instances. In many of those cases near-optimal
solutions were obtained.

The rest of the paper is organized as follows. A brief literature review is presented in Section 2.
In Section 3 we formally describe and formulate the problem as a mixed-integer program. Heuristics
and local search procedures are described in Sections 4 and 5, respectively. The lower bounding
scheme is presented in Section 6. We then highlight our computational experience in Section 7 and

conclude with a discussion of the results.

2 Related Work

For an excellent review of flowshop scheduling in general, including computational complexity
results, see [19]. For a more general overview on complexity results and optimization and approxi-
mation algorithms involving single-machine, parallel machines, open shops, job shops, and flowshop

scheduling problems, the reader is referred to Lawler et al. [14].

2.1 Minimizing Makespan on Regular Flowshops

The flowshop scheduling problem (with no setups) has been an intense subject of study over the
past 25 years. Several exact optimization schemes, mostly based on branch-and-bound, have been
proposed for F'||Cpay including those of Potts [18] and Carlier and Rebai [3].

Heuristic approaches for F||Cpax can be divided into (a) quick procedures [15, 20] and (b)
extensive search procedures [25, 16] (including techniques such as tabu search). Several studies
have shown (e.g., [24]) that the most effective quick procedure is the heuristic due to Nawaz et
al. [15]. In our work, we attempt to take advantage of this result and extend their algorithm to
the case where setup times are included. Our implementation, NEHT-RB(), is further described in

Section 4.2.

2.2 Sequence-Dependent Setup Times

Heuristics: The most relevant work on heuristics for Fls;;z, prmu|Cpax is due to Simons [21].
He describes four heuristics and compares them with three benchmarks that represent generally
practiced approaches to scheduling in this environment. Experimental results for problems with up
to 15 machines and 15 jobs are presented. His findings indicate that two of the proposed heuristics
(SETUP() and TOTAL()) produce substantially better results than the other methods tested. This

is the procedure we use as a benchmark to test our algorithms.

Fract optimization: To the best of our knowledge, no exact methods have been proposed for the
SDST flowshop. However, Gupta [11] presents a branch-and-bound algorithm for the case where
the objective is to minimize the total machine setup time. No computational results are reported.

All other work is restricted to the 1- and 2-machine case.

2-machine case: Work on F2|s;;, prmu|Cpax includes Corwin and Esogbue [4], who consider a
subclass of this problem that arises when one of the machines has no setup times. After estab-
lishing the optimality of permutation schedules, they develop an efficient dynamic programming
formulation which they show is comparable, from a computational standpoint, to the corresponding
formulation of the traveling salesman problem. No algorithm is developed.

Gupta and Darrow [10] establish the A"P-hardness of the problem and show that permutation
schedules do not always minimize makespan. They derive sufficient conditions for a permutation
schedule to be optimal, and propose and evaluate empirically four heuristics. They observe that the
procedures perform quite well for problems where setup times are an order of magnitude smaller
than the processing times. However, when the magnitude of the setup times was in the same range
as the processing times, the performance of the first two proposed algorithms decreased sharply.

Szwarc and Gupta [22] develop a polynomially bounded approximate method for the special
case where the sequence-dependent setup times are additive. Their computational experiments

show optimal results for the 2-machine case. Work on the 1-machine case is reviewed in [19].

3 Mixed Integer Programming Formulation

In the flowshop environment, a set of n jobs must be scheduled through a set of m machines, where
each job has the same routing. Therefore, without loss of generality, we assume that the machines
are ordered according to how they are visited by each job. Although for a general flowshop the job
sequence may not be the same for every machine, here we assume a permutation schedule; i.e., a
subset of the feasible schedules that requires the same job sequence on every machine. We suppose
that each job is available at time zero and has no due date (i.e., for job j ready time r; = 0 and
due date d; = 00). We also assume that there is a setup time which is sequence-dependent so

that for every machine ¢ there is a setup time that must precede the start of a given task that

depends on both the job to be processed (k) and the job that immediately precedes it (7). The
setup time on machine ¢ is denoted by s;;; and is assumed to be asymmetric; i.e., s;;; # s;x;. After
the last job has been processed on a given machine, the machine is brought back to an acceptable
“ending” state. We assume that this last operation takes zero time because we are interested in job
completion time rather than machine completion time. Our objective is to minimize the time at
which the last job in the sequence finishes processing on the last machine, also known as makespan.

As pointed out in Section 1, this problem is denoted by F|s;jr, prmu|Cpax or SDST flowshop.

Example 3.1 Consider the following instance of F2|s;;x, prmu|Cpax with four jobs.

pi; |1 2 3 4 sp |12 3 4 sy |12 3 4
16 3 2 1 0 |3 4 1 7 0 |2 3 1 6
2 12 2 4 2 1 |- 5 3 2 1 |- 1 35
2 |5 - 3 1 2 |4 - 3 1
3 /2 1 - 5 3 13 4 - 1
4 13 2 5 - 4 |7 4 -

A schedule § = (3,1,2,4) is shown in Figure 1. The corresponding makespan is 24i, which is
optimal. a

[Setup time] Processing time

wi| | s |] 1 | | 2 [14

e[l [[[(2 [4]

Time

Figure 1: Fzample of a 2 x 4 SDST flowshop

3.1 Notation

In the development of the mathematical model, we make use of the following notation.
o Indices and sets

m number of machines

n number of jobs

i machine index; ¢ € I = {1,2,...,m}
J, k job indices; j € J = {1,2,...,n}

Jo = J U {0} extended set of jobs, including a dummy job denoted by 0

e Input data

pi; processing time of job j on machine ;0 € 1,5 € J

Si;5 setup time on machine ¢ when job j is scheduled right before job k; i€ I, j € Jo, ke J

o Computed parameters

A; upper bound on the time at which machine ¢ finishes processing its last job; ¢ € I,

Z T}glg}({sijk}v Z 5%2}?{52']‘16}

J€Jo keJ

A = A+ Y pij+min {
jeJ

where Ag =0
B; upper bound on the initial setup time for machine 2; 7 € I,
B; = max{s;
¢ jed { 20]}
o Auxiliary variables

C'; non-negative real variable equal to the completion time of job j; j € J

Cmax non-negative real variable equal to the makespan; Chyax = max;e7{C;}

3.2 Mixed Integer Programming Formulation
We define the decision variables as follows:

1 if job j is the immediate predecessor of job k; j, k € Jy
Xip =
! 0 otherwise

yi; = starting time of job j on machine ¢;: € 1,5 € J

|

In the definition of x;;, notice that xo; = 1 (xjo0 = 1) implies that job j is the first (last) job in

the sequence for j € J. Also notice that s;or denotes the initial setup time on machine ¢ when job &

has no predecessor; that is, when job k is scheduled first, for all £ € J. This variable definition

yields what we call a TSP-based formulation.

(FS) Minimize Cmax
subject to
JEJy
i#k
Z Xk = 1 7€ Jo

ke Jy

k#j

Vii+pi;+sie < yut+A(l—x) €1, 5,ked, j#k

(1.1)

(1.2)

(1.3)

(1.4)

siok < yie+ Bi(l—xor) €1, k€] (1.5)
Ymj+Pmj < Cmax jeJ (1.6)
Vi trij < Vit ielI\{m},jelJ (1.7)
x;r € {0,1} Jk€Jo, Ak (1.8)

yij =2 0 iel, jelJ (1.9)

Equations (1.2) and (1.3) state that every job must have a predecessor and successor, respec-
tively. Subtour elimination constraints are given by eqs. (1.4) and (1.5). The former establishes
that if job j precedes job k, then the starting time of job k on machine 7 must not exceed the
completion time of job j on machine ¢ (y;; + p;;) plus the corresponding setup time. The latter
says that if job k is the first job scheduled on machine ¢, then it must start after the initial setup
time s;o05. Constraint (1.6) assures that the makespan is greater than or equal to the completion
time of the last machine, while (1.7) states that a job cannot start processing on one machine if it
has not finished processing on the previous one.

In formulation (1.1)-(1.9), we assume that s;;0, the time required to bring machine 7 to an
acceptable end state when job j is processed last, is zero for all 7 € I. Thus the makespan is
governed by the completion times of the jobs only. Note that it is possible to combine p;; 4 51
in (1.4) into a single term ¢;;5 = p;; + si;j5, but that we still need to handle the processing times

pi; separately in constraints (1.6) and (1.7).

3.3 Special Cases

Lemma 1 Let S = (1,2,...,n) be a feasible schedule of F|s;;;, prmu|Cmax. Let e;; be the earliest

completion time of job j on machine 1
eij = max{eiyj, €1+ sij-1;}+pi

fori=1,2,...,m, j=1,2,...,n, and e;o = eg; = 0. Let ¢;; be the minimum remaining time from

the start of job j on machine 1 to the end of operations on the last machine
¢ij = max{Git1,5, ¢ij+1 + Sijj+1} + Pij

fori=m,m-1,...,1, 5 =n,n—1,...,1, and ¢; n41 = ¢n41,; =0. Let 7 and j+ 1 be any two
adjacent jobsin S (j=1,2,...,n—1)andlet "= (1,...,j— 1,7+ 1,7,j+ 2,...,n) be the schedule

where jobs j and j + 1 are exchanged (with completion time e;»]« and remaining time qu).

If all of the following conditions hold for each i =1,2,...,m
(a) There is no idle time between jobs j — 1 and j in S (e;; = €; ;-1 + Sij—1.; + Pij)
(b) There is no idle time between jobs j+1 and j+2 in S (¢; j41 = Gij+2 + Sij+1,542 + Pij+1)

(¢) There is no idle time between jobs j—1 and j+1 in ' (e} .1y =€l . | +8;j-1 41 + Pij+1)

(d) There is no idle time between jobs j and j+2 in 5" (¢} ; = ¢/ ;1o + sijiv2 + Pij)
(€) Sijm1+ it T Sijarjrz > Sij—1j41 + Sija1j + Sijj+2

then S’ has a lower makespan than S,
Cmax(9") < Crax(19)-

Proof: First notice that both 5 and S5’ are identical sequences except for jobs j and 7 + 1. This
implies that e;; = €/, forall k =1,2,...,j— 1 and ¢;x = ¢/, forall k = j+2,5+3,...,n. Thus,

from (e) we obtain
€ -1+ Sij—1;+ Pij + G j+2 + Sij+1,542 + Pij+1 > 6;'7]‘_1 + 81541+ Pij1+ f]f,]urz + 855,42 + Dij
for all 7. Conditions (a)-(d) yield
€ij T Sijj+1 T Gig+1 > 627]4_1 + Sij+1,; + %/'j for all ¢
In particular, this is valid for the maximum over
max {es; + it + @igard > max {el o + s+

But these expresions correspond to the makespan values of S and S, respectively, as it can be seen

from equation (2), in Section 4.2 (with e;; = f;;); that is,
Cmax(s) > Cmax(sl)-

|

An appropiate data structure should keep track of both e;; and ¢; for all + and j. This would
make it possible to check conditions (a)-(d) in O(m) time.

Another way to compute the makespan of a given schedule 5 = (1,2,...,n) is by determining
the critical path in a direct graph corresponding to the schedule. The graph, depicted in Figure 2,
is constructed as follows: for each operation, say the processing of job j on machine ¢, there is
a node (¢,7) with a weight that is equal to p;;. For each machine ¢, there is a node (z,0) that
represents the initial or “zero” state. The setup times s;; ;41 are represented by arc going from
node (7, j) to node (7, j+ 1) with a weight that is equal to s;; 41, for e =1,...,m,7=0,...,n—1.
Node (¢,7),i=1,...,m—=1,j =0,...,n, has also an arc going to node (i+ 1,7) with zero weight.
Note that nodes corresponding to machine m have only one outgoing arc, and that node (m,n) has
no outgoing arcs. The total weight of the maximum weight path from node (1,0) to node (m,n)
corresponds to the makespan under the schedule 5.

An interesting property can be obtained when comparing two instances of the SDST flowshop

with no initial setup times. Let F'S be an instance of F'|s;;, prmu|Cmax With processing times p;;

—_— — .. —
,JJ+1
,— —,
e _— —_—
: I+l,j,]+1
S
m,0,1

Figure 2: Directed graph for makespan computation in a SDST flwoshop

and setup times s;;5. Let us assume that s;o5 = 0 forall i =1,...,m, and k = 1,...,n. Let F'S
another instance of the SDST flowshop with processing and setup times given by
P;']‘ = Pmt1-ij, and

/ —_ . .
Siik = SmAl—ikgs

respectively. This basically implies that the first machine in the FS’ is identical to the last machine
in F'S; the second machine in F'S’ is identical to machine m — 1 in F'S, and so on. The following

lemma applies to these two flowshops.

Lemma 2 Let S = (1,...,n) be a sequence of jobs in IS with corresponding makespan Cpax(5).
If the jobs in FS' follow the sequence S = (n,n —1,...,1) (with makespan C! ")), then

max(
CmaX(S) C;nax(s)

Proof: If F'S under sequence S = (1,...,n) corresponds to the diagram in Figure 2 (with all
nodes (7,0) and incident arcs deleted), then FS' under 5" = (n,...,1) corresponds to the same
diagram with all the arcs reversed. The weight of the maximum weight path from one corner node
to the other corner node does not change. [
Lemma 2 states the following reversibility result: the makespan does not change if the jobs go
through the flowshop in the opposite direction in the reverse order.
Another special case of Fls;;z, prmu|Cpax which is of interest is the so-called proportionate

flowshop. In this flowshop the processing times of job j on each machine are equal to p;, that

is, pi; = pj, ¢+ = 1,...,m. Minimizing the makespan in a proportionate permutation flowshop is
denoted by F|p;; = p;, prmu|Cpax. This problem has a very special property when all setup times

are equal to a constant Sijk = S.

Lemma 3 For F|p;; = p;, sijk = 5, prmu|Cax, the makespan is given by
n
Crmax = »_pj+ns+(m—1) max{p;}
i=1
and is independent of the schedule.

Proof: From Figure 2 we can see that for any sequence of jobs S = (1,2,...,n) the critical path
starts at node (1,0), stays on machine 1 until it reaches node (1, k), where k = arg max;{p;}, stays
on job k until it reaches node (m, k), and ends by reaching node (m,n). [

Similar results on reversibility and proportionate flowshops for F|prmu|Cpax are discussed

in [17].

4 Heuristics
We study the following heuristics for F|s;;x, prmu|Cpax.

e SETUP(): This is the only previously existing procedure of which we are aware for the SDST
flowshop [21].

e NEHT-RB(): This is a modified version of a heuristic (NEH) proposed by Nawaz, Enscore and
Ham [15] for F||Cpax. We extend the NEH heuristic to handle setup times.

e GRASP(): Our proposed greedy randomized adaptive search procedure.

4.1 Simons’ SETUP() Heuristic

In the first of two phases of Simons’ heuristics, an instance of the ATSP is built as follows. Every
job is identified with a “city.” Procedure TOTAL() computes the entries in the distance (cost)
matrix as the sum of both the processing and setup times over all the machines. Procedure SETUP ()
considers the sum of setup times only. In the second phase, a feasible tour is obtained by invoking a
heuristic for the ATSP. This heuristic uses the well-known Vogel’s approximation method (VAM) for
obtaining good initial solutions to transportation problems with a slight modification to eliminate
the possibility of subtours.

It should be noted that Simons does not include a setup time for the first job to be processed.
In our formulation, this initial setup is considered so modifications were necessary to account for

it.

Procedure TOTAL(Q)
Input: Instance of the SDST flowshop.
Output: Feasible schedule 5.

Step 1. Compute (n+ 1) X (n + 1) cost matrix as ajr = > ; Sijk + 2_; Dik
Step 2. Apply VAM to (a;x) to obtain a tour §

Step 3. Output 5

Step 4. Stop

Figure 3: Pseudocode of Simons’ TOTAL() heuristic

Figure 3 shows the pseudocode for the TOTAL() heuristic. The SETUP() heuristic is given by the

same pseudocode, except for a modification in Step 1 that excludes the sum of processing times,
2 Pik-

Computational complexity: The computation of the cost matrix performed in Step 1 takes O(mn?)
time. The application of Voguel’s method to a (n + 1)-city problem is O(n?) and hence the overall
procedures TOTAL() and SETUP() have worst-case complexity of O(mn?).

4.2 NEHT-RB() Heuristic

The best known heuristic for the general flowshop scheduling problem with makespan minimization
is NEH, due to Nawaz et al. [15]. This procedure consists of inserting a job into the best available
position of a set of partially scheduled jobs; that is, in the position that would cause the smallest
increment to the value of the makespan. The original worst-case complexity of the heuristic was
O(mn?). Taillard [23] subsequently proposed a better way to perform the computations and came
up with a complexity of O(mn?). Here we extend the NEH heuristic to handle setup times as well
while maintaining the same complexity of O(mn?). We call this procedure NEHT-RB() (Nawaz-
Enscore-Ham, modified by Taillard, extended by Rios-Mercado and Bard).

The NEHT-RB() idea of building a feasible schedule is very simple. At each iteration of the
algorithm there is a partial schedule 5. A job h is selected from a priority list P of unscheduled
jobs. Nawaz et al. suggest an LPT (largest processing time) rule; that is, a list where the jobs
are ordered from largest to smallest total processing time. The partial schedule S and the job h
define a unique greedy function (j): {1,2,...,|9+ 1|} — R, where () is the makespan of the
new schedule S’ resulting from inserting job h at the j-th position (right before the j-th job)in 5.

10

Here, position |9 4 1| means an insertion at the end of the schedule. Job h is inserted into position

k= al’gmin]‘:1,...,|s+1| {¥(5)};

that is, the position in 5 that has the lowest makespan value.

Procedure NEHT-RB()
Input: Set P of unscheduled jobs.
Output: Feasible schedule 5.

Step 0. Set S =0
Step 1. Sort the jobs in P to form an LPT priority list
Step 2. while |P| > 0 do

Step 2a. Remove h, the first job from P

Step 2b. Compute (j) for every position j =1,...,][5+ 1]
Step 2c. Find k& = argmin {¢(j)}

Step 2d. Insert job h at position k in §

Step 3. Output 5

Step 4. Stop

Figure 4: Pseudocode of procedure NEHT-RB()

Figure 4 shows the pseudocode for the procedure. In Step 1 of NEHT-RB(), we form an LPT list
with respect to the sum of the processing times of each job over all machines. In Step 2b, we use

Taillard’s modification. Our modification incorporates sequence-dependent setup times.

Computing the partial makespans: We now describe how to efficiently compute the greedy function
¥(j) given in Step 2b of procedure NEHT-RB() (Figure 4). Assume for simplicity that a current
schedule is given by S = (1,2,...,k— 1) and let k denote the job to be inserted. In the following
formulas, a job index without brackets j denotes the job in position j, whereas a job index with

brackets [k] refers to job k itself. Define the following parameters:

o ¢;; = the earliest completion time of job j on machine ¢; (¢ = 1,...,m)and (j =1,...,k —1).

These parameters are recursively computed as

€;0 = 0
eoj = T;
eij = max{e;i 1, € -1+ i -1} + Pij

where 7; denotes the release time of job j. Here r; is assumed to be zero.

11

e ¢;; = the duration between the starting time of the job j on machine ¢ and the end of

operations; (¢ =m,m—1,...,1)and (j=k—-1,k—2,...,1).

¢Gr = 0
Gm+1,; = 0
¢; = max{qit1j, Gij+1+ Sij 1)+ Pij

o f;; = the earliest relative completion time on machine ¢ of job k inserted at the j-th position;
(i=1,2,...,m)and (j=1,2,..., k).

fio = 0
foj = 1%
fii = max{fi_1j, €ij1+ s -1m) + i)

e (j) = the value of the partial makespan when adding job k at the j-th position; (j = 1,..., k).

(7)) = max {fij+sipg, + i) (2)

where s; ;1. = ¢;; = 0 for j = k.

Procedure Makespans()

Input: Partial schedule S = (1,2,....k — 1) and job k to be inserted.
Output: Vector ¥(j) with the value of the makespan when job k is in-
serted in the j-th position of schedule S'.

Step 1. Compute the earliest completion times e;;
Step 2. Compute the tails ¢;;

Step 3. Compute the relative completion times f;;
Step 4. Compute values of partial makespan 1(j)
Step 5. Output vector ¥(7)

Step 6. Stop

Figure 5: Pseudocode of procedure for computing partial makespans

Figure 5 shows how these computations are performed in procedure Makespans(). Steps 1, 2,

and 3 of take O(km) time each. Step 4 is O(klogm). Therefore, this procedure is executed in

O(km) time. Figure 6 illustrates the procedure when job h is inserted at position 3 (between jobs

2 and 3) in a partial 4-job schedule.

12

[Setup time L] Processing time

wil] 2] 2 | | s[4

ve [[« [0 2 [7] BN NN

©) Time

we [] o [s] []4

M2 L+ B 2 [] s 4]
%2

(b) Time

B Setup time to be added
f31 %1

wil]] - M o~ Bl s [4
ve [] [[0 2 M) D s [] 4

f3o %2
(C) Time

Figure 6: Illustration of partial makespan computation

Computational complexity: The complexity of Step 1 of NEHT-RB() (Figure 4) is O(nlogn). At
the k-th iteration of Step 2; that is, k& jobs already scheduled, Step 2a takes O(1), Step 2b takes
O(km), complexity of Step 2c is O(klogk), and Step 2d takes O(km) time. Thus, the complexity
of Step 2 at the k-th iteration is O(km). This yields an overall time complexity of O(mn?) for one
execution of NEHT-RB().

Example 4.1 (Example 3.1 continued)
We will now illustrate how algorithm NEHT-RB() procedes.

Step 0: Initialize the set of scheduled jobs § = 0.

Step 1: Given the total processing time for each job

i 112 3 4
>ipij |8 5 6 3
form the LPT priority list as follows: P = (1,3,2,4).

13

Step 2: (Iteration 1) Job 1 is selected (and removed) from P. Now P = (3,2,4).
Because there are no scheduled jobs, insert job 1 into S = (1) and go to the

next iteration.

(Iteration 2) Job 3 is selected (and removed) from P. Now P = (2,4),|5| =1,

and (k) (makespan value when job 3 is inserted in position k in 5) is computed

as follows
k 1 2
P(k) | 13 18

Thus job 3 is inserted in position k& = 1 (at the begining of 5). S = (3,1).

(Iteration 3) Job 2 is selected (and removed) from P. Now P = (4), |9 = 2,
and (k) is computed as follows

k|1 2 3
o(k) |22 20 23

Thus job 2 is inserted in position & = 2 (immediatly preceding job 1). § =
(3,2,1).

(Iteration 4) Job 4 is selected (and removed) from P. Now P = {, |S| = 3, and
(k) is computed as follows

E |1 2 3 4
(k) |32 27 25 27

Thus job 4 is inserted in position & = 3 (immediatly preceding job 1). § =
(3,2,4,1).

Step 3: Output schedule S = (3,2,4, 1) with corresponding Ciax(9) = 25.

Note that the optimal schedule is 5* = (3,1,2,4) with Chax(5™) = 24.]

4.3 GRASP

GRASP consists of two phases: a construction phase and a postprocessing phase. During the
construction phase, a feasible solution is built, one element (job) at a time. At each iteration, all
feasible moves are ranked and one is randomly selected from a restricted candidate list (RCL). The
ranking is done according to a greedy function that adaptively takes into account changes in the
current state.

One way to limit the RCL is by its cardinality where only the top A elements are included. A
different approach is by considering only those elements whose greedy function value is within a
fixed percentage of the best move. Sometimes both approaches are applied simultaneosuly; i.e.,

only the top A elements whose greedy function value is within a given percentage p of the value

14

of the best move are considered. The choice of the parameters A and p requires insight into the
problem. A compromise has to be made between being too restrictive or being too inclusive. If
the criterion used to form the list is too restrictive, only a few candidates will be available. The
extreme case is when only one element is allowed. This corresponds to a pure greedy approach
so the same solution will be obtained every time GRASP is executed. The advantage of being
restrictive in forming the candidate list is that the greedy objective is not overly compromised; the
disadvantage is that the optimum and many very good solutions may be overlooked.

GRASP phase 1 is applied N times, using different initial seed values to generate a solution
(schedule) to the problem. In general, a solution delivered in phase 1 is not guaranteed to be
locally optimal with respect to simple neighborhood definitions. Hence it is often beneficial to
apply a postprocessing phase (phase 2) where a local search technique is used to improve the
current solution. In our implementation, we apply the local search every K = 10 iterations to the
best phase 1 solution in that subset. The procedure outputs the best of the N/K local optimal

solutions. Figure 7 shows a flow chart of our implementation.

N = number of phase 1 instances
K = subset size for phase 2

Initiaization
L = EMPTY (list of schedulesin working subset)
i = 0 (phase 1 counter)
Thest = EMPTY (best schedule)
Makespan(Tbest) = INFINITY

Assume N ismultiple of K

i i+1 Empty L
- .

o

o Thest v Replace Thest with T
utsp1l—.lé)P es iSN? Thest == T

No

Makespan(T) < Makespan(Tbest) ?
Phase 1: Construct feasible espan(m) espan() Y

schedule S(i)

\/Z
o
)

L = L+S()

best schedulein L to
obtain schedule T

Append S(i) to L Phase 2: Apply local search to

ILI=K?

Figure 7: Flow chart of complete GRASP algorithm

The fundamental difference between GRASP and other metaheuristics such as tabu search and

15

simulated annealing is that GRASP relies on high quality phase 1 solutions (due to the inherent
worst-case complexity of the local search) whereas the other methods do not require good feasible
solutions. They spend practically all of their time improving the incumbent solution and attempting
to overcome local optimality. For a GRASP tutorial, the reader is referred to [7].

Below we present a GRASP for Fs;ji, prmu|Cpax based on job insertion. This approach was
found to be significantly more successful than a GRASP based on appending jobs to the partial
schedule.

GRASP for the SDST Flowshop: The GRASP construction phase follows the same insertion idea
as algorithm NEHT-RB() discussed in Section 4.2. The difference between them is the selection
strategy for inserting the next unscheduled job into the partial schedule. Recall that NEHT-RB()

always inserts the job in the best available position.

Procedure GRASP()

Input: Set P of unscheduled jobs and size A of the restricted candidate
list.

Output: Feasible schedule 5.

Step 0. Set S =10
Step 1. Sort the jobs in P to form an LPT priority list
Step 2. while |P| > 0 do

Step 2a. Remove h, the first job from P

Step 2b. Compute (j) for every position j =1,...,][5+ 1]
Step 2c. Construct the RCL with the best A positions

Step 2d. Choose randomly a position k from RCL

Step 2e. Insert job h at position k in §

Step 3. Output 5

Step 4. Stop

Figure 8: Pseudocode of GRASP() phase 1

In GRASP(), the positions available for insertion are sorted by nondecreasing values of ¥(j) and
a restricted candidate list is formed with the best A positions. Preliminary testing has shown that
for this type of scheduling problem, A = 2 works best. The probabilistic strategy of GRASP() selects
one of the positions in the RCL randomly with equal probability. The job h is inserted at the
selected position into the current partial schedule S and the completion times C;; for all jobs in

the schedule are updated. Figure 8 shows the pseudocode of the procedure (phase 1). Notice that

16

GRASP () reduces to NEHT-RB() for the extreme case A = 1.

In Step 1 of GRASP(), we form an LPT (largest processing time) priority list with respect to

the sum of the processing times of each job over all the machines. In Step 2b, we use procedure

Makespans (), which was seen in Section 4.2 to require O(km) time.

Computational complexity: The complexity of Step 1 is O(nlogn). At the k-th iteration of Step
2 (k jobs already scheduled), Step 2a takes O(1), Step 2b takes O(km), complexity of Step 2c is
O(klog A), Step 2d can be done in O(log A\) time, and Step 2e in O(km). Thus, the complexity of
Step 2 at the k-th iteration is O(km). This yields a time complexity of O(mn?) for one execution

of GRASP() phase 1. Therefore, the overall phase 1 time complexity is O(Nmn?).

Example 4.2 (Example 3.1 continued)
We now illustrate the GRASP construction phase with RCIL cardinality limitation A = 2.

Step 0:

Step 1:

Step 2:

Initialize the set of scheduled jobs 5 = (.

Given the total processing time for each job

i 112 3 4
2ipij |8 5 6 3
form the LPT priority list as follows: P = (1,3,2,4).

(Iteration 1) Job 1 is selected (and removed) from P. Now P = (3,2,4). Since
there are no scheduled jobs, insert job 1 into S = (1) and go to the next

iteration.

(Iteration 2) Job 3 is selected (and removed) from P. Now P = (2,4),|5| =1,
and (k) (makespan value when job 3 is inserted in position k in 5) is computed
as.
k 1 2
P(k) | 13 18
Because A = 2, RCL = {1,2}. One is selected at random, say k = 1. Thus,
job 3 is inserted in position £ = 1 (at the begining of 5). 5 = (3,1).

(Iteration 3) Job 2 is selected (and removed) from P. Now P = (4), |9 = 2,
and (k) is computed as follows

k|1 2 3
o(k) |22 20 23

Form RCL={1,2} and select one at random, say & = 1. Job 2 is inserted in
position k =1 (at the beginning of). 5 =(2,3,1).

17

(Iteration 4) Job 4 is selected (and removed) from P. Now P = (). For |5| = 3,
(k) is computed as follows

k 12 3 4

P(k) |30 26 29 30

Form RCL = {2, 3} and select one at random, say k = 3. Job 4 is inserted in
position k£ = 3 (immediatly succeding job 3). S = (2,3,4,1).

Step 3: Output schedule S = (2,3,4, 1) with corresponding Ciax(9) = 29.

Recall that the optimal schedule is 5* = (3,1,2,4) with Chax(5™) = 24. a

5 Local Search Procedures

Neighborhoods can be defined in a number of different ways, which have different computational
implications. Consider, for instance, a 2-opt neighborhood definition which consists of exchanging
two edges in a given tour or sequence of jobs. For this neighborhood, a move in a TSP takes O(1)
time to evaluate whereas a move in the SDST flowshop takes O(mn?). One of the most common
neighborhoods for scheduling problems is the 2-job exchange which has been used by Widmer and
Hertz [25] and by Taillard [23] for F||Cyax. Here we extend this procedure to handle setup times.
In addition, we generalize the 1-job reinsertion neighborhood proposed by Taillard [23] for F||Cax

to develop an L-job string reinsertion procedure (including the setup times).

5.1 2-Job Exchange

Let S be a given schedule and let Ng(j,k) be the schedule formed from S by exchanging the jobs
in the j-th and k-th position. Thus the neighborhood of 5 is defined as

N(S) = {Ns(j,k) : 1<j<k<n}

A neighbor of S is entirely defined by j and k. The size of N(.9) is given by

n(n—1)
NGs) = MY

An example is shown in Figure 9. The dotted lines represent the link from the last job in the
schedule to the start of the sequence (dummy job 0). The sequence on the right S’ represents the

neighbor Ng(2,5); that is, the jobs in S in the 2-nd (job 3) and 5-th (job 2) positions are exchanged.

It takes O(mn) to calculate the makespan of an individual two-job exchange and there are
O(n*) neighbors. Therefore, the evaluation of the makespan for all the neighbors of § is done in

O(n®>m) operations.

18

$=(1,3,54,2) S =N g(2, 5) = swap jobsin positions 2 and 5
S =(1,254,3)

Figure 9: Ilustration of 2-job exchange neighborhood

5.2 L-Job String Reinsertion

Given a feasible schedule 5, let Né:(j, k) be the schedule formed from S by removing a string of L
jobs starting at the j-th position and reinserting the string at position k. The neighborhood of S
is given by

N(o) = {N&G.k) s 1<jk<n+1-1L}
For a given value of L, N(S) is entirely defined by j and k. The size of N(5) is
NS = (n—1)*

An example of a 2-job string reinsertion neighbor is shown in Figure 10. The sequence on the
right 57 = N2(3,1)is formed from S by removing the 2-job string starting at the 3-rd position (jobs 5
and 4) and reinserting it at the position 1 (immediatley preceding job 2). The evaluation of all

makespans can be executed in O(n?m), using the Makespans() algorithm described in Section 4.2.

S=(2,3,54,1) S =N %(3,1) = move 2-string at position 3 to position 1
S=(5,4231)
Figure 10: Hlustration of 2-job string reinsertion neighborhood

5.3 Implementation Considerations

There are a few issues concerning the implementation of local search procedures. The first one is

how to “move” from the current feasible solution to a neighbor solution with a better objective

19

function value. There are two fundamental ways of doing this. The first is to examine the whole
neighborhood and then make a move to the “best” neighbor. The second is to examine one neighbor
at a time and make a move as soon as a better solution is found. The trade-off is that in the first
case we expect the incrementeal improvement in the objective value to be greater; however, the
computational effort is higher.

When the choice is to examine the neighborhood one element at a time, we must have a criterion
for selecting the “next” element. The neighbor selection criteria (NSC) defines a way of choosing the
next element to be examined in the neighborhood of current feasible solution 5. Typical examples
of NSC are a lexicographic strategy and a random strategy. In the former, one sorts all unexamined
neighbors of o according to a given lexicographic rule. A lexicographic first (last) rule selects the
first (last) element of the sorted list and removes it from the list of unexamined neighbors. In a

random strategy, the next neighbor is chosen randomly among all unexamined candidates.

Heuristic ~ String size NSC
SETUP() 3 Lexicographic (last)
NEHT-RB() 1 Lexicographic (last)
GRASP() 1 Lexicographic (first)

Table 1: Parameter selection for string reinsertion procedure

In our local search procedures we explore the neighborhood one element at a time. Preliminary
computations designed to fine-tune and compare the local search procedures described in this
section found that the string reinsertion uniformly outperformed the 2-job exchange procedure.
We also observed a very small improvement when the 2-job exchange procedure was applied to
the heuristic solutions delivered by algorithms NEHT-RB() and GRASP(). This led us to conclude
that these heuristics yield near local optima with respect to this neighborhood. The solution
given by SETUP() realized a marginal improvement with the 2-job exchange procedure, but still,
this improvement was very small when compared to the one obtained by the string reinsertion
procedure. For the string reinsertion procedure, the best choices of both NSC and string size

selection criteria for a particular heuristic are shown in Table 1.

6 Lower Bounds

Recall the MIP formulation (1.1)-(1.9) presented in Section 3. Constraint (1.7) implies that
Yij +Pij 2 Yi-ijtpic; €I\ {m}, jeJ
Therefore, the makespan constraint (1.6) can also be written as

Vii+pi; < Chmax t€1,5€J.

20

By relaxing the machine link constraints (1.7), the starting time for a job j on a given machine ¢
is no longer linked to the finishing time on the previous machine. We call this new problem SF'S
(separable flow shop), with optimal objective function value »(SF'S). It is clear that v(SFS) < »(FS),
where v(FS) is the optimal value of problem FS.

Let SEFS(¢) be the SFS problem where all the subtour elimination and makespan constraints
not related to machine ¢ are removed. Let S = (1,...,n) be a feasible schedule for SFS(¢). Here

we assume for simplicity that the jobs in ' are sequenced in order so the makespan of is given by
Cmax(S) = siom+p1+sae+p2+...4 Sin—10 + Pn + Sino
n n
= Pt DX
j=1 §=0
where index n + 1 corresponds to index 0 and s;,0 = 0. Thus SFS(¢) can be expressed as

(SFS(Z)) Minimize Z pij + Z Z SiikXjk (3.1)

J€Jo J€Jo keTg
k#j
subject to
doxjr o= 1 ke Jo (3.2)
JEJy
ik
doxpp = 1 jedo (3.3)
k€ Jy
k#j
Yij —Yik +pij +sir < A(l-x4) g kel j#Fk (3.4)
—Yik +sior < Bi(l—xo0r) keJ (3.5)
xjr € {0,1} Jkedo, j#k (3.6)
yij =2 0 jedJ (3.7)

forall 7 € 1.

6.1 A Lower Bounding Scheme for the SDST Flowshop

For a fixed machine ¢, 37, p;; in (3.1) is constant so problem SFS(7) reduces to an instance of the
ATSP, where Jy is the set of vertices and s;;; is the distance between vertices j and k. Equa-
tions (3.2) and (3.3) correspond to the assignment constraints. Time-based subtour elimination

constraints are given by (3.4) and (3.5). From the imposed relaxations we have
v(SFS(7)) < v(SFS) < v(FS)

for all + € I. Because any valid lower bound for SFS(¢), call it L;, is a valid lower bound for F'S,
we then proceed to compute a lower bound for every subproblem SFS(7) and obtain a lower bound
on v(FS) by

CLB

max

= e

21

The suggested lower bounding procedure for FS is outlined in Figure 11, where procedure
lower bound_ATSP(c;;) in Step lc is any valid lower bound for SFS(i) (ATSP with cost ma-

trix (¢;))-

Procedure lower bound FS() (Phase 1)
Input: An instance of the SDST flowshop with corresponding setup time
matriz (s;;5) and processing time matriz (p;;).

Output: Lower bound CLB_ for the value of the makespan Crax.

max

Step 1. for ¢ =1to m do

Step la. Let P, =), pij

Step 1b. Let ¢;; = s;5% be the input cost matrix for the ATSP SFS(¢)
Step lc. L; = P; + lower_bound_ATSP(c;)

Step 2. Output CLB = max;{L;}

Step 3. Stop

Figure 11: Pseudocode of lower bounding procedure for SDST flowshop (phase 1)

We have observed that in all of the randomly generated instances this lower bound CLE is

considerably better than the value v(LP) of the linear programming (LP) relaxation of problem

F'S. However, the following example shows that this is not always the case.

Example 6.1 Consider the following 2 x 3 instance of the SDST flowshop.

pij |1 2 3 sy | 1002 3 syk | 12 3
1|1 1 1 0 | 1 20 20 0 [20 20 1
2 (1 1 1 1| - 1 20 1 | - 20 20

2 |20 - 1 2 | 1 - 20
3 120 20 - 3 |20 1 -

An optimal solution is given by S* = (1,3,2) with Cpax(5*) = 45. The lower bound de-
livered by lower bound FS() is 6 when an exact procedure is used at Step lc in every call to

lower_ bound_ATSP(). The LP relaxation lower bound is 8.333. a

6.2 Lower Bounds for the ATSP

Several lower bounding schemes have been proposed for ATSP. Approaches based on the assign-

ment problem (AP) (obtained when subtour elimination constraints are relaxed), r-arborescence

22

problem (r-ARB) (obtained when the assignment constraints are relaxed) as well as on Lagrangean
relaxation are extensively discussed in [2].

It has been observed that for randomly generated instances, the AP relaxation provides a very
tight bound [2]. The improvement obtained by any other scheme is very slim compared to the
related computational effort. This makes AP an attractive approach when strong asymmetry is
present. However, for symmetric problems (¢ & ¢k;) the results are not as good. Computational
experience shows that the loss of effectiviness of exact algorithms for the symmetric case is mainly
due to the weakness of the available lower bounds.

To deal with harder cases, schemes based on additive approaches have been developed. Balas
and Christofides [1] proposed an additive approach based on Lagrangean relaxation. Most recently,
Fischetti and Toth [8] have implemented an additive scheme that outperformed the restricted
Lagrangean approach of Balas and Christofides. Their procedure yields a sequence of increasing
lower bounds within a general framework that exploits several substructures of the ATSP including
AP and r-ARB. We compared two lower bounding schemes for the SDST flowshop. One is based on
the AP relaxation and the other on the additive approach of Fischetti and Toth. In our experiments,
we observed that the improvement obtained by the latter was very small. This is attributed to the
fact that for the instances having setup times that are completely asymmetric, the AP bound is very
tight. This phenomenon was also observed by Fischetti and Toth for the ATSP. As the problem
becomes less asymmetric the results yielded by the additive approach improve considerably. Since
the data sets we are working with are assumed to have asymmetric setup times, we use the lower

bounding approach based on the AP relaxation.

6.3 Improving the Lower Bound for SDST Flowshop

Let (;; be the completion time of job j on machine <. In particular, let T; be the completion of
time of last job on machine z; that is, T; is the time at which machine ¢ finishes processing. Then

we have the following relation

Ci; = max{Ci_1,;,C; ;-1 + Sij—1,;} + Dij
In particular, if » represents the last job in the sequence, we have

Cin = max{Ci_1,n,Cin-1 + Sin—1n} + Pin

Because T; = ()}, we have that T; — p;, > T5_1. This is valid for job n, and certainly it

is also valid for pmin = min;ej{pi;}; ¢+ € I. This suggests the following recursive improvement
for a set {L;}, where L; is a valid lower bound on the completion time on machine ¢; i € I.
FA=L1—-(L;— pgnm) > 0, then L; can be improved by A; that is, L; — L; + A. Hence

CLYB — [, is a valid lower bound for Cipax.

max

23

Procedure lower_bound FS()
Input: An instance of the SDST flowshop with corresponding setup time
matriz (s;;5) and processing time matriz (p;;).

Output: Lower bound C:B_ for the value of the makespan Cyyay.

max

Step 1. for ¢ =1to m do

Step la. Let Py =3 pij

Step 1b. Let ¢;; = s;5% be the input cost matrix for the ATSP SFS(¢)
Step lc. L; = P; + lower_bound_ATSP(c;)

Step 2. for ¢ =2 to m do

Step 2a. ifA=1L,1—(L;—p™")>0

K3

Step 2b then L; — L, + A
Step 2. Output CLB =1,
Step 3. Stop

Figure 12: Pseudocode of lower bounding procedure for SDST flowshop

We have observed that this improvement step has achieved up to a 5% reduction on the relative

gap for most of the instances examined. The modified procedure is shown in Figure 12.

7 Experimental Work

All procedures were coded in C++ and compiled with the Sun C++4 compiler CC version 2.0.1
and optimization flag set to -0. CPU times were obtained by calling the clock() function on
a SPARCStation 10. To evaluate the various schemes, 20 instances of the SDST flowshop were

randomly generated for every combination
mxn € {(2,4,6)x(20,50,100)}
for two different classes of data sets (available from authors).
o Data set A: p;; € [1,99] and s;5; € [1, 10]
o Data set B: p;; € [1,99] and s;; € [1,99]

It has been reported that many real-world instances match data set A (e.g., [10]). Data set B is
included to allow us to investigate the effect on the algorithms when the setup times assume a
wider range.

For each set of instances we performed several comparisons:

24

o Summary statistics. To identify dominating characteristics we compiled the following objec-

tive function value statistics

— Number of times heuristic is best or tied for best

— Average percentage above lower bound
and time related statistics

— Average CPU time
— Worst CPU time

o Friedman test. This is a nonparametric test, analogous to the classical ANOVA test of

homogenity, which we apply to the null hypothesis:

under the assumption of normal distributions with a common variance, where 5, N, and G are
random variables corresponding to percentages above the lower bound generated by heuristics

SETUP (), NEHT-RB, and GRASP (), respectively. The test statistic is given by

(r— D{Br — rq(q + 1)*/4}

T
F Ap — Br
(r =20, ¢ = 3) where
roq
Ap = Y) (Ry)
=1 7=1

1 (S ?
b (50
r 7=1 \i=1
with R;; being the rank (from 1 to ¢) assigned to heuristic j (j = SETUP(), NEHT-RB(), and
GRASP()) on problem ¢ (lowest value gets rank of 1). In the case of ties, average ranks are

used. The null hypothesis is rejected at level « if the test statistic exceeds the 1 — a quantile

of the F-distribuition with ¢ — 1 and (r — 1)(¢ — 1) degrees of freedom.

o Wilcoxon test. If Friedman test is significant, that is, the null hypothesis is rejected, we at-
tempt to identify the “best” heuristic by performing a pairwise test among all candidates. We
apply the Wilcoxon signed rank test, a well-known nonparametric statistical test, to compare
any two of the three heuristics. For the two heuristics NEHT-RB() and GRASP (), for instance,
the null hypothesis is F[N]= E[G]; and the alternate hypothesis is either E[N]> E[G] or
E[N] < E[G]. The Wilcoxon test uses signed ranks of differences to assess the difference in

location of two populations. The Wilcoxon statistic W is computed in the following way.

25

First, rank the absolute differences of the original measurements, |d;| = |N; — G;|. If any
d; = 0, drop it from consideration and decrease r by one. If ties occur, average the ranks
of the items involved in the tie and use the average as the rank of each tied item. Second,
attach the sign of N; — G; to the rank on the i-th absolute difference, and denote this signed
rank by R;. Finally, obtain the sum W of the signed ranks:

W = Ri+...+ R,

The null hypothesis should be rejected at the a significance level if W > Wy_, (W < Wi_,)
if the alternate hypothesis is E[N] > F[G] (F[N] < FE[G]). For r > 10, the critical value W,

can be approximated by

Wo = Zlah/r(r+1)(2r +1)/6

where Z(a) is the standard normal fractile such that the proportion a of the area is to the

left of Z(a).

o FPurpected utility. This approach for comparing two or more heuristics is based on the notion
that we seek a heuristic that performs well on the average and that very rarely performs
poorly; that is, it is concerned with downside risk as well as expected accuracy. The procedure
incorporates this attitude towards risk in a risk-averse utility function. As suggested by

Golden and Stewart, we calculate the expected utility for each heuristic as
a—pB(1—bt)~¢

where b = s?/z,¢é = (z/s)? are estimated parameters of a gamma distribution; a = 600,
[= 100 are arbitrarily chosen parameters and ¢ = 0.05 gives a measure of risk aversion for

the utility function. It should be pointed out that ¢ must be less than 1/(3 for each heuristic.

The application of the Friedman test, Wilcoxon test, and the expected utility approach to evaluate
heuristics is proposed by Golden and Stewart [9] for the TSP.

The GRASP() heuristic settings used are A = 2 (which was found to be the best choice in a
preliminary study) and N = 100 iterations with a partial search strategy subset of size K = 10;
that is, we apply the construction phase NV = 100 times and then we do the local search once every
K = 10 iterations on the most promising solution in that subset (see Section 4.3). To evaluate the
quality of the heuristics we compared the results with those obtained from our AP-based two-phase

lower bounding procedure discussed in Section 6.

26

7.1

Experiment 1: Data Set A

n =20 n =50 n = 100
m LB UB RG H LB UB RG H LB UB RG H
2 Best 1193 1197 0.3 G | 2495 2505 0.4 G | 5554 5573 0.3 N
Average | 1088 1103 1.4 G | 2706 2736 1.1 G |5274 5316 0.8 S
Worst 1041 1073 3.1 G | 2539 2593 2.1 S | 4686 4754 1.5 S
4 Best 1196 1214 5.5 G | 3136 3172 1.1 G| 5349 5417 13 G
Average | 1180 1252 6.1 G | 2766 2855 3.2 G | 5378 5523 2.7 G
Worst 1056 1188 12.5 N | 2542 2700 6.2 N | 5223 5481 49 N
6 DBest 1293 1402 84 G | 3138 3249 3.5 S | 5629 5781 2.7 G
Average | 1243 1407 13.2 G | 2879 3054 6.1 G | 5448 5704 4.7 G
Worst 1168 1391 19.1 G | 2710 2990 10.3 N | 5230 5621 7.5 G

Table 2: Lower bound computations for data set A

Table 2 shows the lower bound (LB), upper bound (UB), relative gap percentage (RG) between

upper and lower bound. Also indicated is the heuristic (H) that found the upper bound for both

the best and worst instances (out of 20) in terms of their relative gap. Average values are shown

as well. Values are computed for each combination of m and n. Heuristics are identified by their

initials (S, N, and G). We observe that most of the 2-machine instances were solved within a 1%

relative gap. As the number of machines grow, the relative gap increases too.

n = 20 n = 50 n = 100
m Statistic S N G S G S N G
2 Best 0 3 17 5 14| 14 3 5
Average % deviation | 26 2.1 14|12 14 1.1]08 1.2 1.0
4 Best 0 2 18 1 16 1 1 18
Average % deviation | 9.1 7.0 6.1 |43 3.7 32|35 32 27
6 Best 1 4 15 0 18 0 2 18
Average % deviation | 17.7 14.1 13.2 |84 6.8 6.1 6.2 5.1 4.7

Table 3: Heuristic comparison for data set A

Summary statistics on the makespan are shown in Table 3. For each cell, entries in the first

(Best) row indicate the number of times each heuristic found the best (or tied for best) solution.

Entries in the second row show the average percentage above the lower bound. We first point

out that the difference between the makespans delivered by the algorithms is very small, although

GRASP() dominates in practically all instances, the only exception being the 2 x 100 data sets.

27

CPU time (sec)
n = 20 n = 50 n = 100
m Statistic S N G S N G S N G
2 Average | 0.12 0.11 2.45 1.87 1.21 18.40 | 12.62 8.86 114.29
Worst 0.38 0.26 2.80 | 3.13 2.13 22.71] 20.49 14.24 149.26
4 Average | 0.40 0.22 4.12 | 4.21 2.56 33.26 | 23.62 18.92 219.00
Worst 0.81 0.39 4.92 | 8.46 5.07 37.45|45.94 36.61 265.53
6 Average | 0.54 0.31 5.95| 6.99 3.56 49.48 | 43.07 30.21 328.76
Worst 0.85 0.60 6.69 | 13.55 6.65 60.15 | 67.67 52.15 437.94

Table 4: Time statistics for data set A

CPU time statistics are presented in Table 4. For these data sets, NEHT-RB() is on average 30%
to 70% faster than SETUP() and considerably faster that GRASP(). NEHT-RB() also provides the

best results regarding worst-case CPU time.

m n =20 n =50 n = 100

2 | GRASP() best | GRASP() best | SETUP() best
(p < 0.0004) | (p<0.0444) | (p < 0.0149)

4 | GRASP() best | GRASP() best | GRASP() best
(p < 0.0011) | (p < 0.0011) | (p < 0.0006)

6 | GRASP() best | GRASP() best | GRASP() best
(p < 0.0005) | (p<0.0011) | (p < 0.0004)

Table 5: Wilcozon test results for data set A

The Friedman test was significant (at & = 0.01) for each m X n combination. We then performed
a pairwise Wilcoxon test on each combination with results displayed in Table 5. The p-value shown
in the second row in every cell is the probability that the sample outcome could have been more
extreme than the observed one when the null hypothesis hold. Large p-values support the null
hypothesis while small p-values support the alternate hypothesis. As can be seen, all the tests are
significant at o« = 0.05. Procedure SETUP() is found to be statistically best for the 2 x 100 data
set, whereas in all other cases GRASP() dominates.

Comparisons between heuristics using the expected utility approach are given in Table 6, which
indicates that expected utility values are nearly identical. This supports the hypothesis that no

significant difference exists among the heuristics.

28

Expected utility

n =20

n = 50

n = 100

S N G

S N G

S N G

493.4 494.6 496.4

496.8 496.5 497.2

498.1 497.0 497.5

473.9 480.6 483.1

488.6 490.2 491.5

490.7 491.8 492.9

O | =N 3

443.6 457.2 460.5

476.4 481.3 483.3

483.3 486.3 487.5

Table 6: Fzpected utility comparison of heuristics for data set A

7.2 Experiment 2: Data Set B

n = 20 n =50 n = 100
m LB UB RG H LB UB RG H LB UB RG H
2 Best 1269 1392 9.7 G | 3155 3529 11.9 S | 5458 6139 125 S
Average | 1214 1468 209 G | 2837 3328 17.3 S | 5386 6167 145 S
Worst 1057 1375 30.1 S | 2668 3281 23.0 S |4792 5705 19.1 S
4 Best 1283 1613 25.7 G | 3167 4109 29.7 S | 5706 7350 288 S
Average | 1314 1823 38.7 G | 2945 4079 38.5 S | 5488 7431 354 S
Worst 1208 1852 53.3 S | 2840 4187 47.4 S |5235 7373 408 S
6 DBest 1505 2132 41.7 N | 3254 4614 41.8 G | 5679 8186 44.1 S
Average | 1374 2095 52,5 G | 3004 4557 b51.7 G | 5558 8248 484 S
Worst 1261 2114 67.6 G | 2700 4379 62.2 G | 5348 8173 528 S

Table 7: Lower bound computations for data set B

Table 7 shows the lower bound, upper bound, relative gap percentage between upper and lower
bound, and the heuristic that found the upper bound for both the best and worst instances (out of
20) in terms of their relative gap. The average relative gap percentage is shown as well. Values are
computed for each combination of m and n. We observe larger relative gaps; however, the quality
of the lower bound remains to be further investigated.

Summary statistics on the makespan are shown in Table 8. Entries have the same meaning as
those described in the previous section. As can be seen, SETUP() clearly dominates the other two
for the 100-job data sets. This tendency is observed in 50-job instances as well. However, as the
number of machines gets large, GRASP() tends to do better, which can be observed in the 6 x 50
data set. For the smallest sized instances (20-job data sets) GRASP() delivers better solutions than
the other two.

CPU time statistics are presented in Table 9. We observe that, on average, NEHT-RB() and
SETUP () take the same amount of time, both of them being considerably faster than GRASP(). It

29

n =20 n =50 n = 100
m Statistic S N G S N G S N G
2 Best 7 0 13 20 0 1 20 0 0
Average % deviation | 22.4 24.8 209 | 17.3 24.5 21.3 | 14.5 23.8 22.0
4 Best 2 0 18 15 1 4 20 0 0
Average % deviation | 43.7 43.4 38.7 | 38.5 43.0 40.2 | 35.4 44.1 42.2
6 Best 1 2 17 4 1 15 20 0 0
Average % deviation | 58.1 56.7 52.5 | 52.7 54.3 51.7 | 48.4 55.4 53.8
Table 8: Heuristic comparison for data set B
CPU time (sec)
n =20 n =50 n = 100

m Statistic S N G S N G S N G

2 Average | 0.11 0.12 2,50 | 1.19 1.53 1995 | 6.75 9.8 130.79

Worst 0.17 0.21 2.76 | 1.80 3.60 23.70 | 9.56 14.91 146.75

4 Average | 0.23 0.20 3.96 | 1.85 2.12 29.52 | 10.43 13.71 178.83

Worst 0.37 046 4.34]2.95 4.99 33.44 | 18.16 30.24 205.56

6 Average | 0.28 0.27 5.20 | 2.7 244 3742 | 15.92 16.86 219.23

Worst 0.50 0.78 5.90 | 4.31 4.42 46.78 | 24.28 38.83 259.28

Table 9: Time statistics for data set B

can also be learned from the table that SETUP() has a better empirical worst-case time behavior

than NEHT-RB().

The Friedman test was significant at the a = 0.01 level for each combination of m and n.
Wilcoxon test was then performed between each pair of heuristics (for every combination). These
results are shown in Table 10. It is found that SETUP () outperforms the other two heuristics in all
the 100-job instances. This is also true for the 2 x 50 and 4 x 50 instances. For the 6 x 50, and all

the 20-job data sets, GRASP() is

Comparisons between heuristics using the expected utility approach are given in Table 11. From

this table, we observe that SETUP() is the most accurate (in the 2 x 50, 4 x 50, and all the 100-job

superior.

instances) and that the rankings coincide with those determined from the previous results.

30

m n =20 n = 50 n = 100

2 | GRASP() best | SETUP() best | SETUP() best
(p < 0.0071) | (p<0.0005) | (p< 0.0004)
4 | GRASP() best | SETUP() best | SETUP() best
(p < 0.0006) | (p<0.0085) | (p< 0.0004)
6 | GRASP() best | GRASP() best | SETUP() best
(p < 0.0004) | (p<0.0242) | (p< 0.0004)

Table 10: Wilcoxzon test results for data set B

Expected utility
n =20 n =50 n = 100
S N G S N G S N G
423.7 411.9 429.6 | 445.4 413.5 428.5 | 456.0 418.1 426.3
298.7 299.6 331.5 | 334.4 303.1 323.4 | 357.0 297.2 311.3
162.1 174.8 220.9 | 221.6 205.9 231.9 | 263.6 198.5 214.9

O | =N 3

Table 11: Ezxpected utility comparison of heuristics for data set B

8 Conclusions

We have proposed two new insertion-based heuristics for F|s;;z, prmu|Cpax. Both procedures,
NEHT-RB() and GRASP (), were extensively evaluated and compared with the only existing heuristic,
TSP-based SETUP (), for this class of scheduling problem.

As part of the study two different local search procedures were also evaluated. It was found
that the string reinsertion procedure worked better in all cases. Another contribution of this work
centered on the development of a lower bounding scheme derived from the additive approach for
the ATSP. An improvement phase based on idle time insertion was included as well. The lower
bound obtained by the enhanced scheme was found to be marginally better than the LP relaxation
lower bound.

For data set A, the TSP-based heuristic worked better on the larger 2-machine instances; how-
ever, when the number of machines grows, the insertion-based heuristics NEHT-RB() and GRASP()
dominated. This stems from the fact that the fewer the number of machines, the more the problem
resembles an ATSP so a TSP-based procedure should do well. Recall that in SETUP() the distance
between jobs is computed as the sum of the setup times between jobs over all the machines. In
the extreme case where there is only one machine, the problem reduces entirely to an instance of

the ATSP. As more machines are added, the sum of setup times becomes less representative of

31

the “distance” between the jobs. How small does the number of machines have to be for SETUP ()
to do better than the insertion-based heuristics depends not only on the number of jobs, but on
the magnitude of the setup times as well. In data set A, we observe a threshold value of m = 2
or 3. However, for data set B, SETUP() was found to outperform the others with respect to both
makespan (especially for the 50- and 100-job data sets) and CPU time. This implies a threshold
value of m > 6.

SETUP() and NEHT-RB() run considerably faster that GRASP(). This is to be expected because
they are deterministic algorithms and will deliver a unique solution for each instance. By increasing
the iteration counter in GRASP(), more and perhaps better solutions can be found.

Our computational study also revealed that data set B instances appeared to be harder to solve.
We observed that while our heuristics delivered near-optimal solutions for several of the data set A
instances, the best solution (for data set B) had a relative gap on the average of 15-22%, 35-42%,
and 48-55% for the 2-, 4-, and 6-machine instances, respectively. Nevertheless, further work remains

to be done to determine the quality of the lower bound.

9 Acknowledgments

The research of Roger Rios-Mercado was partly supported by the Mexican National Council of
Science and Technology (CONACyT) and by a fellowship from The University of Texas at Austin.
Jonathan Bard was supported by a grant from the Texas Higher Education Coordinating Boards’
Advanced Research Program. We also thank Matthew Saltzman for allowing us to use his C
implementation of the dense shortest augmenting path algorithm to solve AP, and Mateo Fischetti

and Paolo Toth for providing their FORTRAN code to solve r-SAP.

References

[1] E. Balas and N. Christofides. A restricted Lagrangean approach to the traveling salesman
problem. Mathematical Programming, 21(1):19-46, 1981.

[2] E. Balas and P. Toth. Branch and bound methods. In E. L. Lawler, J. K. Lenstra, A. H.
G. Rinnoy Kan, and D. B. Shmoys, editors, The Traveling Salesman Problem: A Guided Tour
of Combinatorial Optimization, pages 361-401. John Wiley & Sons, Chichester, 1990.

[3] J. Carlier and I. Rebai. Two exact methods for the permutation flow shop problem. Furopean

Journal of Operational Research, 1996. (To appear).

[4] B. D. Corwin and A. O. Esogbue. Two machine flow shop scheduling problems with sequence
dependent setup times: A dynamic programming approach. Naval Research Logistics Quar-

terly, 21(3):515-524, 1974.

32

[65] T. A. Feo and J. F. Bard. Flight scheduling and maintenance base planning. Management
Science, 35(12):1415-1432, 1989.

[6] T. A. Feo and M. G. C. Resende. A probabilistic heuristic for a computationally difficult set
covering problem. Operations Research Letters, 8(2):67-71, 1989.

[7] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. Journal of
Global Optimization, 6:109-133, 1995.

[8] M. Fischetti and P. Toth. An additive bounding procedure for the asymmetric traveling
salesman problem. Mathematical Programming, 53(2):173-197, 1992.

[9] B. L. Golden and W. R. Stewart. Empirical analysis of heuristics. In E. L. Lawler, J. K.
Lenstra, A. H. G. Rinnoy Kan, and D. B. Shmoys, editors, The Traveling Salesman Problem,
chapter 7, pages 207-249. John Wiley & Sons, New York, 1990.

[10] J. N. D. Gupta and W. P. Darrow. The two-machine sequence dependent flowshop scheduling
problem. FEuropean Journal of Operational Research, 24(3):439-446, 1986.

[11] S. K. Gupta. n jobs and m machines job-shop problems with sequence-dependent set-up times.

International Journal of Production Research, 20(5):643-656, 1982.

[12] G. Kontoravdis and J. F. Bard. A randomized adaptive search procedure for the vehicle routing

problem with time windows. ORSA Journal on Computing, 7(1):10-23, 1995.

[13] M. Laguna and J. L. Gonzélez-Velarde. A search heuristic for just-in-time scheduling in parallel
machines. Journal of Intelligent Manufacturing, 2:253-260, 1991.

[14] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. Shmoys. Sequencing and scheduling:
Algorithms and complexity. In S. S. Graves, A. H. G. Rinnooy Kan, and P. Zipkin, editors,

Handbook in Operations Research and Management Science, Vol. /: Logistics of Production

and Inventory, pages 445-522. North-Holland, New York, 1993.

[15] M. Nawaz, E. E. Enscore Jr., and I. Ham. A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. OMFEGA The International Journal of Management Science,
11(1):91-95, 1983.

[16] E. Nowicki and C. Smutnicki. A fast tabu search algorithm for the flow shop problem. Report
8/94, Institute of Engineering Cybernetics, Technical University of Wroctaw, 1994.

[17] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Englewood Cliffs,
New Jersey, 1995.

33

[18]

[19]

[21]

[22]

[23]

[24]

[25]

C. N. Potts. An adaptive branching rule for the permutation flow-shop problem. Furopean
Journal of Operational Research, 5(1):19-25, 1980.

R. 7. Rios-Mercado and J. F. Bard. Flowshop scheduling with sequence-dependent setup times:
Heuristics, local search, and lower bounds. Working Paper, Operations Research Program,

University of Texas at Austin, November 1995.

S. Sarin and M. Lefoka. Scheduling heuristics for the n-job m-machine flow shop. OMFEGA
The International Journal of Management Science, 21(2):229-234, 1993.

J. V. Simons Jr. Heuristics in flow shop scheduling with sequence dependent setup times.

OMEGA The International Journal of Management Science, 20(2):215-225, 1992.

W. Szwarc and J. N. D. Gupta. A flow-shop with sequence-dependent additive setup times.
Naval Research Logistics Quarterly, 34(5):619-627, 1987.

E. Taillard. Some efficient heuristic methods for the flow shop sequencing problem. Furopean

Journal of Operational Research, 47(1):65-74, 1990.

S. Turner and D. Booth. Comparison of heuristics for flow shop sequencing. OMFEGA The
International Journal of Management Science, 15(1):75-85, 1987.

M. Widmer and A. Hertz. A new heuristic method for the flow shop sequencing problem.
Furopean Journal of Operational Research, 41(2):186-193, 1989.

34

