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Abstract

Emergency Medical Service (EMS) systems face critical challenges in several aspects of the decision-
making process which usually involves ambulance location and dispatching decisions. This is more
critical in countries or places where resources are even more constrained. This survey reviews the
evolution of EMS optimization models, from classical deterministic approaches to contemporary
probabilistic formulations. We examine deterministic models, including the location set cover-
ing and maximal covering location models, and probabilistic approaches, including queuing-based
models, and stochastic programming models that explicitly handle demand uncertainty. Special
attention is given to models developed for Mexican EMS systems, where ambulance availability
often falls 30-60% below World Health Organization recommendations. We present a detailed com-
parison of two recent approaches: a maximum expected coverage model that introduces partial
coverage through decay functions for heterogeneous ambulance fleets applied in Monterrey, and
a deterministic double standard model applied to Tijuana’s Red Cross operations. Our analysis
reveals how these models successfully address the unique challenges of developing countries through
practical solution methodologies that balance computational tractability with operational realism.

Keywords: Emergency medical services; Ambulance location; Stochastic programming; Partial

coverage; Developing countries.



1 Introduction

Emergency Medical Service (EMS) systems constitute a critical component of public healthcare in-
frastructure, providing urgent pre-hospital medical care and patient transportation. These systems
typically operate through a two-phase process. The first phase involves emergency call manage-
ment: operators receive calls through dedicated emergency numbers (commonly 9-1-1 in North
America), classify the emergency type, and determine the appropriate response. The second phase
encompasses the ambulance response cycle, including crew preparation, vehicle deployment, on-
site patient care, hospital transport when necessary, and return to base for subsequent calls [23].

Figure [1f illustrates this process.
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Figure 1: The EMS system workflow from call reception through patient delivery.

The complex decision-making inherent in EMS operations has motivated extensive research in
operational research methodologies over recent decades [9, 55, [I]. The most important part of the
process is the second phase, where ambulance dispatching decisions are made and it is imperative
to locate ambulance through the system to improve these dispatches. Primary concerns include
minimizing emergency response times while managing constrained budgets for material resources,
vehicles, and facilities [39]. The limited resource availability directly impacts patient care quality
and survival rates [41], 2, [32].

Response time optimization represents the most studied performance measure in EMS research
[16]. Rapid initial treatment is crucial for accident victims, trauma cases, and natural disaster
casualties. Evidence demonstrates that shorter response times improve survival rates in time-
sensitive conditions. For cardiac emergencies, each minute of treatment delay reduces survival
probability by approximately 24% [54]. Complementary objectives include maximizing demand
coverage [21] and directly improving patient survival rates [71].

Our research focuses on EMS systems within the Mexican healthcare framework. Mexico op-



erates a unified 9-1-1 emergency number managed by C-5 organizations (Centro de Control, Co-
mando, Comunicacion, Computo y Calidad), which receive and classify emergency calls. Medical
emergency calls may trigger ambulance dispatch, with telephone medical guidance provided during
the response interval. Paramedics deliver on-site care and arrange hospital transport as clinically
indicated [28].

EMS systems in developing countries, including Mexico, face severe resource constraints. Many
systems operate with 30-60% fewer ambulances than the ratio of four ambulances per 100,000
inhabitants [25], 53], 18] recommended by the World Health Organization (WHO). Mexican EMS
providers describe these conditions as comparable to wartime medical operations. This resource
scarcity motivates a fundamental modeling question: how to optimally allocate limited ambulances
when complete emergency coverage is unachievable. Unlike developed-country models that assume
sufficient resources, our approach must explicitly address partial or null coverage scenarios.

EMS models are conventionally classified along two dimensions. The first distinguishes deter-
ministic, probabilistic, and stochastic approaches, each employing different solution methodologies
[19]. The second differentiates static models, which optimize ambulance deployment for a specific
time period, from dynamic models that incorporate real-time ambulance repositioning. This sur-
vey focuses primarily on static stochastic models, formulated as stochastic integer programming
problems, with particular emphasis on their application in resource-constrained environments.

The rest of the paper is organized as follows. Section [2] surveys EMS models including deter-
ministic, probabilistic, and stochastic programming approaches, with focus on static models. This
is followed by Section |3| that discusses some of the most relevant heuristic approaches employed
for tackling EMS models. In Section [l we describe in detail two applications of EMS systems in

Mexico. Finally, in Section [5| we conclude with a discussion of attractive research directions.

2 Static EMS Models

Static models address ambulance location decisions for specific operational periods without con-
sidering real-time relocation. These models evaluate whether demand locations receive adequate
service based on predefined response time thresholds. While static models improve deployment
decisions through mathematical programming, queuing theory, and simulation techniques [I], [44],
they inherently overlook demand fluctuations and dynamic redeployment opportunities. Despite
this limitation, static models provide essential baseline solutions and computational efficiency ad-
vantages that make them valuable for operational planning, particularly in resource-constrained

settings.



2.1 Deterministic Models

Early static EMS models employed deterministic formulations. The Location Set Covering Model
(LSCM) [59] and Maximal Covering Location Problem (MCLP) [22] established the foundation
by focusing on maximum demand point coverage across service regions. These pioneering models
evolved to address increasingly complex EMS requirements.

Deterministic extensions accommodate multiple vehicle types and coverage redundancy. Backup
Coverage Problems [38] 29] and Double Standard Models [34. 26}, [30} [65] employ dual coverage radii
to ensure primary and secondary coverage. The facility location equipment-emplacement technique
model [60] distinguishes Basic Life Support (BLS) and Advanced Life Support (ALS) vehicle types.
Some formulations permit multiple ambulance co-location at individual sites to achieve redundant
coverage for critical demand points.

The introduction of partial coverage concepts marked a significant theoretical advance. Berman
et al. [14] generalized the MCLP by incorporating a decay function that classifies coverage into full,
partial, and null categories based on the distance between facilities and demand points. This
weighted demand approach acknowledges that coverage value deteriorates with increasing response
distance.

Karasakal and Karasakal [42] formalized partial coverage through the MCLP-P problem, which
employs a p-median formulation with three coverage levels: total, partial, and null. Their mono-
tonic decay function decreases proportionally with facility-to-demand distance. Demand points
achieve total coverage when facility distance remains within a maximum full-coverage threshold,
receive partial coverage for intermediate distances, and remain uncovered beyond a maximum par-
tial coverage distance. The authors developed a Lagrangian relaxation-based solution procedure.

Jian et al. [40] extended the MCLP for fire emergency applications by introducing both distance-
based and quantity-based partial coverage for multi-type vehicle fleets. Their decay function incor-
porates response time considerations, while quantity coverage evaluates whether dispatched vehicle
numbers meet emergency requirements. The model integrates demand priority and patient classi-
fication criteria to inform location and dispatch decisions simultaneously.

The development of these deterministic models demonstrates an evolution from approaches
centered on simple coverage maximization toward more sophisticated methodological frameworks
that incorporate operational constraints associated with practical implementation. The progression
from binary coverage concepts to partial coverage formulations, from single to multiple vehicle types,
and from location-only to integrated location-dispatch decisions reflects the field’s maturation in

addressing real-world EMS complexity.



2.2 Probabilistic Models

Probabilistic models introduce uncertainty through explicit probability modeling, particularly ad-
dressing ambulance availability. Unlike stochastic programming approaches discussed subsequently,
probabilistic models typically incorporate probability parameters into otherwise deterministic for-
mulations rather than optimizing over scenario distributions.

The Maximum Expected Covering Location problem [24] pioneered this approach by incorpo-
rating failure probabilities for potential facility sites. The model assumes uniform busy probabilities
across sites to evaluate ambulance availability and optimize placement accordingly. The Adjusted
Maximum Expected Covering Location model [II] refines this by allowing heterogeneous busy
probabilities per site to dispatch the nearest available unit. Both formulations employ hypercube
queuing models to calculate busy fraction probabilities [31].

Maximal Availability Location Problems (MALP) maximize coverage subject to availability
probability thresholds a. MALP I assumes uniform busy fractions across potential sites, while
MALP II incorporates site-specific busy fractions through hypercube modeling [58]. The queuing
MALP variant explicitly employs queuing theory to determine server availability [46].

The Rel-P model [9] extends LSCM by allowing multiple ambulance co-location at sites while
incorporating site-specific availability probabilities and busy fractions. The two-tier model [45] dis-
tinguishes BLS and ALS vehicle types with differential coverage radii, computing joint probabilities
for various ALS/BLS vehicle combinations within overlapping coverage regions.

McLay and Mayorga [49] investigated response time thresholds (RTT) through patient survival
rate analysis for cardiac arrest scenarios in Hanover County, Virginia. Rather than using con-
ventional patient outcome measures, their approach calculates RTT from random response times
based on facility-demand distances. This methodology informs hypercube-based models that opti-
mize ambulance location across rural and urban potential sites to maximize survival probability.

Alarcén-Bernal et al. [4] proposed a bi-level programming model to improve EMS system in
Mexico City by locating and deploying motorcycle ambulances as an alternative solution for en-
hancing response times and reducing the social impact of traffic accidents.

Dispatching optimization represents another probabilistic modeling direction. Bandara et al.
[10] developed a Markov Decision Process formulation that maximizes patient survival probability
by computing dispatch rewards across prioritized emergency calls. Toro-Diaz et al. [63] integrated
location and dispatching decisions through continuous-time Markov processes that simultaneously
minimize mean response time and maximize expected coverage while balancing flow equations for
busy fraction constraints. Their genetic algorithm approach proved particularly effective for mid-
size problems, often recovering nearest-dispatch rules as optimal solutions.

Enayati et al. [27] advanced this integration by incorporating multiple emergency call priority

levels through multicriteria optimization. Their framework enables multiple ambulances per site



with prioritized dispatch lists, integrating genetic algorithms and queuing sub-models to estimate
busy probabilities.

Amorim et al. [5] introduced simulation-based dynamic repositioning by partitioning operational
days into traffic-dependent scenarios (representing different day types and time periods). Their
approach evaluates whether ambulances should remain at initial deployment sites or relocate to
maximize patient survival under varying traffic conditions.

The evolution from static probabilistic models toward scenario-based formulations provides
increasingly realistic uncertainty representations [3, 56 [70]. While probabilistic models require
challenging assumptions about event likelihoods (particularly busy fractions), scenario-based ap-
proaches naturally accommodate diverse demand and traffic conditions. This transition enables
more operationally robust emergency response systems with superior dispatching performance
621 [43].

2.3 Stochastic Programming Models

Stochastic programming models explicitly optimize over probability distributions of uncertain pa-
rameters, with scenarios assigned explicit occurrence probabilities. These formulations include
two-stage stochastic programs with recourse, robust optimization problems, and chance-constrained
models. Integer variable presence yields stochastic integer programs, which present significant com-
putational challenges.

Boujemaa et al. [I7] formulated a two-stage integer stochastic programming model for ambu-
lance location-allocation. The first stage determines station opening decisions with associated fixed
costs. The second stage optimizes allocation given expected travel costs from stations to demand
points, considering coverage threshold constraints. The model distinguishes life-threatening from
non-life-threatening calls and differentiates ALS from BLS vehicle types. Demand scenarios specify
call volumes by type at each demand point. The objective minimizes total location-allocation costs,
solved via Sample Average Approximation to compute lower and upper bounds with relative good
optimality gaps.

Bertsimas and Ng [I5] developed integer stochastic and robust programming formulations
minimizing late-arrival fractions without ambulance repositioning. Their formulations implement
nearest-available-ambulance dispatch policies with call queuing when no ambulances are available.
The authors constructed four demand uncertainty structures: single (point-specific), local (point
and neighbors), regional (geographic regions), and global (entire service area). Solution approaches
include deterministic equivalent formulations for the stochastic version and column-and-constraint
generation for robust optimization. Performance comparisons against Maximum Expected Covering

Location and MALP benchmarks demonstrate solution quality advantages.



Dibene et al. [26] extended the Double Standard Model through incorporation of demand periods
structured by day type (weekday versus weekend) and time period (four daily intervals). Applied to
Tijuana’s Red Cross system. This approach increased demand point coverage above 95% through
ambulance redistribution to non-traditional base locations.

Yoon et al. [69] examined two-stage stochastic location-dispatch for heterogeneous ALS and
BLS fleets. The first stage locates ambulances; the second stage dispatches them upon call arrival.
The model maximizes expected coverage with penalties for unserviced calls, handling multiple si-
multaneous emergency responses categorized by priority. High-priority calls require ALS response,
potentially augmented by nearby BLS units. Low-priority calls accept either vehicle type. Sam-
ple Average Approximation solves small instances, while a Branch-and-Benders-Cut algorithm ad-
dresses large-scale problems. The authors additionally considered non-transport vehicles for on-site
care without hospital transfer.

Several works employ scenario bundles representing aggregate call volumes per demand node
during specific periods. Two-stage formulations deploy ambulances (first stage) and dispatch them
to emergencies (second stage). Beraldi and Bruni [I3] and Noyan [52] introduced probabilistic
constraints for reliability. Nickel et al. [51] minimized total location costs while ensuring minimum
coverage levels. Scenario bundles effectively capture high-demand periods (e.g., Friday evenings)
by representing concentrated call volumes over short intervals.

These stochastic programming developments demonstrate the field’s progression toward explicit
uncertainty quantification. By assigning probabilities to scenarios and optimizing expected perfor-
mance metrics, these models provide theoretically rigorous frameworks for EMS system design
under uncertainty. However, computational complexity often necessitates sophisticated solution

algorithms, particularly for large-scale applications in real urban environments.

3 Heuristics for Optimization of EMS Systems

There are traditional techniques for solving stochastic integer programs, and particularly applied for
stochastic models in ambulance location. These include Benders decomposition [69], sample average
approximation [67, [51], and the progressive estimating algorithm [43], to name a few. Many times,
these techniques turn out to be insufficent when attempting to solve large-scale instances.

Recent decades have witnessed significant heuristic development for stochastic combinatorial
optimization. Contemporary trends emphasize hybrid metaheuristics combining multiple algorith-
mic approaches, adaptive metaheuristics with dynamic parameter adjustment, and multi-objective
optimization techniques for managing conflicting objectives [36].

In this section, we focus our discussion on some of the most successful heuristic and metaheuristic
methods for addressing EMS system optimization models. For surveys discussing models and

classical algorithmic approaches for ambulance location problems, the reader is referred to the



works by Brotcorne et al. [I9], Aringhieri et al. [7], Bélanger et al. [12].

EMS applications have benefited substantially from heuristic methodologies. Mayorga et al. [47]
developed a constructive heuristic implementing districting and dispatching strategies that improve
patient survival probability through response time optimization. Their approach maintains fixed
ambulance locations while incorporating patient priority in dispatch decisions.

Toro-Diaz et al. [64] applied Tabu Search to minimize mean response times in queuing-based
EMS models. Their non-linear stochastic mixed-integer programming formulation accounts for
busy fractions at stations with multiple ambulance co-location. The embedded queuing sub-model
represents a finite-state continuous-time stochastic process, computationally prohibitive for large-
scale systems. The Tabu Search heuristic enables objective function evaluation within reasonable
computational budgets.

Chanta et al. [20] proposed a hybrid Tabu Search with embedded queuing for optimizing emer-
gency unit location and dispatch. This methodology addresses spatial placement and dynamic
dispatching through queuing theory, accommodating stochastic emergency incidents and response
time variability. The hybrid approach demonstrates substantial response time reductions and cov-
erage improvements essential for effective emergency management.

Nadar et al. [50] consider a joint ambulance location and dispatch problem for a multi-tier
ambulance system. The proposed problem addresses three key decisions: the location of ambu-
lance stations, allocation of ambulances to these stations, and the preference order of stations for
dispatching ambulances. They present a mixed-integer nonlinear programming model with a sur-
vival probability-based objective function, They propose an adaptive variable neighborhood search
metaheuristic to solve the problem The effectiveness of the proposed approach is validated using a
dataset generated from the city of Kolkata in India.

While heuristic literature for two-stage stochastic integer programming remains limited, re-
searchers strategically employ heuristics for specific model components. These focused applications
improve specific system functionalities, resulting in superior global performance when addressing
stochastic programming challenges in EMS. Collectively, the examined methodologies provide the
foundation for formulating novel problems that integrate diverse strategic elements within compre-
hensive frameworks for EMS system optimization.

As discussed previously, the limited resource availability in Latin America significantly affects
the performance of the emergency medical system, often resulting in unmet emergency medical
needs due to suboptimal operational strategies and insufficient research focused on improving the
system in resource-constrained settings. Consequently, the Mexican context presents a critical
opportunity to contribute to system optimization and thus improve the timeliness and quality of
patient care delivery. Given that multiple factors influence the performance of the EMS system in
Mexico and that various strategic decisions are required for improvement, it becomes essential to

integrate several of the techniques, methodologies, approaches, and tools previously described.
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integrate several of the techniques, methodologies, approaches, and tools previously described.

4 Models for Mexican EMS Systems

Mexican EMS systems exemplify the challenges faced by developing countries with severe re-
source constraints. Operating at 30-60% below WHO-recommended ambulance ratios, these sys-
tems require fundamentally different modeling approaches than those developed for well-resourced
developed-country contexts. This section examines two recent modeling efforts specifically address-
ing Mexican EMS system optimization: an integer stochastic programming model incorporating
partial coverage for heterogeneous fleets, and an integer multi-period version of a deterministic
model for Tijuana’s Red Cross operations. While these modeling approaches differ substantially
in their system assumptions and solution methodologies, both address the same fundamental op-
timization problem: maximizing emergency coverage through optimal ambulance location, which
could enable improved spatial resource distribution and, consequently, could contribute to reduced
response times under severe resource scarcity. The convergence of these distinct methodological
frameworks toward ambulance location optimization underscores the critical importance of strategic

resource positioning in resource-constrained EMS environments.

4.1 A Double Standard Model for an EMS System in Tijuana [26]

The model in this section was presented by Dibene et al. [26]. It uses as case study the city of
Tijuana with 1.6 million inhabitants that are served primarily by the Red Cross of Tijuana (RCT),
which operates 11 ambulances from 8 bases, yielding approximately one ambulance per 145,000
inhabitants. This contrasts sharply with 1990s U.S. cities maintaining ratios of one ambulance per
51,000 inhabitants [I§]. Despite severe resource constraints, RCT responds to approximately 98%
of emergency requests, providing annual care to roughly 37,000 people.

Performance metrics reveal critical deficiencies. RCT’s average response time reaches 14 minutes
with 7-minute standard deviation, substantially exceeding established standards. The U.S. National
Fire Protection Association recommends 4-minute BLS and 8-minute ALS response times [57]. The
U.S. EMS Act stipulates 95% of calls should receive service within 10 minutes [9]. These benchmarks

motivate the Tijuana optimization study.



Determining optimal ambulance placement to maximize response time performance and popula-
tion coverage represents a fundamental EMS management challenge [19]. Strategic unit positioning
enables timely, efficient medical intervention during critical emergency phases. While debate exists
regarding universal patient outcome improvements from meeting specific response time targets, em-
pirical evidence demonstrates that substantial standard deviations significantly deteriorate patient
conditions [19].

The model employed by Dibene et al. [26] is based on the double standard model (DSM) due
to Gendreau et al. [34], which is a deterministic integer programming model belonging to a class
of backup coverage models. The model by Dibene et al. [26] incorporates five key components:
potential base locations (public and private facilities suitable for ambulance deployment); call de-
mand and priority (historical EMS call data including geographic origins and severity classifications
via color-coded scales); demand periods (temporal variations by time of day and day type); de-
mand points (discrete geographic partitions aggregating EMS calls into analytically manageable
regions); and average travel times (facility-to-demand-point transportation times from geographic

information systems).

Model Formulation

The problem is modeled by a set V' of demand points (emergency requirement locations) and a set
J representing potential ambulance location sites. For each 7 € V and j € J, tj; denotes the travel
time between site j and demand point 3.

Given pre-specified standard time r > 0, demand point i is covered by site j if t;; < r. The set
of sites covering demand point ¢ within radius r is J] = {j € J : tj; < r}. Demand point ¢ achieves
coverage within radius r if at least one ambulance is located at any site in J; .

There are eight different demand pattern periods represented by the set of periods S = {1,...,8},
which represent different time-dependent demand patterns: nights, mornings, afternoons and
evenings for weekdays and weekends. Parameter d represents the number of EMS calls within
the region surrounding demand point ¢ € I for period s € S. Additionally, wjd] > 0 represents a
weighted demand where each demand point is characterized, with w; > 0 denoting a period-specific
weight factor.

The original DSM maximizes demand covered at least twice within standard time r; > 0 subject
to: (i) all demand covered at least once within ro > 7q; (ii) fraction a € [0, 1] of demand covered
within ry; (iii) constraint (ii) satisfied using a total of p > 0 ambulances; (iv) at most p; < p
ambulances per site j € J.

The DSM by Dibene et al. [26] (named DSM-D) modifies these requirements for period-dependent
demand. Constraint (ii) becomes: fraction a of demand in each period s € S must be covered within

r1. The objective becomes: to maximize the weighted sum of demand covered at least twice within



ry1 over all demand periods s € S.
Let p° denote the weight associated to demand period s for double coverage demand, J;* be
the sites covering demand point ¢ within 71, and J;? be the sites covering ¢ within . The integer

programming model for DSM-D is given by:

Maximize Z p° Z w;id; z (1)

ses eV

subject to Z xj>1 eV (2)
JeT?
deyizade se S (3)
eV icV
ijZyi—in 1€V (4)
jeJgit
zi < Y eV (5)
> wj=p (6)
jeJ
Tj < pj jed (7)
Yi, Zi € {O, 1} 1el (8)
z; €ZT jed (9)

Variable x; represents the number of ambulances located at site j. Binary variable y; = 1
if demand point i receives single coverage within r;, while z; = 1 if demand point ¢ has double
coverage within ry.

Constraints ensure all demand points receive at least single coverage within ro. Constraints
mandate minimum fraction « of demand period achieves coverage within ;. Constraints (|4))
require sufficient ambulances within r; for single and double coverage. Constraints enforce
logical dependency between double and single coverage. Constraints @f limit total and per-site

ambulance quantities.

4.2 A Maximum Expected Coverage Model with Partial Coverage in Monter-
rey [33]

Garcia-Ramos et al. [33] addressed optimal location and dispatch for limited heterogeneous ambu-
lance fleets under demand uncertainty. Their formulation distinguishing feature is explicit partial
coverage incorporation through decay functions, acknowledging the practical reality that resource-
constrained systems cannot achieve complete emergency coverage. The model maximizes both

total and partial emergency coverage, ensuring patients receive timely medical intervention within

10



clinically motivated time thresholds.

The formulation employs a two-stage stochastic integer programming model. The first stage
determines ambulance location and type-specific allocation. The second stage optimizes ambulance
dispatch to accident sites. Partial coverage implementation through decay functions represents
a critical innovation for resource-constrained environments, providing decision-making value even

when complete coverage proves infeasible.

Model Formulation

The model treats heterogeneous ambulance types, distinguishing BLS and ALS vehicles. A funda-
mental constraint permits ALS-to-BLS substitution (ALS vehicles can serve BLS-designated calls)
while prohibiting reverse substitution, as BLS vehicles lack clinical capabilities for ALS-level emer-
gencies [8].

Limited prior work addresses heterogeneous ambulance fleets. McLay [48] optimized location
and coordination using hypercube queuing for survivability improvement. Grannan et al. [35]
developed an integer linear programming model for military medical evacuation with multiple
air asset types and prioritized calls. Yoon et al. [69] considered two vehicle types, though one
represented a rapid-response unit without full ambulance capabilities. Critically, no prior work
integrates heterogeneous fleets with partial coverage formulations.

The contemporary paradigm recognizes that simultaneous location-dispatch optimization yields
superior solutions compared to sequential approaches [12], 26} [68]. Recent works demonstrate ben-
efits of integrated optimization [64] [, [5].

The stochastic programming formulation generates demand scenarios by sampling historical
emergency call data, capturing high-demand period characteristics (e.g., Friday evenings). Follow-
ing Yoon et al. [69], time is not modeled continuously; rather, each vehicle permits single assignment
during designated high-demand periods [73]. While Boujemaa et al. [I7] similarly employs call bun-
dles, that work excludes heterogeneous fleet considerations.

The model is called Maximum Expected Coverage (MEC). While two key decisions exist for
system response (ambulance location and dispatching), the primary objective consists of covering
the greatest number of medical emergencies, whether totally or partially. This model considers
two types of ambulances: ALS and BLS. The decisions adopted are oriented toward a specific
time period, which was defined as those periods when high traffic peaks occur. One of the main
factors affecting the system under real-world conditions is the uncertainty regarding the number of
calls entering the system; given the lack of knowledge about how many calls there will be, where
attention will be required, and what type of medical care will be necessary, it becomes considerably
complex to make decisions about ambulance location and dispatch. This uncertainty leads to

the formulation of a scenario-based integer stochastic programming approach, where each scenario

11



indicates whether or not an emergency exists at a demand point that must be covered, as well as
the number of ambulances required of each type considered.

Let set I represent demand points where patients require medical attention. Let L denote the
set of potential location for ambulance stations (hospitals, fire stations, shopping centers, etc.). Set
K includes two types of ambulances: BLS (k = 1) and ALS (k = 2), each limited by a known
parameter 7. These units must be allocated to a site [ € L and dispatched toward a demand point
1 € I when an emergency occurs.

The travel time r;; of any ambulance from a site [ € L to a demand point ¢ € I is assumed
constant within the model application period, following common practice in the literature. Ide-
ally, ambulances should arrive in less than 7 minutes (typically between 8-15 minutes) for critical
emergencies.

Parameter ay;(w) specifies type-k ambulance requirements at demand point ¢ under scenario w.
Parameter ¢;; € {0, 1} indicates whether travel from location [ to demand point 7 satisfies the ideal
response time threshold. If arrival time falls between 7 and Tmax, ¢; decreases proportionally to
distance (partial coverage). For times exceeding Tyq., coverage is null.

First-stage variables represent ambulance type k € K quantities located at site [ € L:
xy, € ZT  (number of type-k ambulances at location [).
Second-stage variables specify scenario-dependent dispatch decisions:

1 if type-k ambulance from location [ is dispatched
Yii(w) = to demand point ¢ € I(w) under scenario w € €2

0 otherwise

Coverage-related binary variables capture five mutually exclusive outcomes per demand point:

Let Q(z,w) denote maximum coverage given first-stage decisions x and scenario w € Q. Pa-

rameter m(w) represents the probability of occurance of scenario w. Assuming uniform scenario

12



likelihood, 7(w) = 1/|2|. The Maximum Expected Coverage (MEC) model is given by:
max  E[Q(z,w)] = 3 7(w) Q) (10)
‘ weN
where
Oz, w)= max Y  (o1fi(w) + azgi(w) + ashi(w) + ayw;(w) — pzi(w))

(y’f’g’h’w’z) le](w)

Ambulance availability and dispatch constraints:

lek < M ke K (11)
leL

Z Yiki(w) < a2 le L ke K,wef (12)
i€l (w)

Constraints limit total type-specific ambulance availability. Constraints prevent dis-
patching ambulances from unoccupied locations.

Total coverage requires all necessary ambulances to arrive withthe in ideal response time 7:

Fiw) Y ani(@) <30 ciymi(w)  weQ, i€ l(w) (13)

keK leL keK
agi(w) fi(w) < chiylgi(w) weN iel(w) (14)
leL
Constraints activate fj(w) = 1 only when sufficient on-time ambulances are dispatched.
Constraints ensures ALS availability for ALS-designated demands, permitting ALS-to-BLS
substitution while prohibiting the reverse.

Total-late coverage indicates sufficient ambulances dispatched with at least one late arrival:

gi(w) Z agi(w) < Z Z Yiki(w) we iel(lw) (15)

keK leL keK

azi(w)gi(w) < yioi(w) weQ,iellw) (16)
leL

gi(w) <M (Z(l — i) Y ylm‘(w)> weQ,iel(w) (17)

leL keK

Constraints f activate g;(w) when all required ambulances are dispatched regardless of
arrival timing. Constraints enforce at least one late arrival through the big-M formulation
(M = 1000).

13



Partial coverage indicates insufficient ambulances with all dispatched units arriving on time:

<D (W) =YD umilw)  weQiel(w) (18)

keK leL keK

hi(w) < agi(w Zym weN i€ l(w) (19)
leL

> (hi(w) =) > yuilw) <0 we,iel(w) (20)
leL keK
Constraints f activate h;(w) when dispatched ambulances fall below requirements. Con-
straints are quadratic, enforcing on-time arrival for all dispatched units; late arrivals render
the constraint infeasible, correctly preventing partial coverage classification.

Partial-late coverage indicates insufficient ambulances with at least one late arrival:

<) ari(w) = DD yi(w) we,iel(w) (21)

keK leL keK
Wy ( < a21 Zlez wel e I(w) (22)
leL
wi(w) < M <Z(1 —cu) Y ylki(w)> weiel(w) (23)
leL keK

Null coverage and partition constraints:

SN pi(w) + zi(w) > 1 weQ,iel(w) (24)

leL keK
fi(w) + gi(w) + hi(w) + wi(w) + zi(w) =1 weiel(w) (25)

Constraints define null coverage as dispatch absence. Constraints ensure exactly one
coverage type per demand point.

Variable declarations:

xy € 77T le L,ke K (26)
Yiki(w) € {0, 1} leLke K,weQicl(w) (27)
fi(w)agi(w)7hi(w)7wi(w)7zi(w) € {07 1} w e Qv (S I(UJ) (28)

The objective function maximizes expected weighted coverage across scenarios. Parameters
a1, ag, ag, ay represent relative values of total, total-late, partial, and partial-late coverage, respec-
tively, while ¢ penalizes null coverage. Domain experts from regional 911 systems determine these
weights, establishing decreasing preferences: total > total-late > partial > partial-late coverage.

The MEC model’s innovation lies in simultaneous stochastic total and partial coverage treatment
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for heterogeneous fleets. Computational complexity arises from quadratic constraints and ,
which could be linearized classically. However, empirical testing revealed comparable computational
performance for quadratic and linearized formulations under modern integer programming solvers.
The authors retain the quadratic formulation for implementation with scenario-based feedback
methodology.

The full integer stochastic programming model can be solved only for relatively small instances
with limited number of scenarios. Rather than employing standard Benders’ decomposition [72, [62],
the authors developed a location-allocation methodology [61] [66] solving an auxiliary surrogate
model. This surrogate-based feedback approach leverages surrogate model ambulance locations as
input to the original model, enabling high-quality solutions in reasonable computational time using

standard solvers without complex decomposition techniques.

4.3 Analysis of the Two Mexican EMS Models

The Double Standard Model (DSM-D) of Dibene et al. [26] and the Maximum Expected Coverage
(MEC) model of Garcia-Ramos et al. [33] represent distinct paradigm approaches to Mexican EMS
optimization, reflecting different modeling philosophies and operational priorities, although both
of them consider ambulance location decisions to improve their systems. This section provides an
analysis of their characteristics and their advantages across multiple dimensions.

The fundamental distinction between the two approaches lies in uncertainty representation.
The MEC model employs explicit stochastic programming with scenario-dependent dispatch deci-
sions optimizing expected coverage across demand realizations. This two-stage formulation permits
adaptive second-stage decisions responding to observed demand scenarios. Conversely, the DSM-D
is a deterministic model incorporating a dynamic setting through multi-period coverage constraints.

This distinction has profound implications. The MEC model stochastic structure provides
flexibility to adapt dispatch strategies to scenario-specific demand realizations, potentially improv-
ing resource utilization efficiency. However, this flexibility introduces computational complexity
through scenario-dependent variables. The DSM-D deterministic nature with period-based con-

straints offers computational tractability advantages while sacrificing dispatch-level adaptability.

Coverage Philosophy and Operational Realism

The most significant conceptual difference concerns coverage treatment. The MEC model intro-
duces five hierarchical coverage categories (total, total-late, partial, partial-late, null) acknowledg-
ing that resource-constrained systems cannot uniformly achieve complete coverage. This granular
classification provides decision-makers with nuanced information about system performance degra-
dation modes. The explicit partial coverage incorporation through decay functions represents a

paradigmatic shift from binary coverage conceptualizations.
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The DSM-D employs traditional binary coverage logic with dual standards (single coverage
within r9, double coverage within 1) without intermediate gradations. This binary paradigm, while
computationally simpler, may inadequately represent operational realities in severely resource-
constrained environments where partial service delivery represents meaningful value compared to

complete service denial.

Fleet Heterogeneity and Substitution

The MEC model explicitly addresses heterogeneous fleets distinguishing BLS and ALS vehicle
types with explicit substitution rules (ALS-to-BLS substitution permitted; reverse prohibited).
This heterogeneity recognition proves critical for operational planning where vehicle type matching
to emergency severity directly impacts patient outcomes. The formulation’s explicit ALS-BLS
substitution constraints ensure clinical appropriateness while permitting operational flexibility.
The DSM-D does not explicitly distinguish vehicle types, implicitly assuming a homogeneous
fleet or treating heterogeneity exogenously. This simplification may prove reasonable for specific
contexts (e.g., Tijuana’s Red Cross) but limits generalizability to systems requiring explicit type

differentiation.

Location versus Location-Dispatch Integration

The MEC model explicitly addresses heterogeneous fleets distinguishing BLS and ALS vehicle
types with explicit substitution rules (ALS-to-BLS substitution permitted; reverse prohibited).
This heterogeneity recognition proves critical for operational planning where vehicle type matching
to emergency severity directly impacts patient outcomes. The formulation’s explicit ALS-BLS
substitution constraints ensure clinical appropriateness while permitting operational flexibility.
The DSM-D does not explicitly distinguish vehicle types, implicitly assuming a homogeneous
fleet or treating heterogeneity exogenously. This simplification may prove reasonable for specific
contexts (e.g., Tijuana’s Red Cross) but limits generalizability to systems requiring explicit type

differentiation.

Objective Function and Performance Metrics

The MEC model maximizes expected weighted coverage where weights (a1, g, ag, ag, —¢) reflect
relative values of different coverage types. This weighted formulation permits incorporating stake-
holder preferences and clinical priorities. The expectation operator averages performance across
scenarios, representing risk-neutral decision-making.

The DSM-D maximizes weighted double coverage (> ..qp° > ;e widz;) subject to single-
coverage and minimum-coverage-fraction constraints. The objective prioritizes coverage redun-

dancy (double coverage) while constraints ensure baseline service guarantees. This formulation

16



emphasizes worst-case protection through constraints rather than average-case optimization.

Synthesis and Model Selection Guidance

The choice between these modeling approaches depends critically on system characteristics and

decision-making priorities. The MEC model proves preferable when:

e Partial coverage provides significant operational value compared to null coverage.

Fleet heterogeneity with substitution rules requires explicit modeling.

Integrated location-dispatch optimization yields substantial performance gains.

Computational resources support two-stage stochastic integer program solution.

Stakeholder preferences for coverage types can be meaningfully quantified.
The DSM-D proves preferable when:

e Binary coverage classifications adequately represent operational requirements.

Fleet heterogeneity is absent or manageable through exogenous considerations.

Computational tractability is paramount for practical implementation.

Coverage redundancy (double coverage) represents the primary operational priority.

Both models represent significant advances for the optimization of Mexican EMS, address-
ing resource-constrained realities that developed-country models often overlook. The MEC model
pushes the modeling frontier toward greater operational realism and flexibility at computational
cost. The DSM-D demonstrates that substantial performance improvements can be achieved
through tractable deterministic formulations incorporating period-based modeling. Future research
might productively explore hybrid approaches combining the DSM-D computational tractability
with selective MEC features (e.g., partial coverage, heterogeneous fleets) to balance modeling fi-

delity and practical solvability.

5 Closing Remarks and Future Research Directions

This survey has examined the evolution of EMS location models from early deterministic formu-
lations through contemporary stochastic programming approaches, with particular emphasis on
applications to resource-constrained developing country contexts. Several important research di-
rections merit attention.

Mexican EMS systems typically involve multiple service providers with heterogeneous opera-

tional characteristics. In Monterrey, for instance, at least three providers (Cruz Roja, Proteccién
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Civil, and CRUM) simultaneously cooperate and compete. Public ambulances may receive dis-
patch priority over private providers, creating complex strategic interactions. Game-theoretic or
bi-level programming formulations could determine policies benefiting the served population while
accounting for provider incentives. This multi-provider reality distinguishes developing-country
EMS systems from single-provider frameworks common in developed countries.

Some regions include unregulated or uncoordinated private EMS providers dispatching vehicles
to accident sites. This fragmentation occasionally produces over-response (multiple ambulances
converging on single incidents) while leaving other locations underserved. Coordinated decision-
making tools could substantially improve system-wide performance. However, practical implemen-
tation faces institutional and regulatory challenges beyond technical optimization.

The computational challenges of two-stage stochastic integer programming with second-stage
binary variables motivate the research of solution methodology. Valid inequality development
could accelerate branch-and-bound solution procedures. The critical question concerns whether
continuous second-stage relaxations yield implementable solutions and quantify solution quality
degradation. Investigating whether scenario clustering approaches [37] reduce problem dimension-
ality sufficiently to avoid decomposition while maintaining competitiveness with heuristic methods
represents another promising direction.

Mathematical models typically ignore hospital-level constraints. During COVID-19’s early
phases, specialized hospitals treating only COVID patients created ambulance queues at other
facilities experiencing overwhelming demand. This waiting time wastes ambulance availability, re-
ducing system responsiveness. Future models should incorporate hospital capacity constraints and
queueing dynamics into location-dispatch optimization.

Simple local search heuristics could be embedded within sophisticated metaheuristic frameworks
such as tabu search, scatter search, or adaptive large neighborhood search. Such enhancements
could improve solution quality or computational efficiency for large-scale applications. Hybrid
matheuristic approaches that combine metaheuristic exploration with mathematical programming-
based improvement represent another promising direction. Real-time relocation in response to
demand fluctuations, emerging incidents, or unavailability of ambulances represents important
extensions.

Model effectiveness fundamentally depends on data quality. Travel time estimation, demand
pattern characterization, and scenario probability assessment all require comprehensive histori-
cal data. Many developing-country EMS systems lack systematic data collection infrastructure.
Research addressing optimization under severe data limitations (e.g., robust optimization with
ambiguous probability distributions) could prove particularly valuable.

Technical optimization represents only one implementation challenge. Changing established op-
erational patterns, retraining personnel, and overcoming institutional inertia often present greater

obstacles than computational complexity. Research incorporating organizational and behavioral
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considerations into EMS system optimization, potentially through simulation-based training or
pilot program evaluation, could facilitate practical adoption.

The ambulance location problem for resource-constrained EMS systems remains a fertile re-
search area where operations research methodologies can generate substantial social value. The
unique characteristics of developing-country systems with severe resource constraints, multi-provider
complexity, data limitations, demand modeling approaches specifically addressing these realities
rather than adapting developed-country frameworks. The Mexican models reviewed here demon-
strate that meaningful progress is achievable through formulations explicitly acknowledging resource
constraints and operational complexities.
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