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Abstract

The unit commitment problem is an important problem arising in the planning and optimization

of power system operations. The problem is characterized by the need to determine the optimal

scheduling of electrical generators to meet fluctuating demand while minimizing production costs.

In this study, we address a thermal unit commitment problem under a staircase cost structure.

Despite the encouraging outcomes from the reformulation strategies to the mathematical model,

this problem still presents significant challenges. Despite the encouraging outcomes from the re-

formulation strategies to the mathematical model, the UCP still presents significant challenges.

We propose a novel two-phase matheuristic framework that first employs a constructive heuristic

to generate high-quality initial solutions, followed by an enhancement phase that takes advantage

of mechanisms such as local branching and kernel search methods. Experimental results on real-

world instances demonstrate the effectiveness and value of each of the matheuristic components

and that the proposed approach consistently outperforms standard solvers and existing heuristics,

particularly for large-scale instances.

Keywords: Thermal unit commitment problem; Integer programming; Matheuristics; Kernel search;

Local branching.



1 Introduction

This research aims to improve the efficiency of solving a thermal unit commitment problem (UCP),

a key challenge in power system planning. The UCP involves making decisions about generator

operations, such as switching units on or off and determining optimal power output levels, to meet

consumer demand while satisfying operational, technical, and economic constraints. As a daily

optimization task, it seeks to minimize production costs while adhering to limitations imposed by

the electrical system, generator characteristics, and market requirements. Commonly, the UCP

is addressed through the formulation of an adequate mixed-integer linear programming (MILP)

model.

Despite recent advances on models and algorithms, solving UCPs within limited time frames

remains a challenge. To tackle this problem, the purpose of this study is to provide a hybrid

heuristic framework that attempts to exploit the advantages of components such as kernel search

and local branching with the aim of achieving optimal or near-optimal solutions in the time allowed.

The proposed solution algorithm consists of a two-phase approach, comprising a constructive

phase and an improving phase. In the first phase, we develop a relax-and-fit heuristic (named

HARDUC) that builds feasible solutions to the problem. Then, in the second phase, we derive a

method that aims to improve the solution by adapting local branching [14] and kernel search [2]

mechanisms.

The general algorithm and its individual components were fully assessed in three groups of

instances derived from Kazarlis et al. [21]. The empirical evaluation included a comparison with

the constructive HGPS heuristic of Harjunkoski et al. [19] and the CPLEX solution of the thermal

UCP MILP model proposed by Knueven et al. [22].

It was observed that although the branch-and-bound solver demonstrates strong performance for

small-scale problem instances, our proposed method consistently achieves better results for medium-

and large-scale instances within the allocated time frame. In particular, our methods reliably

generate solutions across all cases, whereas the solver frequently fails to find feasible solutions in

medium-, and large-scale instances.

The paper is structured as follows. The most relevant related work on algorithms, including

mathematics, for the UCP is surveyed in Section 2. Section 3 presents the problem, its assumptions,

and the mathematical formulation. This is followed by Section 4 that includes a full and detailed

description of the proposed solution framework and its individual components. Section 5 presents

an empirical evaluation of the algorithm and a comparison with existing work. Closing remarks,

conclusions, and discussion of future research directions are given in Section 6.

2 Literature Survey

UCP models are classified into deterministic and stochastic. In our work, we deal with a deter-

ministic model, therefore we focus our literature review on deterministic models and approaches.

For stochastic UCPs, the reader is referred to the work by H̊aberg [18], who reviews models and
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algorithms developed for handling uncertainty in UCPs.

The literature on UCP models is vast [24]. UCP models have been widely used to manage

energy production for many decades. Different variations of UCP models addressing particular

situations and assumptions have been studied [1].

UCP models can be classified according to generator operating, electrical network, and system

constraints. The first set includes technical constraints related to the generators as power limits,

ramps, minimum up and down times, and start-up costs. The second set comprises limits in lines

and tie-lines. The last one encompasses meeting demand and load-generation balance. Anjos and

Conejo [4] outline some examples of these models.

Recent research has established the UCP as a computationally complex challenge. Anjos [3]

affirm that the UCP is an NP-hard, large-scale, non-linear, non-convex, combinatorial optimization

problem. On the other hand, Bendotti et al. [5] assert that the UCP can be transformed into

multiple knapsack problems with linking constraints in time and analyze the complexity of the

UCP with respect to the number of units and time periods.

2.1 Traditional approaches

In his doctoral thesis, Morales-España [25] highlights that a significant portion of the UCP literature

concentrates on improving the formulation by seeking locally ideal or locally tighter representations

for a specific subset of constraints of UCP. However, the thesis concludes that achieving an exces-

sively tight model becomes useless if computational limitations slow its computability due to the

extensive number of variables and constraints involved. Given the insights provided by these find-

ings, recent research has focused on finding tight and compact (T&C) formulations that have shown

promising results, particularly in thermal UCP models. Morales-España et al. [26] are the pioneers

in this model approach. The thermal UCP model aims to minimize operating costs over a specified

period by optimizing the commitment and dispatch of generators that use gas, coal, fuel oil, and

diesel as primary energy units. It considers generator capacity, up/down times, ramp rates, and

variable start-up costs while meeting electricity demand and reserves.

Recent research on UCP models has concentrated on developing more effective Mixed Integer

Linear Programming (MILP) formulations that can represent the various components of the prob-

lem more tightly and compactly [27, 29, 41, 42]. These studies have particularly focused on the

thermal UCP model. In addition, Guedes et al. [17] have presented a hydraulic UCP model with

T&C features.

On one hand, a tighter model reduces or narrows down the best solution space to find the

feasible solution and helps methods based on branch and bound (B&B) reach a solution quicker.

On the other hand, a more compact model employs fewer constraints and variables and requires

fewer computing resources. Knueven et al. [22] have compiled the major modern UCP formulations

and proposed different models that balance out T&C features. The new formulations are derived

from combining constraints from other models. They also tested the model’s performance with

instances from electricity markets, showing positive results for tighter models.
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These T&C models have shown promising results because they can be extended with additional

constraints as Nycander et al. [31] that propose a variant based on power and not in energy. This

variant of UCP based on power provides a notable advantage by incorporating a more realistic

approach to considering generator ramps. It accurately calculates the generation capacity at the

beginning and end of each time period. Additionally, it integrates constraints that account for

intra-hour reserve requirements, leading to enhanced practicality within the model.

Finally, UCP models have been solved using the branch-and-bound (B&B) method and its

variants [40]. In practice, sophisticated solvers and high computing power are required to solve

large-scale problems at reasonable times. Despite this progress, depending on the size and features

of specific instances, sometimes the algorithms cannot reach an optimal solution in the time allowed.

In this context, metaheuristic methods help find near-optimal solutions. However, some methods

based on Genetic Algorithms [21], Tabu Search [30], and Variable Neighborhoods Search [38] have

yet to perform well. Nevertheless, recent research has yielded promising results by integrating

metaheuristic methods with mathematical programming to address UCPs. Consequently, the next

sub-section comprehensively surveys the most recent matheuristic approaches for solving UCP

models.

2.2 Hybrid heuristic approaches

A strategy for reducing solution times and improving accuracy in the UCP is the hybrid heuristic

methods, known as matheuristics. These strategies cleverly embed exact methods into metaheuris-

tic approaches [6, 23]. They also take advantage of advances in good MILP formulations [13].

The efficiency of branch-and-bound algorithms has been significantly improved by the imple-

mentation of heuristic ideas in MILP solvers [40]. Matheuristics can improve solution quality,

convergence guarantees, and computational efficiency, leading to better solutions. Constructive

heuristics, such as relax-and-fix (R&F) methods [40], the feasibility pump (FP) [14], and the

relaxation-induced neighborhood search (RINS) [7], use continuous solutions from linear relax-

ation and rounding to guide the search for feasible integer solutions. This approach improves the

quality and efficiency of the solutions by exploring the neighborhoods around relaxed solutions in

combinatorial optimization problems.

Other matheuristics inspired by local search algorithms are then used to refine solution quality,

such as local branching (LB) strategies introduced by Fischetti and Lodi [14], which define the

neighborhoods within the MILP with maximum modifications to the incumbent solution. These

strategies iteratively explore neighboring solutions by applying small changes, focusing on improving

the incumbent while maintaining feasibility. The approach allows for an effective exploration of

the solution space, providing higher-quality solutions by guiding the search toward more optimal

regions.

The Kernel Search (KS) matheuristic, introduced by Angelelli et al. [2], is inspired by greedy

algorithms. The method begins by partitioning the decision variables of an MILP formulation into

two sets: a central kernel and multiple buckets. A simplified version of the problem, or sub-MILP,
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is then solved for each bucket, using the kernel as a starting point. Iteratively, the method adds

new variables from the buckets to the kernel, progressively improving the solution. The process

continues until all the variables from the buckets have been integrated into the kernel, resulting in

an optimal or near-optimal solution with the variables assigned within the kernel.

Following this, a survey of the matheuristic and heuristic methods applied to variations of UCP

models is presented. It is worth noting that there is a significant lack of research on the use of

matheuristics in the UCP. In Table 1, the comparison between the works that have addressed the

UCP problem with these heuristic approaches is presented. The table lists the main constraints

and features of the UCP models addressed in each work and their corresponding solution methods.

Table 1: Survey of works on UCPs using matheuristics.

Article Method UCP type PC SUC SDC RR GL RUD SR MUDT

Fayzur et al. [12]
2014

LB-ILA, PSO-
ILA

thermal Q Cold and hot
start-up

✓ ✓ ✓ ✓ ✓

Todosijević et al.
[38] 2016

VNS-linear pro-
gramming

thermal Q Cold and hot
start-up

✓ ✓ ✓ ✓

Sabóia and Diniz
[34] 2016

LB stochastic ther-
mal compact for-
mulation

L Exponential
start-up cost

✓ ✓ ✓ ✓

Dupin and Talbi
[10] 2016

R&F, VNS with
MIP neigh-
borhoods. LB,
RINS.

discrete thermal,
real-time

L Fixed cost ✓ ✓ ✓

Dupin and Talbi
[11] 2018

R&F-B&B discrete thermal,
real-time

L Fixed cost ✓ ✓ ✓ ✓

Santos et al. [35]
2020

FP, LB Hydrothermal L Fixed cost ✓ ✓ ✓ ✓ ✓

Harjunkoski
et al. [19] [17]
2021

R&F thermal L Fixed cost ✓ ✓ ✓ ✓ ✓

This work R&F, LB, KS. thermal T&C
model

S Variable start-up
cost

✓ ✓ ✓ ✓ ✓ ✓

PC: Production cost; SUC: Start-up cost; SDC: Shut-down cost; RR: Reserve requirements; GL: Gen limits; RUD: Ramp up/down; SR: Start-up/shut-down ramps;
MUDT: min up/down times.
Q: quadratic; L: linear; S: staircase.

First, Fayzur et al. [12] present two matheuristic approaches to solve a thermal UCP. The first

approach combines the original version of LB from Fischetti and Lodi [14] and an iterative linear

approximation (ILA) method. The second approach combines particle swarm optimization (PSO)

and ILA, incorporating a solver in an iterative process. The UCP problem addressed in the study

initially involves quadratic production costs, which are later linearized with ILA and solved using

the LB method. The model’s constraints include power balance, spinning reserve requirements,

minimum up and down times, production limits, and ramps [39]. The study solves previously un-

solvable instances and achieves faster optimal results for larger instances. The proposed LB-ILA

algorithms significantly reduce the average CPU time for larger instances by 40%-56%. However,

these algorithms perform worse for smaller instances due to unnecessary exploration of the neigh-

borhoods.

Sabóia and Diniz [34] solve a stochastic thermal network-constraint UPC using the LB approach

combined with an iterative approach that considers transmission lines flow limits. They dynamically

introduce violated flow limit constraints, embedding them into the nodes of the LB scheme. This
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iterative procedure involves fixing the optimal integer solution achieved at each node. The DC

power flow is then evaluated iteratively, continuously checking for violations of line capacity. The

process continues until no further line capacity violations are observed. This model is a new compact

MILP formulation with basic constraints for thermal UCP. The method is tested on one instance.

Todosijević et al. [38] propose a hybrid approach that combines variable neighborhood search

(VNS) with mathematical programming to address a UCP. In their method, the commitment of

generators, i.e., deciding which ones will be turned on and off, is determined using VNS. Addition-

ally, they solve an economic dispatch problem (calculus of each generator’s power level) for each

period by formulating the dispatch as a linear programming problem. The results obtained by the

proposed approach outperformed considerable metaheuristics reported in the literature for solving

the UCP. Furthermore, the solutions achieved were very close to the optimal solutions obtained

with the CPLEX solver. However, the paper lacks information regarding the CPU times of the

solver, making it impossible to compare the computational efficiency of VNS directly. Nevertheless,

it is important to note that the mathematical model used in the study considers only constraints

of demand, reserves, power limits, minimum up and down times, and hot and cold start-up costs.

However, the model does not incorporate ramps, which are essential constraints in real-life UCP

usage. Furthermore, a particular feature of their UCP is that the production cost of the generators

is quadratic.

Dupin and Talbi [10] use a matheuristic method to solve a discrete thermal UCP from program-

ming thermal generators in the real-time electricity French system. First, in a constructive phase,

they use R&F strategies to find one initially good solution. In the subsequent improvement phase,

a VNS algorithm conducts a local search by iteratively exploring B&B solutions within neigh-

borhoods defined within the solution space confined by the MILP model. In other words, these

neighborhoods are defined within the MILP using various heuristics suggested by the authors, such

as RINS or LB strategies.

The mathematical model used by Dupin [9] comprised of constraints such as demand, reserves,

minimum up and down times [33], and fixed start-up costs. Note that in the discrete thermal UCP,

the limits of generation constraints are not applicable. Instead, discrete power levels and transition

constraints exist between them. However, the model does not incorporate ramps. The method

aims to find the best solutions for the discrete thermal UCP on a 15-minute time limit from its

application in a real-time scenario. The results of the metaheuristic method are better than the

MILP solution, which was obtained by the solver in the allotted time frame.

In follow-up work, Dupin and Talbi [11] improved the discrete thermal UCP formulation with

tight and compact (T&C) features and extended the model to include min-stop ramping for a dis-

crete thermal UCP. To address the problem, the authors propose several constructive matheuristics

designed to generate good-quality feasible solutions. These solutions can be effective initial solu-

tions for a branch-and-bound (B&B) algorithm. Among all the ingenious constructive methods

presented, they implemented one with the KS ideas proposed by Guastaroba et al. [16], i.e., the

segregation of generators based on their marginal costs, eliminating units with higher production

costs. Another variant of their heuristic prioritizes utilizing low-cost units as the main production
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basis, while the remaining units constitute the kernel of the KS algorithm. However, the authors

neither utilize the complete KS method nor provide specific details about the implementation of the

method. The proposed method produces precise, high-quality solutions, outperforming the B&B

method applied to the MILP model in the allotted time limit. The authors tested the method with

more than 600 instances from the French electrical system.

According to the investigation undertaken by the Santos et al. [35], who present the model

and method used to plan operations for energy generation in Brazil, their work considers thermal

generation and hydro generation and limitations on the electrical network. They used a variant

of the FP from Fischetti et al. [15] adapted for binary variable decisions. They also created an

objective function adapted with a mathematical term that calculates the Hamming distance. The

researchers opted for a heuristic method due to the limitations in time to solve the UCP, which

should be solved daily for a time horizon of seven days. Considering the dimensions of their problem,

an exact method would not yield a timely resolution within two hours. The authors report using

the same version of LB as that of Sabóia and Diniz [34].

In the study conducted by Harjunkoski et al. [19], an R&F heuristic for the UCP is devised.

The proposed method starts with solving a linear relaxation of the problem. Subsequently, they

analyzed the product of the commitment binary variable with each generator’s power level. The

commitment binary variables were fixed and solved as an MILP problem if the product exceeded

the minimum feasible generation level. This constructive method provides a warm start to the

B&B algorithm and accelerates the UCP solution process.

Positioning our work in the literature

Regarding the mathematical modeling of the problem, our UCP is a deterministic thermal model

with a staircase cost function. Furthermore, our model incorporates valid inequalities in the cost

constraints, making the formulation tighter. This cost function assigns different price levels for

each generation level interval, aligning the model more closely with the cost modeling of electricity

markets. Other works address similar problems with linear costs Sabóia and Diniz [34], Dupin and

Talbi [10, 11], Harjunkoski et al. [19] and quadratic costs Fayzur et al. [12], Todosijević et al. [38].

Another notable difference is that the modeling of generator startup costs is simplified in most of

the papers to a fixed startup cost Dupin and Talbi [10, 11], Santos et al. [35], Harjunkoski et al.

[19] or hot and cold starts Fayzur et al. [12], Todosijević et al. [38], or, at best, exponential startup

costs depending on the time the generator has been off Sabóia and Diniz [34]. In our case, we use

variable startup cost constraints Morales-España et al. [26] with tighter features.

The main difference with the other works is that, although they also solve a thermal UCP, they

address different variants. For example, Dupin and Talbi [10, 11] tackle a discrete thermal UCP for

a real-time horizon with limited forward scheduling periods. [35] deal with a hydrothermal UCP

problem, while Sabóia and Diniz [34] solve a stochastic UCP thermal problem. Although Fayzur

et al. [12] present a hybrid LB method with cost linearization, the version they report is the original

one developed by Fischetti and Lodi [14]. Alternatively, Todosijević et al. [38] apply VNS to solve
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the problem and incorporates linear programming to address a subproblem. Similarly, Dupin and

Talbi [10] employ another VNS, and some of the neighborhoods they define incorporate the concepts

of LB and RINS matheuristics. Moreover, it is worth noting that only the local search definition

from the LB method is utilized without involving the branching phase. Additionally, Sabóia and

Diniz [34] modify the original LB to include the power network. In their research, Santos et al.

[35] report using a variant of FP as a constructive strategy and LB as an improvement strategy.

Furthermore, the authors state that they use the same version of LB as Sabóia and Diniz [34].

The first paper to report on the use of the KS for UCP is Dupin and Talbi [11], where they

present their findings on incorporating the KS concept as a variable-fixing criterion into a variable

fixing strategy. This strategy introduces methods to select specific variables to fix a priori to

obtain a reduced problem that the MILP solver can subsequently solve. However, it is important

to emphasize that their work lacks a complete implementation of the KS method.

Furthermore, Harjunkoski et al. [19] propose a constructive method based on R&F, where the

initial feasible solution provides a warm start to the B&B algorithm, resulting in an accelerated

UCP solution process.

Summary of research contributions

In terms of solution methodologies, we proposed a novel constructive method that aims to com-

pete with the approach of Harjunkoski et al. [19] and the solver. The solution calculated by the

constructive method provides the first solution to the improving method.

In the improvement phase, we have developed a unique version of KS; our version introduces

several significant innovations compared to the original method proposed by Angelelli et al. [2].

First, our KS eliminates the need for kernel construction, as a preliminary constructive stage

already provides the kernel. Second, we employ the statistical rule of Sturges to determine the

number of buckets in KS, a refinement that optimizes the method’s performance. Third, our focus

is on the dominant variables of the problem, which enhances computational efficiency. Fifth, our

method calculates the reduced costs by fixing kernel variables while leaving the remaining variables

free, using the linear relaxation of the problem. Finally, our kernel expansion process continues

even after the buckets have been processed. If time permits, the kernel is reconfigured using the

latest solution, and the expansion process is restarted, allowing for further refinement of the results.

Furthermore, we introduce four specialized versions of the Local Branching (LB) method, each

incorporating refinements to enhance performance. Our adaptations present significant differences

compared to the original approach by Fischetti and Lodi [14]. The first procedure, LB1, defines

a restricted candidate list (RCL) based on variables that are nonzero in the constructive method

(HARDUC) but fall below the minimum generator power threshold. Additionally, LB1 employs

a soft-fixing constraint that retains at least 90% of the binary support variables in the solution.

The second procedure, LB2, removes the soft-fixing constraint while maintaining the RCL based

on the HARDUC rule. The third procedure, LB3 adheres closely to the original LB method but

does not use an RCL or soft-fixing constraints, limiting its local search to binary support variables
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and their complements. Finally, LB4 selects the RCL based on negative reduced costs, improving

the efficiency of the search process. A key feature of our LB adaptations is that they operate solely

on the dominant variable ug,t to define the binary support, unlike the generic LB approach, which

considers all binary variables.

3 Description of the Thermal Unit Commitment Problem

3.1 Problem definition and assumptions

The Unit Commitment Problem (UCP) aims to minimize the total operational cost of a set of

generators g ∈ G over a planning horizon t ∈ T . The objective function considers several cost

components: production costs cpgt, fixed costs CR
g , start-up costs cSUgt , and shutdown costs cSDgt .

Achieving this minimization requires adherence to constraints that reflect the physical and opera-

tional limits of the system, ensuring feasible and optimized generator scheduling. These constraints

govern aspects such as power generation bounds, minimum uptime and downtime requirements,

ramping limits, demand-reserve satisfaction, and staircase cost modeling, and are represented using

binary and continuous variables for generator states and power outputs.

The constraints of the UCP encapsulate the physical and operational characteristics of power

generation systems, ensuring solutions are both feasible and realistic. Each constraint represents a

specific aspect of generator behavior or grid requirements:

Power limits: Each generator must operate within its designed capacity, defined by the bounds

P gugt ≤ pgt ≤ P gugt for all g ∈ G and t ∈ T . This prevents overloading and maintains

efficient operation.

Minimum uptime and downtime: Generators must stay online for at least UTg periods after

starting up and offline for at least DTg periods after shutting down. These constraints,∑t+UTg−1
τ=t ugτ ≥ UTgvgt and

∑t+DTg−1
τ=t (1 − ugτ ) ≥ DTgwgt, prevent excessive wear and

ensure reliable operation.

Ramping constraints: The rate at which power output changes is limited by ramp-up and ramp-

down constraints, defined as pgt− pg(t−1) ≤ RUg and pg(t−1)− pgt ≤ RDg. These capture the

physical limitations of generator components.

Start-up and shutdown costs: These costs, cSUgt and cSDgt , depend on generator downtime and

reflect additional fuel use and equipment wear during transitions.

Demand and reserve requirements: Total generation must satisfy demand Dt and maintain a

reserve margin Rt, expressed as
∑

g∈G pgt ≥ Dt +Rt for all t ∈ T . This ensures grid stability

and reliability.

Staircase cost structure: Production costs vary staircase with output, modeled as pgt =
∑

l∈Lg
plgt,

where plgt represents the power produced in each segment l. This mirrors fuel efficiency dy-

namics and captures operational states.
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Initial conditions: The initial states and outputs of generators are predefined, with ug0, pg0, vg0, wg0

specified to ensure a seamless transition from previous operations.

System constraints: These maintain the balance between generation, demand, and reserves, en-

suring grid-wide operational reliability.

3.2 Mixed-integer linear programming model

This section introduces a comprehensive Thermal Unit Commitment formulation that is a robust

benchmark for evaluating subsequent matheuristic methods. Our model incorporates diverse con-

straints, including power limits, minimum uptime/downtime, ramp capabilities, variable start-up

costs, and demand-reserve requirements, while also narrowing down solution space with staircase

cost production and valid inequalities.

Notation

A summary of sets, indices, parameters, and decision variables is enlisted for quick reference.

Sets and indices of the power system:

G Set of generators (g ∈ G)

G1 Subset of generators (g ∈ G) ; (if UTg = 1)

G1∗ Subset of generators (g ∈ G) ; (if UTg = 1 and SUg ̸= SDg)

G>1 Subset of generators (g ∈ G) ; (if UTg > 1)

T Set of time periods in the planning horizon; (t ∈ T )

T 0 = T \ {|T |} Set of time periods in the planning horizon except the last one

Sets and indices of cost-related aspects:

Sg Set of start-up cost curve segments for a generator (g ∈ G) from hottest (s = 1) to coldest

(s = |Sg|); (s ∈ Sg).

Lg Stairwise production cost intervals for generator (g ∈ G); (l ∈ Lg)

Parameters:

CR
g Minimum operating cost of generator (g ∈ G) that works at least at minimum power

P g; in $

C l
g Cost coefficient for stairwise segment (l ∈ Lg) of generator (g ∈ G) that works at

least at minimum power P g; in $/MWh
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CS
g,s Start-up cost for generator (g ∈ G) with a set of segment time (s ∈ Sg); it determines

the starting cost by locating a cost in a segment time s in the intervals [T g,s, T g,s);

in $/h

CSD
g Shut-down cost for generator (g ∈ G); in $

Det Energy load demand in period (t ∈ T ); in MWh

pg,0 Power output of a generation (g ∈ G) at time 0; in MW

P g,P g Maximum and minimum generation value of generator (g ∈ G); in MW

P
l
g Maximum power available for staircase segment (l ∈ Lg) of generator (g ∈ G); in

MW

Rt System-wide spinning reserve requirement in period (t ∈ T ); in MW

RDg Ramp-down rate is the capacity of generator (g ∈ G) to decrease power between two

consecutive periods; in MW/h

RUg Ramp-up rate of generator (g ∈ G) to increase power between two consecutive periods;

in MW/h

|Sg| Number of segments in the set Sg

SUg Start-up rate for a generator (g ∈ G); in MW/h

SDg Shut-down rate for a generator (g ∈ G); in MW/h

TRU
g Time that a generator (g ∈ G) spends ramping to go from SUg to P gt; in h

TRD
g Time that a generator (g ∈ G) spends ramping to go from P gt to SDg; in h

TCg Time offline after a generator (g ∈ G) turned into cold

T g,s Start of start-up cost segment (s ∈ Sg), respectively; in h, (i.e. T g,1 = DTg, T g,Sg
=

TCg

UTg,DTg Minimum up/down time for a generator (g ∈ G); in h

ug,0 Status of generator (g ∈ G) at time 0

Ug Number of periods generator (g ∈ G) is required to be online at t = 1 ; in h

Dg Number of periods generator (g ∈ G) is required to be offline at t = 1 ; in h

Binary variables:

ugt Equal to 1 if generator (g ∈ G) is online in period (t ∈ T ), and 0 otherwise

vgt Equal to 1 if generator (g ∈ G) starts up at the beginning of period (t ∈ T ), and 0 otherwise

wgt Equal to 1 if generator (g ∈ G) is shut-down at the beginning of period (t ∈ T ), and 0

otherwise
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δgts Equal to 1 if generator (g ∈ G) have a start-up type s ∈ S in period (t ∈ T ), and 0 otherwise

Real variables:

cpgt Production cost over P of generator (g ∈ G) in period (t ∈ T ); in $

cSDgt Shut-down cost of generator (g ∈ G) in period (t ∈ T ); in $

cSUgt Start-up cost of generator (g ∈ G) in period (t ∈ T ); in $

pgt Amount of power a generator (g ∈ G) produces in period (t ∈ T ), in MW

p′gt Amount of power above minimum P g that a generator (g ∈ G) produces in period (t ∈ T ),
in MW

pgt Maximum power available from generator (g ∈ G) produces in period (t ∈ T ), in MW

p′gt Maximum power available above minimum from generator (g ∈ G) produces in period

(t ∈ T ), in MW

plgt Power from staircase segment (l ∈ Lg) from generator (g ∈ G) produces in period (t ∈ T ),
in MW

rgt Spinning reserves provided by a generator (g ∈ G) in period (t ∈ T ), in MW

The parameters Cv
gl and Cw

gl are calculated as follows [22].

Cv
gl =


0 if P

l
g ≤ SUg

P
l
g − SUg if P

l−1
g < SUg < P

l
g

P
l
g − P

l−1
g if P

l−1
g ≥ SUg

Cw
gl =


0 if P

l
g ≤ SDg

P
l
g − SDg if P

l−1
g < SDg < P

l
g

P
l
g − P

l−1
g if P

l−1
g ≥ SDg

Finally, TRU
g and TRD

g are also computed as follows [22]:

TRU
g =

⌊
P g − SUg

RUg

⌋
,

TRD
g =

⌊
P g − SDg

RDg

⌋
.
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Mathematical formulation

The MILP model is given by:

(TUCP) Minimize
∑
t∈T

∑
g∈G

CR
g ugt + cpgt + cSUgt + cSDgt (1)

Subject to:

t∑
i=t−UTg+1

vgi ≤ ugt g ∈ G, t ∈ {UTg, . . . , |T |}, (2)

t∑
i=t−DTg+1

wgi ≤ 1− ugt g ∈ G, t ∈ {DTg, ..., |T |}, (3)

min{Ug ,|T |}∑
i=1

ugi = min{Ug, |T |} g ∈ G (4)

min{Dg ,|T |}∑
i=1

ugi = 0 g ∈ G (5)

ugt − ug,t−1 = vgt − wgt g ∈ G, t ∈ T (6)

p′gt + rgt ≤
(
P g − P g

)
ugt −

(
P g − SUg

)
vgt

− [SUg − SDg]
+wg,t+1 g ∈ G1, t ∈ T 0 (7)

p′gt + rgt ≤
(
P g − P g

)
ugt −

(
P g − SDg

)
wg,t+1

− [SDg − SUg]
+ vgt g ∈ G1, t ∈ T 0 (8)

pgt ≤ P gugt −
TRU
g∑
i=0

(
P g − (SUg + iRUg)

)
vg,t−i

−
TRD
g∑
i=0

(
P g − (SDg + iRDg)

)
wg,t+1+i g ∈ G, t ∈ {TRU

g , |T | − TRD
g } (9)

p′gt + rgt ≤
(
P g − P g

)
ugt −

(
P g − SUg

)
vgt

−
(
P g − SDg

)
wg,t+1 g ∈ G>1, t ∈ T 0 (10)

p′gt + rgt ≤
(
P g − P g

)
ugt −

(
P g − SUg

)
vgt g ∈ G1, t ∈ T (11)

p′gt + rgt ≤
(
P g − P g

)
ugt −

(
P g − SDg

)
wg,t+1 g ∈ G1, t ∈ T 0 (12)

p′gt − p′g,t−1 ≤ (SUg − P g −RUg)vgt +RUgugt g ∈ G, t ∈ T (13)

p′g,t−1 − p′gt ≤ (SDg − P g −RDg)wgt +RDgug,t−1 g ∈ G, t ∈ T (14)

plgt ≤
(
P

l
g − P

l−1
g

)
ugt g ∈ G, t ∈ T , l ∈ Lg (15)∑

l∈Lg

plgt = p′gt g ∈ G, t ∈ T (16)

∑
l∈Lg

C l
gp

l
gt = cpgt g ∈ G, t ∈ T (17)
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p′gt ≤
(
P g − P g

)
ugt g ∈ G, t ∈ T (18)

plgt ≤
(
P

l
g − P

l−1
g

)
ugt − Cv

glvgt − Cw
glwg,t+1 g ∈ G>1, t ∈ T 0, l ∈ Lg (19)

plgt ≤
(
P

l
g − P

l−1
g

)
ugt − Cv

glvgt g ∈ G1, t ∈ T , l ∈ Lg (20)

plgt ≤
(
P

l
g − P

l−1
g

)
ugt − Cw

glwg,t+1 g ∈ G1, t ∈ T 0, l ∈ Lg (21)

plgt ≤
(
P

l
g − P

l−1
g

)
ugt − Cv

glvgt

−
[
Cv
gl − Cw

gl

]+
wg,t+1 g ∈ G1∗, t ∈ T 0, l ∈ Lg (22)

plgt ≤
(
P

l
g − P

l−1
g

)
ugt − Cw

glwg,t+1

−
[
Cw
gl − Cv

gl

]+
vgt g ∈ G1∗, t ∈ T 0, l ∈ Lg (23)

δgts ≤
T g,s+1−1∑
i=T g,s

wg,t−i g ∈ G, t ∈ T , s ∈ [1, |Sg|) (24)

vgt =

|Sg |∑
s=1

δgts g ∈ G, t ∈ T (25)

cSUgt =

|Sg |∑
s=1

CS
g δgts g ∈ G, t ∈ T (26)

δgts = 0 g ∈ G, s ∈ [1, |Sg|),

t ∈
(
T g,s+1 −DT 0

g , T g,s+1

)
(27)

cSDgt = CSD
g wgt g ∈ G, t ∈ T (28)∑

g∈G
pgt = Det t ∈ T (29)

∑
g∈G

pgt ≥ Det +Rt t ∈ T (30)

∑
g∈G

rgt ≥ Rt t ∈ T (31)

pgt = p′gt + P gugt g ∈ G, t ∈ T (32)

pgt = p′gt + P gugt g ∈ G, t ∈ T (33)

pgt = p′gt + rgt g ∈ G, t ∈ T (34)

pgt = pgt + rgt g ∈ G, t ∈ T (35)

pgt ≤ pgt g ∈ G, t ∈ T (36)

p′gt ≤ p′gt g ∈ G, t ∈ T (37)

ugt, vgt, wgt, δ
s
g ∈ {0, 1} g ∈ G, t ∈ T (38)

pgt, p
′
gt, p̄

′
gt, c

p
gt, c

SU
gt , rgt ≥ 0 g ∈ G, t ∈ T (39)

The objective function (1) seeks to minimize the total cost, which is composed of the energy

production cost cpgt, the fixed cost of operating at a minimum production level CR
g . The variable
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startup cost cSUgt and the shutdown cost cSDgt for each generator g ∈ G during a specific time period

t ∈ T .
The minimum uptime and minimum downtime constraints are represeented by Constraints (2)–

(5). The logic of the generators’ start-up, shut-down, and operation is modeled by Constraints (6).

The generation limit requirements are imposed by Constraints (7)–(9). The start and shut-down

ramp limits are modeled by Cosntraints (10)–(12). The ramp-up and ramp-down limits are rep-

resented by Constraints (13)–(14). The staircase production cost are represented by Constraints

(15)–(23). Note that Constraints (19), (20), (21), (22), and (23) are not necessary in the formula-

tion, but they serve to tighten the variables’ staircase production. The shut-down cost constraints

are Given by Constraints(28).

Constraints (24)–(27) indicate the cost of the segment of the variable of start-up function cost

c
Sg

gt of the generator g, where CS
g,s is the start-up cost in the category s of generator g in $/MWh.

The demand and reserve requirement are modeled by Constraints (29) and (31). Constraints (32)–

(37) establish linear relationships between the power variables pgt, p
′
gt, p

′
gt, pgt. These constraints

are used in the best UCP formulations [22], and help constrain the convex hull of the problem.

Lastly, (38) and (39) define the nature of the decision variables.

Initial conditions: Constraints (6),(13),(14) change when the time is t = 0. The parameters

used in this case to substitute the parameter with t − 1 index are the initial conditions of the

generators such as ug,0, pg,0, p
′
g,0, Ug,0, Dg,0. Also, Constraints (27) assure the start-up variable δgt

to be zero during the initial periods considering its minimum shut-down time if the generator has

been offline [26].

4 Proposed Matheuristics

The proposed solution method for the thermal UCP consists of two phases: a construction phase,

where an initial feasible solution is built, and an improvement phase, where five procedures, in-

cluding KS and four tailored-made versions of LB, are applied to the constructed solution. In the

remainder of the section, all these components are further explained.

4.1 Construction Phase

To the best of our knowledge, the best construction method for UCP is due to Harjunkoski et al. [19].

Their heuristic, referred as HGPS, is of the type relax and fit (R&F). The solution strategy of R&F

methods is to reduce the size of the MILP to a smaller, easier-to-solve model called subproblem,

fixing those variables likely to keep their values in the optimal solution and letting the solver decide

among the others. Finally, the subproblem is input into the solver, expecting that the solver returns

a high-quality solution. Our idea is to develop am enhanced R&F heuristic that better exploits the

structure of our problem.

The HGPS heuristic begins by solving a linear relaxation of the UCP, obtaining a solution x̃.

In this method, the variables ug,t to be fixed to one in the subproblem are those that satisfy the
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condition ũg,t · p̃g,t ≥ P . We will call this condition: Harjunkoski’s rule. Let ũg,t and p̃g,t be the

values taken by the variables in the linear relaxation solution. Once the variables are fixed, the

subproblem is solved, deciding over the rest of the non-fixed variables.

Our heuristic, named HARDUC, starts by solving a linear relaxation of the UCP. Then, to form

the subproblem, the variables ug,t that satisfy the criterion ũg,t · p̃g,t = 0 are fixed to zero, and the

decision over the other variables is left to the solver.

Figure 1 illustrate the difference between these two heuristics, indicating the space of ug,t

variables. On the left-hand side, we see the HGPS method, where the shaded region indicates

variables set to one, and the light region shows variables yet to be determined by the solving

the subproblem. On the right-hand side, we have the HARDUC method, where the light region

comprises non-zero variables according to Harjunkoski’s rule but with a value greater than P .

Finally, the variables that meet the criterion ug,t : {ũg,t · p̃g,t < P}∩{ũg,t · p̃g,t ̸= 0} will be used for

the construction of a restricted candidate list (RCL). We expect these variables are more likely to

be in the optimal solution than those with zero values. This RCL is essential for other improving

methods based on local branching described in this work.

rule for fixing

𝑢𝑔𝑡 = 1: ෤𝑢𝑔𝑡 ∙ ෤𝑝𝑔𝑡 ≥ 𝑃𝑔

𝑢𝑔𝑡 rule for fixing

𝑢𝑔𝑡: ෤𝑢𝑔𝑡 ∙ ෤𝑝𝑔𝑡 ≥ 𝑃𝑔

𝑢𝑔𝑡

𝑢𝑔𝑡 = 0: ෤𝑢𝑔𝑡 ∙ ෤𝑝𝑔𝑡 = 0

HGPS
Harjunkoski et al. 2021 method

HARDUC
Constructive method proposed

variables not fixing

variables not fixing

𝑢𝑔𝑡: ෤𝑢𝑔𝑡 ∙ ෤𝑝𝑔𝑡 < 𝑃𝑔
∩ ෤𝑢𝑔𝑡 ∙ ෤𝑝𝑔𝑡 ≠ 0

RCL

HGPS HARDUC

Figure 1: Rules for R&F construction methods. The shaded area represents the subset of variables
to be fixed in the subproblem.

After obtaining a feasible solution, the search for an improved solution starts as a second phase

of the solution algorithm. We develop a family of five metaheuristics, including one based on KS

and four different versions of LB. All these methods are described in the following sections.

4.2 Improvement Phase

Once an initial feasible solution has been obtained, an improvement phase is applied in order to

improve the solution. For this purpose, two main solution frameworks are proposed and explained
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below.

Kernel Search

Kernel search is a matheuristic initially developed by Angelelli et al. [2] to solve a multidimensional

knapsack problem with outstanding results. We have not seen any KS implementation for UCPs,

to the best of our knowledge. KS is divided into two phases: initialization and expansion. During

the initialization phase, the binary variables in problem P that are likely to take a value of one

in the optimal solution are determined. This subset of variables is called the kernel (equivalent to

the binary support in LB). The selection of the variables that form the kernel is usually those that

take the value one in the linear relaxation. Then, the remaining variables not part of the kernel

are sorted according to some economic criterion (often, the reduced costs of the LP relaxation) and

divided into small groups called buckets.

The expansion phase consists of solving the multiple MILP subproblems formed by each bucket

concatenated one by one with the kernel, one step at a time. This phase is called expansion because,

in each iteration, bucket variables that take the value of one are picked and added to the kernel.

The constraint
∑

j∈Bi
xj ≥ 1 must be added to the subproblem to enforce that at least one variable

of the bucket takes the value one. Because of this constraint, the kernel tends to increase in size

with each iteration. For each iteration, the remaining bucket variables that are not part of the

subproblem must be fixed to zero. The conventional KS terminates when each bucket has been

resolved with the kernel or the allowed time is met [2].

Implementation of KS for the UCP

We present a version of KS that can be seen in Algorithm 1 called kernelsearch(). The inputs

of algorithm kernelsearch() are total time (t total), a feasible solution (x̄) of an instance of UCP

to solve (P ). The outputs are x∗ and z∗, respectively, the incumbent solution and its cost. The

function kernelsearch() starts the initialization phase by building the kernel from variables with

ug,t = 1 in the feasible solution x̄; this feasible solution is obtained from the constructive method

HARDUC. It is noted that only the dominant variable ug,t is used for building both the kernel and

the buckets. Note that our version of KS does not require kernel building. KS is only used as an

improvement method, as a constructive method that determines the kernel.

The construction of the buckets begins by fixing to 1 the variables constituting the kernel

ug,t ∈ K and solving a linear relaxation of the problem P fix(K ). Then, the set U is constructed

with the variables ug,t that are not inside the kernel K. The number of buckets is calculated using

Sturges’s rule [36]: nbucks = 1 + 3.322 ln(|U |).
Then, the ug,t ∈ U variables are sorted in descending order (since this is a minimization problem)

according to the value of their reduced costs obtained from the linear relaxation problem P fix(K ).

The newly ordered set is denoted as Udesc.

The set of buckets of size nbucks, into which the variables of set Udesc are divided, is denoted

as Bi, where i is an index ranging from 1 to nbucks.
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Algorithm 1 kernelsearch()

Input:
x̄=a feasible solution of P ,
P=a formulation of the instance to solve,
t total

Output:
A feasible solution x∗ of value z∗

while (elapsed time < t total) do
cutoff← z∗ ▷ Initialization phase
K ← kernel formed from the variables that fulfill ug,t : ug,t = 1 ∈ x̄
PK ← fixing(1,K,P ) fixing to 1 all the variables into kernel
{x̂, ẑ} ← solveLR(P fix(K ))
U ← select the variables that fulfill ug,t /∈ K
nbucks← 1 + 3.322 ln(|U|)
Udesc ← sort U in descending order using its reduced cost values
{Bi}nbucksi=1 ← buildbuckets(Udesc,nbucks)
tl← (t total− elapsed time)/n
for (i = 1,nbucks) do ▷ Expansion phase

PK∪Bi ← fixing(0,Bi,P ) ▷ fixing to 0 all variables of the other buckets
PK∪Bi ← PK∪Bi ∪ {

∑
j∈Bi

xj ≥ 1} ▷ A variable from the bucket is forced into entering the kernel

{stat, x̃, z̃} ← solve(PK∪Bi , cutoff, tl)
if (stat = feasible) then

if (z̃ < z∗) then
z∗ ← z̃ ▷ Update best known objective
cutoff← z̃ ▷ Tighten cutoff for next iteration
x∗ ← x̃ ▷ Update best solution

end if
K ← update the kernel with the variables in Bi such that ug,t = 1 in x̃.

end if
end for

end while
return x∗

Function buildbuckets(Udesc,nbucks), depicted in Algorithm 2, is utilized to partition the set

of variables ug,t ∈ Udesc into approximately equal-sized subsets known as buckets Bi. First, the size

of each bucket is calculated by dividing the total number of variables in Udesc by the desired number

of buckets. Also, the remaining variables that cannot be equally distributed are identified. Next,

an empty list is initialized to hold the buckets Bi, while two variables, start and end, are created to

monitor each bucket’s range of variables. Then, the function iterates over the number of buckets,

sets the range of objects for each subset, and assigns any remainder variables to the first bucket.

Next, the range of variables for each bucket is appended to the list Bi ← Bi ∪ {Udesc[start : end]}.
Lastly, buildbuckets returns all the buckets {Bi}nbucksi=1 as the output.

During the expansion phase of KS, problem PK∪Bi is solved by concatenating the kernel firstly

with the buckets that contain variables having the most negatively reduced costs. Next, the other

buckets’ variables ug,t are fixed to zero in the problem, and the constraint
∑

j∈Bi
xj ≥ 1 is added

to ensure that at least one variable in the bucket Bi has a value of one. The function solve(P ,

cutoff, tl) is used to send the problem PK∪Bi to the solver, with P representing the problem, cutoff
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Algorithm 2 buildbuckets()

Input:
Udesc=list of ug,t outside the kernel, in descending order,
nbucks=number of buckets

Output:
A set of buckets {Bi}nbucksi=1

{Bi} ← {ϕ}
start← 0; end← 0
n← |Udesc|
k ← ⌊n/nbucks⌋
remainder← n mod (nbucks)
for i = 1,nbucks do

end← start+ k
if remainder > 0 then

end← end+ 1
remainder← remainder− 1

end if
Bi ← Bi ∪ {Udesc[start : end]}
start← end

end for
return {Bi}nbucksi=1

representing the upper bound value, and tl representing the maximum solution time. At each

iteration, the kernel is updated, adding the bucket variables that result in a value of one in the

solution.

After solving all the buckets Bi with the kernel, if the maximum time has not elapsed, the

incumbent solution x∗ is set as the new initial solution x̄, and the process is restarted until the

time is exhausted.

Local Branching

This matheuristic was proposed by Fischetti and Lodi [14] and implemented the concept of local

search in a MILP problem using a branching strategy. Those feasible solutions within a distance

radius of the parameter k define the neighborhood N(x, k). The distance from solution x to other

solutions is calculated using the hamming distance ∆(x, x), which counts the number of changes

from 0 to 1 and from 1 to 0 between the variables that conform the binary support (BS) of the

solution x to other variables outside of binary support (BS). The binary support of a solution

x consists of all binary variables that take the value of one in the solution. Exploration in a

neighborhood is performed by the solver adding a non-valid inequality called Local Branching

Constraint (LBC) (40) to problem P .

Unlike Fischetti and Lodi, which considers all binary variables of a problem to form a BS, in

this work, the BS of a solution x̄ of UCP is defined as the subset of the commitment variables

BS={ug,t : ug,t = 1}. Therefore, the LBC limits the number of moves between the BS and BS to

the number k as defined by the equation:
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∆(x, x̄) =
∑
j∈BS

(1− uj) +
∑
j∈BS

uj ≤ k (40)

In our UCP, the binary variables vg,t, wg,t, and δg,t contained in the formulation are not con-

sidered to build the BS; therefore, they are not used in the local search definition we present. The

decision to use only the binary commitment variables ug,t is because we have observed that these

variables ug,t are found in most of the model constraints, and a change in the value of these variables

can activate or deactivate all the operating constraints related to a generator. Using a dominant

variable in the local search has advantages, such as a reduction in the solver search time due to

reducing the number of variables in the local search. It also compacts the mathematical model by

removing constraints related to a generator. This idea of using a single dominant binary variable

was initially reported by Darwiche et al. [8] and is used in this particular version of LB to solve a

graph edit distance problem.

Finally, the constraints representing the movements in LB are enlisted as follows.

left-branch : ∆(x, x̄) ≤ k (41)

right-branch : ∆(x, x̄) ≥ k + 1 (42)

tabu : ∆(x, x̄) ≥ 1 (43)

soft-fixing :
∑
j∈BS

x̄jxj ≥ 0.9
∑
j∈BS

x̄j (44)

The constraints in the LB enlisted, as proposed by Fischetti and Lodi in 2006, are crucial

for efficiently narrowing the feasible space in solving MILPs. These constraints, which include

left-branching, right-branching, tabu constraints, and a soft-fixing strategy, play a key role in the

algorithm’s effectiveness. This approach, outlined in Fischetti and Lodi’s original work, significantly

contributes to solution improvement by adjusting the parameter k and implementing diversification

mechanisms. Overall, these constraints are essential for the LB method to target near-optimal

solutions in MILP problems.

Our implementation of LB for the UCP

This section outlines four versions of LB that differ from the original idea [14]. The main

differences are described as follows.

• LB1: First, this version narrows the local search between the BS and an RCL, which is

defined from the elements satisfying the condition ug,t : {ũg,t · pg,t < P} ∩ {ũg,t · p̃g,t ̸=
0}, a representation of this subset of variables can be shown in the Figure 1; note that

the RCL contains the variables that are not zero but are below the minimum power value

of the generator P g, these variables are discarded by Harjunkoski et al. [19] in his fixing

criterion, but we have included them to construct our RCL. Second, the soft-fixing method
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further narrows the search, forcing at least 90% of the original BS variables to remain in

the solution by applying the constraint
∑

j∈BS

x̄jxj ≥ 0.9
∑

j∈BS

x̄j proposed by Fischetti and

Lodi [14]. In addition, soft-fixing relaxes the integrality constraint on the BS variables but

keeps the variables’ bounds at [0,1]. Finally, we take advantage of the fact that the binary

variables vg,t and wg,t in constraints (6) force ug,t to take binary values, even if ug,t is defined

as continuous. The possibility of relaxing the integrality constraint of ug,t and obtaining the

same solution without being forcibly binary was visualized and reported by Morales-España

et al. [26] and Morales-España et al. [28] in their works about the models T&C thermal UCP.

• LB2: This version is similar to LB1 except that it does not have soft-fixing; therefore, con-

straints (44) are not applied.

• LB3: This version is the closest to the original one proposed by Fischetti and Lodi [14]. This

version does not do a local search with any RCL and is not narrowed down by soft-fixing.

The local search is defined only between the BS and the variables that do not form the binary

support BS.

• LB4: This version is similar to LB1 except that the RCL is formed by the variables with

negative values in the reduced costs. The reduced costs are calculated by fixing to 1 of the

variables that form the BS of the initial solution x̄ and solving the linear relaxation of the

problem.

A key feature of our versions of LB is that they use only the dominant ug,t variables to define

the BS, unlike the generic LB of Fischetti and Lodi [14], where all binary variables participate in

the local search.

5 Computational Experience

In this section, we present the evaluation of the proposed algorithms. All methods were coded

in Python version 3.10.0 and the algebraic modeling language Pyomo version 6.6.1 using IBM(R)

ILOG(R) CPLEX(R) version 22.1.0.0 as the optimization solver. Tests were carried out in a 64-bit

platform with 64 GB of RAM and 2.50 GHz Intel(R) i7(R) 11700 CPU, 65W, on a Linux Ubuntu

version 20.0 operating system.

For all tests the relative optimality gap (ROG) was computed as follows:

ROG =
|LowBound− z best|
((1× 10−10) + |z best|)

· 100%

where LowBound corresponds to the largest lower (dual) bound obtained by the branch-and-bound

solver and z best, to the best feasible integer solution found by the corresponding method.
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5.1 Description of test instances

A total of 83 instances, divided into three main subsets (see Table 2), were used to evaluate the

proposed methods. The first subset, x7day small, consists of 20 instances (10 from Morales-España

et al. [26] and 10 derived from an eight-generator dataset proposed by Ostrowski et al. [32]);

while the second (x7day medium) and third (x7day large) subsets include 33 and 30 instances,

respectively, constructed by gradually increasing the number of generators and randomly combining

them to enhance complexity, based on data from Ostrowski et al. [32]. The planning horizon for

all the sets is composed of 168 periods, equivalent to seven days.

Table 2: Description of test instances.

Group Instances Generators Instances

x7day small 20 28-81 061-070, 101-110
x7day medium 33 85-156 071-073, 111-140
x7day large 30 165-405 074-080, 132-163

The demand profile for each instance, shown in Table 3, is obtained by multiplying the demand

profile and the sum of the maximum capacity of all generators. A reduction factor of 80% on a

weekday is applied to calculate the weekend demand. The spinning reserve requirement of 5% of

the power demand must be met for each hour.

Table 3: Load demand profile (% of total capacity).

hour 1 2 3 4 5 6 7 8 9 10 11 12
demand 71% 65% 62% 60% 58% 58% 60% 64% 73% 80% 82% 83%

hour 13 14 15 16 17 18 19 20 21 22 23 24
demand 82% 80% 79% 79% 83% 91% 90% 88% 85% 84% 79% 74%

5.2 Comparison of constructive methods

The goal of this first experiment is to evaluate the proposed construction heuristic, HARDUC.

To this end, we compare HARDUC, HGPS [19], and the best solution found by CPLEX (CBS,

for CPLEX Best Solution) on all the instances. CPLEX algorithmic parameters such as empha-

sis mip, mip strategy file, and mip tolerances mipgap, were configured as detailed in Table 4. The

maximum computing time was set to 1200 s. The table shows the average ROG (AROG) and

its standard deviation (ROGSD), as well as the number of feasible solutions (NFS) that the each

method successfully found.

Table 4: Parameters of the solver used as constructive CBS.

Parameter Value Description

emphasis mip 1 Emphasize feasibility over optimality
mip strategy file 3 Node file on disk and compressed
mip tolerances mipgap 1× 10−5 Relative tolerance between the best integer

and the best lower bound
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Table 5 shows the comparison of the obtained results. These results indicate that the proposed

HARDUC achieved the lowest AROG among all the sets of instances, indicating solutions closer to

optimality than CBS and HGPS. It also obtained the lowest ROGSD, ensuring more stable perfor-

mance. CBS showed the highest AROG and ROGSD in most of the cases. HGPS performed better

than CBS but slightly worse than HARDUC. In terms of the number of feasible solutions, HARDUC

successfully found feasible solutions for all the sets of instances. HGPS identified 20/32/29 feasible

solutions for the sets of small-, medium-, and large-scale instances, respectively. Finally, CPLEX

found 20 feasible solutions in the x7day small group (100%), 26 out of 33 in the x7day medium

group (78.7%), and 18 out of 30 in the x7day large group (63.3%).

Table 5: Comparison of constructive methods.

x7day small x7day medium x7day large

Method AROG ROGSD NFS AROG ROGSD NFS AROG ROGSD NFS

CBS 0.0075 0.0195 20 0.0005 0.0001 26 0.0071 0.0186 18
HGPS 0.0013 0.0003 20 0.0010 0.0002 32 0.0009 0.0004 29
HARDUC 0.0007 0.0002 20 0.0005 0.0001 33 0.0003 0.0000 30

Therefore, HARDUC was chosen to obtain an initial feasible solution for the proposed matheuris-

tics evaluated in the next section since it obtained the best performance.

5.3 Evaluation of metaheuristics performance

In the following tests, the proposed methods (KS and the four versions of LB) are evaluated under

two different computation times: 4000 s. and 7200 s. (including the time for obtaining the initial

feasible solution). For all LB versions, each iteration has a time limit of 1200 s. Furthermore, the

results obtained by solving model TUCP ( (1)-(39)) using CPLEX, are analyzed. For this purpose,

two versions were considered: SM1, in which the model is completely solved by CPLEX, and SM2,

where an initial feasible solution is given as a staring solution (MIPStart) to the solver. For all

methods (except SM1), the same initial solution is considered. Certain parameters used by CPLEX

were adjusted as specified in Table 6.

Table 6: CPLEX algoritmic parameters for matheuristic evaluation.

Method Parameter Value Description

SM1

emphasis mip 1 Emphasize feasibility over optimality
mip strategy file 3 Node file on disk and compressed
mip tolerances mipgap 1× 10−5 Relative tolerance between the best integer

and the best lower bound

Remaining

emphasis mip 1 Emphasize feasibility over optimality
mip strategy file 3 Node file on disk and compressed
mip strategy heuristicfreq 50 Apply the periodic heuristic at this frequency
mip tolerances mipgap 1× 10−5 Relative tolerance between the best integer

and the best lower bound
preprocessing symmetry 0 Turn off symmetry breaking

For the relevant criteria specific to each proposed solution method, Table 7 illustrates how these
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were applied.

Table 7: Criteria considered for the KS and the LB methods.

LB1
LBC built using dominant variable ug,t.
RCL from Harjukovski’s rule [19].
Soft-fixing to 90% of binary support.

LB2
LBC built using dominant variable ug,t.
RCL from Harjukovski’s rule [19].

LB3 LBC built using dominant variable ug,t.

LB4
LBC built using dominant variable ug,t.
RCL from reduced costs.
Soft-fixing to 90% of binary support.

KS

Kernel and buckets are built only with dominant variables ug,t.
Number of buckets is calculated by Sturge’s rule [36].
Buckets are built using the reduced costs from linear relaxation (fixing kernel).

Table 8 shows the AROG, the ROGSD, and the NFS obtained for each method considering

the set of test instances. As can be seen, on average, increasing the maximum computation time

reduce the average ROG and its corresponding standard deviation in most cases. Considering the

significant impact that improvements can have, even if they are perceived to be small, we can

visualize that by assigning one more hour of optimization (which is still within the time allowed in

the real case), we can further improve the solutions obtained when the optimization time is 4000 s.

Our proposed construction heuristic, HARDUC, found feasible solutions for all instances within

the time limit. However, some medium- and large-scale instances were excluded in the computations

under the 7200 s. option because CPLEX, the base solver, failed to solve the linear programming

relaxation at the root node of the branch-and-bound method so that no lower bound was available.

Finally, the results are also plotted for all methods and each set of instances. A statistical

analysis is conducted only for those instances in which the method successfully found a solution.

Figures 2a, 3a, and 4a present the distributions of the relative optimality gap for each method. Each

series represents a method, with the horizontal axis indicating the relative optimality gap. The

Y-axis represents the density, which is a continuous estimate of the relative frequency. Therefore,

the area under the curve must equal 1. The figures show that as instance difficulty increases, the

KS and LB methods yield results with significantly lower variance compared to the solver (SM1,

SM2). Additionally, the KS and LB methods achieve higher accuracy, with an average relative

optimality gap closer to zero than the solver. To assess the significance of these improvements, we

conducted statistical tests by analyzing variance and comparing means.

Similarly, Figures 2b, 3b, and 4b provide evidence of the relative optimality gap distributions for

each method at 7200 s. It can be noticed that, as instance difficulty increases, the KS outperforms

the other methods, showing a lower variance and a superior accuracy of AROG.

An analysis of variance (ANOVA) was conducted for each set of instances in both cases. The

results reject the null hypothesis of equal means, confirming that at least one method differs sig-
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Table 8: Performance comparison among all solution methods considering different maximum time
limits

Set Method 4000 s 7200 s

AROG ROGSD NFS AROG ROGSD NFS

x7day small

LB1 6.65E-4 2.20E-4 20 6.11E-4 1.82E-4 20
LB2 6.56E-4 2.18E-4 20 6.22E-4 2.00E-4 20
LB3 6.98E-4 2.44E-4 20 6.67E-4 2.31E-4 20
LB4 6.60E-4 2.30E-4 20 6.31E-4 2.06E-4 20
KS 6.85E-4 2.63E-4 20 6.78E-4 2.67E-4 20
SM1 5.79E-4 1.59E-4 20 5.56E-4 1.59E-4 20
SM2 6.28E-4 1.49E-4 20 5.81E-4 1.55E-4 20

x7day medium

LB1 3.74E-4 9.08E-5 26 3.36E-4 7.25E-5 26
LB2 3.66E-4 9.49E-5 26 3.39E-4 7.67E-5 26
LB3 3.82E-4 9.44E-5 26 3.50E-4 6.46E-5 26
LB4 3.76E-4 9.19E-5 26 3.38E-4 6.91E-5 26
KS 3.10E-4 7.48E-5 26 2.98E-4 6.73E-5 26
SM1 4.73E-4 1.18E-4 26 3.13E-4 8.77E-5 26
SM2 3.74E-4 9.08E-5 26 4.45E-4 1.07E-4 26

x7day large

LB1 2.71E-4 6.42E-5 18 2.47E-4 5.75E-5 18
LB2 2.81E-4 7.17E-5 18 2.42E-4 5.82E-5 18
LB3 2.91E-4 7.36E-5 18 2.63E-4 6.44E-5 18
LB4 2.90E-4 6.64E-5 18 2.54E-4 6.30E-5 18
KS 2.25E-4 3.95E-5 18 2.08E-4 3.82E-5 18
SM1 3.07E-4 8.77E-5 18 2.72E-4 7.33E-5 18
SM2 3.33E-4 7.79E-5 18 3.19E-4 8.34E-5 18

nificantly from the others. Similar results are obtained when the maximum time limit allowed is

7200 s (see Appendix B for details).

It is important to realize that even very small relative optimality gaps, on the order of 0.01% or

less, can lead to materially different market outcomes. These differences may not significantly affect

the total cost, but they can shift unit commitment decisions enough to alter the marginal prices

used for market settlements. Since these prices determine generator payments, slight variations can

result in economic mismatches and fairness concerns [20].

This sensitivity has been confirmed in several studies, where near-optimal solutions with nearly

identical objective values led to significantly different pricing outcomes. As shown by Sioshansi

et al. [37], small optimality gaps do not necessarily eliminate payment deviations or price volatility.

Therefore, reducing the gap—even marginally—remains relevant for achieving more stable and

economically efficient market results. In this work, we aim to contribute to reducing the optimality

gap as a means to help mitigate, among other issues, the payment instability faced by generators.
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Figure 2: Relative optimality gap distribution of improvement methods on set x7day large.
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Figure 3: Relative optimality gap distribution of improvement methods on set x7day medium.
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Figure 4: Relative optimality gap distribution of improvement methods on set x7day large.

5.4 Evaluation of special cases

To gain deeper insight, a more detailed analysis of the following cases is carried out as follows:

Case 1: Performance of methods in two instances where SM1 was unable to find a solution

Case 2: Performance of methods on two instances where SM1 found a solution but performed

worse than the remaining methods

Case 3: Performance of methods on two instances for which SM1 obtained similar results to the

remaining methods

Case 4: Comparison of the methods in instances where the KS shows stagnation.

Case 5: Comparison of methods in which KS failed to improve the initial solution

Analysis of Case 1

In this case two instances,uc 141 and uc 146 from the set of large-scale instances, are evaluated

in which SM1 was not able to find a feasible solution. As can be seen in Figures 5a and 5b, the

proposed solution methods (and their variants) were able to improve the initial solution found by

HARDUC, with KS performing the best of all and LB3 showing the worst performance.
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Figure 5: Comparison of methods on instances where the solver (SM1) could not solve within the
allowed time limit.

Analysis of Case 2

In the second case, two instances (uc 143 and uc 153), depiucted in Figures 6a and 6b, illustrate

a scenario where SM1 finds a solution, but its performance and quality are not competitive with

the other methods. Here, the initial solution provided by HARDUC plays a crucial role in both

the starting point and overall performance of the proposed methods. Although SM1 required a

significant amount of time to achieve its first notable improvements, the other methods have taken

advantage of the initial solution of HARDUC much earlier, allowing them to use the remaining

time more effectively for refinement. Among these methods, KS again demonstrated superior

performance and solution quality.
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Figure 6: Performance of methods on two instances where SM1 found a solution but performed
worse than the remaining methods
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Analysis of Case 3

In some isolated cases, SM1 produced competitive or even superior results compared to meta-

heuristic methods. As shown in Figures 7a and 7b, the initial solution of SM1 was significantly

better than the starting point provided by HARDUC. However, while the proposed methods quickly

achieved substantial improvements in most cases, they were unable to surpass the solution of SM1

in these specific instances. Only the KS was able to arrive at a similar solution in the given time in

one of the cases, being in general one of the proposed methods that showed a better performance.

In particular, despite the strong initial solution of SM1, it struggled to make significant further

improvements for most of the remaining time.
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Figure 7: Performance of methods on two instances for which SM1 obtained similar results to the
remaining methods

Analysis of Case 4

In Case 4, two instances show a particular pattern in the KS method. Initially, KS achieved

significant improvements, but as iterations progressed, it reached longer periods of stagnation, where

further enhancements became minimal. This stagnation prevented the algorithm from making

meaningful progress in subsequent iterations. For example, in Figure 8a, the solution improved

substantially during the first iteration, but showed little progress over the remaining 5000 seconds.

A similar pattern is observed in Figure 8b, where although the solution improved considerably

in the final 1000 seconds, it struggled for most of the runtime to escape a local optimum. This

behavior may be due to the first buckets containing key variables that provide early improvements,

while the remaining buckets, due to their size, failed to capture the ideal combination of variables

needed for further optimization. It would be valuable to explore whether evaluating a larger kernel

or expanding the number of buckets could improve efficiency and mitigate stagnation.
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Figure 8: Comparison of the methods in instances where the KS shows stagnation

Analysis of Case 5

In this final analysis, there are four cases where KS failed to improve the initial feasible solution

provided by HARDUC (see Figures 9a, 9b, 9c, and 9d). In these cases, only the LB method and its

variations were able to achieve better solutions, with slightly different performance depending on

the stage solved. One possible approach to address this limitation is to analyze alternative kernel

and hub sizes to determine whether tuning these parameters could increase the opportunity for

further improvements.

Briefly speaking, since the solver did not find a feasible solution in some large-scale instances,

we provided an initial starting solution using our HARDUC method. However, even with initial

solution, the solver obtained less accurate results than the proposed improvement methods LB1-4,

and KS.

For small-scale instances, when the maximum time limit was set to 4000 s., the solver performed

similarly to the LB1-4 and KS methods, with no significant accuracy. However, when the time was

extended to 7200 s., the solver outperformed LB3 and SM2, achieving a smaller relative optimality

gap.

For medium-scale instances with a 4000-second time limit, the KS outperformed the remaining

methods. In addition, LB1-4 performed better than SM1 and SM2.

For large-scale instances, in general, KS was again the most efficient method for both time

limits. In addition, LB1 performed better than SM1, and SM2 outperformed SM1.

It was observed that all LB methods outperformed SM2. However, when the time limit was set

to 7200 s., no significant differences were found between LB1-4 and SM1 methods. It is important to

note that the solver did not successfully solve all medium- and large-scale instances. Furthermore,

if an initial solution is provided to the solver, the performance is noticeably lower compared when

it is performed without it.

In general, among the methods, KS achieved the smallest average optimality gap. On the other

hand, LB3, which closely follows the original method proposed by Fischetti and Lodi [14], has
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Figure 9: Comparison of methods on instances where the KS remained in the initial solution without
improvement.

shown the lowest performance among the proposed LB methods.

Although KS generally provided better results in terms of relative optimality gap, it did not

improve the initial HARDUC solution in approximately 4% of the instances. In contrast with the

LB methods, which successfully improved the initial solution.

6 Conclusions

Five methods were developed to solve a thermal UCP within a matheuristic approach, four based

on local branching and one based on kernel search. In addition, a constructive heuristic (HARDUC)

was developed to provide the first solution to the matheuristic methods.

Among the methods based on LB, LB3 is the closest version to the original local branching,

unlike LB1, LB2, and LB4, which are variants that implement the soft-fixing concept and a re-

stricted candidate list. Additionally, only the variables classified as dominant are considered in the

local search. In this case, the commitment variable, which determines the “on” or “off” state of

the generator, was identified as such.
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The methods were assessed by solving three groups of instances classified into small-, medium-,

and large-scale according to the number of generators they contained. A time limit of 4000 seconds

and 7200 seconds was set for solving the instances using the LB1, LB2, LB3, LB3, LB4, and KS

improvement methods, including the commercial solver. We also tried out feeding the commercial

solver with a feasible solution found by the constuction heuristic.

The solver without an initial solution only solved approximately 79% of medium-sized instances

and 63% of large-scale instances. In contrast, our methods, LB1, LB2, LB3, LB4, and KS, always

had feasible initial solutions provided by our HARDUC method in the constructive phase.

In terms of solution quality, statistical tests showed no significant differences among the LB1,

LB2, LB4, LB3, and KS methods and the solver on small-scale instances. However, for testing

medium-scale instances within a maximum allowed running time of 4000 seconds, the KS performed

best. The other methods outperformed the solver with an initial solution and matched the results

of the solver without an initial solution. For tests with a maximum allowed running time of 7200

s., the solver performed in the same way as all methods except for LB3, which performed worse

than the solver without an initial solution. LB3 is the method most similar to the original version

of local branching. Regardless of the time limit, all methods outperformed the solver in solution

quality for the set of large-scale instances. Again, the KS performed best.

Therefore, we can confirm that the proposed methods are more efficient than using only the

solver; moreover, KS is the best method for medium- and large-scale instances. According to the

results, the proposed adaptations of local branching, including soft-fixing and RCL components,

helped find better solutions in medium-scale instances instead of the original version.

Although previous studies have suggested that the KS method effectively solves knapsack prob-

lems with promising outcomes, the results of our study demonstrate that the KS method may also

be useful in solving the UCP problem.

The KS exhibits a behavior similar to a greedy algorithm, with a quick descent followed by a

“stagnation” effect. However, local branching methods offer a consistent improvement and have

the capacity to avoid local optima, albeit with a slower descent rate than KS. A promising direction

for future work would be to hybridize KS with LB to leverage the strengths of both methods.

We have learned that matheuristics are able to “dive” within the solution space and help speed

up the search for better solutions than if we only used the solver. We have found that the proposed

improvement methods do their job by improving the initial solution. Therefore, we can consider

our strategy of constructing and improving solutions using matheuristic methods to be effective.

Finally, in practice, we recommend using these matheuristic methods and the solver simulta-

neously on different computers. This strategy of diversifying solution methods always allows us to

obtain feasible and high-quality solutions.

Future research: For future research, it would interesting the developing of a hybrid algorithm

combining KS and the Local Branching Constraint (LBC) (40) to benefit from KS’s rapid conver-

gence in initial iterations and LBC’s ability to escape local optima when KS stagnates. Another

line of work could be designing a branch-and-cut method that includes local branching constraints,

using callback functions to introduce cuts into the solver’s solution tree, saving time and enhancing
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efficiency during problem solving. We think that a study to assess the proposed approach with

various UCP models, considering variations such as prohibited zones, non-linear elements, elastic

demand, interdependent generators, and network flow limits, offers the potential for evaluating its

effectiveness across various UCP formulations. Another line of work, within the context of KS,

consists of further studies about strategies for determining values for the kernel and bucket list

size. Naturally, many of the ideas developed here can be extended to handle stochastic versions of

the problem. Many of those solution algorithms rely on decomposition or scenario-based schemes

where some subproblems might have similar structures.
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[23] V. Maniezzo, M. A. Boschetti, and T. Stützle. Matheuristics: Algorithms and Implementations.

EURO Advanced Tutorials on Operational Research. Springer, Cham, Switzerland, 2021.

[24] L. Montero, A. Bello, and J. Reneses. A review on the unit commitment problem: Approaches,

techniques, and resolution methods. Energies, 15(4):1296, 2022.

[25] G. Morales-España. Unit Commitment: Computational Performance, System Representation

and Wind Uncertainty Management. PhD thesis, Universidad Pontificia Comillas, Madrid,

Spain, October 2014.

[26] G. Morales-España, J. M. Latorre, and A. Ramos. Tight and compact MILP formulation

for the thermal unit commitment problem. IEEE Transactions on Power Systems, 28(4):

4897–4908, 2013.

[27] G. Morales-España, J. M. Latorre, and A. Ramos. Tight and compact MILP formulation of

start-up and shut-down ramping in unit commitment. IEEE Transactions on Power Systems,

28(2):1288–1296, 2013.
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A Results for Construction Heuristics

The distributions of the relative optimality gap results for each method are shown in Figures A1,

A2, and A3. Each series represents the results of a method; the relative optimality gap is shown

on the horizontal axis. The number of feasible instances found from each group’s total instances is

reported in parentheses. The figures illustrate that, as the instance difficulty increases, the relative

optimality gap of the first solution obtained with the HARDUC method exhibits a distribution with

significantly lower variance than other methods. Moreover, it demonstrates superior accuracy, as

evidenced by the average relative optimality gap approaching zero. Statistical tests further support

these findings.
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Figure A1: Relative optimality gap distributions of constructive methods in the instances group
x7day small.

The following is an analysis of variance, and mean difference applied to the results of the

methods regarding the relative optimality gap.

On one hand, the analysis of variance checks whether the average relative optimality gap of the

results of all methods is statistically different from each other. On the other hand, a series of mean

difference tests applied to each pair of results verify that the average relative optimality gap of one

method is significantly higher than the mean obtained by another method. All statistical studies

were done only in the instances where the solver found a feasible solution.

The results of the analysis of variance applied to the results of the constructive methods are

shown in Table A1. In the three groups of instances, the null hypothesis Ho of equality of means
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Figure A2: Relative optimality gap distributions of constructive methods in the instances group
x7day medium.

was rejected. The alternative hypothesis that at least one of the methods has a mean difference

from the others was not rejected. The results of the mean difference analysis between the HARDUC

and HGPS methods can be found in Table C1. The HARDUC method has a significantly lower

average in the relative optimality gap than HGPS.

Because the HARDUC method obtained a feasible initial solution in all test instances and a

significantly smaller relative optimality gap than those obtained by HGPS and CBS, we consider

the HARDUC constructive method to be the most appropriate to provide the first initial solution

to the improvement methods (LB1, LB2, LB3, LB4, and KS) in the following tests.

Table A1: Analysis of variance summary of the constructive methods HARDUC, HGPS, and CBS.

Null hypothesis Instances Test p-value Decision

The mean for each population
is equal

x7day small Kruskal-Wallis 0.0000* We reject Ho and accept Ha:
at least one population mean
different from the rest

The mean for each population
is equal

x7day medium Kruskal-Wallis 0.0000* We reject Ho and accept Ha:
at least one population mean
different from the rest

The mean for each population
is equal

x7day large Kruskal-Wallis 0.0000* We reject Ho and accept Ha:
at least one population mean
different from the rest

* Significance level 0.05
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Figure A3: Relative optimality gap distributions of constructive methods in the instances group
x7day large.

Table A2: Differences mean test summary between the constructive methods HARDUC and HGPS.

Null hypothesis Instances Test p-value Decision

The means difference of the
samples from the same distribu-
tion

x7day small Mann-Whitney 0.0002* We reject Ho and accept Ha:
HARDUC’s mean is less than
HGPS’s mean

The means difference of the
samples from the same distribu-
tion

x7day medium Mann-Whitney 0.0000* We reject Ho and accept Ha:
HARDUC’s mean is less than
HGPS’s mean

The means difference of the
samples from the same distribu-
tion

x7day large Mann-Whitney 0.0000* We reject Ho and accept Ha:
HARDUC’s mean is less than
HGPS’s mean

* Significance level 0.05

B Results for Local Branching and Kernel Search

We perform statistical tests by analyzing variance and comparing means to determine whether the

improvements are significant. The summary of the results of the analysis of variance for the three

groups of instances can be found in Table B1.

The analysis of variance results rejects the null hypothesis of equality of the means and does

not reject the alternative hypothesis that at least one of the means differs from that of the rest of

the methods.

The results of the mean comparison study among all the methods, for 4000 seconds of execution
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Table B1: Analysis of variance summary for LB1 1h, LB2 1h, LB3 1h, LB4 1h, KS 1h, SM1 1h,
SM2 1h under a running time limit of 4000 seconds.

Null hypothesis Instances Test p-value Decision

The mean for each population
is equal

x7day small Kruskal-Wallis 0.9758 We fail to reject Ho

The mean for each population
is equal

x7day medium Kruskal-Wallis 0.0000* We reject Ho and accept Ha:
at least one population mean
different from the rest

The mean for each population
is equal

x7day large Kruskal-Wallis 0.0066* We reject Ho and accept Ha:
at least one population mean
different from the rest

* Significance level 0.05

and for the three groups of instances are presented in Tables C2, C4, and C6.

We carry out statistical testing to determine whether the improvements are significant by ana-

lyzing variance and comparing means. The summary of the results of the analysis of variance for

the three groups of instances can be found in Table B2.

Table B2: Analysis of variance summary for LB1, LB2, LB3, LB4, KS, MILP, SM2 under a running
time limit of 7200 seconds.

Null hypothesis Instances Test p-value Decision

The mean for each population is
equal

x7day small Kruskal-Wallis 0.7289 We fail to reject Ho

The mean for each population is
equal

x7day medium Kruskal-Wallis 0.0000* We reject Ho and accept Ha:
at least one population mean
different from the rest

The mean for each population is
equal

x7day large Kruskal-Wallis 0.0007* We reject Ho and accept Ha:
at least one population mean
different from the rest

* Significance level 0.05

C Statistical Tests

Table C1: Differences mean test summary between the constructive methods HARDUC and HGPS.

Null hypothesis Instances Test p-value Decision

The means difference of the
samples from the same distribu-
tion

x7day small Mann-Whitney 0.0002* We reject Ho and accept Ha:
HARDUC’s mean is less than
HGPS’s mean

The means difference of the
samples from the same distribu-
tion

x7day medium Mann-Whitney 0.0000* We reject Ho and accept Ha:
HARDUC’s mean is less than
HGPS’s mean

The means difference of the
samples from the same distribu-
tion

x7day large Mann-Whitney 0.0000* We reject Ho and accept Ha:
HARDUC’s mean is less than
HGPS’s mean

* Significance level 0.05
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Table C2: Means difference statistical test summary among all methods for instances from group
x7day small under a running time limit of 4000 seconds.

Null hypothesis Test p-value Decision

SM1 1h-LB2 1h: There is no difference between the two population means Mann-Whitney 0.3779 We fail to reject Ho

SM1 1h-KS 1h: There is no difference between the two population means T-test for two samples 0.2725 We fail to reject Ho

SM1 1h-LB1 1h: There is no difference between the two population means T-test for two samples 0.2499 We fail to reject Ho

SM1 1h-LB4 1h: There is no difference between the two population means T-test for two samples 0.1737 We fail to reject Ho

SM1 1h-LB3 1h: There is no difference between the two population means T-test for two samples 0.1318 We fail to reject Ho

SM1 1h-SM2 1h: There is no difference between the two population means T-test for two samples 0.0888 We fail to reject Ho

LB2 1h-KS 1h: There is no difference between the two population means Mann-Whitney 0.5484 We fail to reject Ho

LB2 1h-LB1 1h: There is no difference between the two population means Mann-Whitney 0.4302 We fail to reject Ho

LB2 1h-LB4 1h: There is no difference between the two population means Mann-Whitney 0.2714 We fail to reject Ho

LB2 1h-LB3 1h: There is no difference between the two population means Mann-Whitney 0.2367 We fail to reject Ho

LB2 1h-SM2 1h: There is no difference between the two population means Mann-Whitney 0.1617 We fail to reject Ho

KS 1h-LB1 1h: There is no difference between the two population means T-test for two samples 0.492 We fail to reject Ho

KS 1h-LB4 1h: There is no difference between the two population means T-test for two samples 0.4016 We fail to reject Ho

KS 1h-LB3 1h: There is no difference between the two population means T-test for two samples 0.3336 We fail to reject Ho

KS 1h-SM2 1h: There is no difference between the two population means T-test for two samples 0.2923 We fail to reject Ho

LB1 1h-LB4 1h: There is no difference between the two population means T-test for two samples 0.4039 We fail to reject Ho

LB1 1h-LB3 1h: There is no difference between the two population means T-test for two samples 0.332 We fail to reject Ho

LB1 1h-SM2 1h: There is no difference between the two population means T-test for two samples 0.287 We fail to reject Ho

LB4 1h-LB3 1h: There is no difference between the two population means T-test for two samples 0.4211 We fail to reject Ho

LB4 1h-SM2 1h: There is no difference between the two population means T-test for two samples 0.3808 We fail to reject Ho

LB3 1h-SM2 1h: There is no difference between the two population means T-test for two samples 0.4675 We fail to reject Ho

* Significance level 0.05
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Table C3: Means difference statistical test summary among all methods for instances from group
x7day small under a running time limit of 7200 seconds.

Null hypothesis Test p-value Decision

SM1-LB2: There is no difference between
the two population means

Mann-Whitney 0.1584 We fail to reject Ho

SM1-LB1: There is no difference between
the two population means

Mann-Whitney 0.1396 We fail to reject Ho

SM1-LB4: There is no difference between
the two population means

Mann-Whitney 0.117 We fail to reject Ho

SM1-SM2: There is no difference between
the two population means

T-test for two samples *0.0362 We reject Ho and accept
Ha: MILP’s mean less
than MILP2’s

SM1-KS: There is no difference between
the two population means

T-test for two samples 0.0501 We fail to reject Ho

SM1-LB3: There is no difference between
the two population means

T-test for two samples *0.0358 We reject Ho and accept
Ha: MILP’s mean less
than LB3’s

LB2-LB1: There is no difference between
the two population means

Mann-Whitney 0.4569 We fail to reject Ho

LB2-LB4: There is no difference between
the two population means

Mann-Whitney 0.4143 We fail to reject Ho

LB2-SM2: There is no difference between
the two population means

Mann-Whitney 0.2326 We fail to reject Ho

LB2-KS: There is no difference between
the two population means

Mann-Whitney 0.4091 We fail to reject Ho

LB2-LB3: There is no difference between
the two population means

Mann-Whitney 0.2989 We fail to reject Ho

LB1-LB4: There is no difference between
the two population means

Mann-Whitney 0.4515 We fail to reject Ho

LB1-SM2: There is no difference between
the two population means

Mann-Whitney 0.2669 We fail to reject Ho

LB1-KS: There is no difference between
the two population means

Mann-Whitney 0.4623 We fail to reject Ho

LB1-LB3: There is no difference between
the two population means

Mann-Whitney 0.2896 We fail to reject Ho

LB4-SM2: There is no difference between
the two population means

Mann-Whitney 0.3036 We fail to reject Ho

LB4-KS: There is no difference between
the two population means

Mann-Whitney 0.4623 We fail to reject Ho

LB4-LB3: There is no difference between
the two population means

Mann-Whitney 0.3375 We fail to reject Ho

SM2-KS: There is no difference between
the two population means

T-test for two samples 0.3651 We fail to reject Ho

SM2-LB3: There is no difference between
the two population means

T-test for two samples 0.3434 We fail to reject Ho

KS-LB3: There is no difference between
the two population means

T-test for two samples 0.4909 We fail to reject Ho

* Significance level 0.05
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Table C4: Means difference statistical test summary among all methods for instances from group
x7day medium under a running time limit of 4000 seconds.

Null hypothesis Test p-value Decision

KS 1h-LB2 1h: There is no difference
between the two population means

Mann-Whitney *0.0108 We reject Ho and accept Ha: KS 1h’s
mean less than LB2 1h’s

KS 1h-LB1 1h: There is no difference
between the two population means

Mann-Whitney *0.0031 We reject Ho and accept Ha: KS 1h’s
mean less than LB1 1h’s

KS 1h-LB4 1h: There is no difference
between the two population means

Mann-Whitney *0.0022 We reject Ho and accept Ha: KS 1h’s
mean less than LB4 1h’s

KS 1h-LB3 1h: There is no difference
between the two population means

Mann-Whitney *0.001 We reject Ho and accept Ha: KS 1h’s
mean less than LB3 1h’s

KS 1h-SM1 1h: There is no difference
between the two population means

Mann-Whitney *0.0 We reject Ho and accept Ha: KS 1h’s
mean less than SM1 1h’s

KS 1h-SM2 1h: There is no difference
between the two population means

Mann-Whitney *0.0 We reject Ho and accept Ha: KS 1h’s
mean less than SM2 1h’s

LB2 1h-LB1 1h: There is no difference
between the two population means

Mann-Whitney 0.2699 We fail to reject Ho

LB2 1h-LB4 1h: There is no difference
between the two population means

Mann-Whitney 0.2405 We fail to reject Ho

LB2 1h-LB3 1h: There is no difference
between the two population means

Mann-Whitney 0.1593 We fail to reject Ho

LB2 1h-SM1 1h: There is no difference
between the two population means

Mann-Whitney *0.0002 We reject Ho and accept Ha: LB2 1h’s
mean less than SM1 1h’s

LB2 1h-SM2 1h: There is no difference
between the two population means

Mann-Whitney *0.0002 We reject Ho and accept Ha: LB2 1h’s
mean less than SM2 1h’s

LB1 1h-LB4 1h: There is no difference
between the two population means

Mann-Whitney 0.4745 We fail to reject Ho

LB1 1h-LB3 1h: There is no difference
between the two population means

Mann-Whitney 0.3538 We fail to reject Ho

LB1 1h-SM1 1h: There is no difference
between the two population means

Mann-Whitney *0.0003 We reject Ho and accept Ha: LB1 1h’s
mean less than SM1 1h’s

LB1 1h-SM2 1h: There is no difference
between the two population means

Mann-Whitney *0.0003 We reject Ho and accept Ha: LB1 1h’s
mean less than SM2 1h’s

LB4 1h-LB3 1h: There is no difference
between the two population means

Mann-Whitney 0.3606 We fail to reject Ho

LB4 1h-SM1 1h: There is no difference
between the two population means

Mann-Whitney *0.0005 We reject Ho and accept Ha: LB4 1h’s
mean less than SM1 1h’s

LB4 1h-SM2 1h: There is no difference
between the two population means

Mann-Whitney *0.0004 We reject Ho and accept Ha: LB4 1h’s
mean less than SM2 1h’s

LB3 1h-SM1 1h: There is no difference
between the two population means

Mann-Whitney *0.0009 We reject Ho and accept Ha: LB3 1h’s
mean less than SM1 1h’s

LB3 1h-SM2 1h: There is no difference
between the two population means

Mann-Whitney *0.0005 We reject Ho and accept Ha: LB3 1h’s
mean less than SM2 1h’s

SM1 1h-SM2 1h: There is no difference
between the two population means

Mann-Whitney 0.2699 We fail to reject Ho

* Significance level 0.05
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Table C5: Means difference statistical test summary among all methods for instances from group
x7day medium under a running time limit of 7200 seconds.

Null hypothesis Test p-value Decision

KS-SM1: There is no difference between
the two population means

Mann-Whitney 0.3813 We fail to reject Ho

KS-LB1: There is no difference between
the two population means

Mann-Whitney *0.0165 We reject Ho and accept Ha: KS’s mean
less than LB1’s

KS-LB4: There is no difference between
the two population means

Mann-Whitney *0.0125 We reject Ho and accept Ha: KS’s mean
less than LB4’s

KS-LB2: There is no difference between
the two population means

Mann-Whitney *0.0131 We reject Ho and accept Ha: KS’s mean
less than LB2’s

KS-LB3: There is no difference between
the two population means

Mann-Whitney *0.0012 We reject Ho and accept Ha: KS’s mean
less than LB3’s

KS-SM2: There is no difference between
the two population means

Mann-Whitney *0.0 We reject Ho and accept Ha: KS’s mean
less than MILP2’s

SM1-LB1: There is no difference between
the two population means

Mann-Whitney 0.061 We fail to reject Ho

SM1-LB4: There is no difference between
the two population means

Mann-Whitney 0.061 We fail to reject Ho

SM1-LB2: There is no difference between
the two population means

Mann-Whitney 0.0691 We fail to reject Ho

SM1-LB3: There is no difference between
the two population means

Mann-Whitney *0.0103 We reject Ho and accept Ha: MILP’s
mean less than LB3’s

SM1-SM2: There is no difference between
the two population means

Mann-Whitney *0.0 We reject Ho and accept Ha: MILP’s
mean less than MILP2’s

LB1-LB4: There is no difference between
the two population means

Mann-Whitney 0.4418 We fail to reject Ho

LB1-LB2: There is no difference between
the two population means

Mann-Whitney 0.5219 We fail to reject Ho

LB1-LB3: There is no difference between
the two population means

Mann-Whitney 0.1463 We fail to reject Ho

LB1-SM2: There is no difference between
the two population means

Mann-Whitney *0.0001 We reject Ho and accept Ha: LB1’s mean
less than MILP2’s

LB4-LB2: There is no difference between
the two population means

Mann-Whitney 0.551 We fail to reject Ho

LB4-LB3: There is no difference between
the two population means

T-test for two samples 0.2583 We fail to reject Ho

LB4-SM2: There is no difference between
the two population means

T-test for two samples *0.0001 We reject Ho and accept Ha: LB4’s mean
less than MILP2’s

LB2-LB3: There is no difference between
the two population means

Mann-Whitney 0.1638 We fail to reject Ho

LB2-SM2: There is no difference between
the two population means

Mann-Whitney *0.0002 We reject Ho and accept Ha: LB2’s mean
less than MILP2’s

LB3-SM2: There is no difference between
the two population means

Mann-Whitney *0.0004 We reject Ho and accept Ha: LB3’s mean
less than MILP2’s

* Significance level 0.05
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Table C6: Means difference statistical test summary among all methods for instances from group
x7day large under a running time limit of 4000 seconds.

Null hypothesis Test p-value Decision

KS 1h-LB1 1h: There is no difference
between the two population means

T-test for two samples *0.0071 We reject Ho and accept Ha: KS 1h’s
mean less than LB1 1h’s

KS 1h-LB2 1h: There is no difference
between the two population means

T-test for two samples *0.0038 We reject Ho and accept Ha: KS 1h’s
mean less than LB2 1h’s

KS 1h-LB4 1h: There is no difference
between the two population means

T-test for two samples *0.0005 We reject Ho and accept Ha: KS 1h’s
mean less than LB4 1h’s

KS 1h-LB3 1h: There is no difference
between the two population means

Mann-Whitney *0.0021 We reject Ho and accept Ha: KS 1h’s
mean less than LB3 1h’s

KS 1h-SM1 1h: There is no difference
between the two population means

Mann-Whitney *0.0003 We reject Ho and accept Ha: KS 1h’s
mean less than SM1 1h’s

KS 1h-SM2 1h: There is no difference
between the two population means

Mann-Whitney *0.0001 We reject Ho and accept Ha: KS 1h’s
mean less than SM2 1h’s

LB1 1h-LB2 1h: There is no difference
between the two population means

T-test for two samples 0.2958 We fail to reject Ho

LB1 1h-LB4 1h: There is no difference
between the two population means

T-test for two samples 0.1441 We fail to reject Ho

LB1 1h-LB3 1h: There is no difference
between the two population means

T-test for two samples 0.1603 We fail to reject Ho

LB1 1h-SM1 1h: There is no difference
between the two population means

Mann-Whitney *0.0425 We reject Ho and accept Ha: LB1 1h’s
mean less than SM1 1h’s

LB1 1h-SM2 1h: There is no difference
between the two population means

T-test for two samples *0.0033 We reject Ho and accept Ha: LB1 1h’s
mean less than SM2 1h’s

LB2 1h-LB4 1h: There is no difference
between the two population means

T-test for two samples 0.3234 We fail to reject Ho

LB2 1h-LB3 1h: There is no difference
between the two population means

T-test for two samples 0.329 We fail to reject Ho

LB2 1h-SM1 1h: There is no difference
between the two population means

Mann-Whitney 0.1208 We fail to reject Ho

LB2 1h-SM2 1h: There is no difference
between the two population means

T-test for two samples *0.0155 We reject Ho and accept Ha: LB2 1h’s
mean less than SM2 1h’s

LB4 1h-LB3 1h: There is no difference
between the two population means

T-test for two samples 0.4934 We fail to reject Ho

LB4 1h-SM1 1h: There is no difference
between the two population means

Mann-Whitney 0.2347 We fail to reject Ho

LB4 1h-SM2 1h: There is no difference
between the two population means

T-test for two samples *0.032 We reject Ho and accept Ha: LB4 1h’s
mean less than SM2 1h’s

LB3 1h-SM1 1h: There is no difference
between the two population means

Mann-Whitney 0.1853 We fail to reject Ho

LB3 1h-SM2 1h: There is no difference
between the two population means

T-test for two samples *0.0408 We reject Ho and accept Ha: LB3 1h’s
mean less than SM2 1h’s

SM1 1h-SM2 1h: There is no difference
between the two population means

Mann-Whitney 0.1208 We fail to reject Ho

* Significance level 0.05
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Table C7: Means difference statistical test summary among all methods for instances from group
x7day large under a running time limit of 7200 seconds.

Null hypothesis Test p-value Decision

KS-LB2: There is no difference between
the two population means

Mann-Whitney *0.0164 We reject Ho and accept Ha: KS’s mean
less than LB2’s

KS-LB1: There is no difference between
the two population means

Mann-Whitney *0.0105 We reject Ho and accept Ha: KS’s mean
less than LB1’s

KS-LB4: There is no difference between
the two population means

Mann-Whitney *0.0072 We reject Ho and accept Ha: KS’s mean
less than LB4’s

KS-LB3: There is no difference between
the two population means

Mann-Whitney *0.0019 We reject Ho and accept Ha: KS’s mean
less than LB3’s

KS-SM1: There is no difference between
the two population means

Mann-Whitney *0.0021 We reject Ho and accept Ha: KS’s mean
less than MILP’s

KS-SM2: There is no difference between
the two population means

Mann-Whitney *0.0001 We reject Ho and accept Ha: KS’s mean
less than MILP2’s

LB2-LB1: There is no difference between
the two population means

T-test for two samples 0.3812 We fail to reject Ho

LB2-LB4: There is no difference between
the two population means

T-test for two samples 0.2823 We fail to reject Ho

LB2-LB3: There is no difference between
the two population means

T-test for two samples 0.1417 We fail to reject Ho

LB2-SM1: There is no difference between
the two population means

T-test for two samples 0.0858 We fail to reject Ho

LB2-SM2: There is no difference between
the two population means

T-test for two samples *0.0012 We reject Ho and accept Ha: LB2’s mean
less than MILP2’s

LB1-LB4: There is no difference between
the two population means

T-test for two samples 0.3952 We fail to reject Ho

LB1-LB3: There is no difference between
the two population means

T-test for two samples 0.2175 We fail to reject Ho

LB1-SM1: There is no difference between
the two population means

T-test for two samples 0.1337 We fail to reject Ho

LB1-SM2: There is no difference between
the two population means

T-test for two samples *0.0022 We reject Ho and accept Ha: LB1’s mean
less than MILP2’s

LB4-LB3: There is no difference between
the two population means

T-test for two samples 0.2932 We fail to reject Ho

LB4-SM1: There is no difference between
the two population means

T-test for two samples 0.1826 We fail to reject Ho

LB4-SM2: There is no difference between
the two population means

T-test for two samples *0.0032 We reject Ho and accept Ha: LB4’s mean
less than MILP2’s

LB3-SM1: There is no difference between
the two population means

T-test for two samples 0.3414 We fail to reject Ho

LB3-SM2: There is no difference between
the two population means

T-test for two samples *0.0101 We reject Ho and accept Ha: LB3’s mean
less than MILP2’s

SM1-SM2: There is no difference between
the two population means

T-test for two samples *0.0290 We reject Ho and accept Ha: MILP’s
mean less than MILP2’s

* Significance level 0.05
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