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Science and Engineering School

Tecnologico de Monterrey
Monterrey, Mexico

yasmin.riossolis@tec.mx

01 July 2024



Abstract

The Emergency Vehicle Covering and Planning (EVCP) problem locates a limited number of two

heterogeneous types of ambulances in different city points and dispatches them to the emergency

scenes, considering the uncertainty of the emergency locations, to maximize the emergency total and

partial coverage and the response time in which the patients receive medical first aids. We propose a

novel two-stage quadratic stochastic program for the EVCP problem that locates the limited number

of heterogeneous types of ambulances in the first stage. The second stage deals with dispatching

ambulances to accidents. The EVCP stochastic model allows partial coverage of the accidents

by the ambulances based on a decay function. Instead of decomposing the stochastic model, we

propose a location-allocation methodology that relies on the solution of an auxiliary surrogate

model, which is faster to solve. The location of the ambulances obtained by this surrogate model

is input to the original model. Experimental results show that we obtain high-quality solutions in

a reasonable time.

Keywords: Emergency medical services; Ambulance location; Stochastic integer programming;

Location-allocation method.



1 Introduction

Emergency Medical Services (EMS) systems provide basic but urgent in-situ medical care for people

who suffer a medical incident and then transport patients to hospitals [3, 5, 19]. The first phase

of an EMS is the response to an emergency call by an operator that identifies the emergency type:

accident, medical, security, fire, etc. The second phase is dispatching one or several ambulances

to the emergency scene to provide urgent medical care. Some emergency situations, such as a

multiple-car accident, may involve several people; thus, more than one ambulance could be needed.

EMS systems in developing countries, as is the case in Mexico, lack around 30-60%1 of the

number of ambulances suggested by the World Health Organization (WHO), which should be at

least four ambulances per 100,000 people [10]. For the Red Cross, an EMS operating with this

small number of ambulances is considered similar to a war situation1. Thus, one of the main

contributions of this work is to deal with the problem of deciding if an emergency will be totally or

partially covered. Sadly, some emergencies may remain uncovered by an emergency unit. By using

a novel decay function for the total and partial coverage of emergencies, we reduce the average

response time of a patient’s initial treatment given by a paramedic in an emergency, which is the

main objective function in many research works [1, 14, 23]. Indeed, the quickness and the number

of ambulances dispatched to the accidents are crucial. Each ambulance has a response time for

travel from the potential site where it is located to the demand point where the patient will be

cared for. For example, every minute of treatment delay in a cardiac patient reduces the survival

probability by 24% [18].

This work considers two different types of ambulances in EMS systems, which implies modeling

challenges. When a BLS ambulance is dispatched to an emergency requiring an ALS, it may reduce

the patient’s survival. Thus, this work considers that ALS ambulances can be used as BLS units,

but the contrary is not allowed [4]. A few works deal with different types of ambulances, as we do in

this work. McLay [13] determines how to optimally locate and use ambulances to improve patient

survivability and coordinate multiple medical units with a hypercube queuing model. Grannan et al.

[12] determine how to dispatch multiple types of air assets to prioritized service calls to maintain

a high likelihood of survival of the most urgent casualties in a military medical evacuation by a

binary linear programming model. In Yoon et al. [27], two types of vehicles are considered, but one

of them is a rapid one that cannot offer the first care services of an ambulance. Moreover, neither

of these works considers partial covering of the calls.

To summarize, the Emergency Vehicle Covering and Planning (EVCP) problem consists of

locating the limited number of two heterogeneous types of ambulances in different city locations

and dispatching them to the uncertain emergency points to maximize the coverage (even if partially)

with short medical first aid response time. Usually, the location and dispatching decisions are made

1Anonymous interviews done by the authors.
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separately [5, 11, 26]. In the EVCP problem, these two interrelated decisions are simultaneously

considered in a novel two-stage stochastic program. The limited number of heterogeneous types of

ambulances in the first stage and in the second stage, the dispatching of ambulances to accidents is

determined. The EVCP stochastic model allows partial coverage of the accidents by the ambulances

based on a decay function [25], which is a main difference with other stochastic approaches Toro-

Dı́az et al. [23], Ansari et al. [2], Amorim et al. [1].

Similarly to Yoon et al. [27], we generate the call-arrival scenarios by sampling from emergency

call logs to use them in the second stage of our stochastic model. In this manner, we address the

volume of calls during a short period, such as Friday night hours. Thus, time is not explicitly

measured, and it is assumed that a vehicle can be assigned only once during this high ambulance

demand period [29]. Boujemaa et al. [9] use a bundle of calls but do not consider a heterogeneous

ambulance fleet.

Some works propose stochastic programming models based on call-arrival scenarios as a bundle

of calls, the total number of emergency calls in each demand node during a given period. As

we do in this work, a two-stage stochastic program deploys the ambulances in the first stage and

dispatches them to respond to demand in the second stage. Beraldi and Bruni [6] and Noyan [17]

induce a reliability approach by using probabilistic constraints. Nickel et al. [16] minimize the total

cost of locating the ambulances while assuring a minimum coverage level. By considering a bundle

of calls, they address the volume of calls during a short period, such as the Friday night hours.

Bertsimas and Ng [7] implemented stochastic and robust formulations for ambulance deployment

and dispatch to minimize the fraction of late arrivals without requiring ambulances to be relocated,

sending to demand points the closest available ambulance, and maintaining a call at a queue if

there are no ambulances available at the system.

The advantage of a stochastic programming solution over deterministic approaches where inher-

ent uncertainty has been long proved [8]. A contribution of this work is the methodology to solve

the EVCP stochastic model. Indeed, the proposed model can only be solved for relatively small

instances with a restrictive number of scenarios. Thus, instead of decomposing the model with

cut methods as it is usually done [28, 21], we propose a location-allocation methodology [20, 24]

that relies on the solution in an auxiliary surrogate model, which is faster to solve. We name this

method an intelligent feedback approach because the location of the ambulances obtained by this

surrogate model is used as input to the original model. Thus, we obtain high-quality solutions in

a reasonable time with an off-the-shelf solver without complex decomposition techniques.

Some works use metaheuristic methods to solve their stochastic models. Toro-Dı́az et al. [22]

integrate location and dispatching decisions for EMS vehicles to minimize the mean response time of

an emergency call and maximize the expected coverage demand, using a continuous-time Markov

process to balance flow equations that control the busy fraction of each ambulance. A genetic

algorithm can solve mid-size instances. Some others, such as Amorim et al. [1], use simulation
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to decide if ambulances stay at the potential sites established by a mathematical model or must

be moved to another potential site to maximize the patient’s survival. They work on a complete

day period while we focus on high-demand periods of some hours. Moreover, we do not need

a metaheuristic due to the high-quality solutions that we obtained with the Intelligent feedback

approach.

The remainder of this article is organized as follows. Section 2 describes the EVCP problem,

emphasizing the emergency coverage types and the two types of ambulances. This includes intro-

ducing a two-stage stochastic quadratic model for the EVCP problem (presented in Section 2.2).

The intelligent feedback approach for the EVCP problem is detailed in Section 3. Experimental

results on real-world-based generated instances that show the efficiency of our approach are given

in Section 4. Final remarks and conclusions are drawn in Section 5.

2 The Emergency Vehicle Covering and Planning problem

Let us formally describe the Emergency Vehicle Covering and Planning problem. Let set I include

the possible demand points where patients may need medical attention in a city or region. This set

can be very large, so we consider all the demand points observed in the historical data. In our case

study, |I| can be as large as 1500 demand points. Set L provides the potential sites or ambulance

stations where ambulances could be located, such as hospitals, firehouses, malls, or similar places

where the ambulance and the paramedics can wait for emergency calls. We consider instances with

up to 30 potential sites for the experimental results. Set K contains the two types of ambulances

available in the system: the BLS (labeled with index k = 1) and the ALS ambulances (labeled with

index k = 2), which are limited by a known parameter ηk for each type k ∈ K. These ambulances

must be allocated to a potential site l ∈ L and dispatched toward a demand point i ∈ I if there is

an emergency situation.

The traveling time of any ambulance type from a potential site l ∈ L to a demand point

i ∈ I is given by rli. Ideally, ambulances should arrive in less than τ minutes in a life-threatening

emergency. Usually, τ is a fixed value in the [8, 15] minute range. This work also considers that

the emergency is not covered if an ambulance takes more than a maximum time τmax to arrive. In

this case, sadly, the accident has probably been dealt with by other means.

Since the EVCP problem aims to reduce the response time of the patient’s first medical aid,

even if it is in a partial or late way, we define a benefit decay function that only depends on the

response time of a location l ∈ L to any demand point i ∈ I:

cli =


1 if rli ≤ τ,

1− rli−τ
τmax−τ if τ < rli < τmax,

0 if rli ≥ τmax.
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2.1 Information related to the scenarios

The operational level is represented by a set of scenarios S with a bundle list of arriving calls.

Each scenario s ∈ S represents a set of emergencies in the demand points. Thus, a scenario is

represented by the number and type of ambulances needed at each demand point. Recall that an

ALS ambulance can be sent instead of a BLS ambulance, but not vice versa. Thus, each scenario

s ∈ S indicates if there is an accident on a demand point i ∈ I and provides the value aski related

to the number of required ambulances of type k ∈ K.

For each scenario s ∈ S, let Is ⊆ I contain only the demand points i ∈ I where ambulances are

needed, that is, where aski ̸= 0 for any k ∈ K. We define five different types of ambulance coverage

related to the response times cases for each demand point i ∈ Is:

• Total: the aski required ambulances of each type k are dispatched to i, and all arrive in less

than τ time.

• Total-late: the aski required ambulances of each type k are dispatched, but at least one arrives

between (τ, τmax) time.

• Partial: at least one of the aski required ambulances is not dispatched, for k ∈ K, but all the

dispatched ones arrive in less than τ time.

• Partial-late: at least one of the aski required ambulances is not dispatched, for k ∈ K, but at

least one of the dispatched arrives between (τ, τmax) time.

• Null: none of the aski required ambulances arrives in less than τmax time, for k ∈ K.
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Figure 1: Two different coverage cases for a scenario s ∈ S where i ∈ Is requires as1i = 2 basic
ambulances (blue) and as2i = 1 advanced ones (red). Total coverage in the left: all ambulances
arrive in less than the ideal time τ . Total-late coverage in the right: at least one of the ambulances
arrives between (τ, τmax).

Figure 1 illustrates two different coverage cases for a scenario s ∈ S where i ∈ Is requires

as1i = 2 basic ambulances (indicated in blue) and as2i = 1 advanced one (indicated in red). All

ambulances arrive in less than the ideal time τ for the Total coverage (left-hand-side figure). In

the Total-late coverage line, at least one of the ambulances is late since it arrives between (τ, τmax)

(right-hand-side figure). In the Partial coverage, the number of required ambulances is not met,

but at least they arrive in less than the ideal time τ . In the Partial-late coverage, not only are there

not enough ambulances to cover the demand point, but they arrive late, that is, between (τ, τmax).

In the Null coverage, ambulances may be dispatched to the demand point, but since the arrival

times are larger than τmax, the demand point is considered uncovered.

Table 1 summarizes the sets and parameters used to describe the EVCP problem.

2.2 Maximum Expected Coverage stochastic formulation for the EVCP prob-

lem

The Maximum Expected Coverage (MEC) formulation is a stochastic integer quadratic program-

ming model in which the first stage variables xlk correspond to the number of ambulances of type

k ∈ K located at l ∈ L, and the second-stage variables correspond to the ambulance dispatching
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I set of possible demand points (possible accident places)
L set of possible ambulance location sites
K set of ambulance types
ηk total number of ambulances in the system of type k ∈ K
rli response time from potential site l ∈ L to demand point i ∈ I
τ ideal response time to give the patients the first medical aid in

an emergency
τmax maximum response time to cover an accident
cli benefit from traveling from potential site l ∈ L to demand

point i ∈ I

S set of scenarios
aski number of needed ambulances of type k ∈ K at demand

point i ∈ I, s ∈ S
Is set of demand points for s ∈ S with at least a value

aski ̸= 0 for i ∈ I, k ∈ K

Table 1: Sets and parameters to describe the EVCP problem.

decisions at each demand point for each scenario s ∈ S:

yslki =


1 if an ambulance of type k ∈ K in location l ∈ L

is dispatched to demand point i ∈ Is, for scenario s ∈ S,

0 otherwise.

We defined the following binary variables related to the total and total-late coverages related to

the response times of the ambulances to the demand point i ∈ Is, s ∈ S:

fs
i =

{
1 if demand point i ∈ Is has a total coverage,

0 otherwise,

gsi =

{
1 if demand point i ∈ Is has a total-late coverage,

0 otherwise.

The following sets of binary variables are for the partial and partial-late coverages of the ambulances

to the emergencies:

hsi =

{
1 if demand point i ∈ Is has a partial coverage,

0 otherwise,

ws
i =

{
1 if demand point i ∈ Is has a partial-late coverage,

0 otherwise.
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Finally, to indicate a null coverage of a demand point, we define

zsi =

{
1 if active demand point i ∈ Is has a null coverage,

0 otherwise.

The MEC formulation is as follows.

max
x

Es∈S [Qs(x)] (1)

where

Qs(x) =
∑
i∈Is

(α1f
s
i + α2g

s
i + α3h

s
i + α4w

s
i − ϕzsi )

subject to

∑
l∈L

xlk ≤ ηk k ∈ K (2)

∑
i∈Is

yslki ≤ xlk l ∈ L, k ∈ K, s ∈ S (3)

as1if
s
i ≤

∑
l∈L

∑
k∈K

cliy
s
lki, as2if

s
i ≤

∑
l∈L

cliy
s
l2i i ∈ Is, s ∈ S (4)

as1ig
s
i ≤

∑
l∈L

∑
k∈K

yslki, as2ig
s
i ≤

∑
l∈L

ysl2i i ∈ Is, s ∈ S (5)

gsi ≤ M

(∑
l∈L

∑
k∈K

yslki −
∑
l∈L

∑
k∈K

cliy
s
lki

)
i ∈ Is, s ∈ S (6)

hsi ≤ as1i −
∑
l∈L

∑
k∈K

yslki, hsi ≤ as2i −
∑
l∈L

ysl2i i ∈ Is, s ∈ S (7)

∑
l∈L

∑
k∈K

yslkih
s
i ≤

∑
l∈L

∑
k∈K

cliy
s
lki i ∈ Is, s ∈ S (8)

ws
i ≤ as1i −

∑
l∈L

∑
k∈K

yslki, ws
i ≤ as2i −

∑
l∈L

ysl2i i ∈ Is, s ∈ S (9)

ws
i ≤ M

(∑
l∈L

∑
k∈K

yslki −
∑
l∈L

∑
k∈K

cliy
s
lki

)
i ∈ Is, s ∈ S (10)

∑
l∈L

∑
k∈K

yslki + zsi ≥ 1 i ∈ Is, s ∈ S (11)

fs
i + gsi + hsi + ws

i + zsi = 1 i ∈ Is, s ∈ S (12)

xlk ∈ Z+, yslki ∈ {0, 1} l ∈ L, k ∈ K, i ∈ Is, s ∈ S (13)

fs
i , g

s
i , h

s
i , w

s
i , z

s
i ∈ {0, 1} i ∈ Is, s ∈ S. (14)

The objective function (1) maximizes the expected value of the weighted coverage of the emer-

7



gencies. The parameters α1 > α2 > α3 > α4 are normalized weights that ponder the coverage type,

and ϕ is the penalty for the null coverage. We assume that every scenario is equally probable since

each s ∈ S represents a sample of the high-demand period we are interested in.

Constraints (2) establish the available number of ambulances per type. Constraints (3) estab-

lish the relationship between the first and second-stage variables, meaning no ambulances can be

dispatched from a potential site if no ambulances are located there. The total coverage of an emer-

gency is defined by constraints (4). Indeed, if the time response of the location of the ambulances

to the emergency is less than τ , then all cli = 1 and total coverage variables f s
i can be equal to one,

for l ∈ L, i ∈ Is, s ∈ S. The total-late coverage is defined by constraints (5) and (6). Constraints

(5) allow the total-late coverage variables gsi to be one when dispatching variables are active. Mean-

while, constraints (6) track the demand points where the response time is between (τ, τmax) when

the difference in the right-hand side of the equation is positive, that is, when there is a value clj < 1

associated to a dispatched ambulance, for l ∈ L, i ∈ Is, s ∈ S. Note that this difference may be

decimal, so we include a big M value. The partial coverage is defined by constraints (7) and (8).

Recall that, in this case, not all the needed ambulances are dispatched to the emergencies, but

the ones that are dispatched have an ideal response time. Thus, constraints (7) activate variables

hsi if the number of dispatched ambulances is less than the required ones. Quadratic constraints

(8) guarantee that the dispatched ambulances arrive within the ideal response time, that is, their

corresponding value cli = 1, for l ∈ L, i ∈ Is, s ∈ S. Constraints (9) and (10) define the partial-

late coverage. Constraints (9) activate the ws
i variables when the number of required ambulances

exceeds the number of dispatched ones. Similarly to the total-late coverage, constraints (10) track

the ambulances with a response time larger than the ideal one and must be multiplied by a big

M . The null coverage is activated by constraints (11). All the coverage constraints are related to

constraint (12) that ensures only one type of coverage for each emergency. Finally, (13) and (14)

establish the nature of the decision variables.

The novelty of the MEC model is the stochastic total/partial coverage per emergency by two

types of ambulances. Nevertheless, the related number of variables and constraints is usually

large. Moreover, constraints (8) are quadratic. An integer linear stochastic model with a classical

linearization method could be easily formulated. Still, previous experiments showed similar times

between the linearized and the quadratically constrained models when solved with integer program-

ming solvers, so we keep the quadratic one for the Intelligent Feedback methodology presented in

the next section.

3 Intelligent Feedback methodology for the EVCP problem

The EVCP problem is NP-hard since the classical facility location problem [15] could be reduced

to it. The MEC model is experimentally challenging to solve, even for medium-size instances, as
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shown in Section 4. Thus, we propose the Intelligent Feedback methodology to obtain approximate

solutions for the EVCP problem based on an auxiliary disaggregated model, named Surrogate

Ambulance-Based Coverage (SABC) model.

In addition to the location variables xli, the SABC model requires the following binary ambu-

lance dispatching variables for k ∈ K, l ∈ L, i ∈ Is, s ∈ S:

uslki =


1 if ambulance of type k is dispatched from site l to point i

with response time less than τ ,

0 otherwise,

vslki =


1 if ambulance of type k is dispatched from site l to i

with response time in (τ, τmax),

0 otherwise.

Variables uslki indicate the ambulances with an ideal response time dispatched from the location

sites corresponding to a decay function value cli = 1. While variables vslki indicate the ones with

a larger than τ response time which have a value cli < 1. The number of required ambulances k

in an emergency demand point i that are not dispatched are counted by integer variable ζski, for

k ∈ K, i ∈ Is, s ∈ S. The SABC is as follows.

max
x

Es[Gs(x)] (15)

where

Gs(x) =

[∑
l∈L

∑
k∈K

∑
i∈Is

(β1u
s
lki + β2v

s
lki)−

∑
k∈K

∑
i∈Is

ϕζski

]
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subject to

∑
l∈L

xlk ≤ ηk k ∈ K (16)

∑
i∈Is

(uslki + vslki) ≤ xlk l ∈ L, k ∈ K, s ∈ S (17)

uslki ≤ cli l ∈ L, i ∈ Is, k ∈ K, s ∈ S (18)

uslki + vslki ≤ 1 l ∈ L, i ∈ Is, k ∈ K, s ∈ S (19)

as1i =
∑
l∈L

∑
k∈K

(uslki + vslki + ζski) i ∈ Is, s ∈ S (20)

as2i =
∑
l∈L

(usl2i + vsl2i + ζs2i) i ∈ Is, s ∈ S (21)

∑
k∈K

uslki ≤ asi1, usl2i ≤ asi2 i ∈ I, l ∈ L, s ∈ S (22)

∑
k∈K

vslki ≤ asi1, vsl2i ≤ asi2 i ∈ I, l ∈ L, s ∈ S (23)

xlk, ζ
s
ki ∈ Z+, uslki, v

s
lki ∈ {0, 1} l ∈ L, k ∈ K, i ∈ Is, s ∈ S

The objective function (15) maximizes the expected value of the on-time and late dispatched

ambulances minus a penalty ϕ for the required ambulances that could not be dispatched in less

than τmax time response. Weights β1 > β2 are normalized parameters prioritizing the dispatched

ambulances with a response time less than τ . As in the previous model, no more than the available

ambulances can be located in the sites, corresponding to constraints (16). The number of on-time

or late dispatched ambulances is less than the number of located ambulances, as indicated by

constraints (17). Constraints (18) define the dispatched ambulances with an ideal response time of

less than τ . Thus, if cli = 1, then the ambulance will have an ideal response time, while constraints

(19) activate the late variables for which their response time is between (τ, τmax). With constraints

(20) and (21), the non-covered emergencies, ζski variables, are defined, for i ∈ Is, s ∈ S. To allow

advanced ambulances to be dispatched instead of basic ones, we add restrictions (22) and (23).

Finally, the nature of the variables is stated.

The essential characteristic of the SABC model is that the objective function does not rely

on emergency coverage as in the MEC model; it only counts the number of on-time, late, or null

ambulances sent to the emergency demand points. Moreover, its resolution time is extremely fast

since it requires fewer variables and constraints than the MEC one. Nevertheless, disaggregating an

emergency situation into the number of ambulances needed does not capture emergency coverage,

which is crucial for an EMS system.

We first solve the SABC stochastic model in the Intelligent Feedback methodology for the

EVCP problem. From its optimal solution, we obtain the location of the ambulances of the first

10



stage corresponding to the value of xlk variables, for l ∈ L, k ∈ K. We use these values as input

to the MEC model. Since the first stage variables are fixed, the MEC(SABC) becomes easier to

solve and yields high-quality solutions. We could implement a local search neighborhood based on

the location variables xlj to diversify the solution. Nevertheless, experimental results show that

the quality of the solutions using the MEC(SABC) methodology is extremely high with a single

feedback.

4 Experimental results

This section presents an empirical assessment of models and solution methodology previously de-

scribed to solve the EVCP problem. We used Gurobi Optimizer 10.0.2 with Python 3.10 to solve

the integer programming models MEC, SABC, and MEC(SABC). The experiments were carried

out on an Intel Core i7 at 3.1 GHz with 16 GB of RAM under the macOS Catalina 10.15.7 operating

system. Each execution of the integer linear programming solvers had a CPU time limit of 10800

seconds.

4.1 Instances and parameters

The value ranges of our instance generator are based on real-world data taken from Monterrey,

Mexico. In the literature, there are no benchmarks suitable for our problem in terms of size. The

databases for the Monterrey case study showed a larger number of possible demand points, |I| ∈
{168, 270, 500, 900, 1500} compared to the one from the literature with |I| ≤ 270 [27]. The number

of possible locations of the ambulances in Monterrey is |L| ∈ {16, 50, 100} which is also larger

than the one from the literature (≤30) since not only hospitals and fire stations can be considered.

We consider the whole city of Monterrey, thus the number of ambulances (η1, η2) = (35, 20) is

also larger than the ones from the literature cases (6 ambulances per type [27]). The number of

scenarios is set to be as large as the ones from the literature, |S| ∈ {10, 50, 100, 150, 200}. Thus,

our benchmark has 15 instances for which five different scenario settings were built.

For each instance, we simulated a two-hour high-demand period. Each scenario s ∈ S consists

of a set of demand values per type of ambulance and per demand point {aski}k∈K,i∈I,s∈S . Fewer

demand points imply a larger grid of the city and a larger proportion of emergencies per demand

point thus, when |I| = 168, around 30% of the demand points may have a value different from 0.

On the contrary, when |I| = 1500, only 1% of the demand points will require ambulances. This

setting reflects the number of emergencies per hour observed in the case study. The instances are

built such that most emergencies require a single ambulance.

The ideal ambulance response time is τ = 10 minutes while the maximal response time is

τmax = 30 minutes. For the MEC formulation, we use the following weights in the objective

function (1): α1 = 0.65, α2 = 0.2, α3 = 0.1, and α4 = 0.05. In this manner, the total coverage is the
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most sought one, while the partial-late cover is the one with less benefit. For the SABC objective

function (3) we use β1 = 0.7 and β2 = 0.3. These values reflect the aim to send primordially the

required ambulances with an ideal response time. The penalty for null coverage in the MEC model

or when a required ambulance cannot be dispatched to the emergency in less than τmax time in the

SABC is set to ϕ = 1/|S|+ 0.0005.

All the instances with their related scenarios and detailed solutions are available at https:

//doi.org/10.6084/m9.figshare.25928401.

4.2 Experimental analysis of the MEC and MEC(SABC) stochastic formula-

tions

Figure 2: Best objective and the best bound of the objective function obtained by the MEC model
with respect to the demand points on the left side and the scenarios on the right side for different
sizes of potential sites |L| = {16, 50, 100}.

In this section, we analyze the parameters of the EVCP problem that impact the performance

of the objective values of our stochastic methodologies. Several questions arise. Does the number

of scenarios impact the objective function? Does a high number of demand points imply a more
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challenging instance? Does the number of possible locations impact the efficiency of the models?

First, we solve all the instances with MEC’s deterministic equivalent integer program. In this

manner, we can evaluate the size of the instances for which MEC can give optimal solutions and

be able to compare the MEC(SABC) intelligent feedback method. Figure 2 consists of six plots.

The three plots on the first column vary the number of demand points (x-axis), comparing each

one to the objective function value when different scenarios are tested. The three plots in the

second column vary the tested number of scenarios and show the variation in the solution value for

each number of demand points. The upper plots consider a number of possible locations for the

ambulances of |L| = 16, the middle plots of |L| = 50, and the lower plots of |L| = 100. The straight

lines are the best objective values, while dotted ones are the best bound found.

As can be seen from the plots, the difference between the best objective and the best bound (and

thus, the relative optimality gaps2) are negligible for small instances with 16 potential locations

sites. Still, the gaps become larger for the instances with 50 and 100 potential sites. The number of

demand points where accidents may occur and the considered scenarios make the instances harder

to solve optimally within the time limit. Thus, the deterministic equivalent integer program of

MEC can only handle small instances with a few scenarios, demand points (emergency points), and

potential sites for ambulances. Note that the larger the number of scenarios in the left-hand-side

plots, the better the objective function. This implies that a better sampling of the emergency

demand points benefits the solution quality related to the ambulance’s response time. The right-

hand-side plots show that the larger the size of the demand point set, the harder it is to solve the

instance.

Now, we compare the solution values of the equivalent integer program of MEC with the ones

obtained by MEC(SABC) in Figure 3, which a similar structure than the previous one. As can

be seen, while the number of scenarios, demand points, and potential sites slightly affect the

MEC(SABC) performance, it obtains better objective function values than those obtained by the

MEC model for the larger instances that reported positive gaps with the MEC model. Indeed, the

MEC(SABC) model optimality gaps always equal 0 within the time limit we established. Also,

the MEC(SABC) model tends to be less dependent on the number of scenarios. Thus, although

we cannot guarantee optimality with the MEC(SABC) model, it obtains faster and higher-quality

solutions than those obtained by the MEC equivalent model.

The purpose of the following experiment is to compare the running times of the equivalent

MEC model with the MEC(SABAC) method. Recall that MEC(SABC) attempts to exploit that

the surrogate model SABC is very tractable and solved relatively quickly. To this end, Figure 4

shows two plots of the running time in seconds of the instances with a) |L| = 16 potential location

sites for the equivalent MEC and the b) |L| = 100 potential site instances for the MEC(SABC)

methodology. The x-axis of the plots corresponds to the number of scenarios, and we vary the

2(best objective - best bound)/best objective.
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Figure 3: Comparison of the best objective values of MEC and MEC(SABC) concerning the demand
points on the left side and the scenarios on the right side for different sizes of potential sites
|L| = {16, 50, 100}.

number of emergency demand points. Recall that the MEC model with |L| = {50, 100} reaches the

time limit even for ten scenarios and few demand points.

Figure 4 a) shows that the principal disadvantage of the MEC model is its computational time,

which increases significantly with the number of demand points, potential sites, and scenarios,

even for small instances with 16 potential location sites for the ambulances. The SABC model is

extremely fast, even for large instances, and yields an initial solution for the ambulance location

assignment in a short time to allow the MEC(SABC) model, Figure 4 b), to be solved faster

than the MEC model and obtain high-quality solutions. The location-allocation strategy of the

MEC(SABC) inherits not only its fast computational time from the SABC but also yields coverage

per emergency situation, which is the main objective for the EVCP problem. The MEC(SABC)

model is an approximated approach, but it gives solutions that are as good as the MEC and even

better when the MEC instances do not reach optimality and its gaps are large. Most instances are

solved by the MEC(SABC) intelligent feedback methodology in less than a minute.
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(a) MEC with |L| = 16. (b) MEC(SABC) with |L| = 100.

Figure 4: Computational time for the a) MEC and b) MEC(SABC) model with respect to the
number of scenarios varying the number of emergency demand points.

An interesting advantage of the MEC(SABC) intelligent feedback method is that only one

iteration is needed. Indeed, once the location of the ambulances has been retrieved from the

SABC model and fed back to the MEC model, we could perturbate either randomly or with

a local search, the allocation of the ambulances and iterate again. Nevertheless, we could not

systematically generate a neighborhood around a location solution that yields better solutions with

the MEC(SABC). This implies that local maximums are often reached with this first feed back and

that complex or more diverse neighborhoods should be built to allow escaping from these solutions.

Probably it would be interesting to enable local search movements that do not yield immediate

benefits.

The objective values and execution times are crucial to evaluate the performance of the models.

Nonetheless, the most important objective of the EVCP problem is to cover the largest number

of demand points involved in the system within a fixed response time. Thus, a central question

arises: is the emergency coverage quality of the MEC(SABC) as good as the one yielded by the

MEC model?

The percentage emergency coverage of all instances is presented with the equivalent MEC model

and the MEC(SABC) methodology in Figure 5. Two columns with three plots each, varying the

number of scenarios and the location sites. Each plot shows the type of ambulance percentage

coverage obtained by the a) MEC and b) MEC(SABC) methodology: T is for Total coverage (all

required ambulances on time), TL is for Total-late coverage (all required ambulances, but at least

one arrives late), P is for Partial coverage (at least one required ambulance is not dispatched,

but the dispatched ones all arrive in time), PL is for Partial-late coverage (at least one required

ambulances is not dispatched, at least one of the dispatched arrives late), and N for Null (no

ambulances assigned to the demand point). The upper plots are for |L| = {16} potential sites, the
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Figure 5: Coverage percentage per type obtained by the a) MEC model, b) SABC model, and the
c) MEC(SABC) methodology for potential sites |L| = {16, 50, 100}.

middle ones for |L| = 50, and the lower ones for |L| = 100.

Figure 5 column a), shows that the MEC model tends to leave very few demand points with

null coverage, which is the primary concern of the emergency services in our case study. As the

number of potential sites |L| increases, the coverage tends to be partial-late for the MEC model.

This behavior is probably linked to the large gaps obtained by the MEC model for large instances,

but the number of null coverage is still remarkably low. Column b) shows that the MEC(SABC)

methodology is robust in terms of the number of scenarios. That is, the demand point coverage

is independent of the scenario number. In this manner, 100 scenarios are sufficient for handling

a high-quality coverage solution. Moreover, the MEC(SABC) model inherits the characteristic of

having very few null demand point coverage from the MEC model. Interestingly, partial coverage

tends to be larger than partial late coverage, which is mainly desired in real life since it can be

translated into first-aid medical care on time, increasing the probability of saving lives.
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Figure 6: Objective value and execution time versus the number of ambulances for a) MEC model
and b) MEC(SABC) methodology.

All the previous experiments were executed with the number of ambulances equal to (η1, η2) =

(35, 20). A central feature of the EVCP problem is that an ALS ambulance can be sent instead

of the BLS one, which gives a more flexible setting but may induce difficulty when solving the

models. Thus, what is the effect of the number of available ambulances in the EVCP problem on

the objective function value and the running time?

We execute all the instances with emergency demand points fixed to 900, 100 scenarios, and 50

ambulance location sites. For this experiment, we vary the number of ambulances. In Figure 6,

we show two columns of two plots each. The objective value (upper plots) and the execution time

(lower plots) are on the y-axis, while the x-axis varies the number of ambulances: (η1, η2)=(10,6),

(20,11), and (η1, η2)=m,(35,20). The left plots correspond to the MEC stochastic model, while the

right ones are for the MEC(SABC) methodology.

From Figure 6 a), we observe that the difference between the best objective and the best bound

for the MEC model (left plots) slightly increases with the number of ambulances. Thus, the larger

the number of ambulances, the harder the instances for the MEC model. Meanwhile, the time

limit is reached for every tested instance in the MEC model. For the MEC(SABC) methodology,

the gaps are equal to 0 for all instances. Moreover, the objective values are comparable to the

MEC model for all different settings of ambulances, which is a main characteristic. Moreover, the

MEC(SABC) methodology solves the instances in less than one minute, and this computational

time is unaffected by the number of ambulances.
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5 Conclusions

EMS systems in developing countries, as in Mexico, lack many ambulance vehicles. Thus, one of

the main contributions of this work is to deal with the problem of deciding whether an emergency

will be totally, partially, or uncovered.

The Emergency Vehicle Covering and Planning (EVCP) problem is about locating the limited

number of two heterogeneous types of ambulances in different city locations and dispatching them to

the uncertain emergency points so as to maximize the coverage with short medical first aid response

time. In the EVCP problem, these two interrelated decisions are simultaneously considered in a

novel two-stage stochastic program. The EVCP stochastic model allows partial coverage of the

accidents by the ambulances based on a decay function.

We propose a novel two-stage stochastic program for the EVCP problem that can be solved by

branch-and-bound for small instances with a restrictive number of scenarios. We also propose an

Intelligent Feedback methodology, which is essentially a location-allocation procedure that relies

on the solution of an auxiliary surrogate model, which is faster to solve. This method allows us

to obtain high-quality solutions significantly faster than the previous approach. The Intelligent

Feedback method was tested over a wide set of randomly generated instances based on real-world

data from Monterrey. The proposed approach is significant because it can be implemented by

calling any off-the-shelf integer solver without complex decomposition techniques.

Future research includes incorporating bi-level programming since several EMS operate in the

city. Also, there is congestion in the hospitals, and not all emergencies can be dealt with. Moreover,

patients are in the ambulance vehicle until they are admitted to the hospital emergency area. With

respect to methodology, specialized neighborhoods need to be defined to avoid local maximums in

the intelligent feedback method.
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