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Abstract

Order picking is the process of collecting products from a specific location to complete customer
orders. It is the most costly activity inside of a warehouse with up to 65% of the incurred costs.
On the other hand, two important and closely related problems to the order picking are, indeed,
the storage location of products and the order batching, which may affect the routes performed
by pickers if they are not optimized. In the first one, the decision to take into account is about
where to place the items arriving at the warehouse considering that there are several and available
locations with certain capacity and, in the second one, the decision is to determine how to group
customer orders into batches, which must be assigned later to pickers to perform the corresponding
routes. Although these three problems are commonly studied and solved independently, recent
studies have shown that their integration may result in a greater improvement. In this paper, we
study an integrated picking problem that considers these three subproblems simultaneously. The
problem is motivated by a real-world application in a local warehouse. The aim of this integration
is to obtain the best storage location of products, order batching, and picking sequence that min-
imize the total picking routing cost. We first present a mixed-integer linear programming model.
Given the inherent computational complexity of the problem, we propose an iterated greedy local
search metaheuristic that attempts to exploit some particular properties of the model. The pro-
posed method is extensively assessed on random pseudo-real and real-world instances. The results
indicate that instance sizes with up to 8197 order lines, 654 customer orders, and 4252 products,

can be solved efficiently.

Keywords: Order picking; Storage location assignment; Order batching; Picking routing; Integer

programming; Metaheuristics.



1 Introduction

In a supply chain and its corresponding logistic activities, one of the most important elements to
consider is the warehousing process and other related activities in a distribution center (DC, which
can be seen as a specific type of warehouse). These related activities performed in a DC have an
important effect in the on-time deliveries to the final customers. Typical activities such as receiving
products, allocating items at a corresponding storage location, grouping several order into batches,
collecting products to complete customer orders, which are then packaged and delivered to the final
customers, are some of the most important key elements for a successful DC performance. If all or
some of them are not properly connected, they can generate costly logistic operations in the supply
chain and create a poor perception for the final customers. From all these activities, there is one
in particular that incurs in most of the warehouse costs, called the Order Picking (OP).

Order picking is the process of retrieving products from a specific location within a warehouse
to complete customer orders. It is the most costly activity inside of a warehouse with up to 65%
of the incurred costs ( ) : , ). Although all the activities
performed within a DC have an important effect that determines the level of efficiency of the order
picking, there are two activities that are closely related and whose effect is direct and significant,
the storage location of products and the order batching, which may affect the sequence of routes
performed by pickers if they are not well-optimized, or if they are independently optimized, which
is usually the case. In the storage location assignment, the decision to take into account is where to
place the items arriving at the warehouse considering that there are several available locations or
racks. In the order batching, the decision is to determine how to group customer orders, which must
be assigned later to pickers to perform the corresponding routes. Although these three problems
are commonly studied and solved independently, recent studies have shown that their integration

may result in a greater improvement ( , ).

Focus of the paper. In this work, we aim to study the integration of the storage location
of products, order batching, and routing decisions that minimize the total picking cost within a
DC. The study is motivated by a real-world application in a local retail firm, which has several

distributions centers that perform a manual picking activity each day.

Contribution. The contribution of this paper is twofold. First, we introduce a mixed-integer
linear programming (MILP) model that integrates the storage location of products, order batch-
ing, and order picking decisions. Second, we develop an Iterated Greedy Local Search (IGLS)
metaheuristic to obtain good quality feasible solutions efficiently to this integrated problem. The

metaheuristic is fully assessed in both synthetic and real-world instances.



This work is organized as follows. First, in Section 2, the related literature is discussed. We
present the problem under study and the proposed mathematical model in Section 3. The proposed
solution method is described in Section 4. We provide an extensive computational experience in

Section 5. Finally, some conclusions and future research lines are discussed in Section 6.

2 Literature review

According to ( ); ( ), the order picking, which is the
operational activity of retrieving items from a specific storage location to complete customer orders
delivered at a later stage, incurs from 55% to 65% of the warehouse costs. Some of the operational
costs involved in this activity are related to three main components: traveling time, time to pick
an item, and time for remaining picking activities; being the traveling time the most costly among
them ( , ; , ). Several strategies proposed to improve
the order picking efficiency with respect to this criterion are related to the integration of planning,
tactical, and operational decisions, for example, layout design, the storage location of products, the
order batching, and the sequence of routes that pickers must perform; as well as other criteria such
as the size of the warehouse, order characteristics, zoning or replenishment decisions ( ,
; , ), which have not been studied deeply and can provide a significant order
picking improvement in specific cases. Three main decisions can be identified because of the impact
on the picking travel effort: Storage location of items, grouping customer orders to be performed
in a single route, and the sequence of picking routes. In most of the literature, these decisions
are studied separately or only two of them are combined. This work addresses the simultaneous
integration of these three activities.
This section is divided into two parts. First, we briefly describe some aspects for each studied
activity. Then, we provide a literature review related to the integration of two or more activities

carried out in a warehouse in order the minimize picking costs.

2.1 The Storage location assignment, order batching, and order picking prob-

lems

Storage location assignment problem (SLAP): The Storage Location Assignment Problem

( , ) is a tactical problem that decides where to place items into storage locations

inside a warehouse, in order to make better use of the

physical space. A general review about the SLAP can be found in ( ).
Since the SLAP is considered N'P-hard as it generalizes the Quadratic Assignment Problem

( ) , QAP), it is common to identify several policies used to solve the problem easily.

Some of the most common policies identified in the literature are the following ( ) ;

, b):



e Random: In this policy, items are placed in any available storage location as long as capacities
and dimensions of the locations allow it. It is considered a simple, fast, but inefficient heuristic

for traditional commerce (it is more appropriated for e-commerce companies).
e Dedicated: Each item is assigned to a pre-defined and fixed storage location.

e Rotation level: This policy assigns high-turnover products to the best locations, those with

the shortest distance to the depot (arrival/depart point).

e (lass-based: In this policy, items are classified first, then they are assigned to a pre-defined

area or zone, generally on a random basis.

e By affinity: Items that are often ordered together or have a certain level of affinity, are

considered to be placed on the same storage location .

o C(losest space: Items are located at locations closer to the depot.

Order batching problem (OBP): The Order Batching Problem is the problem of grouping
customers orders into batches that will be collected later by pickers, in order to minimize routing
costs. Order batching has a significant effect on picking costs as it reduces efforts by grouping
several orders into one route, such that the better order assignment the better the picking solutions.
This can be achieved by considering several orders with similar products or by applying a priority
criterion. A survey of applications of the OBP can be found in ( ).

Since the OBP is also an A/P-hard problem ( ) ), solving to optimality
real-world instances is not a simple task. Because of this, several simple rules or policies have been
implemented. A common classification found in the literature is the one proposed by

( ), which is as follows.

e Basic methods: Composed of constructive heuristics. One the most common example of this
classification is the rule First-Come-First-Serve (FCFS), which is an strategy that groups

orders into batches according to their arrival.

e Seed methods: A seed order is selected as a reference for other orders to be added in a specific
batch. When a new order is added, it must not exceed the batch capacity, and the order to
be selected from all the feasible ones, is the order that minimizes a measure of closeness to

the seed. This process is repeated until there are no orders to add.

e Savings methods: These methods start by locating one order in one batch, then the number
of batches is reduced by merging them as long as savings are found. This idea is similar to
the one proposed by ( ), which correspond to one of the best-known

heuristics used for vehicle routing problems.



Order picking problem (OPP): The third and the main activity of this study is the Order
Picking Problem, which involves several tasks. The most important and time consuming of all of
these tasks is to find the best design of routes, through a sequence of visited racks to retrieve the
items, that minimizes the total traveling cost. This special task can be interpreted as a Vehicle
Routing Problem ( , ) or a Traveling Salesman Problem ( , ) and, in
both cases, it is an NP-hard problem. The reader is referred to the following OPP survey for more
details ( , ).

There are several ways to tackle the sequence of the order picking activity considering different
policies proposed for the OPP. As it is done for the SLAP and the OBP, some of the most common

policies used to obtain a sequence of the picking routes are ( , ;

: b):

e Return: This policy establishes that pickers arrive and depart through the same point of a

warehouse aisle (only if there are items to pick).

o S-Shape: Pickers enter in an aisle, traverse it until the end, and departs from that opposite

point (in a S shape).

o Mid-point: Pickers enter and leave from the same point of the aisle, and only arrive as far as

the middle point of it.

e Largest gap: Pickers enter and return to the same point of an aisle, but travel only as far as

the larger gap between two adjacent items to be collected.

e Optimal: In this policy, pickers perform the optimal sequence (the one that provide the best

solution cost), regardless the layout design and the location of items to collect.

o Metaheuristic: These routing policies use optimization heuristic procedures to compute the

sequence of picking routes.

Current research works have studied and determined that integrating two or more of these
decisions can result in better order picking solutions, although the complexity of the problem
to be solved increases. Below, we provided a brief description of some relevant works found in
the literature, which have shown that integrating some of these activities can provide significant

improvements to the OPP.

2.2 Integrating tactical and operational activities for the OPP

The works presented in this section are an example of the effort and interest in improving the pick-
ing activity through the integration with other highly related decisions. These are briefly described

below.



( ) develop a simulation to asses the integration of the storage location
assignment (SLA) of products, order batching (OB), and picking routing (PR). Authors implement
two known SLA and three PR policies from the literature, and proposed two new OB heuristics
based on k-means and self-organization map algorithms (both correspond to clustering methods,
where similar customer orders are grouped into one batch). Computational experiments were
carried out on generated instances of an illustrative example with up to 300 orders and 20 SKUs
(using a warehouse of 400 storage locations) to asses the effect of each applied strategy. Other works
that consider simulation to evaluate the integration of SLA, OB, and PR policies on multi-block
warehouses are proposed by ( ) and ( ). The first one carries
out a Monte Carlo simulation to analyze the integration of five variants of the class-based SLA
policy, two OB policies, and four well-known PR policies. The second one, applies simulation to
analyze the effect of the integration of the SLA, OB, and PR (two policies per each activity) on a
real-world application of a Spanish retail distributor. In all the works mentioned above, an ANOVA
was performed considering the total distance traveled as one of the main objectives to evaluate, all
of them concluding on the importance of integrating these three activities simultaneously.

( ) studies the OBP combined with several routing policies for a rectangular layout.
Since there are few studies on exact methods for the OBP, the author proposed several MILP
formulations, one per each routing policy, and an Iterated Local Search Algorithm (ILS) with
Tabu Thresholding to solve instances of larger size. The results indicate that their proposed ILS
outperforms a general-purpose MILP solver and some other adaptations of savings heuristics im-
plemented for the OBP. A previous work that also studies the optimization of the OBP in order to
improve the OPP, is the proposed by ( ), which provide a Tabu Search and
an Attribute-based hill climber algorithm to evaluate the improvement in the total traveling time.
Some well-known SLA and PR policies are used to obtain the storage location of products and the
final picking routes.

A statistical analysis to evaluate the significance among several activities inside of a warehouse,
which affects the order picking, was provided by ( ). They applied a full-
factorial ANOVA considering several policies for the order batching, storage location, zone picking,
and picking routing. They found that all the hypothesis they provided were accepted, which means
that combinations of these activities provide a significant effect in order picking costs. Later,

( ) extend this analysis by taking into account real-life features, e.g., picker
blocking, safety constraints, and high level storage locations to analyze the effect of including these
features on the traveling and waiting picking times. The authors conclude that it is necessary to
include these characteristics during picking optimization to correctly evaluate the performance of
the proposed methods and solutions.

A mathematical model and an Iterated Local Search to formulate and solve the integration of

OB, RP, and picker scheduling (sequence of the batches assigned to available pickers) considering



order due times to increase the order picking efficiency were proposed by ( ). In
this case, SLA decisions are not optimized, instead three SLA policies are used to obtain a variety
of initial assignments. Computational experience and a full factorial design were carried out on
synthetic and real-world instances of an automotive firm to compare exact and heuristic solutions as
well as the ILS performance. Results show significant improvements when the integrated problem
is considered.

( ) study the optimization of the SLAP in order to improve the OP distance
(considering an S-shape routing policy to compute it). Authors propose a data-based approach
that first assigns items to aisles and then items to racks. Subsequently, the initial assignment is
improved by swapping pairs of items. They assume that only one type of products must be assigned
to each location (do not mix or partition product types in racks), therefore, the number of items
must be less or equal than the number of storage locations. Also, only one order can be fulfilled
per route (no order batching is considered), and the picking cart capacity is unlimited. Extensive
computational experience was provided on real-world data, solving instances with at most 4,000
products. Results show that the proposed solution algorithm outperforms other methods proposed
in the literature.

( ) show that the integration of the SLAP and OP activities may incur in
significant improvements. They propose several non-linear programming models for four cases of
integration, which were linearized. The aim is to minimize the total routing costs considering
each product is assigned to exactly one location and each location can have no more than one
product. Computational results showed that it is not practical to solve even the small instances
to optimality in less than 7200 seconds (3-5 picks, 10-60 slots). Thus, they developed a General
Variable Neighborhood Search metaheuristic to obtain good quality solutions in better computing
times. Authors do not assume any specific warehouse system and apply four routing policies in
their solution method.

( ) propose an iterative solution method that solves the integration of a dynamic
SLA, the OB, and the PR for the OPP. The dynamic SLA is obtained by solving a MILP, which takes
into account multiple periods and forecasting techniques to evaluate the location of products in the
current and future time periods. The OB and the PR are solved jointly through a proposed heuristic
based on Particle Swarm Optimization (PSO) with evolutionary computation. Both approaches,
the dynamic SLA and the PSO, are combined to solve the integrated problem. The relocation of
products to storage locations for future time periods is carried out considering forecasted demands.
Authors performed computational experiments on generated instances with a number of orders
from 50 to 200 (2-10 items/order lines per each customer order) and 6000 products to be initially
located (1 product per each storage location) in a multi-block warehouse of 7200 storage spots,
showing a good performance on those cases. Another work that proposed an approach to optimize

the integration of the SLA, OB, and PR was proposed in ( ), where



a mathematical model and an ILS to solve the OBP and the OPP simultaneously, is provided.
Several well-known exact/heuristic PR policies were compared to evaluate the performance of the
ILS on a two-block warehouse. The SLA is initially determined by using the random and class-based
policies. Assumptions such as not partitioning batches and only one product can be assigned to
each storage location are considered. Results show that the ILS combined with an exact method for
PR outperforms the ILS with known (heuristic) routing policies; however, for very large instances
the latter are recommended given the limitations on resources and large sizes of real-world cases.

( ) propose a mathematical model and a two-phase algorithm that integrates
order batching, picking sequence, and last-mile vehicle routing in order to minimize operations
and penalty costs. For the first two decisions, they use an aisle similarity clustering method
and the S-shape policy, respectively. For the last-mile delivery, authors solve a TSP with Time
Windows. The results show that the integration achieves a positive impact in costs savings and
good-quality indicators. It reinforces the benefit of solving integrated problems simultaneously
during the optimization.

( ) study the OPP considering storage replenishment operations to ensure avail-
able stock of products that will be retrieved during the order picking activity. Authors adapt
mathematical models and solution methods of the Inventory Routing Problem to solve the newly
defined problem. The aim is to determine the best replenishment plan that minimizes the total pick-
ing travel time and ensure the availability of items. They carried out extensive computational tests
and provided several comparison with respect to other routing policies showing the effectiveness of
their proposed methods.

( ) study the improvement of the picking activity when order batching
decisions, considering an heterogeneous fleet of vehicles, are integrated. They proposed an MILP
formulation and a Variable Neighborhood Search (VNS) metaheuristic to solve a case study for a
company. Authors carry out extensive computational tests on large pseudo and real-world instances
and compare their results with a current heuristic method that the company uses. They confirm
that their proposed solution methods are efficient and, by integrating order batching decisions,
companies can obtain better improvements in their warehouse operations. Another VNS provided
in the literature that studies the integration of order batching decisions to improve the order picking
costs is the one proposed by ( ), who made a comparison between their
proposed VNS and several routing, storage location, and batching policies, providing an ANOVA
statistic analysis considering these factors and four different warehouse designs.

In this work, we study an OPP that integrates, not only the storage location of products and
the sequence of picker routes but also order batching decisions, simultaneously. We proposed a
mathematical model and an IGLS metaheuristic to obtain good quality solutions of a real-world
case study of a Mexican retail firm. The mathematical model is formulated as a mixed-integer linear

program that can be used to obtain feasible solutions for small (but still real-world size) instances



using a general-purpose solver and, to the best of our knowledge, it can be considered the first
mathematical formulation that integrates and optimize these three main decisions. On the other
hand, the proposed IGLS provides a good alternative to solve the problem, without considerably
reducing the quality of solutions, in reasonable computing times for large-scale instances. Moreover,
most of the previous works mentioned above, specifically those that study the integration of these
three decisions, consider several assumptions that are tackled in this work, e.g., that only one
product type can be assigned to each storage location (we consider a maximum affinity value to
determine what product types can be assigned together), the absence of due times for customer
orders (our problem considers a maximum processing time for each one), and the use of an exact
method to obtain each final picker route embedded in the proposed heuristic approach, which
allows not to depend completely on the type of layout to be used to obtain good routes, giving the

opportunity to use the same approach regardless the design of the warehouse.

3 Problem definition and mathematical model

3.1 Problem definition

Let L be the set of storage locations or racks. The problem can be represented by a directed
graph G = (N, A), where N = L U {0} is the set of nodes including the depot (represented by
the 0 node) from which pickers depart and return after collecting the customer orders; A is the
set of available arcs between each pair of storage locations, where “arc” means any direct path,
which exists between two adjacent or nearby racks, that does not involve passing through another
intermediate rack. Let P, O, W, and B the set of products, customer orders, pickers, and batches,
respectively. Each unit of product p € P has a volume V), and a deterministic demand D,, > 0
required for a given order o € O. Let QF and Q" be the corresponding homogeneous capacity of
racks and picker carts, respectively. All pairs of products (p,q) € P, assigned to the same rack,
must not exceed a value of v € [0, 1], defined as the maximum affinity dissimilarity level between
two selected products to be located in a rack. Furthermore, each order o € O must be collected
before a maximum processing time 7;"**. Finally, a cost c. and a traveling time ¢., per each arc
e € A, are defined.

Then, the aim of the order picking problem, which considers storage location, order batching,
and routing decisions, called from now on the PSB, is to determine where to locate products into
racks, what orders to locate in a given batch, and in what sequence to perform the picking routes

in such a way as to minimize the total picking cost.

Some other assumptions must be considered:

e Layout aisles are wide enough, so pickers carts can go back and forth through the aisles.



e No splitting of customer orders is allowed.

e The current warehouse layout used by the firm is a multi-block layout; however, the company
is interested in analyzing the performance of the proposed algorithm considering a Fishbone
layout ( , ) as the firm seeks to migrate to this design in the future.
Therefore, we decide to use an optimal policy to perform the picking routes independently of

the layout design.

3.1.1 Product affinity

One important criterion for the company is the affinity of products to be located in the racks. This
affinity can be measured in several manners ( , ). However, the company has its
own procedure to compute the affinity between two products p and ¢, which is composed of three

main steps.

e Step 1. Each available product p has an affinity code assigned to it, which corresponds
to an alphanumeric value for each product category defined by the company (see Table 1).
Products (Stock Keeping Units, SKUs) from the same category have the same affinity code
(column 2). These codes are sorted alphabetically assigning an ordinal value for each unique
category in such a way that products with the same affinity code have the same ordinal value

(column 3).

Table 1: Affinity values

Product Affinity code Value

P2 0A10800 1
P1 0A13400 2
P6 0A13401 3
P4 0A13401 3
P3 0F13300 4
P5 0G11200 5

e Step 2. Given the data provided above, the affinity value for any pair of products p and g,

is computed as follows.

_ [Val, — Val|

Aff(p,q) -~
CQ;

where Val, and Val, are the corresponding individual affinity values provided in the third
column of Table 1, and n.q; is the number of product categories. Therefore, Aff(p, q) resulted

in a value [0,1], where 0 represents a pair of products of identical category and 1 represents



3.2

two completely unrelated product categories. This affinity value is computed for each pairwise

(p, q) of products, and an affinity matrix is generated (Table 2).

Table 2: Affinity matrix

\P1 P2 P3 P4 P5 Pé6

P1 0 0.17 033 0.17 050 0.17
P2 - 0 050 033 067 0.33
P3 - - 0 0.17 0.17 0.17
P4 - - - 0 033 0.00
P5 - - - - 0 0.33
P6 - - - - - 0

Considering this matrix it is possible to determine which products can be located in a given

rack taken into account a maximum value of affinity (dissimilarity) allowed, ~.

Mathematical model

In this section, we introduce a mixed-integer linear programming model for the PSB problem. This

model considers decision variables related to the main three activities, namely, product storage

location (including location and quantity), order batching, and picker routing. The main data,

sets,

Sets

and variables of this model are the following.

and parameters

L, A, P,O,W, B: Set of storage locations (racks), available arcs (connections between racks),

products, orders, pickers, and batches, respectively.

G = (N, A): Directed graph composed of the set of racks plus the depot, N = L U {0} and

the set of available arcs A.
A" JA;: Set of arcs that enter/exit to/from a given rack [ € L U {0}, where A, A, C A.
Vp: Volume of product p € P

~v: Maximum value [0,1] of dissimilarity (affinity) between products that can be located in

the same rack.

QF, Q" Capacity (volume) of racks and carts, respectively.
D,,: Demand of product p € P for customer order o € O.
178 Maximum processing time of an order o € O.

Ce, te: Picking cost and traveling time for each arc e € A.

10



Decision variables for the storage location of products

° yé, binary variable equal to 1 if product p € P is assigned to location [ € L; and equal to 0

otherwise.

l
D>

to location [ € L.

e a . nonnegative integer variable representing the number of units of product p € P assigned

Decision variables for the order batching

w
d boi7

binary variable equal to 1 if order o € O is assigned to batch ¢ € B and collected by picker

w € W; and equal to 0 otherwise.

e 70, binary variable equal to 1 if arc e € A is traversed by picker w € W servicing order

o € O assigned to batch ¢ € B; and equal to 0 otherwise.
Decision variables for the order picking

° zggi, binary variable equal to 1 if product p € P, located at rack [, which comes from order

0 € O assigned to batch i € B, is serviced by picker w € W; and equal to 0 otherwise.

e 7% binary variable equal to 1 if arc e € A is traversed by picker w € W to collect orders of

batch 7 € B; and equal to 0 otherwise.

e fi >0, non-negative continuous variable representing the cart load used by picker w € W

when traversing arc e € A.

° qzlfgi, number of units of product p € P collected by picker w € W at rack [ € L, for any order
o € O that belongs to batch i € B.

Then, the PSB is defined as follows.

min Z Z Zceré“’ (1)

i€EBweW ecA

ZOVpro

S

s.t. Zyé < —aor peP (2)
leL
D= Dro PeP, (3)
leL 0€O
Vpa; < QLyé pePlel (4)
> Vpd < Q" leL (5)
peP
yé+yé§1 p,q € P|Aff(p,q) >v,l €L (6)
Zpe < b weW,pe PocO,ic B,leL (7)

11
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leL weW ieB

Zréwgl

ec Al

Y. D <w

weW eeAOJr

)SDIDIIEED 3D IPOLCE

ecAf i€BweW e€A; i€EBweW

SoFm= =N Vg

ecAf e€A; o€O peP
iw W, .iw
[ =@ re

2.0 > fr=0

i€BWEW ceat

bl <Y A < MbY,

leL peP
SN =1

weW ieB

P bl — 1< MTEY

o <

Toi” < bo;

SN tersr < T
i€BecA

yh, €{0,1},al, € Z*

Z;lfgi € {0, 1}7%[;51‘ ezt

rie €{0,1}, fie 2 0
by; € {0,1}
Toi €{0,1}

ho € {0,1}

The objective function (1) minimizes the picking routing cost.
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Constraints (2) specify the
maximum number of locations where a product type can be assigned. Constraints (3) determine
that the quantity of product p assigned to locations must satisfy at least the demand of that product.
Constraints (4)-(5) guarantee that the volume of the quantity of product delivered at each location

must not exceed its capacity. Constraints (6) limit an affinity level between two product types



assigned to locations, that is, two products that are not affine enough cannot be placed in the same
rack. Constraints (7) establish that if product p is not assigned to rack [ there can not be any
picker visit for any batch and any order Constraints (8)-(9) determine that the product volume
assigned to a picker must not exceed the cart capacity volume. Constraints (10) limit the amount
of product to pick up to at most the quantity available at location [. Constraints (11) establish that
the total quantity of product p, for a given order, must be equal to the quantity required for that
customer order. Constraints (12)-(14) are the node degree and the flow conservation constraints.
Constraints (15)-(17) represent the load of vehicles at a given traversed arc e, this load must not
exceed the cart capacity, and must be 0 when the picker return to the depot. Also, these constraints
avoid subtours. Constraints (18)-(23) establish that the time required to collect an order must be
less than a maximum processing time for that given order. Constraints (24) - (29) represent the
domain of variables.

Computational complexity: The PSB is an order picking problem that considers assignment,
batching, and routing decisions. We can demonstrate that the PSB is AP-hard as follows. First,
PSB is clearely in NP since feasibility can be verified in polynomial time. Now, we will show that
the Traveling Salesman Problem (TSP), a well-known NP-hard problem, is polynomially reducible
to the PSB. For this, we consider the particular case of PSB when the number of available racks
is equal to the number of products |L| = |P| (all products have the same volume V,, = 1), there is
only one customer order |O| = 1 that requires only 1 unit per product of the list Dy, =1, p € P;
one picker is available to perform the route and, since there is only one customer order and it is not
possible to partition it, only one batch must be performed during the day, so |W| = |B| = 1; racks
and carts capacities are Q¥ = 1 and Q" = oo, respectively. There is no possibility to assign more
than one product at each rack since v = 0.0 and racks capacity does not allow it; also, T)"®* = oo
(there is enough time to process the order). For this special case, the PSB is reduced to find the
minimum tour that visits all racks in L U {0} (departing from the depot) resulting in a TSP, which
in turn is N'P-hard ( , ). Therefore, the PSB is at least as hard as the TSP
and, given the size of the real-world instances, we propose a metaheuristic to obtain good quality

solutions in reasonable time.

4 The Iterated Greedy Local Search for the PSB

Since obtaining the optimal solution for real-world problems in this context can be a hard task for
exact methods, we propose an Iterated Greedy Local Search ( , ) metaheuristic
for the PSB (IGPSB). The proposed IGPSB (see Algorithm 1) starts with an initial feasible solution
generated by solving an MILP subproblem for the storage location decisions, and applying a first-fit
heuristic to obtain the batch of orders to be served by pickers. Finally, a TSP for each picker route

(one batch per route) is solved. Subsequently, this initial solution is improved by two local search
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(LS) procedures. Afterwards, a second phase is performed, where the initial solution is partially
destroyed and greedily reconstructed to be, then, improved by the corresponding LS. Therefore,
if the solution value f(s), obtained after reconstructing solution s, is better than the one of the
current solution s’, then s replaces s’. Furthermore, if f(s) is better than the incumbent value
f(s*), then, the new incumbent is updated. Otherwise, if f(s) is worse than f(s’), a procedure
to evaluate if s should replace s, is performed. The IGPSB stops when a maximum number of

iterations or a maximum computing time is met.

Algorithm 1 IGPBS
Input: : L (racks), P (products), W (pickers), O (orders), v (max.

affinity value), %Dest (% solution destruction), S (factor for worse
solution acceptance).
Output: s*: Best solution found.
> Initial solution
1: s < getInitialSolution(L, P,W,0,~) ;
2: s < LocalSearch(s)

> Iterative phase

3: 8¢+ 5,8+ s

4: while stopping criteria not met do
5 s < Destruction(s, %Dest)

6: s < reConstruction(s”, %Dest)
7 s < LocalSearch(s)

8 if f(s) < f(s') then

9 s+ s

10: if f(s') < f(s*) then

11: s* s

12: end if

13: else

14: {s, s’} + evaluateWorseSolution(s,s’, s*, f3)
15: end if

16: end while

17: return s*

We provide more details for the main IGPSB components below.

Phase 1: Generation of an initial solution

The first phase of the IGPSB requires to start with an initial feasible solution, and to obtain it,

we propose a simple constructive heuristic composed of three steps. This initial solution is then
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improved by applying two local searches we have developed for this problem.

Constructive heuristic

The constructive heuristic proposed for the IGPSB is composed of three main steps. In the first
step, the storage location of products to racks is determined, while in the second step, the order
batching is obtained. Once these two decisions are performed, the third step consist of solving a

TSP for each picker route.

e Step 1: To obtain the storage location decisions, the following subproblem, which considers

constraints (2)-(6) related to this activity in the original formulation, is solved.

Let g, € {0,1} = 1 if rack [ contains any product p; otherwise, 0. Then, the subproblem that

obtains a distribution plan to locate products into racks is as follows.

min Z colyi (30)

leL
st. <Y yh<My lel (31)
peEP
(2) = (6)
(24)
g € {0,1} lelL (32)

The objective function (30) aims to minimize the distance between any used rack and the
depot (a closest space policy). The new set of constraints (31) enables or disables the vari-
ables 4; depending on whether or not a product unit is assigned to each storage location I.

Constraints (32) delimit the domain of the new decision variables.

e Step 2: We adapt a first-fit algorithm ( , ) to obtain the order batching plan.

The main steps are the following (see Figure 1):

— Sort customer orders in a non-decreasing order according to their maximum processing
time 73"® . The reasoning behind this is to locate in the first batches the orders that
have less T"?* available to be served as soon as possible by pickers (priority policy).

— Select the first order of the list and assign it to the first batch. Then, select the second
one and assign it to the first available batch where it can fit without exceeding the
cart capacity or the processing time 7)"** for any order of the corresponding batch.
Otherwise, open a new batch and assign the current order. Since each picker can only

perform one batch per route; then, |B| = |W|.

15



Demand Orders b1 by b... Picker 1 Picker 2

1 )

> P3
N P2

MY Sy
|

Figure 1: Offline First-Fit algorithm for the PSB
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e Step 3: Solve a TSP for each picker route (batch) taken into account the current storage
locations assignment. As we are working on an incomplete graph, i.e., there is no exists a
direct path to connect several pair of locations (I1,l2), we simplify this by transforming this
graph into a complete one using the the Floyd-Warshall algorithm ( , ). Using this
transformed graph, the final batching, and the storage location assignment found in previous
steps, we apply the Concorde TSP solver to obtain the sequence of routes, which performs

relatively fast per each batch.

Local search procedures

In order to improve a given solution s, we proposed two LS procedures. The first one improves the
selection of storage locations and the second one attempt to improve the order assignment from

the current batches. The LS procedures are explained below.

Storage location LS. The LS proposed for the storage location decisions, improves a solution
s by applying a sequential neighborhood search scheme, which performs a 1-1 move that consist in
selecting a rack [; from s and a rack ls, which does not belong to s, and swap them (if feasible and

if solution is improved), moving all product assigned from one rack to another (Figure 2).

I

iy w

Figure 2: LS for storage location decision

w
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Order batching LS. The second LS (Figure 3) improves the order batching by exploring a
neighborhood where 1-1 moves are applied. In this LS, one order o; from batch b; is moved to
another batch by (not necessarily of a different picker). If solution remains feasible (cart capacity

and processing times are not exceeded) and if its cost improves, the move is accepted.

-

Mﬂz
T‘?
bl |o1,05,0 02,04,06 | b>
o1 1,05, 07 2,04, 06 | b7
. :
b, .

Figure 3: LS for order batching decision

Phase 2: Iterative phase

Once the initial solution is obtained, the second phase of the IGPSB starts by partially destroying
the solution s, and then reconstructing it to obtain a new one, which will be improved by applying
the LS procedures explained previously. If the reconstructed solution is better than the current
one, this is accepted and replaces the current solution (and the incumbent one if it is the case). If
the new solution is worse than the current accepted solution, a criterion of acceptance is evaluated
to determine if it will replace the current one in the next iteration. The IGPSB stops when a
stopping criteria is met. Figure 4 shows the main steps of this second phase of the IGPSB, and

each component of this phase is explained with more detail below.

. CLEm "

3
. w

(a) Destruction (b) Reconstruction (¢c) Local Search

Figure 4: The main steps of the iterative phase of the IGPSB

Destruction-Reconstruction. During the destruction step, a given solution is perturbed by
removing a proportion of it in order to be reconstructed greedily in the next step. For the studied
problem, we focused the destruction on the selected racks where product is located. This procedure

is as follows.
e Destruction. Select randomly a proportion (measured by parameter %Dest) of the total
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number of racks assigned for s, and remove them resulting in a partial solution s”.

e Reconstruction. For each rack [ € L\ s”, compute the cost between depot and [. The rack
[ with the cheapest cost (shortest distance) is selected to be a new element of the current
s”. Once the number of elements added corresponds to the proportion %Dest, the solution is

complete.

Improvement. In this step, the solution reconstructed is improved by applying the proposed LS

procedures mentioned above.

Selection. Once the solution s is improved, the algorithm must decide if this new improved
solution will be accepted or not (Algorithm 1, lines 8-15). If the solution value f(s) is better than
the one of the current accepted solution s, then s replaces s’. Furthermore, if f(s) is better than
the incumbent s*, then, the updated s’ will replace s*. On the other hand, if f(s) is worse than
f(s"), s must be evaluated to determine if it will be accepted (see Algorithm 2). For this, a Gap
value is computed and multiplied by a factor 5 to determine a threshold 7, which will be used
to decide if a worse solution will replace s’ (increasing the margin of acceptance of poorer quality
solutions in subsequent iterations). Also, a counter aw (naw) and a variable faw (fnaw), that
accumulate the number of iterations and the solution value of the accepted (non-accepted) worse

solutions (respectively), are defined to update the threshold 7 in later iterations.
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Algorithm 2 evaluateWorseSolution(s,s’, s*,3)

Input: : 5,5, s* 83 > New, current, and best solution, respectively; factor for
poor-quality solution acceptance.

Output: s,s > Accepted /updated solutions.

. Lf(s)—f(s%)]
: Gap + )

if iter = 0 then
T+ B X Gap
end if
if Gap < 7 and Gap > 0 then

[y

s s > s is accepted, s’ is updated.
faw < faw + f(s)

aw — aw + 1, naw < 0

else

,_.
e

s+ s > s is not accepted.
fnaw < fnaw + f(s)
naw < naw + 1, aw <0

end if

if naw = 0.1 x iterIGLS.x then > After naw non-accepted worse solutions

| Lraw _ p(s*))|
Gap + ey

— = =

_ =

T+ B X Gap

H
Xt

fnaw < 0, naw < 0
end if
if aw = 0.1 x iterIGLSax then > After aw accepted worse solutions
| La _f(s*)|
f(s)
T+ B X Gap

_ =

D
<

Gap <

NN
N =

faw <0, aw < 0
23: end if

24: return {s, s’}

In the following section, we perform several computational experiments in order to evaluate the

proposed solution algorithms.

5 Computational experience

Computational experiments were conducted on a Workstation HP Intel(R)-Xeon(R) at 3.5GHz with
64 GB RAM (Win 10 Pro, 64 bits) and a processor with 6 cores. The solution algorithms have
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been implemented in C4++ and, in the case of the formulations, we use ILOG Concert Technology
API (CPLEX 20.1), setting to only one thread per optimization.

For all tested instances, we evaluate the quality of the solution produced by a given method
M, i.e. sM by computing the Relative Percentage Deviation (RPD) of its objective function value,
f(sM), with respect to the best-known solution, f(s*). The RPD is defined as

f(s™M) — f(s%)
f(s*)

The layout used for the tests is a fishbone layout with at most 241 storage locations (see

RPD = x 100%. (33)

Figure 5), where the black squared is the depot from where pickers depart. This layout is used for
the real-world instances subset explained below. Other two reduced layouts with up to 58 and 121

racks (including depot), extracted from the main one, are used for pseudo-real instances.

l
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Figure 5: Fishbone layout

All tested instances, as well as any complementary material and obtained results, are publically
available at https://github.com/DianaHuertaM /IGPSB.git.

This section is organized as follows. In Section 5.1, we provide a description of the generated
instances. In Section 5.2, we provide a preliminary analysis of the impact of the maximum level of
affinity + for the storage location assignment decisions. Section 5.3 summarizes the results of the

calibration tests for the IGPSB parameters. Finally, Section 5.4 describes the final performance.

5.1 Instances

We have created two sets of instances to asses the proposed solution method and determine its

performance. The description is provided below.
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e Calibration set: This set is composed of 40 pseudo-real instances with size » = 30, 60,
100, and 500 order lines (where an order line represents the information of a specific item
required by a given customer); the number of orders, pickers, and products corresponds to
|0 = |[W| = 5 and |P| = 30 (for » = 30/60 instances), and |O| = |[W| = 10,20 and
|P| = 50 (for sizes 7 = 100/500, respectively). Products and their volume (measured in cm?)
were selected randomly from a general list provided by the company; the number of units
ordered for a specific product p in a given order o is set to Dp, = 1 units. Vehicle and rack
capacities are set to Q" = 126000 cm? and Q¥ = 216000 cm?, respectively. The maximum
processing time required for a given customer order X, is computed as T** = p| X, |, where
| X,| corresponds to the number of products that belong to that order and p determines an
approximate number of seconds needed to handling each product during the picking activity;

for the tests, we use a value p = 100 seconds.

e Performance set: This set is composed of 60 pseudo-real instances (subset A) and 14 real-
world instances (subset B). We explain both sets in more detail. Vehicle and rack capacities

are set to Q" = 1680000 cm? and Q% = 3192000 cm?, respectively.

— Subset A: This subset corresponds to 30 small instances (10 per size) with r = 30, 60,
and 100 order lines; number of orders, pickers, and products of |O| = |W| = 3,5 and
|P| = 20; and 30 large instances (10 per size) with » = 1000, 3000, and 5000 order lines;
number of orders, pickers, and products of |O| = |[W| = 150,250 and |P| = 100. The
number of units ordered for a specific product was generated using a uniform distribution
on the interval ~ U][1, 3], and the products for each order were selected randomly for a
given list of products.

— Subset B: This set is composed of 13 instances obtained from the data provided by
the company. The size of them varies from 362 to 8197 order lines, number of pickers
|W| = 1-44, number of orders |O| = 1—654, and number of products of | P| = 106 —4252.

The T}"** value for a given order o € O was obtained by computing the following formula:
T;nax = Ttot + Trem-

where tior = tan — tini (difference between the initial and final picking time in the real-
word case), and tem = 1800 — (o mod 1800), which is the remaining time to complete

the nearest half hour.

To easily identify the main characteristics of both sets, we have named each instance as
InstArBoCpD, where A is the distribution center ID from which the information was extracted, B

is the number of order lines (instance size), C represents the number of orders, and I the number
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of products.

In the next section, we analyze the impact of the parameter v in the efficiency of the proposed
IGPSB.

5.2 The impact of the affinity value vy

The v value, which represents the maximum affinity (or dissimilarity) allowed among product
categories assigned to a given rack, is a grouping criterion that may reduce significantly the number
of required racks resulting in a potential improvement in picking costs since it decreases the number
of places to be visited by the pickers.

As a preliminary analysis to determine its impact in the solution, we evaluate several values
of 7. We set these values to v = 0.0,0.10,0.20,0.30, where a value of 0.0 corresponds to allow
only identical item categories in each rack; a value near 1.0, indicates that items assigned to racks
may differ as much as categories exist. For these tests, we use the calibration set and solve only
the initial phase of Algorithm 1 (lines 1-2) as this parameter is only used in the MILP for the
storage location assignment (SLA) subproblem of the getInitialSolution procedure. This MILP
(30)-(32) is solved using the CPLEX solver considering a maximum optimization time of 600 s.

The final results are presented in Figures 6-8.
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Figure 6: Picking cost per affinity level

Py =

Figure 6 shows the picking cost per each instance and each affinity value. We can observe that,
when only identical product categories can be assigned in a same rack (v = 0.0), the picking cost
increases, and it is more notorious for larger instances. The reason of this is because instances

consider a list of 30 different products for small sizes and 50 products for large instances, and most
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of these products belong to a different category (only some of them belong to the same category).
Then, it is required to use more racks in order to locate all the items in a specific storage location
as it is not allowed to place other product categories in a same rack.

In Figure 7, we can observe that the number of racks used to assign items is greater when v = 0
(only allowed identical product categories are allowed). On the other hand, when ~ increases, the
number of required storage locations decreases and the picking costs decrease significantly as this

activity requires less number of racks to visit during the routing.

Figure 7: Number of racks required per each affinity level

Finally, in Figure 8, the proportion of computational time required for the constructive heuristic
to find the best feasible solution is reported. It can be observed that the most time consuming
option (in all the cases) is presented when v = 0.10. Comparing the results shown in Figures 6-8,
~v = 0.20 outperforms the remaining options as it obtained a better trade-off between picking costs
and computing times. Furthermore, the similarity between products located at the the same rack

is not affected more than the necessary.
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Figure 8: Proportion of computing times required using different affinity levels

We can briefly conclude that by allowing flexibility when placing products on the racks, order
picking costs can be reduced considerably and a better use of racks space is obtained without
modifying significantly the affinity between products assigned to them. Therefore, we propose to

use a value of v = 0.2 for the remaining experiments of the next sections.

5.3 Calibration tests

In order to better exploit the efficiency of the algorithm, we have performed two required parameter
calibrations for the IGPSB: the percentage of elements to be destroyed (%Dest) from the solution
and the value of the parameter 8, which is used to compute the threshold of acceptance of poorer
quality solutions. For these experiments, we use the corresponding set of calibration instances and
fix the affinity value to v = 0.20 (as it obtained better results in the preliminary tests), the time
limit to solve the MILP used to construct an initial feasible SLA is set to 600 s, and the stopping
criteria for the IGPSB are fix to iterIGyax = 100 iterations and MaxOptTime = 3600 s.

5.3.1 Calibration of percentage of solution destruction parameter

The first parameter to calibrate is %,Dest, the number of elements to remove from a solution during

the Destruction step (line 5, Algorithm 1). We consider three factor levels, %Dest = 30, 50, and
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70, which mean that, for a given solution s, it is required to remove (randomly) 30/50/70% of the
total number of selected racks, which later will be reassigned (greedily) in the same proportion
during the reConstruction procedure. For these specific experiments, we also fix the parameter
8 = 0, which corresponds to the option of not accepting poor-quality solutions during the IGPSB.
Since the Destruction procedure applies a random selection of solution elements to remove, we

consider 4 repetitions of the IGPSB for each tested instance.

Table 3: Average RPD and computing times by removing a % of the solution in the IGPSB

Instance %Dest RPD Time(s)
Min Avg Max Min Avg Max
r30 0.00% 0.00% 0.00% 200.5 272.1 363.6
r60 30 0.00% 0.00% 0.00%  205.0 276.9 369.9
rl100 0.00% 0.02%  0.08%  339.7  441.0 533.4
r500 0.00%  5.18% 16.60% 1855.4 2384.6  2940.7
Avg 0.00% 1.30% 4.17% 650.1 843.7 1051.9
r30 0.00% 0.00% 0.00%  323.9 4445 646.1
r60 50 0.00% 0.00%  0.00%  341.0 428.3 554.2
r100 0.00% 1.11%  4.35% 4195  551.4 676.5
r500 4.65% 16.42% 35.24% 2364.5 2977.8  3399.2
Avg 1.16%  4.38%  9.90%  862.2 1100.5 1319.0
r30 0.00% 0.00% 0.00% 363.6  646.1 511.9
r60 70 0.00% 0.00%  0.00%  369.9 554.2 610.7
r100 0.08%  4.35%  0.08% 533.4 676.5 533.4
r500 16.6% 35.24% 23.63% 2940.7 3399.2  3432.7
Avg 4.17%  9.90%  5.93% 1051.9 1319.0 1272.2

Table 3 shows the results obtained per each %Dest and instance size. The first column is
assigned to the instance size; in the second one, the %Dest values to be evaluated are shown; and,
in column blocks RPD and Time(s), we provide the minimum (Min), the average (Avg), and the
maximum (Max) ARP/Time obtained per each group size of the calibration set. It is observed
for small instances (r = 30,60) that a local optimum was found and the perturbations applied
to the solutions were enough to find a good result in few seconds providing no difference among
the %Dest options in terms of solution quality; however, in terms of computing times, removing
a 30% of the solution requires less time than removing 50 or 70%. On the other hand, for large
instances (r = 100, 500), it is easier to identify the options that obtain the best results providing
more information about the algorithm performance when the value of %Dest varies. We can observe
that the best RPD values and computing times are obtained when the percentage of the elements
to remove is 30%), obtaining 1.30% of ARPD in 843.7s on average (the maximum RPD is also small
for this case). Therefore, the value of %Dest = 30 is definitely the percentage to be destroyed of a

given solution s in the IGPSB as it outperforms the other options.
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5.3.2 Calibration of

The second parameter to calibrate corresponds to /3, which is a value in the [0,1] range used to
calculate the threshold of acceptance of poor-quality solutions during the IGPSB (see Algorithm
2). The smaller the 8 value, the tighter the acceptance threshold and fewer solutions with worse
objective value will be accepted. A value near 1 allows to accept any solution that falls within
the current gap computed between the best solution found so far and the last (average) solution
obtained in the current iteration. For these tests, we set this parameter to § = 0.0,0.1,0.2 and
0.3. Since it is important that the algorithm has a mechanism for escaping from local optima, the
parameter S = 0.0 will be used only for comparative terms on the degradation of the quality of the
solution when considering greater values of this parameter. The aim is to determine the 8 > 0.0
that obtains the best trade-off between the average RPD and the average computing times. We
consider all the parameters mentioned in the previous tests including %Dest = 30. Four repetitions

of the IGPSB are carried out for each tested instance.

Table 4: RPD and computing times considering different 5 values in the IGPSB

Instance ‘ B ‘ #Best ‘ RPD Time(s)
[ [ [ Min Avg Max [ Min Avg Max
r30 10/10 | 0.00% 0.00% 0.00% 200.50 272.09 363.64
r60 0.0 10/10 | 0.00% 0.00% 0.00% 204.96 276.92 369.85
r100 ’ 10/10 | 0.00% 0.00% 0.00% 339.67 440.97 533.36
r500 10/10 | 0.00% 4.32%  10.49% 1855.42  2384.62 2940.68
Avg 0.0% 1.1% 2.6% ‘ 650.14 843.65 1051.88
r30 10/10 | 0.00% 0.00% 0.00% 76.80 81.15 85.98
r60 0.1 10/10 | 0.00% 0.00% 0.00% 82.07 87.28 92.72
r100 ’ 10/10 | 0.00% 1.11% 4.35% 271.52 310.00 385.08
r500 8/10 | 4.35% 11.54% 24.30% | 1564.97 1659.98 1764.41
Avg 1.1% 3.2% 7.2% ‘ 498.84 534.60 582.05
r30 10/10 | 0.00% 0.00% 0.00% 78.92 83.86 88.82
r60 0.2 10/10 | 0.00% 0.00% 0.00% 81.23 88.47 96.56
r100 ’ 10/10 | 0.00% 1.11% 4.35% 265.02 309.73 376.41
r500 8/10 | 4.35% 12.95%  27.60% 1594.46  1724.32 1910.12
Avg 1.1% 3.5% 8.0% ‘ 504.91 551.59 617.98
r30 10/10 | 0.00% 0.00% 0.00% 78.72 83.21 88.69
r60 0.3 10/10 | 0.00% 0.00% 0.00% 81.08 88.59 97.04
r100 ’ 10/10 | 0.00% 1.11% 4.35% 269.22 309.13 371.56
r500 9/10 | 1.20% 9.66%  23.04% | 1575.94 1668.64 1761.99
Avg 0.3% 2.7% 6.8% ‘ 501.24 537.39 579.82

The description of Table 4 is similar to that of Table 3, but now the comparison is with respect
to 8. According to the results shown in Table 4, there is a clear option that provides better results
on average, which corresponds to 5 = 0.3. We can observe that, although the average RPD has been
slightly better when # = 0.0, this option does not allow to escape from local optimal eliminating
any possibility of improving the solution. Furthermore, the number of best solutions found and

the average computing times are better when 8 = 0.3, the latter giving the opportunity to further
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explore the solution space (if the stopping criteria allow it) in order to find better solutions at the
end of the optimization. Therefore, 5 = 0.3 is the value that provides the best trade-off among the

evaluated options.

5.4 1IGPSB performance

This section is devoted to assessing the performance of the proposed solution method. First, we
compare the solutions obtained by the IGPSB with respect to those found by solving the MILP
formulation (1)-(29) using a general-purpose solver and with respect to the initial feasible solution
(improved by the LS) constructed as an input for the IGPSB. Second, since it has been observed
that the MILP of the SL assignment subproblem (30)-(32) does not perform efficiently when the
number of products is greater than 300, a simple but fast heuristic method is proposed to replace
the corresponding MILP (especially for instances in which it does not perform well) conducting
several tests to compare both alternatives in the IGPSB.

For all the tests of this section, we consider the parameter setting from the previous section, i.e.,
a maximum affinity value of v = 0.20; the proportion of elements to be removed from a solution
of %Dest = 30, and a 5 = 0.3. The stopping criteria for the IGPSB are set to iterIGu.x = 100
iterations and MaxOptTime = 3600 s. We use ILOG Concert Technology API (CPLEX 20.1) with
3600 s. as time limit to solve the formulation proposed for the problem; and a time limit of 600
s. to solve the SL assignment subproblem to obtain the initial feasible solution. The experiments
were conducted on the Performance set of instances, considering four repetitions of the IGPSB
for each of them. We report the best results of each solution method and the best solution values
obtained by the IGPSB.

5.5 Comparison among solution methods

We now evaluate the results obtained by solving the proposed formulation (1)-(29) as well as
the initial and the best solutions found after solving the first and second phases of the IGPSB,
respectively. This comparison is shown in Tables 5-6 (for pseudo-real and real-world instances,
respectively), where the first column is assigned for the instance name; the next block of columns
(A - MILP), corresponds to the costs of the best solutions found, the MIP-Gap, and the comput-
ing time (seconds) required by CPLEX to solve the proposed formulation; in block (B - IG-Ph1),
we show the solution costs and computing times required to obtain the (improved) initial fea-
sible solution constructed in the first phase of the IGPSB; on the other hand, column block (C
- IG-Ph2), provides the solution costs, computing times, and the final number of pickers |Wy|
needed to perform the routes at the end of the second phase of the IGPSB. Finally, the last column

block (Improvement) shows the percentage of improvement between each pair of solution meth-

ods (M1-M2), where a negative value corresponds to an improvement obtained by method M1 with
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respect to M2.

Table 5: Performance comparison among solution methods on pseudo-real instances

‘ A - MILP ‘ B - IG-Phil ‘ C - IG-Ph2 ‘ Improvement
Instance

| Sol MGap Time | Sol Time | Sol Time [W| | (B-A) (C-A) (C-B)
Inst1r3003p20 52.5 00 9755.31 | 525 10| 525 336 1] 00%  0.0% 0.0%
Inst2r3003p20 52.5 00 29947 | 525 08| 525  39.8 1] 00%  0.0% 0.0%
Inst3r3003p20 64.0 296 14397.2 | 68.7 11] 639 4Ll 1] 74%  00%  -6.9%
Inst4r3003p20 52.5 00 420328 | 525 09 | 525 413 1] 00%  0.0% 0.0%
Inst5r3003p20 52.5 265 14396.6 | 525 11| 525 402 1] 00%  00% 0.0%
Inst1r3005p20 89.6 484  14400.3 | 68.7 10| 639 428 1] -233% -286%  -6.9%
Inst2r3005p20 52.5 00 380833 | 525 08 | 525 415 1] 00%  00% 0.0%
Inst3r3005p20 64.0 00 143177 | 68.7 11| 639 437 1| 74%  00%  -6.9%
Inst4r3005p20 64.0 17.0  14398.5 | 68.7 12| 639 429 L 74%  00%  -6.9%
Inst5r3005p20 64.0 00 8267.23 | 68.7 09| 639 466 L 74%  00%  -6.9%
Inst1r6003p30 2725 84.0 14397.5 | 137.4 28 | 1279 2017 2| -49.6% -531%  -6.9%
Inst2r6003p30 127.9 250 14400 | 1374 43 | 1279 879 2| 74%  0.0%  -6.9%
Inst3r6003p30 64.0 00 308608 | 68.7 37| 639 488 1] 74%  00%  -6.9%
Inst4r6003p30 64.0 00 1483.55 | 68.7 29| 639  50.1 1| 74%  00%  -6.9%
Inst5r6003p30 64.0 00  843.578 | 68.7 49 | 639 445 1] 74%  00%  -6.9%
Inst1r6005p30 1374 57.4  14400.5 | 137.4 42 | 1136 3230 2| 00% -17.3%  -17.3%
Inst2r6005p30 109.3 512 14402.3 | 137.4 55 | 1027 280.1 2| 257%  -61%  -25.3%
Inst3r6005p30 64.0 00 224164 | 68.7 42| 639 417 1] 74%  00%  -6.9%
Inst4r6005p30 1374 57.0 14402 | 137.4 24 | 1165 2885 2| 00% -152%  -15.2%
Inst516005p30 64.0 00  1202.8 | 68.7 25| 639 372 1] 74%  00%  -6.9%
Inst1r10003p50 127.93 43736 14399.2 | 1374 22.0 | 127.9 1145 2| 74%  0.0%  -6.92%
Inst2r10003p50 127.93  40.539 14897.9 | 1374 215 | 1279 921 2| 74%  0.0%  -6.92%
Inst3r10003p50 137.39  38.819 14398.2 | 1374 189 | 127.9  86.1 2| 00% -69%  -6.92%
Inst4r10003p50 127.93  22.246  14400.4 | 137.4 85| 127.9 879 2| 74%  0.0%  -6.92%
Inst51r10003p50 127.93 25796  14400.4 | 137.4 95| 1279 819 2| 74%  0.0%  -6.92%
Inst1r10005p50 379.49 8513 14400.5 | 137.4 211 | 1279 3319 2| -63.8% -66.3%  -6.92%
Inst2r10005p50 127.93  49.014 14402 | 1374 283 | 127.9  277.7 2| 74%  0.0%  -6.92%
Tnst3r10005p50 888.64 92778 14403.7 | 137.4 88 | 127.9 809 2| -845% -85.6%  -6.92%
Inst4r10005p50 — — 14406 | 1374 550 | 127.9  198.0 2 — —  -6.92%
Inst5r10005p50 179.33  66.262 14403.7 | 1374 231 | 127.9  159.1 2| -234% -287%  -6.92%
Inst1r10000150p100 — — — | 1697 601.3 | 127.9  3648.9 2 — — -24.64%
Inst2r10000150p100 — — — | 1374 6012 | 127.9 3647.7 2 — — -6.92%
Inst3r10000150p100 1374 6012 | 127.9 3718.2 2 -6.92%
Inst4r10000150p100 169.7 6015 | 127.9  3716.9 2 -24.64%
Inst5r10000150p100 — — — | 3050 6018 | 127.9 3762.9 2 — —  -58.07%
Inst1r10000250p100 — — — | 1607 601.7 | 127.9  3948.6 2 — —  -24.64%
Inst2r10000250p100 — — — | 1508 6025 | 127.9  4013.1 2 — —  -15.18%
Inst3r10000250p100 — — — | 1874 6017 | 127.9 3638.7 2 — —  -6.92%
Inst4r10000250p100 — — — | 1374 6011 | 127.9  3689.2 2 — —  -6.92%
Inst5r10000250p100 — — — — —
Inst1r30000150p100 274.8 6014 | 255.8  3668.5 4 -6.92%
Inst2r30000150p100 385.1 6014 | 3014  3660.7 4 21.72%
Inst3r30000150p100 — — — | 2748 6019 | 255.8 3928.9 4 — —  -6.92%
Inst4r30000150p100 — — — | 4577 6024 | 319.7 3893.4 5 — —  -30.15%
Inst5r30000150p100 — — — | 3394 6025 | 255.8 3922.7 4 — —  -24.64%
Inst1r30000250p100 — — — | 2748  602.8 | 255.8 3807.7 4 — —  -6.92%
Inst2r30000250p100 — — — | 2748  601.8 | 255.8 3847.8 4 — —  -6.92%
Inst3r30000250p100 — — — | 2748 4630 | 2558 3711.2 4 — — 6.92%
Inst4r30000250p100 — — — | 3394 6012 | 255.8 3655.2 4 — — -24.64%
Inst5130000250p100 343.5 2201 | 319.7 37534 5 -6.92%
Inst1r50000150p100 — — — | 4642 5685 | 447.6 38195 7 — —  -3.59%
Inst2r50000150p100 — — — | 4808  298.1 | 447.6 38116 7 — —  -6.92%
Inst3r50000150p100 — — — | 640.8  602.6 | 447.6  4032.3 7 — —  -30.15%
Inst4r50000150p100 — — — | 4808  603.0 | 447.6 3913.8 7 — —  -6.92%
Inst5r50000150p100 — — — | 4808  603.5 | 447.6  4064.6 7 — —  -6.92%
Inst1r50000250p100 — — — | 7540  603.8 | 527.6 4305.6 7 — —  -30.03%
Inst2r50000250p100 — — — | 4121 6020 | 383.6 3639.7 6 — — -6.92%
Inst3r50000250p100 480.8  506.8 | 447.6  3733.0 7 -6.92%
Inst4r50000250p100 594.0 6015 | 447.6  3859.2 7 -24.64%
Inst5r50000250p100 — — — | 5495 6014 | 511.5 37755 8 — —  -6.92%
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It can be observed in Table 5 that CPLEX (A - MILP) was able to find the optimal solution in 11
out of 30 instances with 30-100 order lines. Instances that required more than 3600s of computing
time were re-optimized considering a time limit of 14400s in an attempt to find a better near-
optimum solution. It can be noticed that, even for the smallest instances (30 order lines), CPLEX
was not able to find an optimal solution for four of them in 4 hours, much less for the largest
ones for which no feasible solution was found. On the other hand, the solution algorithm B (first
phase of the IGPSB), obtained good initial feasible solutions efficiently for the pseudo-real instances
requiring at most 604s for the largest ones (most of the computation time was consumed by the
SL assignment subproblem); while the solution method C (second IGPSB phase) improved most of
those initial solutions from B, reporting improvements from 6.92% up to 58.10% in approximately
1h of optimization outperforming the previous alternatives in terms of solution quality. Considering
that the company is interested in knowing the smallest number of pickers required to perform the

routes to complete customer orders, we can conclude that for small instances where the number

of available pickers is equal to the number of customer orders (|W| = |O| = 3,5), it is needed at
most 2 pickers; whereas, for large instances, where |W| = |O| = 150, 250, only required from 4 to 8
pickers.

Table 6: Performance comparison among solution methods on real-world instances

. \ A - MILP | B-I1G-Ph1 | C - IG-Ph2 \ Improvement
nstance

| Sol MGap Time | Sol Time | Sol Time [W; | (B-A) (C-A) (C-B)
Int23r10105p98 89.7 424 3603.1 | 107.7  601.0 | 639  647.0 1] 201% -287% -40.6%
Int85r10701p107 129.9 63.0  3599.2 80.1 6011 | 639 6420 1| -383% -50.8% -20.2%
Inst53r11008p107 103.0 487 3609.3 | 261.8 601.2 | 639 6389 1| 1542% -37.9% -75.6%
Inst58r11107p106 141.3 61.3  3607.1 | 2015 6014 | 107.7  863.9 1| 426% -23.8% -46.5%
Inst98r11109p106 75.4 36.5 13691.9 915 601.1 | 639  637.7 1| 214% -152%  -30.2%
Inst22r362030p325 — — — | 1191 6069 | 80.1 6654 1 — -32.8%
Inst22r457044p376 — — — | 8155 7085 | 702.9 1623.1 1 — -13.8%
Int121r463036p411 — — — | 1033.0 683.1 | 810.5 2229.3 1 — 21.5%
Inst93r467032p414 — — — | 1258 6107 | 1258  668.6 1 — 0.0%
Inst154r477033p420 — — — | 7823 6303 | 568.0 2017.5 1 — -27.4%
Inst134r50640384p2923 — — — — — — S — — —
Inst2r55280399p3128 — — — — — — — — —
Inst22r76430654p3944 — — — — — — — — — —
Inst108r81970596p4252 — — — — — — — — — —

Table 6 shows a similar description but now considering the Subset B of instances (real-world).
For this set, CPLEX was not able to find the optimal solution, even though the number of order lines
is around 100 and customer orders does not exceed 44. An important characteristic of this set is that
the number of products is similar than the number order lines, which is an important difference from
the pseudo-real instances and has an important effect on the efficiency of the proposed algorithms.
It can be noticed for sizes larger than 5000, no feasible solution could be found for any solution

method, the reason for this is due to the fact that loading the instance to CPLEX could not be
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completed and, since all the methods require to solve an MILP, all of them were affected. In
response to this, we have developed a simple heuristic method to address this issue in the IGPSB,

which is described and discussed in the following section.

5.6 IGPSB performance using a SLA heuristic

As we can observed in the previous section for real-world instances, where the number of products
is greater than 2000, it is difficult to introduce the problem into CPLEX to be solved. Therefore,
no solution for the SL assignment subproblem can be created, showing a limitation to perform the
second phase of the IGPSB. As an alternative to address this issue, we have proposed a simple
heuristic to create an initial assignment of products into racks and thus continue with the batching
and routing decisions to generate a first initial feasible solution for the IGPSB. The proposed
heuristic, shown in Algorithm 3, starts by sorting the set of products and available racks according
to their affinity and their closeness to the depot, respectively. Then, in a sequential order, the first
rack [ is open and the first product p is assigned to it if there exists available space to locate (at
least) a proportion of its total demand and its affinity value, with respect to the first product p
assigned to [, is less than ~; otherwise, the current rack is no longer considered and another one
must be open to locate the products that are not yet assigned. Once the total units of products p are
place into racks, the product is removed from the non-assigned set. Finally, a feasible assignment
is provided if all products were located in a given storage location.

The heuristic was embedded in the first phase of the IGPSB replacing the MILP that solves the
initial SL assignment. Then, the IGPSB was performed (four repetitions per each instance) and
results are briefly summarized in the Figures 9a-9b, where the solution costs and computing times
provided by the IGPSB, considering the MILP and the SLA heuristic, are compared. It is observed
in Figure 9a that, for the pseudo-real instances (30-5000 order lines), both procedures perform
similar; in this case, the SLA heuristic (dashed red lines) obtained improvements of up to 18% in
five of the large instances of this set. On the other hand, for small and large real-world instances
(RWS, RWL, respectively), significant differences are found (up to 91% of improvement); in fact, as
it has been pointed, the MILP for the SLA subproblem has complications in carrying out the load
of RWL instances and no feasible solutions can be found to proceed; so, the proposed heuristic can
solve this problem. In terms of computing times, Figure 9b provides the required time for each phase
of the IGPSB considering both alternatives. For the first IGPSB phase (obtaining an improved
initial solution), the SLA heuristic (dashed red lines) outperforms the MILP alternative (solid red
lines) in most of the cases, especially for larger instances. For the second phase, the time required
for the IGPSB is similar in both cases on pseudo-real instances; however, the most noticeable
results, in which the performance of the heuristic is superior, correspond to those provided for

real-world instances.
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Algorithm 3 SLAHeuristic().

Input: : L, P, Dg, QT > Set of racks, products, total demand per product,

rack capacity

Output: As(l,p,q)

> Final assignment (rack, product, quantity)

1: P® < sortByAffinity(P) > P¢ is sorted P
2: L® + sortByClosenessToDepot(L) > L* is sorted L
3 QL+ QF > Remaining capacity
4: while P* # () and L* # () do
5: Select the first rack [ € L®
6 Select the first item p € P?
7 Set p the first item p assigned to rack [
8 Deoy < min(D], QL) > Covered demand
9 if Dcoy > 0 and Aff;, < v then
10: As(l,p, Deoy): Assign D, units of p to [
11: rem < Qrem = Deov
12: D'« DI' — D.o,
13: else
14: Remove [ from L*
15: Remove p from P? if Dg; is equal to 0
16: Fem < QF
17: end if
18: end while
19: if P # () then
20: As(l,p,q) + 0 > Infeasible, no assignment found
21: end if
22: return As(l,p,q)

Both alternatives, solving directly the MILP with the branch and bound of the solver and the
heuristic implemented for the SLA subproblem, seem to perform similar for small and medium
instance sizes. We suggest to solve directly the MILP with branch and bound only for instances
with less than 5000 order lines, 250 customer orders, and 100 available products as we have observed
that, when the number of products increases, the MILP is harder to solve by a general-purpose

solver (even if the number of order lines is small). For the remaining cases, the proposed SLA

heuristic is used to obtain the initial SLA for the initial solution of the PSB.
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6 Conclusions

This paper addresses an order picking problem, which integrates storage location, batching, and
routing decisions. The aim is to find the allocation of products to racks, the grouping of customer
orders, and the sequence of routes performed by pickers that minimize the order picking cost.
A mixed-integer linear programming model is introduced and an Iterated Greedy Local Search
algorithm (IGPSB) is proposed to solve the problem. Comprehensive computational experiments
have been carried out to calibrate the main parameters of the IGPSB and to assess the performance
of the proposed solution methods on pseudo-real and real-world instances focused on the basis of a
Mexican retail firm. During the performance tests, we have observed that the commercial branch-
and-bound method applied directly to the MILP model, used to solve the SLA subproblem when
the initial feasible solution is constructed, was able to solve all the pseudo-real instances. However,
for the real-world instances, the branch-and-bound method started to present problems, especially
for larger sizes where it was not able to load the problem into the solver. Therefore, a simple but
fast heuristic method was developed to obtain the initial location assignment of products obtaining
initial solutions very quickly. With this new proposal, final results have shown that the IGPSB can
obtain feasible solutions in reasonable computing times for instances with up to 8197 order lines,
654 customer orders, and up to 4252 products. On the other hand, the proposed model solved by a
commercial state-of-the-art solver can only achieve optimal solutions for a few small size instances,
not being able to solve those of larger size.

Future research lines identified during the development of this work are devoted to strengthening
the proposed formulation by developing other valid inequalities or the introduction of cuts during
the optimization process to reduce the symmetries in batching and routing decisions. Another
research direction is to extend the problem scope by considering the integration of other decisions
such as zoning, packaging, or last mile operations. Also, it may be interesting to study the use
of other routing, batching and storage location policies to make a comparison with the strategies
proposed in this work; or use other criteria in the objective function, for example, consider a penal-
ization for due orders or introduce a decision that considers inventory levels in order to know when
to replenish product in racks. In terms of robustness, it would be interesting to make a complete
study of the proposed algorithms considering other layouts, heterogeneous fleet of picker carts, or

integrate dynamic and stochastic elements.
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