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Jesús Fabián López-Pérez
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Abstract

Order picking is the process of collecting products from a specific location to complete customer

orders. It is the most costly activity inside of a warehouse with up to 65% of the incurred costs.

On the other hand, two important and closely related problems to the order picking are, indeed,

the storage location of products and the order batching, which may affect the routes performed

by pickers if they are not optimized. In the first one, the decision to take into account is about

where to place the items arriving at the warehouse considering that there are several and available

locations with certain capacity and, in the second one, the decision is to determine how to group

customer orders into batches, which must be assigned later to pickers to perform the corresponding

routes. Although these three problems are commonly studied and solved independently, recent

studies have shown that their integration may result in a greater improvement. In this paper, we

study an integrated picking problem that considers these three subproblems simultaneously. The

problem is motivated by a real-world application in a local warehouse. The aim of this integration

is to obtain the best storage location of products, order batching, and picking sequence that min-

imize the total picking routing cost. We first present a mixed-integer linear programming model.

Given the inherent computational complexity of the problem, we propose an iterated greedy local

search metaheuristic that attempts to exploit some particular properties of the model. The pro-

posed method is extensively assessed on random pseudo-real and real-world instances. The results

indicate that instance sizes with up to 8197 order lines, 654 customer orders, and 4252 products,

can be solved efficiently.

Keywords: Order picking; Storage location assignment; Order batching; Picking routing; Integer

programming; Metaheuristics.



1 Introduction

In a supply chain and its corresponding logistic activities, one of the most important elements to

consider is the warehousing process and other related activities in a distribution center (DC, which

can be seen as a specific type of warehouse). These related activities performed in a DC have an

important effect in the on-time deliveries to the final customers. Typical activities such as receiving

products, allocating items at a corresponding storage location, grouping several order into batches,

collecting products to complete customer orders, which are then packaged and delivered to the final

customers, are some of the most important key elements for a successful DC performance. If all or

some of them are not properly connected, they can generate costly logistic operations in the supply

chain and create a poor perception for the final customers. From all these activities, there is one

in particular that incurs in most of the warehouse costs, called the Order Picking (OP).

Order picking is the process of retrieving products from a specific location within a warehouse

to complete customer orders. It is the most costly activity inside of a warehouse with up to 65%

of the incurred costs (de Koster et al., 2007; Christophe et al., 2010). Although all the activities

performed within a DC have an important effect that determines the level of efficiency of the order

picking, there are two activities that are closely related and whose effect is direct and significant,

the storage location of products and the order batching, which may affect the sequence of routes

performed by pickers if they are not well-optimized, or if they are independently optimized, which

is usually the case. In the storage location assignment, the decision to take into account is where to

place the items arriving at the warehouse considering that there are several available locations or

racks. In the order batching, the decision is to determine how to group customer orders, which must

be assigned later to pickers to perform the corresponding routes. Although these three problems

are commonly studied and solved independently, recent studies have shown that their integration

may result in a greater improvement (Silva et al., 2020).

Focus of the paper. In this work, we aim to study the integration of the storage location

of products, order batching, and routing decisions that minimize the total picking cost within a

DC. The study is motivated by a real-world application in a local retail firm, which has several

distributions centers that perform a manual picking activity each day.

Contribution. The contribution of this paper is twofold. First, we introduce a mixed-integer

linear programming (MILP) model that integrates the storage location of products, order batch-

ing, and order picking decisions. Second, we develop an Iterated Greedy Local Search (IGLS)

metaheuristic to obtain good quality feasible solutions efficiently to this integrated problem. The

metaheuristic is fully assessed in both synthetic and real-world instances.
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This work is organized as follows. First, in Section 2, the related literature is discussed. We

present the problem under study and the proposed mathematical model in Section 3. The proposed

solution method is described in Section 4. We provide an extensive computational experience in

Section 5. Finally, some conclusions and future research lines are discussed in Section 6.

2 Literature review

According to de Koster et al. (2007); Christophe et al. (2010), the order picking, which is the

operational activity of retrieving items from a specific storage location to complete customer orders

delivered at a later stage, incurs from 55% to 65% of the warehouse costs. Some of the operational

costs involved in this activity are related to three main components: traveling time, time to pick

an item, and time for remaining picking activities; being the traveling time the most costly among

them (Tompkins et al., 2010; Dukic and Opetuk, 2012). Several strategies proposed to improve

the order picking efficiency with respect to this criterion are related to the integration of planning,

tactical, and operational decisions, for example, layout design, the storage location of products, the

order batching, and the sequence of routes that pickers must perform; as well as other criteria such

as the size of the warehouse, order characteristics, zoning or replenishment decisions (van Gils et al.,

2018a; Celik et al., 2022), which have not been studied deeply and can provide a significant order

picking improvement in specific cases. Three main decisions can be identified because of the impact

on the picking travel effort: Storage location of items, grouping customer orders to be performed

in a single route, and the sequence of picking routes. In most of the literature, these decisions

are studied separately or only two of them are combined. This work addresses the simultaneous

integration of these three activities.

This section is divided into two parts. First, we briefly describe some aspects for each studied

activity. Then, we provide a literature review related to the integration of two or more activities

carried out in a warehouse in order the minimize picking costs.

2.1 The Storage location assignment, order batching, and order picking prob-

lems

Storage location assignment problem (SLAP): The Storage Location Assignment Problem

(Hausman et al., 1976) is a tactical problem that decides where to place items into storage locations

inside a warehouse, in order to make better use of the

physical space. A general review about the SLAP can be found in Rojas Reyes et al. (2019).

Since the SLAP is considered NP-hard as it generalizes the Quadratic Assignment Problem

(Loiola et al., 2007, QAP), it is common to identify several policies used to solve the problem easily.

Some of the most common policies identified in the literature are the following (Silva et al., 2020;

van Gils et al., 2018a,b):
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• Random: In this policy, items are placed in any available storage location as long as capacities

and dimensions of the locations allow it. It is considered a simple, fast, but inefficient heuristic

for traditional commerce (it is more appropriated for e-commerce companies).

• Dedicated : Each item is assigned to a pre-defined and fixed storage location.

• Rotation level : This policy assigns high-turnover products to the best locations, those with

the shortest distance to the depot (arrival/depart point).

• Class-based : In this policy, items are classified first, then they are assigned to a pre-defined

area or zone, generally on a random basis.

• By affinity : Items that are often ordered together or have a certain level of affinity, are

considered to be placed on the same storage location .

• Closest space: Items are located at locations closer to the depot.

Order batching problem (OBP): The Order Batching Problem is the problem of grouping

customers orders into batches that will be collected later by pickers, in order to minimize routing

costs. Order batching has a significant effect on picking costs as it reduces efforts by grouping

several orders into one route, such that the better order assignment the better the picking solutions.

This can be achieved by considering several orders with similar products or by applying a priority

criterion. A survey of applications of the OBP can be found in Henn et al. (2012).

Since the OBP is also an NP-hard problem (Gademann and Velde, 2005), solving to optimality

real-world instances is not a simple task. Because of this, several simple rules or policies have been

implemented. A common classification found in the literature is the one proposed by de Koster

et al. (2007), which is as follows.

• Basic methods: Composed of constructive heuristics. One the most common example of this

classification is the rule First-Come-First-Serve (FCFS), which is an strategy that groups

orders into batches according to their arrival.

• Seed methods: A seed order is selected as a reference for other orders to be added in a specific

batch. When a new order is added, it must not exceed the batch capacity, and the order to

be selected from all the feasible ones, is the order that minimizes a measure of closeness to

the seed. This process is repeated until there are no orders to add.

• Savings methods: These methods start by locating one order in one batch, then the number

of batches is reduced by merging them as long as savings are found. This idea is similar to

the one proposed by Clarke and Wright (1964), which correspond to one of the best-known

heuristics used for vehicle routing problems.
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Order picking problem (OPP): The third and the main activity of this study is the Order

Picking Problem, which involves several tasks. The most important and time consuming of all of

these tasks is to find the best design of routes, through a sequence of visited racks to retrieve the

items, that minimizes the total traveling cost. This special task can be interpreted as a Vehicle

Routing Problem (Braekers et al., 2016) or a Traveling Salesman Problem (Laporte, 1992) and, in

both cases, it is an NP-hard problem. The reader is referred to the following OPP survey for more

details (van Gils et al., 2018b).

There are several ways to tackle the sequence of the order picking activity considering different

policies proposed for the OPP. As it is done for the SLAP and the OBP, some of the most common

policies used to obtain a sequence of the picking routes are (Petersen and Aase, 2004; van Gils

et al., 2018a,b):

• Return: This policy establishes that pickers arrive and depart through the same point of a

warehouse aisle (only if there are items to pick).

• S-Shape: Pickers enter in an aisle, traverse it until the end, and departs from that opposite

point (in a S shape).

• Mid-point : Pickers enter and leave from the same point of the aisle, and only arrive as far as

the middle point of it.

• Largest gap: Pickers enter and return to the same point of an aisle, but travel only as far as

the larger gap between two adjacent items to be collected.

• Optimal : In this policy, pickers perform the optimal sequence (the one that provide the best

solution cost), regardless the layout design and the location of items to collect.

• Metaheuristic: These routing policies use optimization heuristic procedures to compute the

sequence of picking routes.

Current research works have studied and determined that integrating two or more of these

decisions can result in better order picking solutions, although the complexity of the problem

to be solved increases. Below, we provided a brief description of some relevant works found in

the literature, which have shown that integrating some of these activities can provide significant

improvements to the OPP.

2.2 Integrating tactical and operational activities for the OPP

The works presented in this section are an example of the effort and interest in improving the pick-

ing activity through the integration with other highly related decisions. These are briefly described

below.
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Hsieh and Huang (2011) develop a simulation to asses the integration of the storage location

assignment (SLA) of products, order batching (OB), and picking routing (PR). Authors implement

two known SLA and three PR policies from the literature, and proposed two new OB heuristics

based on k-means and self-organization map algorithms (both correspond to clustering methods,

where similar customer orders are grouped into one batch). Computational experiments were

carried out on generated instances of an illustrative example with up to 300 orders and 20 SKUs

(using a warehouse of 400 storage locations) to asses the effect of each applied strategy. Other works

that consider simulation to evaluate the integration of SLA, OB, and PR policies on multi-block

warehouses are proposed by Chen et al. (2010) and Chackelson et al. (2013). The first one carries

out a Monte Carlo simulation to analyze the integration of five variants of the class-based SLA

policy, two OB policies, and four well-known PR policies. The second one, applies simulation to

analyze the effect of the integration of the SLA, OB, and PR (two policies per each activity) on a

real-world application of a Spanish retail distributor. In all the works mentioned above, an ANOVA

was performed considering the total distance traveled as one of the main objectives to evaluate, all

of them concluding on the importance of integrating these three activities simultaneously.

Öncan (2015) studies the OBP combined with several routing policies for a rectangular layout.

Since there are few studies on exact methods for the OBP, the author proposed several MILP

formulations, one per each routing policy, and an Iterated Local Search Algorithm (ILS) with

Tabu Thresholding to solve instances of larger size. The results indicate that their proposed ILS

outperforms a general-purpose MILP solver and some other adaptations of savings heuristics im-

plemented for the OBP. A previous work that also studies the optimization of the OBP in order to

improve the OPP, is the proposed by Henn and Wäscher (2012), which provide a Tabu Search and

an Attribute-based hill climber algorithm to evaluate the improvement in the total traveling time.

Some well-known SLA and PR policies are used to obtain the storage location of products and the

final picking routes.

A statistical analysis to evaluate the significance among several activities inside of a warehouse,

which affects the order picking, was provided by van Gils et al. (2018a). They applied a full-

factorial ANOVA considering several policies for the order batching, storage location, zone picking,

and picking routing. They found that all the hypothesis they provided were accepted, which means

that combinations of these activities provide a significant effect in order picking costs. Later,

van Gils et al. (2019b) extend this analysis by taking into account real-life features, e.g., picker

blocking, safety constraints, and high level storage locations to analyze the effect of including these

features on the traveling and waiting picking times. The authors conclude that it is necessary to

include these characteristics during picking optimization to correctly evaluate the performance of

the proposed methods and solutions.

A mathematical model and an Iterated Local Search to formulate and solve the integration of

OB, RP, and picker scheduling (sequence of the batches assigned to available pickers) considering
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order due times to increase the order picking efficiency were proposed by van Gils et al. (2019a). In

this case, SLA decisions are not optimized, instead three SLA policies are used to obtain a variety

of initial assignments. Computational experience and a full factorial design were carried out on

synthetic and real-world instances of an automotive firm to compare exact and heuristic solutions as

well as the ILS performance. Results show significant improvements when the integrated problem

is considered.

Wang et al. (2020) study the optimization of the SLAP in order to improve the OP distance

(considering an S-shape routing policy to compute it). Authors propose a data-based approach

that first assigns items to aisles and then items to racks. Subsequently, the initial assignment is

improved by swapping pairs of items. They assume that only one type of products must be assigned

to each location (do not mix or partition product types in racks), therefore, the number of items

must be less or equal than the number of storage locations. Also, only one order can be fulfilled

per route (no order batching is considered), and the picking cart capacity is unlimited. Extensive

computational experience was provided on real-world data, solving instances with at most 4,000

products. Results show that the proposed solution algorithm outperforms other methods proposed

in the literature.

Silva et al. (2020) show that the integration of the SLAP and OP activities may incur in

significant improvements. They propose several non-linear programming models for four cases of

integration, which were linearized. The aim is to minimize the total routing costs considering

each product is assigned to exactly one location and each location can have no more than one

product. Computational results showed that it is not practical to solve even the small instances

to optimality in less than 7200 seconds (3-5 picks, 10-60 slots). Thus, they developed a General

Variable Neighborhood Search metaheuristic to obtain good quality solutions in better computing

times. Authors do not assume any specific warehouse system and apply four routing policies in

their solution method.

Kübler et al. (2020) propose an iterative solution method that solves the integration of a dynamic

SLA, the OB, and the PR for the OPP. The dynamic SLA is obtained by solving a MILP, which takes

into account multiple periods and forecasting techniques to evaluate the location of products in the

current and future time periods. The OB and the PR are solved jointly through a proposed heuristic

based on Particle Swarm Optimization (PSO) with evolutionary computation. Both approaches,

the dynamic SLA and the PSO, are combined to solve the integrated problem. The relocation of

products to storage locations for future time periods is carried out considering forecasted demands.

Authors performed computational experiments on generated instances with a number of orders

from 50 to 200 (2-10 items/order lines per each customer order) and 6000 products to be initially

located (1 product per each storage location) in a multi-block warehouse of 7200 storage spots,

showing a good performance on those cases. Another work that proposed an approach to optimize

the integration of the SLA, OB, and PR was proposed in Scholz and Wäscher (2017), where
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a mathematical model and an ILS to solve the OBP and the OPP simultaneously, is provided.

Several well-known exact/heuristic PR policies were compared to evaluate the performance of the

ILS on a two-block warehouse. The SLA is initially determined by using the random and class-based

policies. Assumptions such as not partitioning batches and only one product can be assigned to

each storage location are considered. Results show that the ILS combined with an exact method for

PR outperforms the ILS with known (heuristic) routing policies; however, for very large instances

the latter are recommended given the limitations on resources and large sizes of real-world cases.

Chen et al. (2022) propose a mathematical model and a two-phase algorithm that integrates

order batching, picking sequence, and last-mile vehicle routing in order to minimize operations

and penalty costs. For the first two decisions, they use an aisle similarity clustering method

and the S-shape policy, respectively. For the last-mile delivery, authors solve a TSP with Time

Windows. The results show that the integration achieves a positive impact in costs savings and

good-quality indicators. It reinforces the benefit of solving integrated problems simultaneously

during the optimization.

Celik et al. (2022) study the OPP considering storage replenishment operations to ensure avail-

able stock of products that will be retrieved during the order picking activity. Authors adapt

mathematical models and solution methods of the Inventory Routing Problem to solve the newly

defined problem. The aim is to determine the best replenishment plan that minimizes the total pick-

ing travel time and ensure the availability of items. They carried out extensive computational tests

and provided several comparison with respect to other routing policies showing the effectiveness of

their proposed methods.

Wagner and Mönch (2023) study the improvement of the picking activity when order batching

decisions, considering an heterogeneous fleet of vehicles, are integrated. They proposed an MILP

formulation and a Variable Neighborhood Search (VNS) metaheuristic to solve a case study for a

company. Authors carry out extensive computational tests on large pseudo and real-world instances

and compare their results with a current heuristic method that the company uses. They confirm

that their proposed solution methods are efficient and, by integrating order batching decisions,

companies can obtain better improvements in their warehouse operations. Another VNS provided

in the literature that studies the integration of order batching decisions to improve the order picking

costs is the one proposed by Albareda-Sambola et al. (2009), who made a comparison between their

proposed VNS and several routing, storage location, and batching policies, providing an ANOVA

statistic analysis considering these factors and four different warehouse designs.

In this work, we study an OPP that integrates, not only the storage location of products and

the sequence of picker routes but also order batching decisions, simultaneously. We proposed a

mathematical model and an IGLS metaheuristic to obtain good quality solutions of a real-world

case study of a Mexican retail firm. The mathematical model is formulated as a mixed-integer linear

program that can be used to obtain feasible solutions for small (but still real-world size) instances
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using a general-purpose solver and, to the best of our knowledge, it can be considered the first

mathematical formulation that integrates and optimize these three main decisions. On the other

hand, the proposed IGLS provides a good alternative to solve the problem, without considerably

reducing the quality of solutions, in reasonable computing times for large-scale instances. Moreover,

most of the previous works mentioned above, specifically those that study the integration of these

three decisions, consider several assumptions that are tackled in this work, e.g., that only one

product type can be assigned to each storage location (we consider a maximum affinity value to

determine what product types can be assigned together), the absence of due times for customer

orders (our problem considers a maximum processing time for each one), and the use of an exact

method to obtain each final picker route embedded in the proposed heuristic approach, which

allows not to depend completely on the type of layout to be used to obtain good routes, giving the

opportunity to use the same approach regardless the design of the warehouse.

3 Problem definition and mathematical model

3.1 Problem definition

Let L be the set of storage locations or racks. The problem can be represented by a directed

graph G = (N,A), where N = L ∪ {0} is the set of nodes including the depot (represented by

the 0 node) from which pickers depart and return after collecting the customer orders; A is the

set of available arcs between each pair of storage locations, where “arc” means any direct path,

which exists between two adjacent or nearby racks, that does not involve passing through another

intermediate rack. Let P , O, W , and B the set of products, customer orders, pickers, and batches,

respectively. Each unit of product p ∈ P has a volume Vp and a deterministic demand Dpo ≥ 0

required for a given order o ∈ O. Let QL and QW be the corresponding homogeneous capacity of

racks and picker carts, respectively. All pairs of products (p, q) ∈ P , assigned to the same rack,

must not exceed a value of γ ∈ [0, 1], defined as the maximum affinity dissimilarity level between

two selected products to be located in a rack. Furthermore, each order o ∈ O must be collected

before a maximum processing time Tmax
o . Finally, a cost ce and a traveling time te, per each arc

e ∈ A, are defined.

Then, the aim of the order picking problem, which considers storage location, order batching,

and routing decisions, called from now on the PSB, is to determine where to locate products into

racks, what orders to locate in a given batch, and in what sequence to perform the picking routes

in such a way as to minimize the total picking cost.

Some other assumptions must be considered:

• Layout aisles are wide enough, so pickers carts can go back and forth through the aisles.
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• No splitting of customer orders is allowed.

• The current warehouse layout used by the firm is a multi-block layout; however, the company

is interested in analyzing the performance of the proposed algorithm considering a Fishbone

layout (Dukic and Opetuk, 2012) as the firm seeks to migrate to this design in the future.

Therefore, we decide to use an optimal policy to perform the picking routes independently of

the layout design.

3.1.1 Product affinity

One important criterion for the company is the affinity of products to be located in the racks. This

affinity can be measured in several manners (Kofler et al., 2014). However, the company has its

own procedure to compute the affinity between two products p and q, which is composed of three

main steps.

• Step 1. Each available product p has an affinity code assigned to it, which corresponds

to an alphanumeric value for each product category defined by the company (see Table 1).

Products (Stock Keeping Units, SKUs) from the same category have the same affinity code

(column 2). These codes are sorted alphabetically assigning an ordinal value for each unique

category in such a way that products with the same affinity code have the same ordinal value

(column 3).

Table 1: Affinity values

Product Affinity code Value

P2 0A10800 1

P1 0A13400 2

P6 0A13401 3

P4 0A13401 3

P3 0F13300 4

P5 0G11200 5

• Step 2. Given the data provided above, the affinity value for any pair of products p and q,

is computed as follows.

Aff(p, q) =
|Valp − Valq|

ncat
,

where Valp and Valq are the corresponding individual affinity values provided in the third

column of Table 1, and ncat is the number of product categories. Therefore, Aff(p, q) resulted

in a value [0,1], where 0 represents a pair of products of identical category and 1 represents
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two completely unrelated product categories. This affinity value is computed for each pairwise

(p, q) of products, and an affinity matrix is generated (Table 2).

Table 2: Affinity matrix

P1 P2 P3 P4 P5 P6

P1 0 0.17 0.33 0.17 0.50 0.17

P2 - 0 0.50 0.33 0.67 0.33

P3 - - 0 0.17 0.17 0.17

P4 - - - 0 0.33 0.00

P5 - - - - 0 0.33

P6 - - - - - 0

Considering this matrix it is possible to determine which products can be located in a given

rack taken into account a maximum value of affinity (dissimilarity) allowed, γ.

3.2 Mathematical model

In this section, we introduce a mixed-integer linear programming model for the PSB problem. This

model considers decision variables related to the main three activities, namely, product storage

location (including location and quantity), order batching, and picker routing. The main data,

sets, and variables of this model are the following.

Sets and parameters

• L,A, P,O,W,B: Set of storage locations (racks), available arcs (connections between racks),

products, orders, pickers, and batches, respectively.

• G = (N,A): Directed graph composed of the set of racks plus the depot, N = L ∪ {0} and

the set of available arcs A.

• A+
l /A

−
l : Set of arcs that enter/exit to/from a given rack l ∈ L ∪ {0}, where A+

l , A
−
l ⊆ A.

• Vp: Volume of product p ∈ P

• γ: Maximum value [0,1] of dissimilarity (affinity) between products that can be located in

the same rack.

• QL, QW : Capacity (volume) of racks and carts, respectively.

• Dpo: Demand of product p ∈ P for customer order o ∈ O.

• Tmax
o : Maximum processing time of an order o ∈ O.

• ce, te: Picking cost and traveling time for each arc e ∈ A.
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Decision variables for the storage location of products

• ylp, binary variable equal to 1 if product p ∈ P is assigned to location l ∈ L; and equal to 0

otherwise.

• alp, nonnegative integer variable representing the number of units of product p ∈ P assigned

to location l ∈ L.

Decision variables for the order batching

• bwoi, binary variable equal to 1 if order o ∈ O is assigned to batch i ∈ B and collected by picker

w ∈W ; and equal to 0 otherwise.

• τ ewoi , binary variable equal to 1 if arc e ∈ A is traversed by picker w ∈ W servicing order

o ∈ O assigned to batch i ∈ B; and equal to 0 otherwise.

Decision variables for the order picking

• zlwpoi, binary variable equal to 1 if product p ∈ P , located at rack l, which comes from order

o ∈ O assigned to batch i ∈ B, is serviced by picker w ∈W ; and equal to 0 otherwise.

• riwe , binary variable equal to 1 if arc e ∈ A is traversed by picker w ∈ W to collect orders of

batch i ∈ B; and equal to 0 otherwise.

• f iwe ≥ 0, non-negative continuous variable representing the cart load used by picker w ∈ W
when traversing arc e ∈ A.

• qlwpoi, number of units of product p ∈ P collected by picker w ∈W at rack l ∈ L, for any order

o ∈ O that belongs to batch i ∈ B.

Then, the PSB is defined as follows.

min
∑
i∈B

∑
w∈W

∑
e∈A

cer
iw
e (1)

s.t.
∑
l∈L

ylp ≤

∑
o∈O

VpDpo

QL
p ∈ P (2)

∑
l∈L

alp ≥
∑
o∈O

Dpo p ∈ P, (3)

Vpa
l
p ≤ QLylp p ∈ P, l ∈ L (4)∑

p∈P

Vpa
l
p ≤ QL l ∈ L (5)

ylp + ylq ≤ 1 p, q ∈ P |Aff(p, q) > γ, l ∈ L (6)

zlwpoi ≤ ylp w ∈W,p ∈ P, o ∈ O, i ∈ B, l ∈ L (7)
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Vpq
lw
poi ≤ QW zlwpoi p ∈ P, o ∈ O, i ∈ B,w ∈W, l ∈ L (8)∑

l∈L

∑
o∈O

∑
p∈P

Vpq
lw
poi ≤ QW i ∈ B,w ∈W (9)

∑
i∈B

∑
w∈W

∑
o∈O

qlwpoi ≤ alp p ∈ P,∈ L (10)

∑
l∈L

∑
w∈W

∑
i∈B

qlwpoi = Dpo p ∈ P, o ∈ O (11)

∑
e∈A+

l

riwe ≤ 1 l ∈ L, i ∈ B,w ∈W (12)

∑
w∈W

∑
e∈A+

0

riwe ≤ |W | i ∈ B (13)

∑
e∈A+

l

∑
i∈B

∑
w∈W

riwe =
∑
e∈A−

l

∑
i∈B

∑
w∈W

riwe l ∈ L (14)

∑
e∈A+

l

f iwe =
∑
e∈A−

l

f iwe −
∑
o∈O

∑
p∈P

Vpq
lw
poi w ∈W, i ∈ B, l ∈ L (15)

f iwe ≤ QW riwe e ∈ A, i ∈ B,w ∈W (16)∑
i∈B

∑
w∈W

∑
e∈A+

0

f iwe = 0 (17)

bwoi ≤
∑
l∈L

∑
p∈P

zlwpoi ≤Mbwoi o ∈ O, i ∈ B,w ∈W (18)

∑
w∈W

∑
i∈B

bwoi = 1 o ∈ O (19)

riwe + bwoi − 1 ≤Mτewoi o ∈ O,w ∈W, i ∈ B, e ∈ A (20)

τewoi ≤ riwe o ∈ O,w ∈W, i ∈ B, e ∈ A (21)

τewoi ≤ bwoi o ∈ O,w ∈W, i ∈ B, e ∈ A (22)∑
i∈B

∑
e∈A

teτ
ew
oi ≤ Tmax

o o ∈ O,w ∈W (23)

ylp ∈ {0, 1}, alp ∈ Z+ p ∈ P, l ∈ L (24)

zlwpoi ∈ {0, 1}, qlwpoi ∈ Z+ p ∈ P, o ∈ O,w ∈W, i ∈ B, l ∈ L (25)

rwie ∈ {0, 1}, fwie ≥ 0 e ∈ A, i ∈ B,w ∈W (26)

bwoi ∈ {0, 1} o ∈ O, i ∈ B,w ∈W (27)

τewoi ∈ {0, 1} o ∈ O, i ∈ B,w ∈W, e ∈ A (28)

ho ∈ {0, 1} o ∈ O (29)

The objective function (1) minimizes the picking routing cost. Constraints (2) specify the

maximum number of locations where a product type can be assigned. Constraints (3) determine

that the quantity of product p assigned to locations must satisfy at least the demand of that product.

Constraints (4)-(5) guarantee that the volume of the quantity of product delivered at each location

must not exceed its capacity. Constraints (6) limit an affinity level between two product types
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assigned to locations, that is, two products that are not affine enough cannot be placed in the same

rack. Constraints (7) establish that if product p is not assigned to rack l there can not be any

picker visit for any batch and any order Constraints (8)-(9) determine that the product volume

assigned to a picker must not exceed the cart capacity volume. Constraints (10) limit the amount

of product to pick up to at most the quantity available at location l. Constraints (11) establish that

the total quantity of product p, for a given order, must be equal to the quantity required for that

customer order. Constraints (12)-(14) are the node degree and the flow conservation constraints.

Constraints (15)-(17) represent the load of vehicles at a given traversed arc e, this load must not

exceed the cart capacity, and must be 0 when the picker return to the depot. Also, these constraints

avoid subtours. Constraints (18)-(23) establish that the time required to collect an order must be

less than a maximum processing time for that given order. Constraints (24) - (29) represent the

domain of variables.

Computational complexity : The PSB is an order picking problem that considers assignment,

batching, and routing decisions. We can demonstrate that the PSB is NP-hard as follows. First,

PSB is clearely in NP since feasibility can be verified in polynomial time. Now, we will show that

the Traveling Salesman Problem (TSP), a well-known NP-hard problem, is polynomially reducible

to the PSB. For this, we consider the particular case of PSB when the number of available racks

is equal to the number of products |L| = |P | (all products have the same volume Vp = 1), there is

only one customer order |O| = 1 that requires only 1 unit per product of the list Dpo = 1, p ∈ P ;

one picker is available to perform the route and, since there is only one customer order and it is not

possible to partition it, only one batch must be performed during the day, so |W | = |B| = 1; racks

and carts capacities are QL = 1 and QW =∞, respectively. There is no possibility to assign more

than one product at each rack since γ = 0.0 and racks capacity does not allow it; also, Tmax
o =∞

(there is enough time to process the order). For this special case, the PSB is reduced to find the

minimum tour that visits all racks in L∪{0} (departing from the depot) resulting in a TSP, which

in turn is NP-hard (Gutin and Punnen, 2007). Therefore, the PSB is at least as hard as the TSP

and, given the size of the real-world instances, we propose a metaheuristic to obtain good quality

solutions in reasonable time.

4 The Iterated Greedy Local Search for the PSB

Since obtaining the optimal solution for real-world problems in this context can be a hard task for

exact methods, we propose an Iterated Greedy Local Search (Lourenço et al., 2003) metaheuristic

for the PSB (IGPSB). The proposed IGPSB (see Algorithm 1) starts with an initial feasible solution

generated by solving an MILP subproblem for the storage location decisions, and applying a first-fit

heuristic to obtain the batch of orders to be served by pickers. Finally, a TSP for each picker route

(one batch per route) is solved. Subsequently, this initial solution is improved by two local search
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(LS) procedures. Afterwards, a second phase is performed, where the initial solution is partially

destroyed and greedily reconstructed to be, then, improved by the corresponding LS. Therefore,

if the solution value f(s), obtained after reconstructing solution s, is better than the one of the

current solution s′, then s replaces s′. Furthermore, if f(s) is better than the incumbent value

f(s∗), then, the new incumbent is updated. Otherwise, if f(s) is worse than f(s′), a procedure

to evaluate if s should replace s′, is performed. The IGPSB stops when a maximum number of

iterations or a maximum computing time is met.

Algorithm 1 IGPBS

Input: : L (racks), P (products), W (pickers), O (orders), γ (max.

affinity value), %Dest (% solution destruction), β (factor for worse

solution acceptance).

Output: s∗: Best solution found.

. Initial solution

1: s← getInitialSolution(L,P,W,O, γ) ;

2: s← LocalSearch(s)

. Iterative phase

3: s′ ← s, s∗ ← s

4: while stopping criteria not met do

5: s′′ ← Destruction(s, %Dest)

6: s← reConstruction(s′′, %Dest)

7: s← LocalSearch(s)

8: if f(s) < f(s′) then

9: s′ ← s

10: if f(s′) < f(s∗) then

11: s∗ ← s′

12: end if

13: else

14: {s, s′} ← evaluateWorseSolution(s, s′, s∗, β)

15: end if

16: end while

17: return s∗

We provide more details for the main IGPSB components below.

Phase 1: Generation of an initial solution

The first phase of the IGPSB requires to start with an initial feasible solution, and to obtain it,

we propose a simple constructive heuristic composed of three steps. This initial solution is then
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improved by applying two local searches we have developed for this problem.

Constructive heuristic

The constructive heuristic proposed for the IGPSB is composed of three main steps. In the first

step, the storage location of products to racks is determined, while in the second step, the order

batching is obtained. Once these two decisions are performed, the third step consist of solving a

TSP for each picker route.

• Step 1: To obtain the storage location decisions, the following subproblem, which considers

constraints (2)-(6) related to this activity in the original formulation, is solved.

Let ȳl ∈ {0, 1} = 1 if rack l contains any product p; otherwise, 0. Then, the subproblem that

obtains a distribution plan to locate products into racks is as follows.

min
∑
l∈L

c0lȳl (30)

s.t. ȳl ≤
∑
p∈P

ylp ≤Mȳl l ∈ L (31)

(2)− (6)

(24)

ȳl ∈ {0, 1} l ∈ L (32)

The objective function (30) aims to minimize the distance between any used rack and the

depot (a closest space policy). The new set of constraints (31) enables or disables the vari-

ables ȳl depending on whether or not a product unit is assigned to each storage location l.

Constraints (32) delimit the domain of the new decision variables.

• Step 2: We adapt a first-fit algorithm (Lodi et al., 2002) to obtain the order batching plan.

The main steps are the following (see Figure 1):

– Sort customer orders in a non-decreasing order according to their maximum processing

time Tmax
o . The reasoning behind this is to locate in the first batches the orders that

have less Tmax
o available to be served as soon as possible by pickers (priority policy).

– Select the first order of the list and assign it to the first batch. Then, select the second

one and assign it to the first available batch where it can fit without exceeding the

cart capacity or the processing time Tmax
o for any order of the corresponding batch.

Otherwise, open a new batch and assign the current order. Since each picker can only

perform one batch per route; then, |B| = |W |.
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Figure 1: Offline First-Fit algorithm for the PSB

• Step 3: Solve a TSP for each picker route (batch) taken into account the current storage

locations assignment. As we are working on an incomplete graph, i.e., there is no exists a

direct path to connect several pair of locations (l1, l2), we simplify this by transforming this

graph into a complete one using the the Floyd-Warshall algorithm (Floyd, 1962). Using this

transformed graph, the final batching, and the storage location assignment found in previous

steps, we apply the Concorde TSP solver to obtain the sequence of routes, which performs

relatively fast per each batch.

Local search procedures

In order to improve a given solution s, we proposed two LS procedures. The first one improves the

selection of storage locations and the second one attempt to improve the order assignment from

the current batches. The LS procedures are explained below.

Storage location LS. The LS proposed for the storage location decisions, improves a solution

s by applying a sequential neighborhood search scheme, which performs a 1-1 move that consist in

selecting a rack l1 from s and a rack l2, which does not belong to s, and swap them (if feasible and

if solution is improved), moving all product assigned from one rack to another (Figure 2).

Figure 2: LS for storage location decision
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Order batching LS. The second LS (Figure 3) improves the order batching by exploring a

neighborhood where 1-1 moves are applied. In this LS, one order o1 from batch b1 is moved to

another batch b2 (not necessarily of a different picker). If solution remains feasible (cart capacity

and processing times are not exceeded) and if its cost improves, the move is accepted.

Figure 3: LS for order batching decision

Phase 2: Iterative phase

Once the initial solution is obtained, the second phase of the IGPSB starts by partially destroying

the solution s, and then reconstructing it to obtain a new one, which will be improved by applying

the LS procedures explained previously. If the reconstructed solution is better than the current

one, this is accepted and replaces the current solution (and the incumbent one if it is the case). If

the new solution is worse than the current accepted solution, a criterion of acceptance is evaluated

to determine if it will replace the current one in the next iteration. The IGPSB stops when a

stopping criteria is met. Figure 4 shows the main steps of this second phase of the IGPSB, and

each component of this phase is explained with more detail below.

(a) Destruction

X
X

X

(b) Reconstruction (c) Local Search

Figure 4: The main steps of the iterative phase of the IGPSB

Destruction-Reconstruction. During the destruction step, a given solution is perturbed by

removing a proportion of it in order to be reconstructed greedily in the next step. For the studied

problem, we focused the destruction on the selected racks where product is located. This procedure

is as follows.

• Destruction. Select randomly a proportion (measured by parameter %Dest) of the total
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number of racks assigned for s, and remove them resulting in a partial solution s′′.

• Reconstruction. For each rack l ∈ L \ s′′, compute the cost between depot and l. The rack

l with the cheapest cost (shortest distance) is selected to be a new element of the current

s′′. Once the number of elements added corresponds to the proportion %Dest, the solution is

complete.

Improvement. In this step, the solution reconstructed is improved by applying the proposed LS

procedures mentioned above.

Selection. Once the solution s is improved, the algorithm must decide if this new improved

solution will be accepted or not (Algorithm 1, lines 8-15). If the solution value f(s) is better than

the one of the current accepted solution s′, then s replaces s′. Furthermore, if f(s) is better than

the incumbent s∗, then, the updated s′ will replace s∗. On the other hand, if f(s) is worse than

f(s′), s must be evaluated to determine if it will be accepted (see Algorithm 2). For this, a Gap

value is computed and multiplied by a factor β to determine a threshold τ , which will be used

to decide if a worse solution will replace s′ (increasing the margin of acceptance of poorer quality

solutions in subsequent iterations). Also, a counter aw (naw) and a variable faw (fnaw), that

accumulate the number of iterations and the solution value of the accepted (non-accepted) worse

solutions (respectively), are defined to update the threshold τ in later iterations.
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Algorithm 2 evaluateWorseSolution(s, s′, s∗, β)
.

Input: : s, s′, s∗, β . New, current, and best solution, respectively; factor for

poor-quality solution acceptance.

Output: s, s′ . Accepted/updated solutions.

1: Gap← |f(s)−f(s∗)|
f(s∗)

2: if iter = 0 then

3: τ ← β ×Gap
4: end if

5: if Gap ≤ τ and Gap > 0 then

6: s′ ← s . s is accepted, s′ is updated.

7: faw ← faw + f(s)

8: aw ← aw + 1, naw ← 0

9: else

10: s← s′ . s is not accepted.

11: fnaw ← fnaw + f(s)

12: naw ← naw + 1, aw ← 0

13: end if

14: if naw = 0.1× iterIGLSmax then . After naw non-accepted worse solutions

15: Gap← | fnaw
naw

−f(s∗)|
f(s∗)

16: τ ← β ×Gap
17: fnaw ← 0, naw ← 0

18: end if

19: if aw = 0.1× iterIGLSmax then . After aw accepted worse solutions

20: Gap← | faw
aw
−f(s∗)|
f(s∗)

21: τ ← β ×Gap
22: faw ← 0, aw ← 0

23: end if

24: return {s, s′}

In the following section, we perform several computational experiments in order to evaluate the

proposed solution algorithms.

5 Computational experience

Computational experiments were conducted on a Workstation HP Intel(R)-Xeon(R) at 3.5GHz with

64 GB RAM (Win 10 Pro, 64 bits) and a processor with 6 cores. The solution algorithms have
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been implemented in C++ and, in the case of the formulations, we use ILOG Concert Technology

API (CPLEX 20.1), setting to only one thread per optimization.

For all tested instances, we evaluate the quality of the solution produced by a given method

M , i.e. sM , by computing the Relative Percentage Deviation (RPD) of its objective function value,

f(sM ), with respect to the best-known solution, f(s∗). The RPD is defined as

RPD =
f(sM )− f(s∗)

f(s∗)
× 100%. (33)

The layout used for the tests is a fishbone layout with at most 241 storage locations (see

Figure 5), where the black squared is the depot from where pickers depart. This layout is used for

the real-world instances subset explained below. Other two reduced layouts with up to 58 and 121

racks (including depot), extracted from the main one, are used for pseudo-real instances.
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Figure 5: Fishbone layout

All tested instances, as well as any complementary material and obtained results, are publically

available at https://github.com/DianaHuertaM/IGPSB.git.

This section is organized as follows. In Section 5.1, we provide a description of the generated

instances. In Section 5.2, we provide a preliminary analysis of the impact of the maximum level of

affinity γ for the storage location assignment decisions. Section 5.3 summarizes the results of the

calibration tests for the IGPSB parameters. Finally, Section 5.4 describes the final performance.

5.1 Instances

We have created two sets of instances to asses the proposed solution method and determine its

performance. The description is provided below.
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• Calibration set: This set is composed of 40 pseudo-real instances with size r = 30, 60,

100, and 500 order lines (where an order line represents the information of a specific item

required by a given customer); the number of orders, pickers, and products corresponds to

|O| = |W | = 5 and |P | = 30 (for r = 30/60 instances), and |O| = |W | = 10, 20 and

|P | = 50 (for sizes r = 100/500, respectively). Products and their volume (measured in cm3)

were selected randomly from a general list provided by the company; the number of units

ordered for a specific product p in a given order o is set to Dpo = 1 units. Vehicle and rack

capacities are set to QW = 126000 cm3 and QL = 216000 cm3, respectively. The maximum

processing time required for a given customer order Xo is computed as Tmax
o = ρ|Xo|, where

|Xo| corresponds to the number of products that belong to that order and ρ determines an

approximate number of seconds needed to handling each product during the picking activity;

for the tests, we use a value ρ = 100 seconds.

• Performance set: This set is composed of 60 pseudo-real instances (subset A) and 14 real-

world instances (subset B). We explain both sets in more detail. Vehicle and rack capacities

are set to QW = 1680000 cm3 and QL = 3192000 cm3, respectively.

– Subset A: This subset corresponds to 30 small instances (10 per size) with r = 30, 60,

and 100 order lines; number of orders, pickers, and products of |O| = |W | = 3, 5 and

|P | = 20; and 30 large instances (10 per size) with r = 1000, 3000, and 5000 order lines;

number of orders, pickers, and products of |O| = |W | = 150, 250 and |P | = 100. The

number of units ordered for a specific product was generated using a uniform distribution

on the interval ∼ U [1, 3], and the products for each order were selected randomly for a

given list of products.

– Subset B: This set is composed of 13 instances obtained from the data provided by

the company. The size of them varies from 362 to 8197 order lines, number of pickers

|W | = 1−44, number of orders |O| = 1−654, and number of products of |P | = 106−4252.

The Tmax
o value for a given order o ∈ O was obtained by computing the following formula:

Tmax
o = ttot + trem.

where ttot = tfin − tini (difference between the initial and final picking time in the real-

word case), and trem = 1800− (ttot mod 1800), which is the remaining time to complete

the nearest half hour.

To easily identify the main characteristics of both sets, we have named each instance as

InstArBoCpD, where A is the distribution center ID from which the information was extracted, B
is the number of order lines (instance size), C represents the number of orders, and D the number
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of products.

In the next section, we analyze the impact of the parameter γ in the efficiency of the proposed

IGPSB.

5.2 The impact of the affinity value γ

The γ value, which represents the maximum affinity (or dissimilarity) allowed among product

categories assigned to a given rack, is a grouping criterion that may reduce significantly the number

of required racks resulting in a potential improvement in picking costs since it decreases the number

of places to be visited by the pickers.

As a preliminary analysis to determine its impact in the solution, we evaluate several values

of γ. We set these values to γ = 0.0, 0.10, 0.20, 0.30, where a value of 0.0 corresponds to allow

only identical item categories in each rack; a value near 1.0, indicates that items assigned to racks

may differ as much as categories exist. For these tests, we use the calibration set and solve only

the initial phase of Algorithm 1 (lines 1–2) as this parameter is only used in the MILP for the

storage location assignment (SLA) subproblem of the getInitialSolution procedure. This MILP

(30)-(32) is solved using the CPLEX solver considering a maximum optimization time of 600 s.

The final results are presented in Figures 6-8.
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Figure 6: Picking cost per affinity level

Figure 6 shows the picking cost per each instance and each affinity value. We can observe that,

when only identical product categories can be assigned in a same rack (γ = 0.0), the picking cost

increases, and it is more notorious for larger instances. The reason of this is because instances

consider a list of 30 different products for small sizes and 50 products for large instances, and most
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of these products belong to a different category (only some of them belong to the same category).

Then, it is required to use more racks in order to locate all the items in a specific storage location

as it is not allowed to place other product categories in a same rack.

In Figure 7, we can observe that the number of racks used to assign items is greater when γ = 0

(only allowed identical product categories are allowed). On the other hand, when γ increases, the

number of required storage locations decreases and the picking costs decrease significantly as this

activity requires less number of racks to visit during the routing.
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Figure 7: Number of racks required per each affinity level

Finally, in Figure 8, the proportion of computational time required for the constructive heuristic

to find the best feasible solution is reported. It can be observed that the most time consuming

option (in all the cases) is presented when γ = 0.10. Comparing the results shown in Figures 6-8,

γ = 0.20 outperforms the remaining options as it obtained a better trade-off between picking costs

and computing times. Furthermore, the similarity between products located at the the same rack

is not affected more than the necessary.
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Figure 8: Proportion of computing times required using different affinity levels

We can briefly conclude that by allowing flexibility when placing products on the racks, order

picking costs can be reduced considerably and a better use of racks space is obtained without

modifying significantly the affinity between products assigned to them. Therefore, we propose to

use a value of γ = 0.2 for the remaining experiments of the next sections.

5.3 Calibration tests

In order to better exploit the efficiency of the algorithm, we have performed two required parameter

calibrations for the IGPSB: the percentage of elements to be destroyed (%Dest) from the solution

and the value of the parameter β, which is used to compute the threshold of acceptance of poorer

quality solutions. For these experiments, we use the corresponding set of calibration instances and

fix the affinity value to γ = 0.20 (as it obtained better results in the preliminary tests), the time

limit to solve the MILP used to construct an initial feasible SLA is set to 600 s, and the stopping

criteria for the IGPSB are fix to iterIGmax = 100 iterations and MaxOptTime = 3600 s.

5.3.1 Calibration of percentage of solution destruction parameter

The first parameter to calibrate is %Dest, the number of elements to remove from a solution during

the Destruction step (line 5, Algorithm 1). We consider three factor levels, %Dest = 30, 50, and
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70, which mean that, for a given solution s, it is required to remove (randomly) 30/50/70% of the

total number of selected racks, which later will be reassigned (greedily) in the same proportion

during the reConstruction procedure. For these specific experiments, we also fix the parameter

β = 0, which corresponds to the option of not accepting poor-quality solutions during the IGPSB.

Since the Destruction procedure applies a random selection of solution elements to remove, we

consider 4 repetitions of the IGPSB for each tested instance.

Table 3: Average RPD and computing times by removing a % of the solution in the IGPSB

Instance %Dest
RPD Time(s)

Min Avg Max Min Avg Max

r30

30

0.00% 0.00% 0.00% 200.5 272.1 363.6
r60 0.00% 0.00% 0.00% 205.0 276.9 369.9
r100 0.00% 0.02% 0.08% 339.7 441.0 533.4
r500 0.00% 5.18% 16.60% 1855.4 2384.6 2940.7

Avg 0.00% 1.30% 4.17% 650.1 843.7 1051.9

r30

50

0.00% 0.00% 0.00% 323.9 444.5 646.1
r60 0.00% 0.00% 0.00% 341.0 428.3 554.2
r100 0.00% 1.11% 4.35% 419.5 551.4 676.5
r500 4.65% 16.42% 35.24% 2364.5 2977.8 3399.2

Avg 1.16% 4.38% 9.90% 862.2 1100.5 1319.0

r30

70

0.00% 0.00% 0.00% 363.6 646.1 511.9
r60 0.00% 0.00% 0.00% 369.9 554.2 610.7
r100 0.08% 4.35% 0.08% 533.4 676.5 533.4
r500 16.6% 35.24% 23.63% 2940.7 3399.2 3432.7

Avg 4.17% 9.90% 5.93% 1051.9 1319.0 1272.2

Table 3 shows the results obtained per each %Dest and instance size. The first column is

assigned to the instance size; in the second one, the %Dest values to be evaluated are shown; and,

in column blocks RPD and Time(s), we provide the minimum (Min), the average (Avg), and the

maximum (Max) ARP/Time obtained per each group size of the calibration set. It is observed

for small instances (r = 30, 60) that a local optimum was found and the perturbations applied

to the solutions were enough to find a good result in few seconds providing no difference among

the %Dest options in terms of solution quality; however, in terms of computing times, removing

a 30% of the solution requires less time than removing 50 or 70%. On the other hand, for large

instances (r = 100, 500), it is easier to identify the options that obtain the best results providing

more information about the algorithm performance when the value of %Dest varies. We can observe

that the best RPD values and computing times are obtained when the percentage of the elements

to remove is 30%, obtaining 1.30% of ARPD in 843.7s on average (the maximum RPD is also small

for this case). Therefore, the value of %Dest = 30 is definitely the percentage to be destroyed of a

given solution s in the IGPSB as it outperforms the other options.
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5.3.2 Calibration of β

The second parameter to calibrate corresponds to β, which is a value in the [0,1] range used to

calculate the threshold of acceptance of poor-quality solutions during the IGPSB (see Algorithm

2). The smaller the β value, the tighter the acceptance threshold and fewer solutions with worse

objective value will be accepted. A value near 1 allows to accept any solution that falls within

the current gap computed between the best solution found so far and the last (average) solution

obtained in the current iteration. For these tests, we set this parameter to β = 0.0, 0.1, 0.2 and

0.3. Since it is important that the algorithm has a mechanism for escaping from local optima, the

parameter β = 0.0 will be used only for comparative terms on the degradation of the quality of the

solution when considering greater values of this parameter. The aim is to determine the β > 0.0

that obtains the best trade-off between the average RPD and the average computing times. We

consider all the parameters mentioned in the previous tests including %Dest = 30. Four repetitions

of the IGPSB are carried out for each tested instance.

Table 4: RPD and computing times considering different β values in the IGPSB

Instance β #Best
RPD Time(s)

Min Avg Max Min Avg Max

r30

0.0

10/10 0.00% 0.00% 0.00% 200.50 272.09 363.64
r60 10/10 0.00% 0.00% 0.00% 204.96 276.92 369.85
r100 10/10 0.00% 0.00% 0.00% 339.67 440.97 533.36
r500 10/10 0.00% 4.32% 10.49% 1855.42 2384.62 2940.68

Avg 0.0% 1.1% 2.6% 650.14 843.65 1051.88

r30

0.1

10/10 0.00% 0.00% 0.00% 76.80 81.15 85.98
r60 10/10 0.00% 0.00% 0.00% 82.07 87.28 92.72
r100 10/10 0.00% 1.11% 4.35% 271.52 310.00 385.08
r500 8/10 4.35% 11.54% 24.30% 1564.97 1659.98 1764.41

Avg 1.1% 3.2% 7.2% 498.84 534.60 582.05

r30

0.2

10/10 0.00% 0.00% 0.00% 78.92 83.86 88.82
r60 10/10 0.00% 0.00% 0.00% 81.23 88.47 96.56
r100 10/10 0.00% 1.11% 4.35% 265.02 309.73 376.41
r500 8/10 4.35% 12.95% 27.60% 1594.46 1724.32 1910.12

Avg 1.1% 3.5% 8.0% 504.91 551.59 617.98

r30

0.3

10/10 0.00% 0.00% 0.00% 78.72 83.21 88.69
r60 10/10 0.00% 0.00% 0.00% 81.08 88.59 97.04
r100 10/10 0.00% 1.11% 4.35% 269.22 309.13 371.56
r500 9/10 1.20% 9.66% 23.04% 1575.94 1668.64 1761.99

Avg 0.3% 2.7% 6.8% 501.24 537.39 579.82

The description of Table 4 is similar to that of Table 3, but now the comparison is with respect

to β. According to the results shown in Table 4, there is a clear option that provides better results

on average, which corresponds to β = 0.3. We can observe that, although the average RPD has been

slightly better when β = 0.0, this option does not allow to escape from local optimal eliminating

any possibility of improving the solution. Furthermore, the number of best solutions found and

the average computing times are better when β = 0.3, the latter giving the opportunity to further
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explore the solution space (if the stopping criteria allow it) in order to find better solutions at the

end of the optimization. Therefore, β = 0.3 is the value that provides the best trade-off among the

evaluated options.

5.4 IGPSB performance

This section is devoted to assessing the performance of the proposed solution method. First, we

compare the solutions obtained by the IGPSB with respect to those found by solving the MILP

formulation (1)-(29) using a general-purpose solver and with respect to the initial feasible solution

(improved by the LS) constructed as an input for the IGPSB. Second, since it has been observed

that the MILP of the SL assignment subproblem (30)-(32) does not perform efficiently when the

number of products is greater than 300, a simple but fast heuristic method is proposed to replace

the corresponding MILP (especially for instances in which it does not perform well) conducting

several tests to compare both alternatives in the IGPSB.

For all the tests of this section, we consider the parameter setting from the previous section, i.e.,

a maximum affinity value of γ = 0.20; the proportion of elements to be removed from a solution

of %Dest = 30, and a β = 0.3. The stopping criteria for the IGPSB are set to iterIGmax = 100

iterations and MaxOptTime = 3600 s. We use ILOG Concert Technology API (CPLEX 20.1) with

3600 s. as time limit to solve the formulation proposed for the problem; and a time limit of 600

s. to solve the SL assignment subproblem to obtain the initial feasible solution. The experiments

were conducted on the Performance set of instances, considering four repetitions of the IGPSB

for each of them. We report the best results of each solution method and the best solution values

obtained by the IGPSB.

5.5 Comparison among solution methods

We now evaluate the results obtained by solving the proposed formulation (1)-(29) as well as

the initial and the best solutions found after solving the first and second phases of the IGPSB,

respectively. This comparison is shown in Tables 5-6 (for pseudo-real and real-world instances,

respectively), where the first column is assigned for the instance name; the next block of columns

(A - MILP), corresponds to the costs of the best solutions found, the MIP-Gap, and the comput-

ing time (seconds) required by CPLEX to solve the proposed formulation; in block (B - IG-Ph1),

we show the solution costs and computing times required to obtain the (improved) initial fea-

sible solution constructed in the first phase of the IGPSB; on the other hand, column block (C

- IG-Ph2), provides the solution costs, computing times, and the final number of pickers |Wf |
needed to perform the routes at the end of the second phase of the IGPSB. Finally, the last column

block (Improvement) shows the percentage of improvement between each pair of solution meth-

ods (M1-M2), where a negative value corresponds to an improvement obtained by method M1 with
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respect to M2.

Table 5: Performance comparison among solution methods on pseudo-real instances

Instance
A - MILP B - IG-Ph1 C - IG-Ph2 Improvement

Sol MGap Time Sol Time Sol Time |Wf | (B-A) (C-A) (C-B)

Inst1r30o3p20 52.5 0.0 9755.31 52.5 1.0 52.5 33.6 1 0.0% 0.0% 0.0%

Inst2r30o3p20 52.5 0.0 2994.7 52.5 0.8 52.5 39.8 1 0.0% 0.0% 0.0%

Inst3r30o3p20 64.0 29.6 14397.2 68.7 1.1 63.9 41.1 1 7.4% 0.0% -6.9%

Inst4r30o3p20 52.5 0.0 429.328 52.5 0.9 52.5 41.3 1 0.0% 0.0% 0.0%

Inst5r30o3p20 52.5 26.5 14396.6 52.5 1.1 52.5 40.2 1 0.0% 0.0% 0.0%

Inst1r30o5p20 89.6 48.4 14400.3 68.7 1.0 63.9 42.8 1 -23.3% -28.6% -6.9%

Inst2r30o5p20 52.5 0.0 3808.33 52.5 0.8 52.5 41.5 1 0.0% 0.0% 0.0%

Inst3r30o5p20 64.0 0.0 1431.77 68.7 1.1 63.9 43.7 1 7.4% 0.0% -6.9%

Inst4r30o5p20 64.0 17.0 14398.5 68.7 1.2 63.9 42.9 1 7.4% 0.0% -6.9%

Inst5r30o5p20 64.0 0.0 8267.23 68.7 0.9 63.9 46.6 1 7.4% 0.0% -6.9%

Inst1r60o3p30 272.5 84.0 14397.5 137.4 2.8 127.9 201.7 2 -49.6% -53.1% -6.9%

Inst2r60o3p30 127.9 25.0 14400 137.4 4.3 127.9 87.9 2 7.4% 0.0% -6.9%

Inst3r60o3p30 64.0 0.0 3086.08 68.7 3.7 63.9 48.8 1 7.4% 0.0% -6.9%

Inst4r60o3p30 64.0 0.0 1483.55 68.7 2.9 63.9 50.1 1 7.4% 0.0% -6.9%

Inst5r60o3p30 64.0 0.0 843.578 68.7 4.9 63.9 44.5 1 7.4% 0.0% -6.9%

Inst1r60o5p30 137.4 57.4 14400.5 137.4 4.2 113.6 323.0 2 0.0% -17.3% -17.3%

Inst2r60o5p30 109.3 51.2 14402.3 137.4 5.5 102.7 280.1 2 25.7% -6.1% -25.3%

Inst3r60o5p30 64.0 0.0 2241.64 68.7 4.2 63.9 41.7 1 7.4% 0.0% -6.9%

Inst4r60o5p30 137.4 57.0 14402 137.4 2.4 116.5 288.5 2 0.0% -15.2% -15.2%

Inst5r60o5p30 64.0 0.0 1202.8 68.7 2.5 63.9 37.2 1 7.4% 0.0% -6.9%

Inst1r100o3p50 127.93 43.736 14399.2 137.4 22.0 127.9 114.5 2 7.4% 0.0% -6.92%

Inst2r100o3p50 127.93 40.539 14397.9 137.4 21.5 127.9 92.1 2 7.4% 0.0% -6.92%

Inst3r100o3p50 137.39 38.819 14398.2 137.4 18.9 127.9 86.1 2 0.0% -6.9% -6.92%

Inst4r100o3p50 127.93 22.246 14400.4 137.4 8.5 127.9 87.9 2 7.4% 0.0% -6.92%

Inst5r100o3p50 127.93 25.796 14400.4 137.4 9.5 127.9 81.9 2 7.4% 0.0% -6.92%

Inst1r100o5p50 379.49 85.13 14400.5 137.4 21.1 127.9 331.9 2 -63.8% -66.3% -6.92%

Inst2r100o5p50 127.93 49.014 14402 137.4 28.3 127.9 277.7 2 7.4% 0.0% -6.92%

Inst3r100o5p50 888.64 92.778 14403.7 137.4 8.8 127.9 80.9 2 -84.5% -85.6% -6.92%

Inst4r100o5p50 — — 14406 137.4 55.0 127.9 198.0 2 — — -6.92%

Inst5r100o5p50 179.33 66.262 14403.7 137.4 23.1 127.9 159.1 2 -23.4% -28.7% -6.92%

Inst1r1000o150p100 — — — 169.7 601.3 127.9 3648.9 2 — — -24.64%

Inst2r1000o150p100 — — — 137.4 601.2 127.9 3647.7 2 — — -6.92%

Inst3r1000o150p100 — — — 137.4 601.2 127.9 3718.2 2 — — -6.92%

Inst4r1000o150p100 — — — 169.7 601.5 127.9 3716.9 2 — — -24.64%

Inst5r1000o150p100 — — — 305.0 601.8 127.9 3762.9 2 — — -58.07%

Inst1r1000o250p100 — — — 169.7 601.7 127.9 3948.6 2 — — -24.64%

Inst2r1000o250p100 — — — 150.8 602.5 127.9 4013.1 2 — — -15.18%

Inst3r1000o250p100 — — — 137.4 601.7 127.9 3638.7 2 — — -6.92%

Inst4r1000o250p100 — — — 137.4 601.1 127.9 3689.2 2 — — -6.92%

Inst5r1000o250p100 — — — — —

Inst1r3000o150p100 — — — 274.8 601.4 255.8 3668.5 4 — — -6.92%

Inst2r3000o150p100 — — — 385.1 601.4 301.4 3660.7 4 — — -21.72%

Inst3r3000o150p100 — — — 274.8 601.9 255.8 3928.9 4 — — -6.92%

Inst4r3000o150p100 — — — 457.7 602.4 319.7 3893.4 5 — — -30.15%

Inst5r3000o150p100 — — — 339.4 602.5 255.8 3922.7 4 — — -24.64%

Inst1r3000o250p100 — — — 274.8 602.8 255.8 3807.7 4 — — -6.92%

Inst2r3000o250p100 — — — 274.8 601.8 255.8 3847.8 4 — — -6.92%

Inst3r3000o250p100 — — — 274.8 463.0 255.8 3711.2 4 — — -6.92%

Inst4r3000o250p100 — — — 339.4 601.2 255.8 3655.2 4 — — -24.64%

Inst5r3000o250p100 — — — 343.5 229.1 319.7 3753.4 5 — — -6.92%

Inst1r5000o150p100 — — — 464.2 568.5 447.6 3819.5 7 — — -3.59%

Inst2r5000o150p100 — — — 480.8 298.1 447.6 3811.6 7 — — -6.92%

Inst3r5000o150p100 — — — 640.8 602.6 447.6 4032.3 7 — — -30.15%

Inst4r5000o150p100 — — — 480.8 603.0 447.6 3913.8 7 — — -6.92%

Inst5r5000o150p100 — — — 480.8 603.5 447.6 4064.6 7 — — -6.92%

Inst1r5000o250p100 — — — 754.0 603.8 527.6 4305.6 7 — — -30.03%

Inst2r5000o250p100 — — — 412.1 602.0 383.6 3639.7 6 — — -6.92%

Inst3r5000o250p100 — — — 480.8 506.8 447.6 3733.0 7 — — -6.92%

Inst4r5000o250p100 — — — 594.0 601.5 447.6 3859.2 7 — — -24.64%

Inst5r5000o250p100 — — — 549.5 601.4 511.5 3775.5 8 — — -6.92%
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It can be observed in Table 5 that CPLEX (A - MILP) was able to find the optimal solution in 11

out of 30 instances with 30-100 order lines. Instances that required more than 3600s of computing

time were re-optimized considering a time limit of 14400s in an attempt to find a better near-

optimum solution. It can be noticed that, even for the smallest instances (30 order lines), CPLEX

was not able to find an optimal solution for four of them in 4 hours, much less for the largest

ones for which no feasible solution was found. On the other hand, the solution algorithm B (first

phase of the IGPSB), obtained good initial feasible solutions efficiently for the pseudo-real instances

requiring at most 604s for the largest ones (most of the computation time was consumed by the

SL assignment subproblem); while the solution method C (second IGPSB phase) improved most of

those initial solutions from B, reporting improvements from 6.92% up to 58.10% in approximately

1h of optimization outperforming the previous alternatives in terms of solution quality. Considering

that the company is interested in knowing the smallest number of pickers required to perform the

routes to complete customer orders, we can conclude that for small instances where the number

of available pickers is equal to the number of customer orders (|W | = |O| = 3, 5), it is needed at

most 2 pickers; whereas, for large instances, where |W | = |O| = 150, 250, only required from 4 to 8

pickers.

Table 6: Performance comparison among solution methods on real-world instances

Instance
A - MILP B - IG-Ph1 C - IG-Ph2 Improvement

Sol MGap Time Sol Time Sol Time |Wf | (B-A) (C-A) (C-B)

Int23r101o5p98 89.7 42.4 3603.1 107.7 601.0 63.9 647.0 1 20.1% -28.7% -40.6%

Int85r107o1p107 129.9 63.0 3599.2 80.1 601.1 63.9 642.0 1 -38.3% -50.8% -20.2%

Inst53r110o8p107 103.0 48.7 3609.3 261.8 601.2 63.9 638.9 1 154.2% -37.9% -75.6%

Inst58r111o7p106 141.3 61.3 3607.1 201.5 601.4 107.7 863.9 1 42.6% -23.8% -46.5%

Inst98r111o9p106 75.4 36.5 13691.9 91.5 601.1 63.9 637.7 1 21.4% -15.2% -30.2%

Inst22r362o30p325 — — — 119.1 606.9 80.1 665.4 1 — — -32.8%

Inst22r457o44p376 — — — 815.5 708.5 702.9 1623.1 1 — — -13.8%

Int121r463o36p411 — — — 1033.0 683.1 810.5 2229.3 1 — — -21.5%

Inst93r467o32p414 — — — 125.8 610.7 125.8 668.6 1 — — 0.0%

Inst154r477o33p420 — — — 782.3 630.3 568.0 2017.5 1 — — -27.4%

Inst134r5064o384p2923 — — — — — — — — — — —

Inst2r5528o399p3128 — — — — — — — — — — —

Inst22r7643o654p3944 — — — — — — — — — — —

Inst108r8197o596p4252 — — — — — — — — — — —

Table 6 shows a similar description but now considering the Subset B of instances (real-world).

For this set, CPLEX was not able to find the optimal solution, even though the number of order lines

is around 100 and customer orders does not exceed 44. An important characteristic of this set is that

the number of products is similar than the number order lines, which is an important difference from

the pseudo-real instances and has an important effect on the efficiency of the proposed algorithms.

It can be noticed for sizes larger than 5000, no feasible solution could be found for any solution

method, the reason for this is due to the fact that loading the instance to CPLEX could not be
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completed and, since all the methods require to solve an MILP, all of them were affected. In

response to this, we have developed a simple heuristic method to address this issue in the IGPSB,

which is described and discussed in the following section.

5.6 IGPSB performance using a SLA heuristic

As we can observed in the previous section for real-world instances, where the number of products

is greater than 2000, it is difficult to introduce the problem into CPLEX to be solved. Therefore,

no solution for the SL assignment subproblem can be created, showing a limitation to perform the

second phase of the IGPSB. As an alternative to address this issue, we have proposed a simple

heuristic to create an initial assignment of products into racks and thus continue with the batching

and routing decisions to generate a first initial feasible solution for the IGPSB. The proposed

heuristic, shown in Algorithm 3, starts by sorting the set of products and available racks according

to their affinity and their closeness to the depot, respectively. Then, in a sequential order, the first

rack l is open and the first product p is assigned to it if there exists available space to locate (at

least) a proportion of its total demand and its affinity value, with respect to the first product p̄

assigned to l, is less than γ; otherwise, the current rack is no longer considered and another one

must be open to locate the products that are not yet assigned. Once the total units of products p are

place into racks, the product is removed from the non-assigned set. Finally, a feasible assignment

is provided if all products were located in a given storage location.

The heuristic was embedded in the first phase of the IGPSB replacing the MILP that solves the

initial SL assignment. Then, the IGPSB was performed (four repetitions per each instance) and

results are briefly summarized in the Figures 9a-9b, where the solution costs and computing times

provided by the IGPSB, considering the MILP and the SLA heuristic, are compared. It is observed

in Figure 9a that, for the pseudo-real instances (30-5000 order lines), both procedures perform

similar; in this case, the SLA heuristic (dashed red lines) obtained improvements of up to 18% in

five of the large instances of this set. On the other hand, for small and large real-world instances

(RWS, RWL, respectively), significant differences are found (up to 91% of improvement); in fact, as

it has been pointed, the MILP for the SLA subproblem has complications in carrying out the load

of RWL instances and no feasible solutions can be found to proceed; so, the proposed heuristic can

solve this problem. In terms of computing times, Figure 9b provides the required time for each phase

of the IGPSB considering both alternatives. For the first IGPSB phase (obtaining an improved

initial solution), the SLA heuristic (dashed red lines) outperforms the MILP alternative (solid red

lines) in most of the cases, especially for larger instances. For the second phase, the time required

for the IGPSB is similar in both cases on pseudo-real instances; however, the most noticeable

results, in which the performance of the heuristic is superior, correspond to those provided for

real-world instances.
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Algorithm 3 SLAHeuristic().

Input: : L,P,DT
p , Q

L . Set of racks, products, total demand per product,

rack capacity

Output: As(l, p, q) . Final assignment (rack, product, quantity)

1: P s ← sortByAffinity(P ) . P s is sorted P

2: Ls ← sortByClosenessToDepot(L) . Ls is sorted L

3: QL
rem ← QL . Remaining capacity

4: while P s 6= ∅ and Ls 6= ∅ do

5: Select the first rack l ∈ Ls

6: Select the first item p ∈ P s

7: Set p̄ the first item p assigned to rack l

8: Dcov ← min(DT
p , Q

L
rem) . Covered demand

9: if Dcov > 0 and Affp̄p ≤ γ then

10: As(l, p,Dcov): Assign Dcov units of p to l

11: QL
rem ← QL

rem −Dcov

12: DT
p ← DT

p −Dcov

13: else

14: Remove l from Ls

15: Remove p from P s if DT
p is equal to 0

16: QL
rem ← QL

17: end if

18: end while

19: if P s 6= ∅ then

20: As(l, p, q)← ∅ . Infeasible, no assignment found

21: end if

22: return As(l, p, q)

Both alternatives, solving directly the MILP with the branch and bound of the solver and the

heuristic implemented for the SLA subproblem, seem to perform similar for small and medium

instance sizes. We suggest to solve directly the MILP with branch and bound only for instances

with less than 5000 order lines, 250 customer orders, and 100 available products as we have observed

that, when the number of products increases, the MILP is harder to solve by a general-purpose

solver (even if the number of order lines is small). For the remaining cases, the proposed SLA

heuristic is used to obtain the initial SLA for the initial solution of the PSB.
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6 Conclusions

This paper addresses an order picking problem, which integrates storage location, batching, and

routing decisions. The aim is to find the allocation of products to racks, the grouping of customer

orders, and the sequence of routes performed by pickers that minimize the order picking cost.

A mixed-integer linear programming model is introduced and an Iterated Greedy Local Search

algorithm (IGPSB) is proposed to solve the problem. Comprehensive computational experiments

have been carried out to calibrate the main parameters of the IGPSB and to assess the performance

of the proposed solution methods on pseudo-real and real-world instances focused on the basis of a

Mexican retail firm. During the performance tests, we have observed that the commercial branch-

and-bound method applied directly to the MILP model, used to solve the SLA subproblem when

the initial feasible solution is constructed, was able to solve all the pseudo-real instances. However,

for the real-world instances, the branch-and-bound method started to present problems, especially

for larger sizes where it was not able to load the problem into the solver. Therefore, a simple but

fast heuristic method was developed to obtain the initial location assignment of products obtaining

initial solutions very quickly. With this new proposal, final results have shown that the IGPSB can

obtain feasible solutions in reasonable computing times for instances with up to 8197 order lines,

654 customer orders, and up to 4252 products. On the other hand, the proposed model solved by a

commercial state-of-the-art solver can only achieve optimal solutions for a few small size instances,

not being able to solve those of larger size.

Future research lines identified during the development of this work are devoted to strengthening

the proposed formulation by developing other valid inequalities or the introduction of cuts during

the optimization process to reduce the symmetries in batching and routing decisions. Another

research direction is to extend the problem scope by considering the integration of other decisions

such as zoning, packaging, or last mile operations. Also, it may be interesting to study the use

of other routing, batching and storage location policies to make a comparison with the strategies

proposed in this work; or use other criteria in the objective function, for example, consider a penal-

ization for due orders or introduce a decision that considers inventory levels in order to know when

to replenish product in racks. In terms of robustness, it would be interesting to make a complete

study of the proposed algorithms considering other layouts, heterogeneous fleet of picker carts, or

integrate dynamic and stochastic elements.
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