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Abstract

The lack of access to second-level health care services in developing countries is primarily due

to the scarcity of facilities and the limited investment of resources. Access to these services directly

relates to the distance that the population travels to these facilities. In that sense, a maximal

covering location problem can be helpful to maximize the impact of decisions related to the location

of new health care units. In this paper, we develop models to guide the decision of location new

second-level services in a network of public hospitals. The partial coverage and variable radius are

considered in the models to assess a large territory with different characteristics and populations.

A case study is being conducted in the Mexican public health care system to assess five specialized

health care services. The obtained results evidence the benefit of using optimization tools in the

resource planning of health care services.

Keywords: health care planning; facility location; maximal covering location; partial coverage;

integer programming.



1 Introduction

Second-level specialized health care services such as gynecology and pediatrics are essential in

society. A large part of the population will require these services in various moments of their lives,

and the demand for these services grows year by year [15]. In rural areas, the main problem is

access to facilities that offer these services. In contrast, the problem is more related to capacity

issues in urban areas. However, distance and time are critical to survival in emergencies in both

cases.

The lack of access to second-level health care services in public hospitals is an important issue

in developing countries such as Mexico. The investment in the health care infrastructure is limited

and insufficient to ensure the total coverage of demand. Hence, each decision to invest new resources

in the public sector must be taken, maximizing its impact on society. Like many other countries,

Mexico has a segmented health care system [29]. This type of system avoids making global decisions,

and efforts are made individually by federal states or institutions. Recently, a change has been

promoted to take federal decisions to invest resources to improve health care services in Mexico

[43]. This change aims at creating tools for infrastructure planning as a whole system.

The second-level health care services are available in most public hospitals in two schemes:

outpatient care and emergency care. In both cases, the travel time/distance is the most critical

parameter for measuring health care services access. A hospital not very accessible discourages

people from timely attending to their illness when an appointment with a medical specialist is

required. The travel time for emergency patients is crucial to safeguard their lives [38]. Together

with the capacity of these services, access is the main factor in the decision to select new locations.

However, the capacity level can be adjusted according to the demand characteristics, but the

location is permanent. Therefore, the location of services can be analyzed as a strategic first-level

decision, and capacity planning can be done after the site has been located based on the specific

characteristic of each location. However, this decision can be made in single-stage planning based

on the needs and context of the situation.

Like many other developing countries, the main problem in Mexico is the geographic distribution

of the specialist. For instance, 54.2% of them are located in 3 out of the 32 federal states of the

country. The number of specialists in Mexico City was 505.7 specialists per 100 thousand people,

while in the federal state with the lowest rate was 35.9 specialists per 100 thousand people. This

contrast is because most of the second-and-third level hospitals are located in the biggest cities of

the country. However, gynecology and pediatrics services have become more widely needed because

the demand is distributed throughout the territory at different levels.

In the Operations Research (OR) field, the maximal covering location problem (MCLP) is

typically used in the health care area to locate emergency services such as ambulance stations or

emergency centers [27]. However, recent works have extended its use to many other applications,
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such as the location of primary health care centers or hospitals [1]. In this case, we address the

location of second-level specialized health care services. To this end, we use the model proposed by

Karasakal and Karasakal [32] to evaluate the location of a new service in a set of candidates sites.

Two extensions of this model are proposed to evaluate additional situations of the real application.

The first extension considers the existing facilities that provide the services, candidate facilities

where the service can be installed, and candidate locations where new facilities can be installed.

The second extension is proposed for multiple institutions that collaborate to expand the coverage.

This last model is based on a segmented public health care system like the Mexico case. In all

cases, partial coverage is considered to avoid an abrupt ending of coverage, and each candidate

site has a different coverage critical distance due to the extensively evaluated territory composed

of rural and urban areas with different characteristics. For the last two models, the coverage rate

of each candidate site must be adjusted considering the interaction with existing facilities.

To solve these models, we used CPLEX branch-and-bound (B&B) solver. All instances were

optimally solved, managing to solve large instances up to 188,026 demand points and 1,835 can-

didate sites for the first model; 179,716 demand points and 1,081 candidate sites for the second

model; and 512,666 demand points and 2,710 candidate sites for the multi-institutional version.

The presented case study is based on the Mexican health care system for five services: gynecology,

pediatric care, internal medicine, trauma care, and orthopedics. The variable distance of coverage

is based on the population density of each location. We compare the solution obtained under the

first model with the current practice. The goal is to evaluate the impact of using OR tools for

improving access to these types of services. Then, we evaluate the benefit of solving the model in

a single global instance instead of solving multiple federal state-wide instances or even regional-

wide instances. The second model was applied to the orthopedic service, evaluating the objective

function’s improvement when the new locations are installed in existing hospitals, in new sites, or

a combination of both. Finally, the third model (multi-institutional version) is evaluated with the

pediatric service for different levels of participation in the coverage between institutions. These

results encourage using these types of models as part of the decision-making process in the location

of public health care services to optimize the impact of limited resources on society.

The remainder of the paper is organized as follows. Section 2 first reviews the relevant literature

on locations models in related problems. This is followed in Section 3 by the formal definition and

mathematical formulation of the main problem and its extensions. This section is followed by

Section 4, where the case study results are presented. Finally, the conclusion and future directions

are discussed in Section 5.
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2 Related literature review

The literature on facility location models and methods applied in health care management has

been quite active over the past few years. Our problem is focused on the location of public health

care services. A survey in the context of the public sector is presented by Marianov and Serra

[36]. Important efforts have been made in its application to health care problems. Some important

surveys are proposed by Ahmadi-Javid et al. [1], Güneş et al. [30], Rais and Viana [42], Li et al.

[34], Daskin and Dean [16], Brotcorne et al. [10], and Rahman and Smith [41].

The MCLP was proposed in 1974 by Church and Revelle [13] and White and Case [47]. The

MCLP is a classic problem in the literature of the facility location. This problem is designed for

finite resources that are unable to cover all demand. The objective is to find the best subset of

p locations that maximize the covered demand. A demand point is covered if the distance to a

facility is equal to or lower than a critical value. Reviews of covering problems can be found in

Farahani and Hekmatfar [26], Snyder [44], Garćıa and Maŕın [28]. Some recent surveys of the

MCLP applications are presented by Berman et al. [8] and Farahani et al. [27].

In particular, the survey presented by Ahmadi-Javid et al. [1] reviews facility location works

related to health care from the year 2000 to 2016, 54% of the problems were related to emergency

facilities such as (ambulance stations, trauma centers, or emergency off-site public access devices),

while the rest of them were related to non-emergency facilities such as primary health centers.

Location problems based on the MCLP represent 35% of works with 48 papers, and partial coverage

is a characteristic only used in 10% of the works, all of them in emergency applications [45, 2, 35,

37, 11].

The models addressed in this research are based on the MCLP with partial coverage. In this

problem, the classical binary coverage is replaced by a continuous parameter between zero and one

calculated by a particular decay function. The more distance between a demand point and the

facility, the value approaches zero. The first idea of the gradual covering was described by Church

and Roberts [14]. The general concept of using a decay function in the MCLP is introduced in

Berman and Krass [6], employing a step-wise function in a network version of the problem, providing

a formulation and an effective heuristic procedure. In Berman et al. [7], the decay function was

named as the non-ascending general decay function with two pre-specified threshold distances.

They show how this problem can be transformed into the uncapacitated facility location problem

when the set of potential facilities is discrete. The two previous works are a generalized idea of the

problem addressed by Drezner et al. [21] for a single facility MCLP. A decay function is used in

a capacitated version of the MCLP by Pirkul and Schilling [40]. The demand points beyond the

coverage radius are allocated to facilities with available capacity, but the decay function allocated

them to a nearby facility. A method based on a Lagrangian relaxation is used to find efficient

solutions for instances up to 625 demand nodes. An overview of the gradual cover models can be
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found in Berman et al. [8].

Another continuous related work with a linear function in a planar space is found in Drezner

et al. [22] for a single facility location. The authors proposed a B&B algorithm that produced a

very efficient performance for instances up to 10,000 demand points. In Karasakal and Karasakal

[32], the term “partial coverage” is introduced for the MCLP taking the same considerations of

previous works for multiple facility locations. A solution procedure for large instances (up to 1,000

nodes, 40 potential sites) is proposed using a Lagrangian relaxation.

Recently, some extensions of the gradual cover location problem have been proposed. Tavakoli

and Lightner [45] proposed an MCLP-based model for allocating vehicles and the location of facil-

ities for emergency medical services (EMS) minimizing the amount of population not covered. A

goal programming problem to locate EMS stations and find the minimum number of vehicles satis-

fying the performance levels is proposed in Alsalloum and Rand [2]. The probability of covering a

demand within the target time is minimized in the first objective, and the second objective ensures

that any demand arising located within the target time will find at least one ambulance available.

In Eiselt and Marianov [23], the gradual covering is applied to the set covering location model,

including the quality of service as a decision criterion. Lim et al. [35] proposed an extension of the

MCLP that includes a minimum level of covered demand in the system and a flexible number of

locations to be opened for the ambulance location problem. In Naoum-Sawaya and Elhedhli [37],

a two-stage stochastic optimization model for the ambulance redeployment problem is proposed

minimizing the number of relocations over a planning horizon while an acceptable service level is

maintained. Drezner and Drezner [18] proposed an alternative objective function of maximizing

the minimum cover of every demand point, ensuring that every demand point is covered as much

as possible and there are no demand points with low cover. An ascent algorithm and tabu search

were evaluated for instances up to 900 demand points.Chan et al. [11] proposed a multi-responder

and gradual cover problem for automated external defibrillators in a probabilistic extension of the

MCLP. The main contribution lies in developing a mixed-integer linear formulation equivalents or

tight and easily computable bounds. Bagherinejad et al. [4] included the joint partial coverage

when a demand point is covered by multiple facilities, developing multiple heuristics for networks

up to 900 demand points. Bagherinejad et al. [4] included the gradual covering concept and the

cooperative coverage in a single problem. A simulated annealing and tabu search were used to solve

instances up to 150 demand nodes. In Drezner et al. [20], the gradual cover competitive facility

location problem is proposed, which captures the market share by new facilities in a continuous

space. Other recent applications using a gradual function are presented by Küçükaydın and Aras

[33] for the location of multi-type facilities that include customer preference, by Erkut et al. [24]

for ambulance location problem that includes a survival function, by Dogan et al. [17] for a multi-

objective location of preventing health care facilities, and by Yücel et al. [48] for the location of

mobile medical locations.
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The variation of the coverage radius in a gradual covering location problem has been proposed

by Drezner et al. [19] for a single facility and by Bashiri et al. [5] for multiple facilities. Eydi and

Mohebi [25] introduce the MCLP with gradual coverage and variable radius over multiple periods.

The variable cost directly impacts the coverage radius, and the facility capacity was considered. A

simulated annealing algorithm was proposed to solve the problem.

Table 1 summarizes the characteristics of the most important contributions related to the MCLP

with partial coverage. The last three rows correspond to the models evaluated in this paper.

Columns three to six are features considered in these models. In the last column the particular

features that differentiate each work are shown. Model 1 is similar to the one proposed in Karasakal

and Karasakal [32], but in this case, the problem was assessed in a case study with a larger data-set

(up to 188,026 demand points, 1,835 potential sites, and 856 opened facilities) in a public health

care system. Model 2 incorporates two types of facilities, considering that some facilities are already

installed in the system. The coverage level is calculated considering the interaction of the existing

facilities. Model 3 is similar to model 2 but incorporates a multi-institutional system where the

coverage of demand points can be expanded with the collaboration between institutions. As far as

we know, this last problem has not been addressed in previous works.

Table 2 shows the methods used to solve the most closely related problems, the software or

solver used, and the instances sizes of the case studies. The instances used in our case study

are the largest concerning the number of demand points and facilities to be opened, but they

occupy second place in the number of candidate sites. The number of candidate facilities and

opened facilities tested can be classified in the group of the large-scale instances of the MCLP. All

instances of our formulations were optimally solved by the B&B algorithm of CPLEX. Many recent

improvements have been made in the performance of exact methods to solve integer programming

problems together with the optimization in the use of computational resources and the development

of new technologies. These advances avoided the need to develop alternative heuristic methods for

solving problems addressed and the size of the instances proposed.

As contributions of our paper, we propose novel alternative formulations of the maximal covering

location problem with partial coverage applied to a real critical problem, as is the second-level health

cares services in developing countries. The case study applied to the Mexican health care system

allows us to explore the benefit of making decisions using the solutions of the proposed models. We

also propose estimating the coverage rates with the interaction of existing facilities and with the

case of a multi-institutional scheme.
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Table 1: Characteristics of works related to MCLP with partial coverage.

Paper Year
Variable
radius

Existing
facilities

Facility
types

Single
objective

Other features

[6] 2002 Yes No No Yes Multiple levels of coverage
[32] 2004 No No No Yes

[45] 2004 No Yes No Yes
Multiple vehicles are located at each facil-
ity

[3] 2007 No No No No
Demand covered twice, minimization of the
total travel distance for uncovered demand

[39] 2015 Yes No No Yes Applied to the hub location problem
[11] 2016 Yes Yes No Yes The level of coverage is probabilistic

[46] 2016 No Yes Yes Yes
Two types of partial coverage are maxi-
mized, multi-type vehicles, allocation of
vehicles to demand points

[4] 2018 Yes No No Yes
Cooperative covering and location-
allocation features

[25] 2018
Decision
variable

No No No
Minimize costs, multiple time periods and
capacitated service

[9] 2019 Yes No No Yes
Joint partial coverage and co-location of
facilities.

[33] 2020 Yes No Yes Yes
Customer preferences and maximization of
the profit

[12] 2021 No No No Yes
A minimum distance between adjacent
facilities

Model 1 Yes No No Yes
Model 2 Yes Yes Yes Yes
Model 3 Yes Yes Yes Yes Multiple institutions

Table 2: Solution methods and case studies of works related to MCLP with partial coverage.

Paper Method Software/Solver
Demand
nodes

Candidate
sites

Opened
facilities

[6]
B&B and Greedy heuristic / LP-
Relaxation

Cplex 400 400 80

[32]
Heuristic: Lagrangian relaxation based
solution procedure

1,000 40 24

[3]
Lexicographic optimization and different
versions of the Fuzzy goal programming

Cplex 8.0 50 50 8

[39] B&B
Cplex 12.4 / Gurobi
5.0.2

81 22 20

[11] B&B Cplex 12.1 11,701 5,000 200
[46] B&B GAMS/BARON 420 17 6

[4]
Cooperative covering and location-
allocation features

Heuristic: Simulated
anneling and Tabu
search

150 150 20

[25] Heuristic: Simulated anneling Cplex 100 100 5

[9]
B&B and Heuristics: greedy heuristic,
ascent heuristic, and Tabu search.

400 400 133

[33] B&B / Lagrangian relaxation / LS Cplex 12.8 1,000 250 Variable
[12] B&B OPL 104 104 15
Model 1 B&B Cplex 20.1.0 188,026 1,835 856
Model 2 B&B Cplex 20.1.0 179,716 1,081 250
Model 3 B&B Cplex 20.1.0 512,666 2,710 250
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3 Formulation

3.1 The coverage rate (aij)

The service coverage is defined by a critical distance around each facility. However, the limited

number of facilities that can be opened implies that not all demand points will be covered. A

non-ascending function is used to enlarge the coverage of a facility to a second critical distance and

avoid an abrupt ending of the coverage. This type of function was proposed by Berman et al. [7].

The level of coverage is gradually decreased in the gap between these two critical distances. This

change lets to assign the coverage to a demand point, even if this coverage is gradual.

The partial coverage decreasing function is calculated for each candidate site. Its equation is

given by:

aij =


1 if dij ≤ lj
uj−dij
uj−lj if lj < dij < uj

0 if dij ≥ uj

(1)

where:

aij is the coverage rate of the candidate facility located at site j for the demand point i,

dij is the distance between the demand point i and the potential facility located at site j,

lsj is the primary coverage radius of the potential facility located at site j,

usj is the secondary coverage radius of the potential facility located at site j.

In Equation (1), if the distance between a demand point i and a candidate facility site j is

less than or equal to the primary coverage radius, this point is fully covered (aij = 1). If the

distance is equal to or greater than the secondary coverage radius, the demand point is not covered

(aij = 0). If the distance is between these two critical bounds, the demand point is partially covered

(0 < aij < 1). In most problems, bounds l and u are fixed for all the facilities. In this paper, we

used variable bounds according to the demographic characteristics where each candidate site is

located.

3.2 The variable coverage radius (rj)

For a large-scale problem, the characteristics of the territory and population vary widely from one

region to another. The regions can be classified into urban and rural areas. In urban areas, the

population density is very high, and moderate travel distances can mean a lot of travel time. On

the other hand, rural areas have a very low population density and vast territory. It is evident

that the coverage radius should not be the same in both types of regions. For this reason, the

coverage radius is adjusted according to the area where the potential site is located. This practical
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consideration was initially proposed by Berman et al. [7].

The type of function to estimate rj depends on the characteristics of the particular application

of the problem. In the case of partial coverage, each coverage radius is divided into two bounds:

lj and uj . We propose determining a coverage radius for each candidate site and then determining

the two bounds based on this value. The primary coverage radius can be estimated as a proportion

of the variable coverage radius according to Equation (2). The secondary coverage radius can be

determined as a proportional increase of lj according to Equation (3). However, there are many

ways in which these bounds can be determined.

lj = ∆1rj (2)

uj = (1 + ∆2)lj (3)

3.3 Model 1: The maximal covering location problem with partial coverage

This problem is introduced by Berman et al. [7] and Karasakal and Karasakal [32], and can be

applied to new second-level services that can be installed in an existing hospital network. These

kinds of services can include new technologies or emergency services such as the one required to face

the Covid-19 pandemic. The objective of the problem is to maximize the demand covered through

the location of facilities that will supply the service. We denote as an “active facility”, a candidate

location that is opened in the solution of the problem, and an “inactive facility” to the one that

is not open. A demand point is fully covered if this is located at a distance lower or equal to the

primary coverage radius of an active facility. A demand point is partially covered if the distance

is between the primary and the secondary critical radius of the closest active facility. A demand

point is not covered if it is located at a distance greater than the secondary critical radius of any

active facility.

The indices, parameters, and variables are described below:

Indices and sets:

M Set of demand points; i ∈M .

N Set of candidate sites where the service can be installed; j ∈ N .

Ni Subset of N such that aij > 0 for a given demand point i ∈M , j ∈ Ni.

Parameters:

hi Demand of service in demand point i; i ∈M .

aij Coverage rate of the potential facility located at site j for the demand point i according to

Equation (1); i ∈M and j ∈ N .

p Maximum number of candidate sites where service will be installed.

Variables:

Yj Binary variable equal to 1 if the service is installed in candidate site j; 0, otherwise.
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Xij Binary variable equal to 1 if candidate site j is an active facility and it has the highest

coverage rate for the demand point i among all other active facilities; 0, otherwise.

The problem formulation is as follows:

max
∑
i∈M

hi

(
max
j∈N
{aijYj}

)
(4)

subject to
∑
j∈N

Yj ≤ p (5)

Yj ∈ {0, 1} j ∈ N (6)

The objective function (4) maximizes the sum of demand covered of each demand point mul-

tiplied by the highest coverage rate according to the active facilities. Constraints (5) define the

maximum number of sites where the service will be installed according to p. The binary variables

are defined in constraints (6). Note that the objective function (4) is a piece-wise linear function

that can be easily linearized according to Berman et al. [7] as follows:

maximize
∑
i∈M

∑
j∈Ni

hiaijXij (7)

subject to
∑
j∈N

Yj ≤ p (8)

∑
j∈Ni

Xij ≤ 1 i ∈M (9)

Xij ≤ Yj i ∈M, j ∈ Ni (10)

Yj ∈ {0, 1} j ∈ N (11)

Xij ∈ {0, 1} i ∈M, j ∈ Ni (12)

The auxiliary binary variable Xij determines the highest coverage rate for the demand point

i among all active facilities. In case of a tie, one active facility is randomly chosen. According

to constraints (9), only one variable associated with each demand point i can be equal to one.

The variable Xij related to the highest coverage rate will be equal to one in the optimal solution

because this benefits the objective function. If a demand point i is not covered in the solution, all

its associated variables Xij will be equal to zero. According to constraints (10), if a candidate site j

is not opened in the solution, all the associated Xij are equal to zero. The nature of the additional

decision variables is described in constraints (12).

The size of the problem could be an important issue when we are attempting to solve large-scale

instances. The set of demand points must include only demand points such that
∑

j∈N aij > 0

because any other demand point is not covered in any solution of the problem. Another important
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aspect is to consider only the variables Xij such that aij > 0 because any other variable will be

zero in the solution.

Furthermore, the final coverage of each demand point in a solution can be determined with the

following equation:

Zi =
∑
j∈Ni

aijXij i ∈M, (13)

where Zi is the highest coverage rate of the demand point i. The demand points can be classified

as follows:

• Fully covered (Zi = 1), if at least one active facility is located at a distance equal to or lower

than lj from the demand point i.

• Partially covered (0 < Zi < 1), if the closest active facility is located at a distance greater

than lj but lower than uj from the demand point i.

• Non-covered (Zi = 0), if all active facilities are located at a distance greater than or equal to

uj from the demand point i.

3.4 Model 2: The MCLP with partial coverage with existing facilities

In a real scenario, when we are evaluating an existing service to include new locations, there exist

facilities that will continue supplying the service, there are facilities that do not supply the service

but could start it (we refer to this as a new service being installed in the facility), and there are

candidate sites for installing new facilities if required. We consider these three cases in the MCLP

with partial coverage in the following problem. This is motivated by the fact that hospitals could

incorporate additional services if they need them, and the investment will be much lower than

installing new hospitals. However, new facilities could also be required because there are not even

installed hospitals in some areas. The set of candidate sites must be expanded to include existing

facilities where the service is being supplied, candidate facilities where the service can be installed,

and candidate sites to build new facilities. The notation is the following:

Indices and sets:

Gi Set of existing facilities that supply the service and they cover fully or partially demand

point i; j ∈ Gi.
N1 Candidate facilities where new service can be installed; j ∈ N1.

N2 Candidate sites for installing a new facility; j ∈ N2.

N = N1 ∪N2; j ∈ N .

Ni Subset of N such that aij > 0 for demand point i; j ∈ Ni.

Parameters:
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p1 Maximum number of candidate existing facilities where service can be installed.

p2 Maximum number of new facilities that can be installed.

The set of existing facilities where the service can be installed and the set of potential sites

must be managed separately in the model because they imply different costs and the number of

locations to be opened must be defined separately unless a budget constraint will be defined. We

note that all existing facilities that provide services can be removed from the formulation to reduce

the size of the problem. However, they affect the coverage rate of potential sites if demand points

are inside their coverage radius. In that case, the coverage rates must be estimated by comparing

the additional benefit in the coverage of each demand point. The equation to update the coverage

rate is the following:

a′ij = max{aij −max
l∈Gi

{ail}, 0} i ∈M, j ∈ N (14)

In this problem, we can consider only demand points such that
∑

j∈N a
′
ij > 0. The formulation

of the problem is the following:

maximize
∑
i∈M

∑
j∈Ni

hia
′
ijXij (15)

subject to
∑
j∈N1

Yj ≤ p1 (16)

∑
j∈N2

Yj ≤ p2 (17)

∑
j∈Ni

Xij ≤ 1 i ∈M (18)

Xij ≤ Yj i ∈M, j ∈ Ni (19)

Yj ∈ {0, 1} j ∈ N (20)

Xij ∈ {0, 1} i ∈M, j ∈ Ni (21)

3.5 Model 3: The MCLP with partial coverage for a multi-institutional scheme

with existing facilities

In this problem, we consider the case where there are multiple institutions in a system, and they can

share an existing service. An example of this system is the Mexican health care system divided into

multiple public institutions that serve different population segments, but there is a real motivation

to create collaboration among them. In this problem, each demand point has a demand rate for

each institution. The demand of an institution can be covered by facilities of other institutions, but

this coverage has a lower impact on the objective function according to a parameter λ. The options

where the service can be installed in existing facilities or candidate sites to open new facilities to
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supply the service are also considered. The notation is similar to the formulation of model 2 with

the following definitions:

Indices and sets:

K Set of institutions in the system; q, k ∈ K.

Gki Set of existing facilities of institution k that supply the service such that aij > 0 for demand

point i; j ∈ Gki , j ∈ G
q
i .

Nk
i Subset of Ni for institution k; j ∈ Nk

i , j ∈ N q
i .

Nk
1 Candidate existing facilities of institution k where the service can be installed, j ∈ Nk

1 .

Nk
2 Candidate sites where a new facility can be installed to supply the service for institution k,

j ∈ Nk
2 .

Parameters:

λ Real value between zero and one that represents the coverage level of other institutions

regarding the coverage level of the titular institution.

Variables:

Xkij Binary variable equal to 1 if demand of institution k in demand point i is covered (partially

or fully) by candidate location j; 0, otherwise; i ∈M , j ∈ Ni.

Parameters hki, p
k
1, and pk2 are also updated with the additional index k. If a demand point

of an institution is already covered by one or more facilities of the same institution or any other

institution, we must consider the additional benefit in the coverage (a′kij) of the potential locations

if one of these is installed. The parameter bki is used to calculate the current demand coverage of

institution k in demand point i, including the coverage of facilities of the same institutions (j ∈ Gki )
and facilities of other institutions (j ∈ Gqi |q 6= k), but these last ones are multiplied by λ.

bki = max{max
j∈Gk

i

{aij}, max
j∈Gq

i |q 6=k
{λaij}} k ∈ K, i ∈M (22)

The benefit in the coverage rate is calculated by subtracting bki from aij . If this value is

negative, the benefit is equal to zero. The equation to calculate a′kij is the following:

a′kij = max {aij − bki, 0} i ∈M, j ∈ N (23)

In this problem, we can remove the demand points such that a′kij is equal to zero to reduce the

size of the problem.

The formulation of the problem is the following:
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maximize
∑
k∈K

∑
i∈M

hki

∑
j∈Nk

i

a′kijXkij +
∑

j∈Nq
i |q 6=k

λa′kijXkij

 (24)

subject to
∑
j∈Nk

1

Yj ≤ pk1 k ∈ K (25)

∑
j∈Nk

2

Yj ≤ pk2 k ∈ K (26)

∑
j∈Ni

Xkij ≤ 1 k ∈ K, i ∈M (27)

Xkij ≤ Yj k ∈ K, i ∈M, j ∈ Ni (28)

Yj ∈ {0, 1} j ∈ N (29)

Xkij ∈ {0, 1} k ∈ K, i ∈M, j ∈ Ni (30)

The objective function (24) maximizes the coverage of demand of all institutions. If the coverage

is provided by a facility of another institution, the coverage rate is multiplied by λ. Constraints (25)

determine the number of existing facilities where the service will be installed for each institution,

and constraints (26) determine the number of new facilities that will supply the service for each

institution. The demand of each institution at each demand point can be covered by one facility

either of the same institution or by another according to constraints (27). The nature of variables

is given by constraints (28)–(30).

4 Case Study

4.1 Experiment settings

The case study is based on five second-level services in the Mexican public health care system:

gynecology (S1), pediatric care (S2), internal medicine (S3), trauma care (S4), and orthopedic care

(S5). Mexico is formed by 32 federal states, which are grouped into eight regions, as illustrated

in Figure 1. According to INEGI [31], the population of Mexico is distributed among 192,247

demand points. In Table 3, the number of demand points, the population in 2015, the land area

in a square kilometer (km2), and the population density in inhabitants by km2 is shown by federal

states (FS), by regions (RG), and globally (GB). Some demand points are impossible to cover since

they are located in regions that are non-viable to install hospitals around. These demand points

were removed from instances because they can not be covered by any candidate site.

The number of candidate locations for each service is shown in Table 4. The data is grouped by

federal states, by regions, and globally. This network is composed of three types of locations: (i) the

13



Figure 1: Map of Mexico divided into regions and federal states.

existing hospitals that supply the service (EH); (ii) a set of candidate hospitals where the service can

be installed (CH); and (iii) a set of potential locations where new hospitals can be built (NH). This

notation to describe the facility types will be taken up later. The hospital network was obtained

from the General Directorate of Mexican Health Information (http://www.dgis.salud.gob.mx),

and the set of potential sites was selected from demand points with demand levels higher than one

thousand inhabitants. The coordinates of demand points and candidates’ locations were determined

with the Universal Transverse Mercator system to calculate the Euclidean distances between both

sets of locations.

The proportion of the population at every demand point that requires a second-level service is

assumed to be constant in the system for experimental purposes. Under this assumption, we used

the number of inhabitants at each demand point as the demand rate for each service. Therefore,

the same demand points and demand rates are used in all the evaluated services with different

candidate sites. This assumption is made because there are currently no sufficient data to estimate

the actual demand for each service by demand point.

4.1.1 The variable coverage radius for the Mexico case

The population density distribution of the 2,457 municipalities (counties) of Mexico in 2015, ob-

tained from INEGI web site (http://www.inegi.org.mx), is shown in Figure 2. The demand

points are grouped by municipalities in Mexico, and this is the lowest level with data on popula-

tion density. The municipalities in the horizontal axis are sorted by population density, and the

14



Table 3: Characteristics of regions and federal states of Mexico.

RG FS Demand points Population Area Density
(inhabitants) (km2) (inh./km2)

1 38,561 15,153,881 756,528 20
2 4,547 3,315,324 73,163 45
3 2,850 711,755 74,610 10
8 12,257 3,556,193 247,413 14
10 5,794 1,754,557 123,364 14
25 5,845 2,966,059 57,370 52
26 7,268 2,849,993 180,608 16

2 16,434 11,515,490 296,000 39
5 3,825 2,954,643 151,595 19
19 5,265 5,119,385 64,156 80
28 7,344 3,441,462 80,249 43

3 24,308 14,320,861 171,073 84
6 1,235 711,133 5,783 123
14 10,946 7,844,542 78,597 100
16 9,427 4,584,277 58,599 78
18 2,700 1,180,909 28,094 42

4 33,236 18,411,659 130,952 141
13 4,714 2,858,291 20,821 137
21 6,400 6,168,806 34,309 180
29 1,294 1,272,782 3,997 318
30 20,828 8,111,780 71,824 113

5 25,202 13,500,980 184,326 73
1 1,989 1,312,485 5,616 234
11 8,995 5,853,370 30,607 191
22 2,717 2,038,304 11,691 174
24 6,829 2,717,719 61,138 44
32 4,672 1,579,102 75,275 21

6 6,897 27,009,984 28,725 940
9 547 8,918,636 1,495 5,967
15 4,846 16,187,575 22,351 724
17 1,504 1,903,773 4,879 390

7 37,833 12,717,915 230,666 55
7 20,047 5,216,982 73,311 71
12 7,290 3,533,200 63,597 56
20 10,496 3,967,733 93,758 42

8 9,776 6,854,240 166,836 41
4 2,778 899,642 57,516 16
23 1,993 1,462,399 44,825 33
27 2,499 2,395,221 24,731 97
31 2,506 2,096,978 39,764 53

GB 192,247 119,485,010 1,965,105 61
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Table 4: Classification of candidate sites by service, region, and federal state.

S1 S2 S3 S4 S5
RG FS EH CH NH Tot. EH CH NH Tot. EH CH NH Tot. EH CH NH Tot. EH CH NH Tot.
1 102 19 186 307 97 25 186 308 69 17 186 272 27 27 186 240 23 32 186 241

2 16 1 21 38 19 2 21 42 11 1 21 33 7 3 21 31 7 3 21 31
3 6 0 20 26 5 1 20 26 5 1 20 26 2 2 20 24 2 2 20 24
8 20 5 53 78 16 8 53 77 9 6 53 68 0 6 53 59 2 4 53 59
10 15 3 32 50 14 4 32 50 12 1 32 45 3 4 32 39 2 5 32 39
25 23 4 15 42 22 5 15 42 19 3 15 37 9 2 15 26 1 10 15 26
26 22 6 45 73 21 5 45 71 13 5 45 63 6 10 45 61 9 8 45 62

2 65 19 68 152 66 15 68 149 49 15 68 132 26 16 68 110 7 35 68 110
5 23 5 19 47 23 4 19 46 22 3 19 44 10 4 19 33 3 11 19 33
19 21 11 28 60 22 10 28 60 11 7 28 46 7 5 28 40 3 9 28 40
28 21 3 21 45 21 1 21 43 16 5 21 42 9 7 21 37 1 15 21 37

3 84 23 122 229 71 33 122 226 55 16 122 193 39 14 122 175 14 39 122 175
6 5 0 4 9 5 0 4 9 4 0 4 8 3 1 4 8 0 4 4 8
14 37 9 69 115 25 22 69 116 16 6 69 91 15 6 69 90 8 13 69 90
16 29 9 33 71 29 8 33 70 27 5 33 65 13 7 33 53 5 15 33 53
18 13 5 16 34 12 3 16 31 8 5 16 29 8 0 16 24 1 7 16 24

4 140 20 127 287 124 29 127 280 95 39 127 261 33 41 127 201 26 48 127 201
13 23 2 21 46 22 3 21 46 17 4 21 42 9 4 21 34 1 12 21 34
21 48 9 36 93 40 14 36 90 30 15 36 81 4 19 36 59 19 4 36 59
29 12 1 15 28 13 0 15 28 8 3 15 26 1 5 15 21 4 2 15 21
30 57 8 55 120 49 12 55 116 40 17 55 112 19 13 55 87 2 30 55 87

5 86 17 65 168 91 10 65 166 51 19 65 135 29 10 65 104 11 27 65 103
1 4 2 3 9 4 2 3 9 5 0 3 8 5 0 3 8 0 5 3 8
11 35 9 10 54 41 1 10 52 17 13 10 40 14 3 10 27 3 13 10 26
22 5 1 12 18 5 1 12 18 4 0 12 16 3 1 12 16 3 1 12 16
24 22 3 22 47 20 4 22 46 10 5 22 37 3 5 22 30 5 3 22 30
32 20 2 18 40 21 2 18 41 15 1 18 34 4 1 18 23 0 5 18 23

6 214 25 115 354 186 54 115 355 85 16 115 216 26 40 115 181 38 30 115 183
9 49 12 12 73 34 28 12 74 26 0 12 38 2 17 12 31 16 4 12 32
15 156 11 83 250 144 23 83 250 53 14 83 150 18 22 83 123 22 19 83 124
17 9 2 20 31 8 3 20 31 6 2 20 28 6 1 20 27 0 7 20 27

7 110 31 62 203 86 47 62 195 61 31 62 154 27 17 62 106 7 36 62 105
7 35 17 19 71 27 21 19 67 28 12 19 59 12 4 19 35 3 12 19 34
12 29 8 13 50 26 9 13 48 13 9 13 35 7 5 13 25 2 10 13 25
20 46 6 30 82 33 17 30 80 20 10 30 60 8 8 30 46 2 14 30 46

8 55 13 67 135 55 11 67 133 37 14 67 118 15 15 67 97 8 22 67 97
4 10 3 14 27 10 2 14 26 10 0 14 24 5 0 14 19 2 3 14 19
23 9 3 19 31 7 5 19 31 5 4 19 28 2 5 19 26 2 5 19 26
27 20 5 11 36 23 1 11 35 16 7 11 34 7 6 11 24 1 12 11 24
31 16 2 23 41 15 3 23 41 6 3 23 32 1 4 23 28 3 2 23 28

GB 856 167 812 1,835 776 224 812 1,812 502 167 812 1,481 222 180 812 1,214 134 269 812 1,215
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Figure 2: Classification of municipalities according to the population density.

cumulative population is shown in the vertical axis. We can note that half of the population lives

in areas with a population density lower than 400 inhabitants per square kilometer (inh/km2).

Three-quarters of the population lives in a territory with a population density lower than 2,000

inh/km2, and the remaining population (25%) lives in a territory between 2,000 to 17,000 inh/km2.

We propose a logarithmic function with high sensitivity to low population density rates, but that

includes the entire threshold of values of the population density rates. This function calculates the

coverage radius according to the population density of each municipality where a candidate site is

located.

The function to estimate a variable coverage radius is presented in Equation (33). The graphical

representation of the coverage radius function applied to the municipalities of Mexico is shown in

Figure 3. The function is adjusted based on a minimum and a maximum coverage radius. These

limits are adjusted in a range of population density rates (δmin, δmax). Two coefficients must be

determined to adjust the function: α and β.

The notation in the equations is the following:

rj Variable coverage radius of location j.

rmax Maximum coverage radius.

rmin Minimum coverage radius.

δj Population density of location j.

δmax Maximum population density.

δmin Minimum population density.

α Exponent value of the logarithm calculated by Equation (31).
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Figure 3: Graphical representation of the coverage radius.

β Adjustment coefficient calculated by Equation (32).

α =
rmax − rmin

log10(δmax)− log10(δmin)
(31)

β = log10(δmax)α + rmin (32)

rj = β − log10(δj)
α (33)

For experimental purposes, the values of some parameters were fixed. The minimum and max-

imum population densities were based on the population density of Mexico (2015). The minimum

coverage radius was taken from the average distance of hospitals in Mexico City because it is the

most populated city with the largest number of hospitals at the same time. The maximum cov-

erage radius was fixed to 30 km because this distance is reachable in rural areas of Mexico. The

parameters α and β were calculated with Equations (31) and (32), respectively. The values of all

these parameters are the following:

rmin = 2 km δmin = 0.14 inh./km2

rmax = 30 km δmax = 17, 000 inh./km2

α = 2.3917 β = 25.2976

In the case of partial coverage, the coverage radius must be extended to a secondary coverage

radius. In this case, limits were set as follows:
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lj = rj

uj = 2lj

The secondary coverage radius of a hospital for the most populated areas is near 4 km, and for

the least populated areas is 60 km.

4.2 Solution method

The branch-and-bound algorithm from the CPLEX callable library, version 20.1.0, with a C++

API was used to find the optimal solution for each instance. The experiments were carried out in

an Intel Core i7-5600U at 2.60GHz with 16GB of RAM under Windows 10 operating system.

In Table 5, the worst-case execution time is shown for each model. The number of demand

points (|M |), the number of candidate sites (|N |), and the total number of locations that can be

opened (p) are shown. We can see that in all the cases, CPLEX found the optimal solution of the

corresponding integer linear programming model in less than one hour of CPU time, even though

some instances can be classified as large-scale instances.

Table 5: Worst-case execution time of the B&B algorithm by model.

Service |M | |N | p CPU time (s)
Model 1 S1–S5 192,247 1,835 856 1,337
Model 2 S5 179,716 1,081 150 271
Model 3 S2 512,666 2,710 150 1,141

4.3 Model 1 assessment

In the case of model 1, the problem was solved for the five second-level health care services in

three different clustering levels: by federal states, by regions, and globally. In Section 4.3.1, we

compared the advantages of solving the entire instance rather than solving it in segmented instances.

In Section 4.3.2, the solution of global instances is compared with the actual distribution of the

services. The objective is to compare the outcomes and benefits of using an optimization model to

improve access to second-level health care services.

4.3.1 Solving the problem at different clustering levels

This experiment aims at identifying the advantages of solving the problem in a single large-scale

instance instead of dividing it into multiple instances. The actual planning of infrastructure in

Mexico is made locally, in most cases throwing away the potential of a unified resource planning.

The number of opened hospitals was fixed to the existing hospitals that supply the service. The
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candidate sites include the existing hospitals where the service is operating (EH), additional can-

didate hospitals that do not supply the service (CH), and new potential sites where new hospitals

can be installed (NH). The number of candidate sites for each service by federal state, by region,

and globally are shown in Table 4. The problem was first solved by states-wide instances, all the

locations obtained from the optimal solutions were unified as a single solution, and these were

evaluated as a single global instance. This means that hospitals of other federal states can cover

a demand point. Then, the regional instances were solved and combined similarly to evaluate a

single solution. Finally, a global instance was solved to compare the results between the solutions

obtained with the previous cases.

Table 6 summarizes the results for each instance type and each service. The first and second

columns identify the service and instance type previously defined in Section 4.1. The number of

instances that were solved of each type is shown in column three. The number of total facilities

opened by each instance type is shown in column four. For example, there are 32 optimal solutions

of FS (Federal State) instances, the optimal locations were unified in a single global solution with

856 opened facilities, and then, the global objective value is calculated and shown in column five.

The objective value is also represented as a percentage of the total demand in the sixth column.

For example, 93.7% of demand was covered with the solution of the first row. The number of

locations opened of each type is shown in the following three columns. The percentage of demand

and demand points covered are classified according to the coverage level (full, partial, and null)

in the following columns. In all the cases, the best objective value was reached with the solution

of the global instance. The same occurs with the percentage of covered demand and the number

of covered demand points. The objective function as a percentage of the total demand shows

that solutions of global instances compared with state-wide instances were higher in 2.6%, 3.2%,

2.8%, 7.0%, and 9.4% for services S1 to S5, respectively. Significant improvements in the objective

function were found when the coverage level is lower in the system, as in the case of S4 and S5.

This result encourages the integration of the services planning as an integral system to increase the

current coverage.

According to the case, parameter p was fixed to the number of existing hospitals in each federal

state, each region, and globally. In some state-wide instances, it was observed that the optimal

solution required a lower number of facilities than p to cover the maximum possible demand. For

example, the total number of open locations in S1 was equal to 802 for the federal states instances

when the maximum number of locations that could be opened was 856. This means that in some

federal states, more locations are operating than the ones required according to the objective

function. However, in the global instance of S1, the entire possible locations were opened because

locations not required in some federal states were required in other states to improve their coverage.

This fact is another advantage of solving the problem as a single global system.
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Table 6: Summary of results by service and type of instance.

Obj. value Facility type Cov. dem. (%) Cov. dem. pts (%)
S Type Inst. p (x1000) (%) EH CH NH Total Full Partial Null Full Partial Null

S1
FS 32

856
111,916 93.7 456 79 267 802 85.0 12.9 2.2 47.7 37.6 14.7

RG 8 112,872 94.5 453 79 267 799 86.1 12.3 1.6 50.1 38.7 11.2
GB 1 114,978 96.2 434 82 340 856 87.9 11.6 0.5 56.4 39.0 4.6

S2
FS 32

776
110,243 92.3 413 94 243 750 83.6 13.2 3.1 44.0 36.9 19.2

RG 8 111,526 93.3 395 108 269 772 84.4 13.2 2.4 46.8 38.1 15.1
GB 1 114,085 95.5 375 115 286 776 86.8 12.3 1.0 53.5 39.4 7.1

S3
FS 32

502
103,963 87.0 249 82 162 493 75.8 17.6 6.6 34.5 35.3 30.1

RG 8 105,514 88.3 240 89 173 502 76.7 17.9 5.4 36.7 37.9 25.5
GB 1 107,309 89.8 239 93 170 502 77.4 18.7 3.9 38.7 39.9 21.4

S4
FS 32

222
81,693 68.4 91 51 80 222 54.6 24.1 18.4 17.7 25.0 51.0

RG 8 88,528 74.1 78 56 88 222 59.5 23.5 17.1 18.6 26.5 55.0
GB 1 90,035 75.4 82 55 85 222 60.2 24.4 15.4 18.7 27.8 53.6

S5
FS 32

134
68,022 56.9 48 28 58 134 48.6 14.0 32.9 8.5 11.2 75.4

RG 8 76,781 64.3 32 35 67 134 53.5 17.5 28.9 10.3 15.4 74.2
GB 1 79,286 66.4 32 38 64 134 54.0 20.2 25.8 11.0 18.5 70.5

4.3.2 Comparison between existing system and the optimal location found by solving

the model

One of the main goals of our research is to provide a way to improve the existing system. To this

end, we compare the existing locations of hospitals with an optimal solution yield by the proposed

model, which purpose is to improve access to services.

In Table 7, we compare two cases: (A) the solution of the MCLP with partial coverage, fixing

the existing locations, and (B) the optimal global solution based on a set of candidate locations

composed of the sets EH, CH, and NH previously described. The structure is similar to Table

6. The additional demand covered in the case of B was 8%, 11%, 14%, 27%, and 23% for S1 to

S5, respectively. In some cases, such as S4 and S5, the improvement in the objective function in

case B was 56% and 52%, respectively. The impact in the objective function was greater when the

coverage level in the system was lower, as occurred with S4 and S5. For example, the percentage

of demand not covered by S4 in case A is 40.2%, being 64.4% of demand points, while the demand

not covered in case B is reduced to 15.4% being 53.6% of demand points.

This experiment allows us to find the percentage of well-located hospitals based on the objective

function of model 1. This percentage is estimated by the number of existing hospitals in the optimal

solution. This percentage is 51%, 48%, 48%, 37%, and 25% for services S1 to S5, respectively. If

the network of existing hospitals that do not supply the services is used to install the service, the

government could improve the demand coverage with significant savings because this will be less

expensive than installing new hospitals. In the optimal solutions, the percentage of this type of

location selected was 10%, 15%, 19%, 25%, and 28% for services S1 to S5, respectively.
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Table 7: Comparison of results between the existing system and the optimal location found by
solving the model.

Objective value Facility type Covered demand (%) Covered locations (%)
Service Solution (x1000) (%) EH CH NH Total Full Partial Null Full Partial Null

S1
A: Actual 105,464 88.3 856 0 0 856 78.8 16.0 5.2 39.0 37.9 23.1

B:
Optimal

114,978 96.2 434 82 340 856 87.9 11.6 0.5 56.4 39.1 4.6

S2
A: Actual 100,697 84.3 776 0 0 776 74.7 16.9 8.4 35.7 36.5 27.8

B:
Optimal

114,084 95.5 376 114 286 776 86.8 12.3 1.0 53.5 39.4 7.1

S3
A: Actual 90,623 75.8 502 0 0 502 61.3 25.4 13.3 28.6 34.6 36.8

B:
Optimal

107,309 89.8 239 93 170 502 77.4 18.7 3.9 38.7 39.9 21.4

S4
A: Actual 57,566 48.2 222 0 0 222 36.7 23.0 40.2 13.7 21.9 64.4

B:
Optimal

90,035 75.4 82 55 85 222 60.2 24.4 15.4 18.7 27.8 53.6

S5
A: Actual 52,035 43.5 134 0 0 134 33.9 18.1 48.1 6.5 10.4 83.1

B:
Optimal

79,286 66.4 33 37 64 134 54.0 20.2 25.8 11.0 18.5 70.5

4.4 Model 2 assessment

As stated in Section 1, another of the critical problems faced in the actual health care system is

the lack of coverage of the existing facilities because most of the second-level health care units

are concentrated in the largest cities of the country. In this particular case, we are interested in

locating new orthopedic care services because this is the service with the lowest coverage rate of

the five evaluated services, and it is one of the essential second-level services that present a lack of

coverage. To this end, the location of new orthopedic care services (S5) was solved using model 2

under the following specifics.

Different numbers of new locations (p) were assessed in the experiments: 10, 20, 30, 40, 50,

100, 150, 200, and 250. In Table 8, the main characteristics of the actual system are shown. The

demand is 113.5 million inhabitants to be covered, divided into 163,231 demand points. The service

is currently supplied by 134 hospitals. The percentages of demand and demand points covered by

these facilities are shown in the table. The number of candidate sites to use in the problem is shown

in the last two columns. These sites include 269 candidate hospitals that can supply the service

and 812 candidate sites where new hospitals can be located.

Table 8: Characteristics of the existing system for orthopedic care service.

Demand Existing Covered demand (%) Covered demand points (%) Candidate Sites
Demand points facilities Full Partial Null Full Partial Null CF NH

113,523,531 163,231 134 34 18 48 7 10 83 269 812

Three types of instances were solved for each value of p: (i) the case where the service is installed

in existing hospitals that do not supply the service (CH), (ii) the case where only new hospitals

can be opened without including existing facilities (NH), and (iii) the case where the service can be

installed in existing or new hospitals (CH+NH). In case (i), constraints (17) do not exist; in case
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(ii), only constraints (17) exist, and in the last case, constraints (16) and (17) are replaced by:∑
j∈Nk

1

Yj +
∑
j∈Nk

2

Yj ≤ p (34)

Where p is the maximum number of locations to be opened. In Figure 4, the objective values

of all instances are compared, and the detailed results are shown in Table 9. The objective value

of model 2 represents the additional demand covered by the new locations. In the fourth column

of the table, the global objective value considering the existing facilities is shown. We can observe

that there is no significant difference between objective values of instances under cases (i) and

(ii). However, when both types of candidate sites are available, as in case (iii), there is an average

improvement of 22% in the objective value. In Table 9, we can see that more demand and demand

points are fully and partially covered with the solutions in case (iii). The optimal value of the

objective function and the number of new locations have no linear relationship. The growth on the

objective value reduces as the number of new locations increases as shown in Figure 4.
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Figure 4: Objective value by type of candidate sites and number of new locations.
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Table 9: Comparison of results between evaluated scenarios of model 2.

Objective value (×103) Covered demand Covered demand points
p Model 2 Global Full Partial Null Full Partial Null

Existing facilities 0 52,035 18.1 48.1 33.8 6.5 10.4 83.1

Case (i): CH

10 8,483 60,519 40.0 19.8 40.3 7.2 11.9 80.8
20 12,493 64,528 42.6 20.8 36.5 7.8 13.2 79.0
30 15,738 67,773 44.3 22.4 33.3 8.5 14.4 77.1
40 18,179 70,215 45.8 22.8 31.5 9.3 16.0 74.7
50 20,190 72,225 47.1 23.6 29.3 10.3 17.4 72.3
100 27,718 79,753 51.9 26.0 22.0 14.8 23.0 62.2
150 32,611 84,646 56.0 26.0 18.0 18.7 27.6 53.7
200 35,259 87,294 58.6 25.3 16.1 21.3 30.4 48.4
250 35,746 87,782 59.3 25.0 15.7 22.7 30.4 46.9

Case (ii): NH

10 9,438 61,474 40.7 18.9 40.3 7.5 12.4 80.1
20 13,727 65,762 43.4 19.6 37.0 8.2 13.7 78.1
30 16,998 69,033 45.9 19.4 34.8 8.9 14.4 76.7
40 19,504 71,539 47.7 19.5 32.9 10.0 15.4 74.6
50 21,509 73,544 49.1 19.9 31.0 10.8 16.7 72.6
100 28,216 80,251 54.2 20.5 25.3 15.0 21.6 63.4
150 31,903 83,938 57.5 20.5 22.1 18.1 24.9 57.0
200 34,185 86,220 59.4 20.8 19.9 20.9 27.5 51.7
250 35,635 87,670 61.1 20.6 18.3 23.4 31.0 45.7

Case (iii): CH+NH

10 10,272 62,308 41.5 19.1 39.5 7.4 12.2 80.4
20 15,746 67,781 45.4 19.5 35.0 8.2 13.9 77.9
30 19,502 71,537 47.8 20.2 32.0 8.9 14.8 76.3
40 22,681 74,716 50.1 20.2 29.7 9.4 15.6 75.0
50 25,182 77,217 52.1 20.2 27.7 10.5 17.2 72.4
100 33,899 85,934 58.1 22.4 19.5 15.7 23.9 60.4
150 39,751 91,787 62.5 22.7 14.8 19.6 28.2 52.2
200 43,890 95,926 66.1 22.2 11.7 23.3 31.1 45.6
250 46,669 98,704 69.1 21.3 9.6 26.4 34.1 39.5

In Figure 5, the graphical representation of a solution of model 2 is shown for the location

of ten additional orthopedic services under case (iii). Blue circles represent the coverage radius

of hospitals that already supply the service, the radius of the new services installed in existing

hospitals are represented by pink circles, and the new hospitals opened are represented by red

circles. We can see that the new locations are opened in zones with high population density not

covered by existing facilities. The population density is represented on the red scale, as shown in

the population density map. Additional coverage of 9% of total demand was obtained with the ten

new locations, reaching a total demand coverage of 55% if we considered all the previous installed

services. There is still 39.5% of the demand out of the coverage radius of any hospital, and this

demand is spread over 80.4% of demand points.
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Population density map

Demand points: 163,231

EH: 134

CH: 2/269

NH: 8/812

Closed candidate sites:1,071

�=10

New facilities: 10,272,341 (9%)

Global: 62,307,565 (55%)

Demand covered: 41.5% 19.0% 39.5%

Demand points covered: 7.4% 12.2% 80.4%

Symbols:

Objective value:

Full Partial Null
Coverage:

Figure 5: Location of orthopedic care service in the map of Mexico for p = 10 using model 2.

4.5 Model 3 assessment

The three main public institutions of Mexico were evaluated in this multi-institutional version of

the MCLP. For this experiment, pediatric care (S2) was evaluated because there is one of the essen-

tial services in all the country, and there is enough information about its availability in published

data. Three public institutions were simulated in the experiment based on actual institutions: I1

composed of institutions SSA, SME, and IMSS-Bienestar (for uninsured population); I2 represent-

ing the institution ISSSTE (for public sector workers); I3 representing the IMSS (for private-sector

workers). In Table 10, the main characteristics of the instance are shown. The demand rates were

randomly generated following uniform distribution based on the population level of each demand

point with the distributions γ = 1 − α − β, α = Unif(0, 0.2), and β = Unif(0, 0.2) for institutions

I1, I2, and I3, respectively. The existing hospitals that supply the services are shown in the fourth

column. The percentage of demand and demand points covered by these hospitals are shown in

the following columns. The candidate locations are classified in existing hospitals where the service

can be installed and candidate locations where new hospitals can be built. Demand points that are

fully covered by existing hospitals are not considered in the problem, and demand points that are

partially covered are updated according to Equation (23). The level of participation in the demand

coverage of other institutions is determined by λ. This value was ranged from 0 to 1 by increments

of 0.1. The number of locations to be opened in the system (p) was assessed as follows: 10, 20, 50,

100, 150, and 200 facilities. One global instance for each combination of p and λ was assessed. The
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Figure 6: Objective values of model 3 with different values of λ and p for each case.

three types of cases defined for model 2 were also used in this experiment, but the proportion of

facilities that can be opened for the three institutions was 0.8, 0.1, and 0.1 for institutions I1, I2,

and I3, respectively.

Table 10: Current coverage in the multi-institutional scheme for service 4.

Demand Current Covered demand (%) Covered demand points (%) Candidate Sites
Institution Demand points facilities Full Partial Null Full Partial Null CH NH

I1 96,060,917 150,947 772 71 14 15 21 27 52 221 812
I2 11,513,225 183,187 120 41 16 43 5 10 86 25 812
I3 11,900,297 178,532 193 54 13 33 7 12 80 28 812

Total 119,474,439 512,666 1,085 274 2436

Figure 6 shows the results for all combinations of p and λ. The objective values are compared

among different values of λ and p for each one of the three cases. We can observe that the objective

value is higher when λ tends to 1 with an average increase of 19.7% regarding solutions with λ = 0.

The results of the three types of cases are also contrasting. The objective values are higher when

new hospitals are opened because the number of candidate options is much higher than hospitals

that currently do not supply the service. However, the most significant improvement in the coverage

is obtained when both types of locations are available in the problem.

5 Conclusions

In this paper, we revisited the MCLP with partial coverage and proposed some extensions to solve

some problems related to locating second-level health care services. These models are motivated by

a need to improve access to these services in developing countries. For the partial coverage, a decay

function is used based on two critical coverage bounds. A logarithmic function was proposed to
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determine the coverage radius of each candidate site based on the population density. Large-scale

instances of the problem are considered due to the high number of demand points and facilities

that form the health care system. Model 1 aims at locating new services that will be installed in

a hospital network. Model 2 is proposed for the case when the service is already working, and it

is provided in a hospital network; there are two types of new locations: existing facilities where

the service can be installed and new facilities where the service can be supplied. In model 3, we

proposed the multi-institutional version of the previous model, where the demand can be covered

by facilities from other institutions.

Our case study, based on real-world data from the Mexican Health Care System, revealed very

interesting results. A first important finding is that we identified some advantages from solving the

global instances over region-wide or federal state-wide instances. For example, the improvement

from state-wide to global instances ranged from 2.6% to 9.4% of additional demand covered. There

is more impact in the objective function when the actual demand coverage is low such as in the case

of S4 and S5 that covers 48.2% and 43.5% of the total demand, respectively. In another experiment,

we observed an improvement in the percentage of demand covered from 8.0% to 27.2% when we

compare the current locations of the service with the optimal location using model 1. For the actual

location of the services, many other important aspects were considered. However, the benefit in

the demand coverage is directly associated with the improvement in the service accessibility, which

can be considered in the decision process of locating new facilities.

We note that the current disposition of the services is not focused on the improvement of

access. There is a high concentration of facilities in the largest cities, leaving the rural areas

without coverage. This is associated with the high level of demand found in urban areas. However,

the infrastructure planning must include every type of region and population sector. As proposed

in this research, this type of model could improve access to these services as a priority. The

capacity of the facilities is another important issue that must be evaluated carefully. However,

capacity planning could be analyzed in a follow-up study once the location of a hospital has been

determined.

The branch-and-bound algorithm successfully solved all instances of the main problem and its

extensions. The optimal solution of all instances was found in a reasonable CPU time, with the

highest taking 1,337 CPU seconds for solving an instance of model 1. This model was the most

difficult to solve because the high number of facilities to be opened.

Future research on this problem is oriented to evaluating additional features of the second-level

health care services such as the type of service: normal or emergency services. For some services the

capacity must be included as part of the location problem without ignoring the service coverage.

The feature of joint coverage among facilities can extend the coverage of some services. For example,

some facilities do not have operating rooms but can provide outpatient care. All these features

must be evaluated for large-scale instances. In this sense, the development of alternative solution
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methods such as meta-heuristics algorithms could be a valuable asset to be pursued.
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