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Abstract

This paper addressed a forest harvesting problem with adjacency constraints, including addi-

tional environmental constraints to protect wildlife habitat and minimize infrastructure deployment

costs. To this end, we propose an integer programming model to include those considerations during

the optimization of the harvest regime of a Mexican forest. The model considered was based on

the Unit Restriction Model, a benchmark approach that merges the management units before the

optimization process. The resulting model, namely the Green Unit Restriction Model (GURM),

and the benchmark model (URM) from the literature were tested with the forest Las Bayas using

information obtained from the SiPlaFor project from the Universidad Juárez. The proposed model

was solvable in all tested instances. A sensitivity analysis study over a core data set of test instances

was carried out on the different parameters of the GURM model to determine optimal configurations

for the specific case study. Several environmental measures are assessed in our experimental work.

Among the parameters assessed were the distance value between pairs of units harvested in the

same period, the distance value between pairs of units considered natural reserve, timber volume to

be harvested, green-up period, and minimum forest reserve area.

An interesting observation from the experiments was that the maximum area inversely affected

the URM and URM-Green models, larger areas resulted in a reduced number of management units

in the URM model, thus reducing the computational time to solve the instance of the problem,

but in this case, at the expense of a reduced profit. One of the interesting findings was that, in

all experiments under all different factors, harvesting every 5 or 6 years yields better profits than

harvesting every 10 or 12 years. The current standard in the Mexican system is to harvest every

five years.

Keywords: Forest management; Integer programming; Adjacency constraints; Unit restriction model;

Green-up constraints; Clear-cut regime



1 Introduction

The collaboration of the operations research and forest science communities has been very successful

over the past few decades. The use of operations research analytical tools has had a positive impact

in many areas of forestry management problems such as strategic, tactical, and operational planning,

wildfire management, conservation, and the use of OR to address environmental concerns [32].

One particular area that has received considerable attention is harvest scheduling problems,

which in essence involve strategic and tactical decisions on how to harvest a forest, seen as a

collection of stands, in such a way that maximum timber volume or profits are obtained. These

decisions are subject to requirements that assure sustainable forest growth. Many of these planning

requirements are set forth by government authorities and are designed to preserve wild habitats.

Among these problems, a particular class considers adjacency constraints, which are require-

ments that prevent the harvesting of adjacent stands or forest management units. The original

motivation of these types of constraints was to prevent soil erosion. However, recently there have

been other environmental benefits such as preserving the habitat of wildlife or creating a barrier

around the recently harvested area until it recovers some of its biomass. These problems consider a

regime of clear-cuts distributed along a planning horizon that is divided into periods. An important

requirement limits the maximum adjacent area that is allowed to be cut at any given period.

In the literature, several approaches have been studied to address the adjacency issue. Two well-

known approaches are the Unit Restriction Model (URM) and the Area Restriction Model (ARM)

[27]. Both approaches differ on how the forest management units, or simply units, were defined out

of single forest stands. The URM assumes that these management units are merged a priori, while

the ARM forms the management sets out of the stands during the solution process.

This paper considers a harvest scheduling problem with adjacency requirements with additional

environmental considerations to help preserve wildlife and the forest itself. Our model includes

the preservation of old-growth forest reserve, green-up period requirements, tree biological maturity

preservation, and distance-based requirements. These are further explained in Section 3. These

requirements have been proposed independently for other forest management problems; however,

to the best of our knowledge, ours is the first model to consider all these simultaneously under the

URM approach. In addition, the model is studied under a case study from the state of Durango,

Mexico. Despite being the eleventh country [17] with timber resources globally, Mexico has not

systematically used these tools to manage its forests at the level of the nations mentioned above.

To assess our model, we used a case study from Las Bayas. Las Bayas is a piece of land owned

by the Universidad Juárez, located in Durango, Mexico. Its geographic and forest measurements

information is available through the SiPlaFor project [33]. We use real-world data estimates of

timber pricing. A sensitivity analysis study over a core data set of test instances was carried out

on the different parameters of the URM-Green model to determine optimal configurations for the
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specific case study.

The rest of the paper is organized as follows: A literature review is presented in Section 2.

Section 3 describes the problem, its requirements, and modeling assumptions. It also includes

the integer programming model. Section 4 describes the experimental work in detail, including a

description of how the test instances are constructed and a full assessment of the case study. Finally,

Section 5 summarizes the main findings and discusses future work.

2 Literature Review

The use of operations research tools and methodologies to address many decision-making problems

in forestry management has been very active over the past 50 years [6]. Many problems involving

operational, tactical, and planning decisions have been addressed from the optimization perspective.

Some recent surveys can be found in Ezquerro et al. [16], Belavenutti et al. [3], Rönnqvist et al.

[32]. In particular, this section is focused on a unique set of harvesting problems involving adjacency

constraints. Adjacency-constrained models were first introduced in the seminal paper of Murray [27].

The author introduced two models: the Area Restriction Model (ARM) and the Unit Restriction

Model (URM). The ARM approach is based on the idea of limiting, at a particular given period, the

total area of adjacent harvesting units to a given upper bound. In contrast, the URM handles the

adjacency constraints by establishing that two adjacent units cannot be simultaneously harvested

in the same period. There is a third class of adjacency-constrained models that attempt to improve

on the limitations of the ARM. These are the so-called hyper-unit models [36, 37, 38], where one

hyper unit is generated a priori as a candidate cluster for aggregated forest areas from each forest

unit by a predefined rule to meet lower and upper size requirements.

Although the ARM perspective increases the number of potential solutions to choose from, the

addition of clustering processes within the computational optimization stage causes the problem

to become more complex. Many solutions to ARM-based models have been studied in the past,

including heuristic approaches [2, 10, 12, 30] and exact optimization schemes such as the path

formulation [25], the clique-cluster packing formulation [19, 24], and the bucket formulation [14].

Since this paper is based on the URM, we focused the review on URM-based approaches mainly.

Stochastic adjacency models are out of the scope of this paper, but the reader is referred to the

work of Wei and Murray [34].

In the early years, significant effort was devoted to developing exact and heuristic algorithms

[28, 29, 35]. Manning and McDill [23] presented a computational study examining optimal parameter

settings to improve the efficiency of solving harvest scheduling models with adjacency constraints.

They used ILOG’s Cplex 11.2. A total of 160 randomly generated hypothetical forests were cre-

ated with 50 or 100 stands and four age-class distributions. Mixed-integer programming problems

were formulated with four different adjacency constraint types, two Unit Restriction Model (URM)
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adjacency constraints (Pairwise and Maximal Clique) and two Area Restriction Model (ARM) for-

mulations (Path and Generalized Management Unit). A total of 640 problem sets –where a set is a

typical forest size, age-class distribution, and adjacency constraint type– were tuned to determine

the optimal parameter settings and then solved at both the default and optimal settings. In gen-

eral, they observed that mean solution time was shorter for a given problem set using the optimal

parameters compared to the default parameters. The discussed results provide a simple approach

to decrease the solution time for solving mixed-integer forest planning problems with adjacency

constraints.

Borges et al. [7] presented a simulated annealing metaheuristic to a harvest scheduling problem

with URM adjacency constraints. They assessed the performance of their metaheuristic under three

new methods aimed at introducing biased probabilities in the management unit (MU) selection

and compared them to the conventional method that assumes uniform probabilities. The new

methods were implemented as a search vector approach based on the number of treatment schedules

describing sequences of silvicultural treatments over time and standard deviation of the net present

value within MUs (Methods 2 and 3, respectively), and by combining the two approaches (Method

4). They also presented three hundred hypothetical forests (datasets) for three different landscapes

characterized by different initial age class distributions (young, normal, and old). Each dataset

encompassed 1600 management units. The methods evaluation was carried out through objective

function values, the first feasible iteration, and time consumption. They found that introducing

a bias in the MU selection improves the solutions compared to the conventional method (Method

1). However, an increase in computational time was observed in general for the new methods. By

comparing results, method 4 was the best alternative as it produced the best average and maximum

objective function values alongside lower time consumption than Method 2 and for most datasets.

Although Method 4 performed very well, Methods 2 and 3 should not be neglected since maximum

objective function values were obtained by these methods for a considerable number of datasets.

Dong et al. [15] presented another simulated annealing metaheuristic to a class of forest har-

vest scheduling problems under URM and ARM constraints. Four hypothetical grid datasets with

different age class distributions (i.e., young, normal, older, and spatially organized) and one real

dataset from northeastern China were used to illustrate how 2-OPT moves can intensify a search

within high-quality areas of solution space and thus produce higher-valued solutions as compared

to the sole use of 1-OPT moves. Finally, extreme value theory was employed to estimate the global

optimum solution and evaluate the heuristic solutions’ quality. They found out that the 2-OPT

technique produced consistently better solutions than the 1-OPT technique in terms of the values

of the mean and maximum solutions and significantly decreased the standard deviations associated

with the sets of solutions. The maximum solution values could attain results above 98% of the

estimated optimal values.

Kašpar et al. [22] assessed the time efficiency of solving URM models with different adjacency
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constraints using a commercial solver. Their results indicate that the type of adjacency constraints

can have significantly affect the solving time, and therefore it could be a crucial factor for the

time required for developing forest plans. They noted that pairwise adjacency constraints may be

sufficient today for addressing problems with forest harvest scheduling constraints.

Gharbi et al. [18] presented a new mixed-integer linear programming model classified as both

a unit restriction approach and an area restriction approach. They needed to generate a feasible

cluster in the first place to formulate the model. However, contrasting with other approaches, the

authors state that there is no need to generate specific model constraints representing computa-

tionally burdensome clusters for large cases. The authors described and analyzed their approach by

comparing it with the most efficient works in the literature. Comparisons were made from the mod-

eling and computational points of view. Results showed that the proposed model was competitive

concerning modeling complexity and formulation size.

3 Methods

3.1 Discussion of Environmental Requirements and Model Assumptions

The URM models from the literature do not consider environmental considerations in their re-

spective formulations [19, 24, 27]. This work proposes a new model with the following additional

constraints:

Primary forest reserve: A traditional measure to protect wildlife species is the spatial assignment

of natural reserves, known in the literature as an old-growth or primary forest reserve. Pri-

mary forest reserve constraints have become more relevant in recent years because these areas

may shelter valuable ancient trees and endangered animal species. Carvajal et al. [11] dis-

cuss important considerations for integrating old-growth concerns into forest planning with

adjacency constraints. They also discuss establishing a requirement that assures a minimum

primary forest area, typically between 10 and 30% of the total area. These requirements are

also considered in our model.

Green-up period: Green-up constraints induce all units adjacent to a recently harvested unit to

remain standing for many consecutive periods [8]. This way, a protective barrier is assigned

until the harvested unit restores its forest mass while we avoid deforesting large areas at any

given time of the planning horizon. In addition, this measure reinforces a better harvesting

distribution by promoting continuous areas of mature woodland at seeding age adjacent to

growing stands. In Murray [26], green-up constraints are defined in the URM formulation by

extending the number of periods in which adjacent clear-cuts to a recently harvested unit are

proscribed. We follow this approach in our paper.
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Biological maturity: The forest age distribution is one of the most important environmental aspects

in harvesting models. A well-distributed age structure at the landscape level ensures sustained

yield of forest products and provides a diverse habitat for wildlife [1]. A way to achieve this

goal is to protect the trees of a unit before reaching their age of biological maturity. This

parameter can be seen as a threshold from which it is feasible to harvest a basic unit. To

the best of our knowledge, the previous optimization work on forest management uses the age

threshold mainly at establishing optimal rotation age for carbon sequestration [31]) or as a

part of heuristic methods for penalizing cuts in immature stands [5, 4, 9]. We incorporate

such a perspective in this work.

Distance Requirements: The consideration of distance can be seen from two points of view: the

environmental, that seeks to maintain a reasonable distance between natural reserves, to

allow the wildlife to have a safe habitat; and a second consideration, from the economic

perspective, as each harvesting period also implies the deployment of infrastructure such

as new routes and collection areas, since the reduction of the dispersion of the harvested

management sets also reduces the costs of operation. Distance requirements have been mainly

used to establish old-growth patches within a maximum distance to help wildlife species as

deers and sables to survive and reproduce. Maximum distance constraints assume that beyond

a specific threshold, the functional habitat for such species starts decreasing [21]. In addition,

we also consider a similar set of constraints to establish a maximum dispersion between units

to be simultaneously harvested to reduce transportation costs [6].

The following model assumptions are considered:

• The problem is deterministic; that is, all parameters are known with certainty.

• The management policy must respect the maximum clearcut area, adopted by law or by

voluntary guidelines.

• Clearcut per management unit is the harvesting method to be used.

• The wood volume’s growth pace is linear and depends on the average annual increase of

standing trees.

• The regeneration barrier length should allow the recovery of most of the trees of a unit after

its harvesting.

• The harvesting profit in a specific period is a function of the wood potential, prices, and

production costs per cubic meter of wood of the tree species in the unit.

• Selling prices per cubic meter of wood are static over the whole planning horizon.
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• The age threshold for the trees of a unit to become candidates for an old-growth forest must

be greater than the length of the planning horizon (εnat > δPH).

• For simplicity, we assume that all management units have a surface between 51 and 100% of

the maximum clearcut area. Namely, the simultaneous harvest of any pair of adjacent units

violates the maximum area.

• Age of (manually constructed) units corresponds to the age of the youngest trees into it, so

that no clear-cut interferes in the maturing vegetation process. Age of trees in units is assmued

homogeneous.

• Strong and weak adjacency types (see Section 1) are used to avoid harvests between neighbor-

ing units, such that simultaneous harvests have no point of contact to reinforce the continuity

of forest.

3.2 Green Unit Restriction Model (GURM)

Indices and Sets

I : Set of harvesting units; i ∈ I.
T : Set of time periods in the planning horizon; t ∈ T .
Ni : Set of harvesting units adjacent to harvesting unit i ∈ I.

Parameters

vit : Volume of timber collected in harvesting unit i in period t; i ∈ I, t ∈ T .
βit : Profit obtained by harvesting unit i in period t; i ∈ I, t ∈ T .
Lt : Lower bound for the timber volume to be harvested in period t ∈ T .
Ut : Upper bound for the timber volume to be harvested in period t ∈ T .
r : Regeneration period in years.

mi : Maturity age of trees in harvest unit i ∈ I.
εit : Age of trees in unit i in period t; i ∈ I, t ∈ T .
ai : Area (in hectares) of unit i ∈ I.

Amin : Minimum area of native forest reservation (in hectares).

δPH : Planning horizon length in years.

εnat : Age of trees at which the unit can be considered as a natural reserve.

φij : Euclidean distance between units i and j;. i, j ∈ I.
Λmax : Maximum distance between each pair of units harvested in the same period.

Γmax : Maximum distance between each pair of units considered as natural reserve.

M : A large enough constant.

Decision Variables

xit : Binary variable equal to 1 if unit i is harvested in period t, and 0 otherwise; i ∈ I, t ∈ T .
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zi : Binary variable equal to 1 if unit i is considered as a natural reserve, and 0 otherwise;

i ∈ I.

Integer Programming Model

Maximize z =
∑
i∈I

∑
t∈T

βitxit (1)

subject to
t+r∑

t′=t−r

(
xit′ + xjt′

)
≤ 1 t ∈ T, i ∈ I, j ∈ Ni (2)

∑
t∈T

xit ≤ 1 i ∈ I (3)

∑
i∈I

vitxit ≥ Lt t ∈ T (4)

∑
i∈I

vitxit ≤ Ut t ∈ T (5)

mixit ≤ εit t ∈ T, i ∈ I (6)

zi +
∑
t∈T

xit ≤ 1 i ∈ I (7)

∑
i∈ΩI

aizi ≥ Amin (8)

zi = 0 i ∈ I : εi1 + δPH < εnat (9)

φijxit −M(1− xjt) ≤ ∆max i, j ∈ I, t ∈ T (10)

φijzi −M(1− zj) ≤ Γmax i, j ∈ I (11)

xit ∈ {0, 1} i ∈ I, t ∈ T (12)

zj ∈ {0, 1} j ∈ I (13)

The objective function (1) seeks to maximize the harvesting profit throughout the planning

horizon. Constraints (2) prevent any neighboring unit pair from being harvested simultaneously

before the green-up period r. Constraints (3) assure a unit to be harvested at most once during

the planning horizon. Constraints (4) and (5) guarantee the lower and upper limits of the timber

volume harvested in each period. Constraints (6) guarantees that only the units that have reached

the maturity age in the current period are considered for harvesting. Constraints (7)-(9) help us

model the primary forest reserve constraints. Constraints (7) assure that no unit can be harvested

(at any time) and simultaneously be considered a primary forest. Constraints (8) guarantee a

minimum area exclusively dedicated to the primary forest reserve. As young or immature trees

do not satisfy primary forest requirements, minimum age constraints must be imposed to prevent

impractical assignments. To this end, constraints (9) ensure that units with relatively immature

trees are not assigned to the primary forest reserve. Constraints (10) establish the maximum distance
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allowed between any pair of units harvested in the same period to decrease the operational costs.

Constraints (11) and set the distance limit between any pair of natural reserve management units

to guarantee the habitat of the wildlife. Finally, (12) and (13) express the nature of the binary

variables.

The URM, as proposed by Murray [27], considers minimizing (1) subject to (3)–(5) and con-

straints

xit + xjt ≤ 1 t ∈ T, i ∈ I, j ∈ Ni

instead of (2). Therefore, our model can also be seen as an extension of the URM.

The URM is NP-hard [19, 20]. Despite its inherent computational complexity, the URM has

been solved relatively well in instances with up to 80,000 stands over 10 time periods by branch and

bound [18].

4 Experimental Work

4.1 Preprocessing

The implementation of the solution framework can be divided into two stages: (a) the construction

of instances from the geographical, economic, and measurement information of the forest, and (b)

the solution of the corresponding integer programming model.

The information about the individual stands, such as the projected volume of wood that a stand

can yield at each period of the planning horizon, the profit that can be obtained from the timber

mentioned above, and the average age of each stand, is calculated first using the available databases.

In this particular case study in Mexico, the geographical data was obtained from the SiPlaFor

project. SiPlaFor is an open access system designed to support the decision-making process in

preparating and executing sustainable forest management planning on temperate forests of Mexico

[33]. SiPlaFor also contains information of the species, age, samples of trees from each stand,

among other factors, to calculate the potential volume of timber harvested at each period during

the planning horizon, considering an even-aged whole-stand model. For this project, we obtained

the profit from the previously calculated volume of wood per stand during each harvesting period

and the proportion of species in the stand. The prices were taken from a CONAFOR technical

report [13].

4.2 Case Study

In this paper, we present a case study of Las Bayas forest, a wooded terrain located in the state of

Durango, in northwest Mexico, as depicted in Figure 1. Las Bayas is a forest comprised mainly of

pines and oaks. Its selection was motivated by the following reasons:
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• Las Bayas belongs to the Universidad Juárez del Estado de Durango (UJED), under the man-

agement of the Faculty of Forestry. Therefore, its database contains high-quality information

from the stands, freely available to the public [33].

• Las Bayas information is available in the SiPlaFor project, also managed by the UJED. The

project contains information about other forests in Mexico, which makes it easier for our

approach to be applied to other forests, assuming that the information in the databases meets

the minimum requirements for the model.

Figure 1: Geographic location of Las Bayas.

For this case study, we selected 118 stands, as shown in shaded areas in Figure 2. Those are some

of the stands authorized to carry out timber extraction activities. Surrounding stands, instead, are

considered natural reserves for agriculture of tourism.

4.3 Experimental Settings and Test Instance Generation

All models were implemented in the C++14 programming language, compiled in g++ version 7.4.0,

and solved with the ILOG CPLEX 12.8 solver through its API. For test instance generation and

data recollection, the programming language used was Python 3.7.4. The election of this language
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Figure 2: Subset of production stands from Las Bayas

was mainly because of the availability of powerful GIS (Geographic Information System) libraries,

such as GeoPandas and pyproj. The experimentation was conducted in a server with an Intel Xeon

E3-1240 v3 3.5 at GHz with 8 cores, with 16 GB of DDR3 RAM at 1600 MHz, in the Ubuntu

14.04.6 LTS operating system.

We formed forest management units by aggregating stands whose total area did not exceed a

given maximum area. To this end, we studied three different values of maximum areas, namely 30,

40, and 50 ha. The length of the planning horizon was established at 60 years. For this length,

different harvesting periods were evaluated: (i) 5 periods (that is, every 12 years), (ii) 6 periods

(every 10 years), (iii) 10 periods (every 6 years), and (iv) 12 periods (every 5 years). The last

corresponds to current practice. With these values, we formed the core instances, from which we

built the instances for each experiment by varying the values described next and their default values.

The core instances are described in Table 1, where the first column is the name of the core

instance, the second, third and fourth, columns show the maximum area of the management units

of the instance, the number of periods, and the number of management units that it contains.

Finally, the fifth and sixth columns show the number of decision variables and constraints of the

resulting model for that instance.

The upper and lower bounds of the wood volume harvested at each period were calculated by

considering the average potential yield of the forest at each period, divided by the number of periods,

giving the average potential per period (appp). We also considered a volume variation percentage
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Table 1: Description of the core instances
Instance Max Area Periods MU Vars Cons

ins_urm_30_5_56_0_bayas_bigger 30 5 56 336 38579
ins_urm_30_6_56_0_bayas_bigger 30 6 56 392 44909
ins_urm_30_10_56_0_bayas_bigger 30 10 56 616 70637
ins_urm_30_12_56_0_bayas_bigger 30 12 56 728 83433

ins_urm_40_6_53_6_bayas_bigger 40 5 53 318 34586
ins_urm_40_7_53_7_bayas_bigger 40 6 53 371 40259
ins_urm_40_8_53_8_bayas_bigger 40 10 53 583 63323
ins_urm_40_9_53_9_bayas_bigger 40 12 53 689 74793

ins_urm_50_6_54_11_bayas_bigger 50 5 54 324 35885
ins_urm_50_7_54_12_bayas_bigger 50 6 54 378 41773
ins_urm_50_8_54_13_bayas_bigger 50 10 54 594 65703
ins_urm_50_9_54_14_bayas_bigger 50 12 54 702 77605

(vvp) of this value to be added or subtracted to the appp value to obtain the upper and lower bound

bounds (upper = appp+vvp∗appp, lower = appp−vvp∗appp). In this work, the default vvp value

was established at 10% or 0.10.

The set of distances (dist_max_manag, dist_max_natf) that represents the maximum dis-

tances between any two pair of management units and native forest, respectively, at any period,

was established with the default value D1 = (8000m, 5500m). The minimum required fraction of

timberland total area to be assigned as the native forest was set at 10% or 0.10. The regeneration

years, that is, the number of years required before harvesting a management unit that is adjacent

to a recently treated management unit, was set at R3 = 20 years.

The minimum percentage of the area considered for the native forest was established at BN3 =

10% or 0.10. The time threshold was set at 3600 seconds. If this time is higher at the start of a

new iteration, the optimization process is stopped. A second stopping criterion considered was a

relative optimality gap of 0.01%.

4.4 Experiments and Results

This section describes the experiments conducted to determine the impact that different parameters

of the instances, complementary to the core parameters, had on the objective value of the Green

URM (GURM).

A different parameter was evaluated for each experiment, keeping the others with the default

values mentioned in the previous section.
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Core Parameters with Default Values

For this experiment, we evaluated the core instances, shown in Table 1, with the default values of

the complementary parameters described earlier in Section 4.3. Such configuration resulted in a

total of 12 test instances.

Table 2: Results for the core instances experiment.
Max Area Periods Obj. Value (mill. MXN) Time sec.

30

5 $90.82 22.58
6 $90.98 31.07
10 $92.47 1455.84
12 $92.49 2857.95

40

5 $90.80 22.19
6 $90.82 39.01
10 $92.34 595.38
12 $92.48 129.92

50

5 $90.86 31.71
6 $90.82 57.96
10 $92.42 607.46
12 $92.37 2446.49

The core parameters include three different maximum areas: A1 = 30ha, A2 = 40ha, and

A3 = 50ha; and four different number of periods: P1 = 5, P2 = 6, P3 = 10, P4 = 12, which

resulted in 12 test instances.

This experiment aims at having a baseline on which to compare the results obtained by varying

the parameters individually. Table 2 shows the results obtained from the 12 instances evaluated in

this experiment. The default configuration was feasible. The first and second columns show the

maximum area and the number of periods, respectively. The third column shows the objective value

in millions of Mexican pesos (Obj. Value (mill. MXN)), and the fourth column shows the time in

seconds (Time sec.). All solutions were optimal, and the runtimes were reasonably short.

Distances

As mentioned before, distance is an essential factor to consider in forest management, both from an

economic and the environmental point of view. From the economic perspective, our model addresses,

in constraints (10), the cost of deploying the necessary infrastructure to carry out the harvest in a

certain period, as the more dispersed the management areas to be harvested, the higher the cost of

building roads, making trips between them or installing collection points.

From the environmental point of view, our model considers, in constraints (11), that native

forest areas must maintain a certain maximum distance to fulfill their purpose of safeguarding the
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habitat of forest wildlife.

For this experiment, the pairs of distances of the 12 core instances were varied with four

different values: D2 = {8500m, 5750m}, D3 = {9000m, 6000m}, D4 = {9500m, 6250m}, and

D4 = {10000m, 6500m}, resulting in a total of 48 test instances.

The results of this experiment are shown in Table 3. All configurations were feasible. The first

and second columns show the maximum area and the number of periods, respectively. The third,

fourth, fifth, and sixth columns correspond to D2, D3, D4, and D5. Each one shows the objective

value in millions of Mexican pesos (OV), the time in seconds (T). All solutions were feasible and

optimal.

Table 3: Results for the distance experiment.
MA P D2 D3 D4 D5

OV T OV T OV T OV T

30

5 $90.81 51.21 $90.83 17.32 $90.83 15.61 $90.83 8.99
6 $90.97 43.70 $90.97 18.89 $90.97 14.96 $90.97 11.66
10 $92.46 1761.34 $92.46 922.22 $92.46 485.60 $92.46 422.91
12 $92.48 2197.77 $92.48 1656.72 $92.48 875.89 $92.48 729.87

40

5 $90.79 19.80 $90.80 31.51 $90.80 22.01 $90.80 26.15
6 $90.81 31.18 $90.82 44.12 $90.82 38.41 $90.82 51.28
10 $92.33 806.95 $92.33 1491.43 $92.33 1206.59 $92.33 884.48
12 $92.47 330.51 $92.47 338.22 $92.47 370.53 $92.47 253.24

50

5 $90.85 34.02 $90.87 22.47 $90.87 27.94 $90.87 10.38
6 $90.81 40.52 $90.81 27.35 $90.81 35.20 $90.81 24.12
10 $92.41 443.19 $92.42 219.08 $92.42 219.82 $92.42 185.81
12 $92.37 2683.74 $92.37 1798.33 $92.37 843.27 $92.37 1139.26

Figure 3 shows the results obtained. Each row corresponds to a group of instances with the

same maximum area. The first four subplots correspond to the objective function value and the

last four subplots to running time within each row. Each subplot displays the results for a given

value of P (5, 6, 10, 12). Within each subplot, the set of distances defined in the experiment were

evaluated.

As shown in Table 3 and Figure 3, the variation among the different distance values is negligible

for a given fixed area and harvesting period. However, for a fixed distance value, it can be observed

that harvesting every 5 or 6 years (P=12 or 10) yields better results than harvesting every 10 and

12 years (P=6 or 5).

13



Figure 3: Results for the distances experiment.
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Volume Percentage Threshold

Maintaining a constant harvest volume during each period is an important consideration so that the

economic benefit also remains constant. However, it is not always possible for the timber volume

to be the same every time.

Therefore, in constraints (4) and (5), our model includes lower and upper limits of timber

volume per period, which, as they get close to each other, the harvest between each period will be

more constant. However, this has the disadvantage that, if they were too strict, it could result in

unfeasible solutions for that particular instance. On the other hand, the more separated they are,

the easier it will be to find feasible solutions, but the volume will likely vary too much between

periods.

In this experiment, the volume variation percentage of the 12 core instances were varied with

four different values: vvp2 = 12%, vvp3 = 16%, vvp4 = 20%, and vvp5 = 24%, to determine how

tight the lower and upper volume limits per period can be for Las Bayas. This configuration resulted

in a total of 48 test instances.

Table 4: Results for the volume percentage threshold experiment.
MA P 12 16 20 24

OV T OV T OV T OV T

30

5 $91.06 43.80 $91.55 19.42 $91.96 24.77 $92.34 9.88
6 $91.25 55.64 $91.76 22.48 $92.22 12.45 $92.62 14.27
10 $92.74 1134.61 $93.24 448.33 $93.70 328.53 $94.11 190.61
12 $92.76 1102.56 $93.31 466.54 $93.74 548.90 $94.21 226.04

40

5 $91.03 29.19 $91.50 23.31 $91.94 26.49 $92.32 23.95
6 $91.12 67.57 $91.65 27.93 $92.15 11.62 $92.52 48.00
10 $92.63 894.32 $93.21 52.06 $93.61 91.80 $94.07 95.93
12 $92.73 447.30 $93.25 156.17 $93.67 655.54 $94.14 495.18

50

5 $91.11 39.00 $91.57 32.60 $92.01 13.39 $92.37 19.21
6 $91.13 69.02 $91.66 55.12 $92.12 18.66 $92.58 24.65
10 $92.65 1501.14 $93.16 960.72 $93.68 103.25 $94.04 615.73
12 $92.68 881.51 $93.16 1718.59 $93.68 609.68 $94.07 1227.53

The results of this experiment are shown in Table 4. The first and second columns show the max

area and the number of periods, respectively. The third, fourth, fifth, and sixth columns correspond

to vvp2, vvp3, vvp4, and vvp5, respectively. For each one, the objective value is shown in millions

of Mexican pesos (OV) and the time in seconds (T). All solutions were feasible and optimal.
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Figure 4: Results for the volume percentage threshold experiment.
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Figure 4 shows the results obtained. Each row corresponds to a group of instances with the

same maximum area. The first four subplots correspond to the objective function value and the

last four subplots to running time within each row. Each subplot displays the results for a given

value of P (5, 6, 10, 12). Within each subplot, the set of different values of vpp previously defined

in the experiment were evaluated.

As we can see from Table 4 and Figure 4, for a given fixed area and harvesting period, the best

results are observed for the largest value of vpp = 24. The decrease between this value and the

smallest is less than 2%. About the variation among periods for a fixed value of volume, it can be

observed that harvesting every 5 or 6 years (P=12 or 10) yields better profits than harvesting every

10 and 12 years (P=6 or 5). This result is consistent with the previous experiment.

Green-up Period

To avoid the formation of large deforested areas, even when adjacency restrictions are respected dur-

ing the same period, the recovery period or green-up is included alongside the adjacency constraints

of our model in (2).

The green-up period consists of avoiding, for several consecutive periods, the harvesting of man-

agement units adjacent to another one that has been recently treated in order to leave a protective

barrier of standing trees that allows the unit to recover some of its forest mass.

The longer the green-up period, the larger the forest mass is recovered. However, it also limits

much of the options for harvesting management units in future periods, resulting in unfeasible

solutions.

For this experiment the green-up lengths of the 12 core instances were varied with four different

values: R1 = 10, R2 = 15, R4 = 25, and R5 = 30. This resulted in a total of 48 test instances.

The results of this experiment are shown in Table 5. In this case, 42 configurations were feasible.

The first and second columns show the maximum area and the number of periods, respectively. The

third, fourth, fifth, and sixth columns correspond to R1, R2, R4, and R5. Each one shows the

objective value in millions of Mexican pesos (OV) and the time in seconds (T). All the feasible

solutions were optimal.

Figure 5 visually shows the results obtained. Each row corresponds to a group of instances with

the same maximum area. The first column corresponds to the objective value obtained, and the

second, the time it took for the method to find the optimal solution. The groups are divided into

four subgroups that correspond to the periods considered for the core instances. For each period,

the different green-up lengths R were evaluated.

As we can see from Table 5 and Figure 5, for a given fixed area and harvesting period, the

best results are observed for the smallest value of R = 10. As R gets large, the objective function

decreases by about less than 2%. About the variation among periods for a fixed value of the green-

up period, it can be observed that harvesting every 5 or 6 years (P=12 or 10) yields better profits

17



Table 5: Results for the green-up experiment.
MA P 10 15 25 30

OV T OV T OV T OV T

30

5 $90.99 17.07 $90.81 22.12 $89.66 6.81 $89.66 5.87
6 $91.62 21.12 $91.62 24.44 $90.97 22.39 $88.26 8.45
10 $93.06 1844.31 $92.94 2423.81 $91.24 46.89 - -
12 $93.34 759.48 $93.08 1755.67 $90.29 830.10 - -

40

5 $90.98 19.74 $90.79 21.98 $89.35 10.48 $89.35 13.59
6 $91.60 24.36 $91.60 21.44 $90.81 35.99 $87.44 9.97
10 $93.02 889.15 $92.85 958.92 $91.22 52.44 - -
12 $93.27 2889.52 $92.92 3601.41 $90.24 3228.85 - -

50

5 $91.02 28.67 $90.85 12.86 $89.58 3.97 $89.59 3.97
6 $91.65 25.72 $91.65 20.68 $90.81 12.99 $88.11 5.64
10 $93.05 2152.11 $92.89 663.24 $91.36 143.24 - -
12 $93.32 959.59 $93.00 1043.45 $91.27 45.94 - -

than harvesting every 10 and 12 years (P=6 or 5). This result again is consistent with the previous

experiments.
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Figure 5: Results for the green-up experiment.
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Minimum Forest Reserve Area

As already mentioned, maintaining a minimum forest reserve area percentage (set of constraints

(7)–(9) of our model) is important as a measure to protect plant and animal species. In recent

years, policies in which a minimum percentage of the forest must be preserved for this purpose have

been established.

It is intuitive to deduce that the larger the minimum area of native forest, the lower the economic

benefit such that the purpose of this experiment was to evaluate how relevant is the impact by testing

different percentages of native forest.

To this end, the minimum forest reserve area of the 12 core instances was varied with four

different values: BN1 = 2%, BN2 = 6%, BN4 = 14%, and BN5 = 16%, resulting in a total of 48

test instances.

Table 6: Results for the minimum forest reserve area experiment.
MA P 2 6 14 16

OV T OV T OV T OV T

30

5 $94.31 1.70 $92.69 15.07 $88.80 23.91 $87.67 13.23
6 $94.37 2.02 $92.84 9.57 $88.95 31.34 $87.80 12.59
10 $96.00 70.62 $94.36 402.06 $90.40 1657.08 $89.21 3602.28
12 $96.04 221.30 $94.37 491.40 $90.39 3600.78 $89.22 3600.00

40

5 $94.28 3.21 $92.66 23.48 $88.74 28.83 $87.62 44.07
6 $94.28 5.22 $92.69 18.98 $88.88 23.49 $87.64 46.89
10 $95.94 25.50 $94.26 60.19 $90.34 118.55 $89.17 1700.11
12 $95.92 90.87 $94.29 148.81 $90.39 599.67 $89.16 3600.00

50

5 $94.31 13.57 $92.71 31.72 $88.82 20.05 $87.66 26.70
6 $94.27 13.82 $92.71 17.87 $88.79 20.58 $87.64 40.25
10 $95.94 212.98 $94.32 228.60 $90.29 893.42 $89.13 3600
12 $95.90 1772.34 $94.27 689.46 $90.34 632.09 $89.14 2842.95

The results of this experiment are shown in Table 6. The first and second columns show the

maximum area and the number of periods, respectively. The third, fourth, fifth, and sixth columns

correspond to BN1, BN2, BN4, and BN5. Each one shows the objective value in millions of

Mexican pesos (OV) and the time in seconds (T). All the solutions were feasible and optimal.

Figure 6 shows the results obtained. Each row corresponds to a group of instances with the

same maximum area. The first column corresponds to the objective value obtained, and the second,

the time it took for the method to find the optimal solution. The groups are divided into four

subgroups that correspond to the periods considered for the core instances. For each period, the

set of four BN percentages previously defined in this experiment were evaluated.

As we can see from Table 6 and Figure 6, for a given fixed area and harvesting period, the best
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results are observed for the smallest value of BN = 2. As BN gets large, the objective function

decreases by about 5-9%. About the variation among periods for a fixed value of minimum forest

reserve area, it can be observed that harvesting every 5 or 6 years (P=12 or 10) yields better profits

than harvesting every 10 and 12 years (P=6 or 5). This result again is consistent with the previous

experiments.
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Figure 6: Results for the minimum forest reserve area experiment.
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Example of a Harvesting Planning

Figure 7 shows an optimal plan obtained for instance ins_urm_30_6_56_1_bayas_bigger, with a

max_area = 30, periods = 6, management units = 56, and default complementary parameters of

the instance required by the GURM, defined in Section 4.4, which correspond to the values of volume

variation percentage, the maximum distance between native forest units, the maximum distance

between management units, the minimum required area percentage of native forest, and years

required before harvesting a management unit that is adjacent to a recently treated management

unit.

We also solved the same instance but using the traditional URM model instead, that is, ignoring

the additional constraints stated in (2) and (6)-(11, with default values. This solution is shown in

Figure 8. Each color represents a period of harvesting, and in the case of the GURM, the white

color represents a management unit turned into a natural reserve, and the gray color represents a

sub-stand that was not considered in the harvesting.

Figure 7: Optimal harvest plan obtained with the GURM.
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Figure 8: Harvest planning obtained with the traditional URM

Note that by contrasting the harvesting plans in both Figures, the GURM, unlike the traditional

URM, enables a minimum area of native forest within a limited perimeter (see Figure 7, units in

white color). The GURM also hinders the harvesting of too distant units in the same period, and

thanks to the green-up barrier, it prevents the harvesting of neighboring units in consecutive periods.

For instance, in Figure 8, we can find harvesting prescriptions for adjacent units in consecutive

periods (1 and 2, 4 and 5, 5 and 6), while this is not observed in its counterpart in Figure 7, thanks

to the green-up constraints incorporated in our model.

5 Conclusions

In this paper, we proposed the extension of a model from the literature with environmental con-

straints to solve the forest harvesting problem with adjacency to optimize the harvesting of a

Mexican forest during a planning horizon. The model considered (GURM) was based on the Unit

Restriction Model (URM), which considers the management of units beforehand. The resulting

model GURM does not intend to compete with the ones from the literature in terms of maximiz-

ing harvesting profit but to maximize the profit while considering environmental constraints that

protect the wildlife and the forest.

Another observation from the experiments was that the maximum area inversely affected the

URM and GURM, larger areas resulted in a reduced number of management units in the URM
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model, thus reducing the computational time to solve the instance of the problem, but in this case,

at the expense of a reduced profit.

As for the GURM, the change of values in the different constraints caused decreases in the

OV of -3.23% at most for the default configuration. However, in most cases, the OV was hardly

affected, and there were instances in which this value increased when some constraint thresholds

were relaxed. Regarding the management and native forest distance constraints, the OV decreased

by 2.17% for the benchmark when the corresponding thresholds varied. Regarding the volume

threshold constraints by period, the OV decreased by 1.79% and increased by 0.28% compared to

the benchmark instance, as the values were restricted and relaxed, respectively. Green-up constraints

were among those that most negatively affected the objective value. In such a case, the economic

benefit decreased from 1.93 to 3.11% when different configurations were compared versus the default

setup. It was also observed that the native forest constraints significantly impacted the objective

value. When suppressed, the OV increased by 2.02%. When strengthened, the OV decreased up to

-3.23%.

Finally, in all experiments under all different factors, it was observed that harvesting every 5

or 6 years yields better profits than harvesting every 10 or 12 years. The current standard in the

Mexican system is to harvest every five years.

Future work may include implementing and reformulating other models, specifically, the Area

Restriction Method (ARM) that constructs a more extensive set of management units that could

potentially increase the profit obtained during the harvesting planning.
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