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Abstract

The uniform capacitated vertex k-center problem is an NP-hard combinatorial optimization problem
that models real situations where k centers can only attend a maximum number of clients, and the travel
time or distance from the clients to their assigned center has to be minimized. This paper introduces a
polynomial-time parallel constructive heuristic that exploits the relationship between this problem and the
minimum capacitated dominating set problem. Besides, the proposed heuristic is based on the one-hop
farthest-first heuristic that has proven effective for the uncapacitated version of the problem. We performed
different empirical evaluations of the proposed algorithm, including an analysis on the effect of parallel
computing, which significantly improved the running time for relatively large instances.

Keywords: Combinatorial optimization; Capacitated k-Center Problem; Heuristic search; Parallel heuristics.



1 Introduction

The uniform capacitated vertex k-center problem is an NP-hard problem from the family of Location
Problems [6, 22]. This problem receives as input a complete weighted graph G = (V,E) with edge weights
that follow a metric. Its goal is to find a set C ⊆ V with at most k centers and an assignment fC : V \C → C,
such that the number of vertices assigned to each center is at most L and the weight of the edge connecting
the farthest vertex to its assigned center is minimum [22]. Variables k, L ∈ Z+ are part of the input. In the
non-uniform version of the problem, there is a demand di ∈ Z+ and a capacity Li ∈ Z+ associated with each
vertex vi. The goal is to select centers and assign vertices to them in such a way that the total demand of
the vertices does not exceed the capacity of their assigned centers. However, in this paper, we deal with the
special case where the demand of every vertex is 1, and the capacity of each center is L, i.e., the uniform
version. A typical application of this problem is the location of facilities, such as police stations, hospitals,
supermarkets, and schools, in a context where the capacity of the facilities is limited and the travel time or
distance from the clients to the facilities has to be minimized.

Aditionally, the uniform capacitated vertex k-center problem is a generalization of the uncapacitated
vertex k-center problem. The only difference between these problems is that any number of vertices can be
assigned to each center in the uncapacitated version [19, 12, 20]. The heuristic introduced in this paper is
based on the main mechanism exploited by some of the most effective heuristics for the uncapacitated version
of the problem. We refer to this mechanism as the one-hop farthest-first heuristic [16]. While many algorithms
have been designed for the uncapacitated vertex k-center problem [19, 12, 20, 34, 27, 16, 30, 32, 17, 18],
much less has been proposed for the capacitated version.

The capacitated vertex k-center problem has been approached through different algorithmic perspectives,
such as exact, heuristic, metaheuristic, and approximation algorithms. Regarding exact algorithms, these
struggle to find optimal solutions for instances from benchmark datasets with just some hundreds of vertices
[26, 2, 23, 9]. Regarding heuristics and metaheuristics, they rely mostly on exploitation, and the experimental
evidence shows that they are among the fastest for finding near-optimal solutions [33, 29]. Finally, while
some conceptually simple algorithms achieve the best possible approximation factor for the uncapacitated
version (ρ = 2 under P 6= NP) [19, 20, 16], the best-known approximation algorithms for the capacitated
versions are conceptually more complicated and have an approximation factor of 6 and 9 for the uniform
and non-uniform versions, respectively [22, 3]. All the algorithms designed for the non-uniform version of
the problem can find solutions for the uniform version too. Nevertheless, this paper introduces a parallel
constructive heuristic specifically designed for the uniform version of the problem. This heuristic takes
advantage of the relationship between the uniform capacitated vertex kenter problem and the minimum
capacitated dominating set problem [9]. Besides, it is based on the one-hop farthest-first heuristic [16].

The remaining part of the document is organized as follows. Section 2 presents a brief literature review
for the capacitated vertex k-center problem, including a reduction from the uniform version of the problem
to the minimum capacitated dominating set problem. Based on this reduction, Section 3 introduces the
proposed heuristic and the parallel computing strategy that improves its performance. Specifically, we used
the Single Instruction Multiple Data model (SIMD) [15]. Section 4 presents an empirical evaluation of the
proposed heuristic. Finally, Section 5 presents the concluding remarks and possible future work.
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2 The uniform capacitated vertex k-center problem

The uniform capacitated vertex k-center problem is an NP-hard problem that receives as input a complete
weighted graph G = (V,E) and two positive integers k and L. The goal is to find a set C ⊆ V with at
most k vertices and an assignment fC : V \C → C, such that the weight of the edge connecting the farthest
vertex v ∈ V \ C to its assigned center c ∈ C is minimum. Besides, the number of vertices assigned to each
center cannot be greater than L. Equation 1 shows the fitness function of the problem where r(C, fC) must
be minimized:

r(C, fC) = max
v∈V \C

w({v, fC(v)}) (1)

where

• C ⊆ V is the set of centers,

• fC : V \ C → C is an assignment, where ∀v ∈ C, |{(u, v) ∈ fC}| ≤ L,

• and w({v1, v2}) is the weight of edge {v1, v2}.

Among the approximation algorithms for this problem are the 10-approximation algorithm of Barilan
et al. [4], the 6-approximation algorithm of Khuller and Sussmann [22], and the 6-approximation algorithm
of An et al. [3]. To date, no one has found an algorithm with a better approximation factor for this problem.
In the case of the non-uniform capacitated vertex k-center problem, the situation is not better; the best-
known approximation algorithm generates 9-approximated solutions [3]. Now, since the uniform version of
the problem is a particular case of the non-uniform version, all the algorithms designed for the non-uniform
version get feasible solutions for the uniform version too. Regarding heuristic and metaheuristic algorithms
for the non-uniform version, most of them are based on a constructive phase followed by local search.
These include Greedy Randomized Adaptive Search Procedures (GRASP) [28], Large-Scale Local Search
[33], Iterated Greedy Local Search [28, 29], and Variable Neighborhood Descent [28, 29]. The experimental
evidence shows that these algorithms are among the fastest for finding near-optimal solutions. Regarding
exact algorithms, there are some proposals based on Integer and Mixed Integer Programming formulations
[26, 23, 2]. As expected, solving these formulations becomes rapidly impractical as the input size grows. All
the mentioned heuristics and metaheuristics are sequential, while the algorithm proposed in this paper has
been designed to exploit parallelization as much as possible.

Through experimentation, many authors have observed that the exact resolution of the classical formu-
lations for the uncapacitated and capacitated vertex k-center problems tends to be very time-consuming
[25, 26]. For this reason, many alternative integer programming or mixed integer programming formulations
have been proposed for both problems [8, 10, 21, 13, 1, 7, 5, 2, 26]. Some of these formulations are based on
the relationship between the vertex k-center problem and other NP-hard problems, such as the minimum
dominating set problem [10, 24]. As an instance, Expressions (2) to (7) introduces a quadratic integer pro-
gramming formulation for the uniform capacitated vertex k-center problem. This formulation is based on a
reduction from this problem to the minimum capacitated dominating set problem. The following definitions
may help understand this formulation.

2



Definition 2.1. Given a graph G = (V,E), a dominating set is a set D ⊆ V such that for every vertex
v ∈ V \D, there is a vertex u ∈ D such that {v, u} ∈ E.

Definition 2.2. A minimum dominating set is a set of minimum cardinality among all the dominating sets.

Definition 2.3. Given a graph G = (V,E), and a capacity function fcap : V → Z+. A capacitated dominat-
ing set D ⊆ V is a set such that every vertex v ∈ V \D is assigned to some vertex u ∈ D ∩N(v), and the
number of vertices assigned to each vertex u ∈ D is not greater than its capacity fcap(u), where N(u) is the
open neighborhood of u ∈ V .

Definition 2.4. A minimum capacitated dominating set is a set of minimum cardinality among all the
capacitated dominating sets.

Definition 2.5. Given a weighted graph G = (V,E), a bottleneck graph Gr = (V,Er) is such that Er consists
of all the edges in E with weight less than or equal to r.

Theorem 1. The minimum capacitated dominating set over the bottleneck graph Gr∗ = (V,Er∗) is the
optimal solution to the capacitated vertex k-center problem over the original input graph G = (V,E), where
r∗ is the size of the optimal solution to the latter problem [9].

It is well established that the uncapacitated vertex k-center problem is equivalent to the minimum
dominating set problem when the size r(C∗) of the optimal solution C∗ is known ahead of time [24, 17,
11]. This same situation occurs with the capacitated vertex k-center, which is equivalent to the minimum
capacitated dominating set problem when the size r(C∗, fC∗) of the optimal solution (C∗, fC∗) is known ahead
of time (Theorem 1) [9]. The following quadratic integer programming formulation models this problem.

minimize
n∑
i=1

yi (2)

subject to
n∑
i=1

xij ≤ L ∀j ∈ {1, 2, ..., n} (3)

n∑
i=1

xji = 1− yj , ∀j ∈ {1, 2, ..., n} (4)

xij ≤ yj , ∀i, j ∈ {1, 2, ..., n} (5)

xij ≤ aij , ∀i, j ∈ {1, 2, ..., n} (6)

xij , yi ∈ {0, 1}, ∀i, j ∈ {1, 2, ..., n} (7)

where

aij =

1, if w({vi, vj}) ≤ r(C∗, fC∗) and i 6= j

0, otherwise
(8)

In this formulation, the variables yi ∈ {0, 1} indicate which vertices are part of the minimum capacitated
dominating set. Namely, if yi = 1, then vi is in the minimum capacitated dominating set. For convenience,
let us refer to these vertices as centers. The variables xij ∈ {0, 1} indicates which vertices are assigned to
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which center, constraint (3) guarantees that the number of vertices assigned to each center is not greater
than L, constraint (4) indicates that every non-center vertex has to be assigned to exactly one center and
that centers must not be assigned to any other center. Finally, constraint (5) indicates that every non-center
vertex has to be assigned only to centers and constraint (6) indicates that every non-center vertex can be
assigned only to vertices in its neighborhood, which is established by the size r(C∗, fC∗) of the optimal
solution (C∗, fC∗) for the uniform capacitated vertex k-center problem [9].

In summary, in the same way that the uncapacitated vertex k-center problem can be reduced to the
minimum dominating set problem [24, 11, 17], the uniform capacitated vertex k-center problem can be
reduced to the minimum capacitated dominating set problem [9]. Since many successful heuristics for the
uncapacitated version are based on this relationship, we conjecture that the capacitated version can be
approached similarly [16, 20, 32]. However, to exploit this relationship, the size r(C∗, fC∗) of the optimal
solutions has to be known in advance, which is not possible for arbitrary graphs. However, this issue can
be lessened by performing binary search over the set of possible values of r(C∗, f∗C). At each iteration, the
minimum capacitated dominating set problem is heuristically approached over the bottleneck input graph
G = (V,Er), where r is a guess on the actual value of r(C∗, f∗C). The following section illustrates the specifics
of this algorithm.

3 Proposed heuristic

This section introduces a new parallel constructive polynomial-time heuristic for the uniform capacitated
vertex k-center problem. We refer to this proposal as the OHCKC heuristic. This heuristic is based on
the relationship between the uniform capacitated vertex k-center problem and the minimum capacitated
dominating set problem. Besides, it generalizes the one-hop farthest-first heuristics for the uncapacitated
version [17, 16]. Another essential feature that distinguishes OHCKC from other heuristics from the literature
is that it exploits parallelization. Algorithm 1 shows the pseudocode of the OHCKC heuristic.

In order to exploit the relationship between the uniform capacitated vertex k-center problem and the
minimum capacitated dominating set problem, the size of the optimal solution of the former problem must
be known in advance. One way to sort this out is by solving the minimum capacitated dominating set
problem with all the possible values of the solution size, which are the elements of the set of edge weights.
Nonetheless, since there are (n2 − n)/2 edges, this can be very time-consuming, where n = |V |. So, in order
to get a more practical execution time, the proposed heuristic executes a binary search over the ordered
set of edge weights. Conceptually, OHCKC (Algorithm 1) is similar to the exact procedure reported in
Cornejo Acosta et al. [9]. However, instead of solving each minimum capacitated dominating set problem
to optimality, the proposed heuristic uses the GetFeasibleSolution procedure to get a near-optimal feasible
solution (line 9 of Algorithm 1). The GetFeasibleSolution procedure is based on a mechanism used by the
CDSh heuristic, which is among the algorithms for the uncapacitated version of the problem with better
practical performance [16]. We refer to this mechanism as the one-hop farthest-first heuristic.

Due to its heuristic nature, GetFeasibleSolution will not necessarily return optimal solutions. For this
reason, the proposed heuristic has to keep track of the best solution (C, fC) that has been returned (lines 10
to 13 of Algorithm 1). Then, every time a better solution is found, high is set to mid− 1, allowing to keep
searching for a better solution. Otherwise, low is set to mid + 1 (lines 14 to 18 of Algorithm 1). Finally,
it may be the case that the binary search (lines 6 to 19) returns a solution with less than k centers. If
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Algorithm 1: OHCKC
Input: A complete graph G = (V,E), a positive integer k, a positive integer L, and a non-decreasing

list of the m edge weights of G, i.e., w(e1), w(e2), ..., w(em), where w(ei) ≤ w(ei+1)

Output: A set of vertices C ⊆ V , |C| ≤ k,
and an assignment fC : V \ C → C

1 high = m ;
2 low = 1 ;
3 C = ∅ ;
4 fC = ∅ ;
5 r(C) =∞ ;
6 while low ≤ high do
7 mid = b(high+ low)/2c ;
8 r = w(emid) ;
9 (C ′, fC′) = GetFeasibleSolution(G, k, r, L) ;

10 if r(C ′) ≤ r(C) then
11 (C, fC) = (C ′, fC′) ;
12 r(C) = r(C ′) ;
13 end
14 if r(C) ≤ w(emid) then
15 high = mid− 1 ;
16 else
17 low = mid+ 1 ;
18 end
19 end

// Optional
20 if |C| < k then
21 convert the k − |C| farthest vertices into centers ;
22 end

// Optional
23 foreach ci ∈ C do
24 X = dom(fci) ∪ ci ;
25 cj = arg minu∈X{maxv∈X{distance(u, v)}} ;
26 fC = fC \ fci ;
27 foreach v ∈ X \ {cj} do
28 fC = fC ∪ {(v, cj)} ;
29 end
30 end
31 return (C, fC) ;
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this happens, lines 20 to 22 of Algorithm 1 will complete the solution by converting the farthest non-center
vertices into centers. This way, the farthest vertices, which define the size of the solution, are unassigned so
that the solution size may be reduced. Then, lines 23 to 30 of Algorithm 1 will solve the 1-center problem
over the set of vertices assigned to each center. These two last procedures are optional, but they may improve
the solution’s fitness. Besides, they do not increase the overall complexity of the heuristic.

Algorithm 2 shows the pseudocode of GetFeasibleSolution, which is a crucial piece of OHCKC. This
algorithm iteratively constructs a feasible solution starting from the empty set. However, it first constructs
a bottleneck graph Gr = (V,Er) from the original input graph (line 4 of Algorithm 2). Namely, all the edges
with cost greater than r are removed. Then, at every iteration i ∈ Z+, 1 ≤ i ≤ k, it computes each vertice’s
score, which is the number of vertices in its neighborhood not assigned to any center,

∀v ∈ V, score(v) = |{u ∈ V : u ∈ NGr
(v) ∧ u 6∈ ∪j=i−1j=1 ({cj} ∪ dom(fcj ))}| (9)

where,

• i - current iteration i ∈ Z+, 1 ≤ i ≤ k.

• NGr
(v) - open neighborhood of vertex v over the bottleneck graph Gr.

• C - set of centers.

• cj - center added to C at iteration j.

• ∪j=i−1j=1 {cj} - set of centers selected before iteration i.

• fC - assignment of vertices.

• fcj - subset of the assignment that contains only duples of the form (u, cj).

• dom(fcj ) - set of vertices assigned to center cj .

Thus, ∪j=i−1j=1 ({cj} ∪ dom(fcj )) is the set of centers that have been selected at previous iterations, along
with the vertices that have been assigned to them. Now, at the beginning of GetFeasibleSolution, none vertex
has been assigned (line 3 of Algorithm 2); therefore, the score of each vertex is initialized to |NGr

(v)| (lines
5 to 7 of Algorithm 2). Next, the algorithm tries to find a solution for the minimum capacitated dominating
set problem over the bottleneck graph Gr (lines 8 to 23 of Algorithm 2). To do this, GetFeasibleSolution
iteratively adds vertices of high score in the neighborhood of the farthest unassigned vertex to the set of
already selected centers. At the same time, tries to minimize the distance from the unassigned vertices to
their farthest center. This can be done in two different ways. The first one corresponds to the original
definition of the Critical Dominating Set procedure defined by the CDSh heuristic [16, 17] (lines 12 to 15
of Algorithm 2) and the second one corresponds to DistanceBasedSelection (line 11 of Algorithm 2). These
two pseudocode segments return a duple (ci, fci), i.e., a center and its assigned vertices. Let us leave the
description of these two pseudocode segments for later. For now, let us describe what happens once the
duple (ci, fci) is generated. Once having duple (ci, fci), the score of every vertex is updated. That is, every
assigned vertex v ∈ dom(fci)∪{ci} reduces the score of its neighbors in one unit (lines 17 to 21 of Algorithm
2). The score of the neighbors of ci is also updated because once a vertex is chosen as a center, it should
not be covered by any center.
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In summary, a center ci of high score is selected fromNGr [vf ] at every iteration i of theGetFeasibleSolution
procedure, where vf is the farthest unassigned vertex from the current partial solution C (line 9 of Algorithm
2). Since solution C is initialized as the empty set (line 2 of Algorithm 2), the vertex vf is selected at random
at iteration i = 1. Notice that by selecting centers of high score from NGr

[f ], we are exploiting the following
intuitive observations. First, since the uniform capacitated vertex k-center problem aims to minimize the
distance from the farthest vertex in V to its assigned center, it is necessary to assign the farthest vertex vf
to a center that is close to it, i.e., that is in its neighborhood. Secondly, by greedily selecting a center of high
score we are taking the best local decision that brings us closer to a minimum capacitated dominating set.

Now, we proceed to describe the two different ways for generating duples (ci, fci). As said before, the first
one corresponds to the original definition of the Critical Dominating Set procedure of the CDSh heuristic
[16, 17] (lines 12 to 15 of Algorithm 2) which consists in selecting as a center ci a vertex v ∈ NGr

[vf ] of
maximum score (line 13 of Algorithm 2). Afterwards, all the vertices in NGr

[ci] not yet assigned to any other
center are assigned to it (line 14 of Algorithm 2). This way of selecting a center will only be executed when
the score of all the elements of NGr

[vf ] is less than or equal to L. In other words, under these circumstances,
the capacity constraint can be ignored, and the algorithm will work just like the original CDSh heuristic,
where the goal is to select as center a vertex that maximizes the number of assigned vertices. However,
if there is at least one element of NGr [vf ] with score greater than L (line 10 of Algorithm 2), then the
selection of center ci and the assignment of vertices is made in a more elaborated manner. Here is where
DistanceBasedSelection comes into play (line 11 of Algorithm 2).

To give a more precise explanation, let us describe the DistanceBasedSelection procedure through a
specific test graph. Figure 1 shows this graph, which is a complete graph G = (V,E) with V = {v1, v2, . . . , v6}
and E given by the distance matrix of Table 1. The other input variables are k = 2 and L = 2. Namely, we
want to select two centers and assign no more than two vertices to each one. Now, given a covering radius
r = 4, the bottleneck graph Gr corresponds to Figure 2. We use r = 4 because this is precisely the size of
the optimal solution for this specific instance.

v1 v3 v5v2 v4 v6

Figure 1: A test graph G.

From Figure 2, we can observe that the initial score (lines 8 to 10 of Algorithm 2) of each vertex is:
score(v1) = 3, score(v2) = 3, score(v3) = 3, score(v4) = 4, score(v5) = 2, and score(v6) = 1. Notice that
we are not considering self-loops. Then, a vertex vf of maximal distance to the partial solution C is selected
(line 9 of Algorithm 2). Since at the beginning C is the empty set, the vertex vf is selected at random. In
our example, we selected vf = v1. Then, line 10 of Algorithm 2 checks if vertex vf or any of its neighbors,
NGr

[vf ] = {v1, v2, v3, v4}, has a score greater than L = 2. In this case, all vertices in {v1, v2, v3, v4} have a
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Algorithm 2: GetFeasibleSolution
Input: A complete graph G = (V,E), a positive integer k, a covering radius r, and a capacity L
Output: A set of vertices C ⊆ V , |C| = k, and an assignment fC : V \ C → C

1 // NGr (v) is the set of neighbors of v in Gr ;
2 C = ∅ ;
3 fC = ∅ ;
4 Gr = BottleneckGraph(G, r) ;
5 foreach v ∈ V do
6 score(v) = |NGr (v)| ;
7 end
8 for i = 1 to k and |fC | < |V \ C| do
9 vf = A vertex v ∈ V ∧ v /∈ dom(fC) ∪ C such that distance(v, C) is maximal ;

10 if ∃v ∈ NGr
[vf ] \ (dom(fC) ∪ C) : score(v) > L then

11 (ci, fci) = DistanceBasedSelection(G,Gr, vf , C, L, fC) ;
12 else
13 ci = A vertex v ∈ NGr

[vf ] ∧ v /∈ dom(fC) ∪ C of maximum score ;
14 fci = {(u, ci) : u ∈ NGr

(ci) ∧ u /∈ dom(fC) ∪ C };
15 end
16 fC = fC ∪ fci ;
17 foreach v ∈ dom(fci) ∪ {ci} do
18 foreach u ∈ NGr

(v) do
19 score(u) = score(u)− 1 ;
20 end
21 end
22 C = C ∪ {ci} ;
23 end
24 foreach v ∈ V \ (dom(fC) ∪ C) do
25 cj = Nearest center in {ci : ci ∈ C ∧ |fci | < L} to v ;
26 fC = fC ∪ {(v, cj)} ;
27 end
28 return (C, fC) ;
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Algorithm 3: DistanceBasedSelection heuristic
Input: A complete graph G = (V,E), a bottleneck graph Gr = (V,Er), a vertex vf ∈ V , a set of

centers C, a positive integer L, and the assignment of already assigned vertices fC
Output: A center c′ and an assignment fc′ : V ′ → {c′}, where V ′ ⊆ V \ C

1 c′ = null ;
2 fc′ = ∅ ;
3 d =∞ ;
4 foreach v ∈ NGr [vf ] ∧ v /∈ dom(fC) ∪ C : score(v) > L do
5 vref = A vertex u ∈ V such that distance(u,C ∪ {v}) is maximal ;
6 fv = {(u, v) : u ∈ FL} , where FL is the set of the L farthest vertices in NGr

(v) \ (dom(fC) ∪C)
to vref ;

7 dv = distance(vref , u) , where u is the (L+ 1)th farthest vertex in NGr
(v) \ (dom(fC) ∪ C) to

vref ;
8 if dv < d then
9 d = dv ;

10 (c′, fc′) = (v, fv);
11 end
12 end
13 return (c′, fc′) ;

Table 1: Distance matrix for the test graph G
v1 v2 v3 v4 v5 v6

v1 0 1 2 3 7 8
v2 1 0 1 2 6 7
v3 2 1 0 1 5 6
v4 3 2 1 0 4 5
v5 7 6 5 4 0 1
v6 8 7 6 5 1 0

Table 2: Reference matrix for the test graph G
Farthest neighbors

v1 v6 v5 v4 v3 v2 v1
v2 v6 v5 v4 v1 v3 v2
v3 v6 v5 v1 v2 v4 v3
v4 v6 v5 v1 v2 v3 v4
v5 v1 v2 v3 v4 v6 v5
v6 v1 v2 v3 v4 v5 v6

score greater than L = 2 (see Figure 3).
The next step is the execution of DistanceBasedSelection (Algorithm 3), which consists of a loop that

iterates over the set of vertices that are candidates to be selected as a center. The elements of this set are
the vertices v ∈ NGr [vf ] with a score greater than L = 2 not yet covered by any center. In our example,
this set is {v1, v2, v3, v4}. Starting with vertex v1, DistanceBasedSelection selects a vertex vref of maximum
distance from C ∪ {v1}. Since C is initialized as the empty set, then C ∪ {v1} = {v1}; thus, vref = v6.
Next, the farthest L vertices from NGr

(v1) \ (dom(fC) ∪ C) to vref are assigned to v1, where fC is the
assignment of the already assigned vertices (to this point, fC = ∅). The intuition behind this method is
that some center will be selected from the neighborhood of the farthest vertex from C at the next iteration,
which will be vref if vertex v1 is selected as a center. Thus, it is convenient to keep the distance from the
unassigned vertices to vref as small as possible. Following our example, the distance from vref to each vertex
in NGr (v1)\(dom(fC)∪C) = {v2, v3, v4, v5, v6} is consulted from the original input graph G; these values are
ordered. Then, the L farthest vertices from vref are assigned to vertex v1. This way, fv1 = {(v2, v1), (v3, v1)}
and the distance from vref to its farthest vertex v ∈ (NGr

[v1]) \ (dom(fv1)∪{v1}∪ dom(fC)∪C) is assigned
to variable dv (see Figure 4 and Expression 10). Next, this same process is repeated for v2, v3, and v4.
Figures 5-7 and Expressions 11-13 show the resulting values. Be aware that for each of these vertices, its
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v1 v3 v5v2 v4 v6

Figure 2: Bottleneck graph Gr with r = 4.

NGr
[vf ]

vf

v1 v3 v5v2 v4 v6

Figure 3: From NGr
[vf ] all vertices in {v1, v2, v3, v4} have score greater than L = 2.

vref vertex may be different. In this case, vref was coincidentally the same for all vertices. Finally, the vertex
selected as a center is the one in {v ∈ V : v ∈ NGr [vf ] ∧ v /∈ dom(fC)∪C ∧ score(v) > L} = {v1, v2, v3, v4}
with minimum dv. In this case, vertices v1, v2, and v3 have the same value dv1 = dv2 = dv3 = 5. So, we
can select any of them as a center, let’s say v2. Then, the DistanceBasedSelection heuristic (Algorithm 3)
returns the pair (c′, fc′) = (v2, fv2) to GetFeasibleSolution (Algorithm 2), which will add center ci = v2 to
the current solution C (line 22 of Algorithm 2) and will update the set of assigned centers fC = fC ∪ fci ,
where fci = fv2 (line 16 of Algorithm 2). Finally, it keeps iterating until solution C is completed or the
condition V \(dom(fC)∪C) = ∅ is met. At last, if there are some unassigned vertices v ∈ V \(dom(fC)∪C),
each one of them is assigned to its nearest center c ∈ C with enough capacity (lines 24 to 27 of Algorithm
2).

vref

fv1 = {(v2, v1), (v3, v1)}

v1 v3 v5v2 v4 v6

dv1 = 5

Figure 4: Vertices in {v2, v3} are assigned to v1.
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d(vref , v6) ≤ d(vref , v5) ≤ d(vref , v4) ≤ d(vref , v3) ≤ d(vref , v2)
0 ≤ 1 ≤ 5 ≤ 6 ≤ 7︸ ︷︷ ︸ ︸ ︷︷ ︸

dv1 = 5 FL = {v2, v3}

(10)

vref

fv2 = {(v1, v2), (v3, v2)}

v1 v3 v5v2 v4 v6

dv2 = 5

Figure 5: Vertices in {v1, v3} are assigned to v2.

d(vref , v6) ≤ d(vref , v5) ≤ d(vref , v4) ≤ d(vref , v3) ≤ d(vref , v1)
0 ≤ 1 ≤ 5 ≤ 6 ≤ 8︸ ︷︷ ︸ ︸ ︷︷ ︸

dv2 = 5 FL = {v1, v3}

(11)

vref

fv3 = {(v1, v3), (v2, v3)}

v1 v3 v5v2 v4 v6

dv3 = 5

Figure 6: Vertices in {v1, v2} are assigned to v3.

d(vref , v6) ≤ d(vref , v5) ≤ d(vref , v4) ≤ d(vref , v2) ≤ d(vref , v1)
0 ≤ 1 ≤ 5 ≤ 7 ≤ 8︸ ︷︷ ︸ ︸ ︷︷ ︸

dv3 = 5 FL = {v1, v2}

(12)

d(vref , v6) ≤ d(vref , v5) ≤ d(vref , v3) ≤ d(vref , v2) ≤ d(vref , v1)
0 ≤ 1 ≤ 6 ≤ 7 ≤ 8︸ ︷︷ ︸ ︸ ︷︷ ︸

dv4 = 6 FL = {v1, v2}

(13)

3.1 Complexity analysis

This section presents the complexity analysis of the proposed OHCKC heuristic (Algorithm 1), which consists
of a binary search that calls GetFeasibleSolution (Algorithm 2) and DistanceBasedSelection (Algorithm 3).
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vref

fv4 = {(v1, v4), (v2, v4)}

v1 v3 v5v2 v4 v6

dv4 = 6

Figure 7: Vertices in {v1, v2} are assigned to v4.

3.1.1 DistanceBasedSelection

DistanceBasedSelection (Algorithm 3) begins by computing set {v ∈ V : v ∈ NGr
[vf ] ∧ v /∈ dom(fC) ∪C ∧

score(v) > L} in O(n) steps by exploring the whole set V , where |V | = n (line 4). The next loop (lines 4 to
12) is executed one time for each element of {v ∈ V : v ∈ NGr [vf ] ∧v /∈ dom(fC)∪C ∧ score(v) > L}, which
has a cardinality of at most n. By keeping track of the distance from every vertex v ∈ V to set C, selecting
vertex vref takes O(n) steps (line 5). Then, line 6 requires computing a set FL ⊆ NGr

(v) \ (dom(fC) ∪ C)
containing the L farthest vertices from NGr (v) \ (dom(fC) ∪ C) to vref . We can get FL in at most O(n)

steps if we compute the reference matrix of Table 2. With this matrix, we can efficiently find the farthest
vertices of any given vertex. Otherwise, every time we need to get set FL, we would first need to get the set
NGr

(v) \ (dom(fC)∪C) in O(n) steps, and after that, we would need to sort its elements according to their
distances from vref . Since the best sorting algorithms run in O(n log n) steps, we would need to perform
as many computations to obtain FL. So, it is preferable to execute line 6 by using the reference matrix of
Table 2. Although computing this reference matrix requires O(n2 log n) steps, it is computed only once at the
beginning of the algorithm. Next, the distance dv from the (L+1)th farthest vertex v ∈ NGr

(v)\(dom(fC)∪C)
to vref can be obtained from line 6. Thus, line 7 does not increase the algorithm’s complexity. Finally, vertex
v and its corresponding assignment fc′ with minimum dv are returned (lines 8 to 11 and line 13). To sum
up, the complexity of the whole DistanceBasedSelection heuristic is O(n) times O(n), namely O(n2).

3.1.2 GetFeasibleSolution

GetFeasibleSolution (Algorithm 2) begins by creating a bottleneck graph from the input graph G (line 4).
This takes O(n2) steps due to checking every edge in the graph. Then, we have to compute the score of each
vertex in V (lines 5 to 7). This computation takes O(n2) steps because the neighborhood of each vertex is
explored. Then, the loop from lines 8 to 23 is repeated at most k times. At each iteration, the following
actions take place. By keeping track of the distance from the vertices to C, getting an unassigned vertex vf
of maximal distance to C takes O(n) steps. To obtain the set (NGr [vf ]) \ (dom(fC) ∪ C) takes O(n) steps
too. If the condition of line 10 is met, the O(n2) DistanceBaseSelection algorithm (Algorithm 3) is executed.
Otherwise, lines 13 and 14 are executed in O(n) steps. So, the complexity from lines 10 to 15 is O(n2). Then,
from line 17 to 21 the score of each vertex is updated. To do so, the score of the neighbors of every vertex
in dom(fci) ∪ {ci} is reduced in one unit. Therefore, the complexity of the score update at each iteration is
O(n · |dom(fci) ∪ {ci}|). Recall that once a vertex is assigned to some center ci, it cannot be reassigned to
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another center cj (i 6= j). Thus, the collection of fci sets define a partition over fC , where i ∈ {1, 2, ..., k}.
So, n · |fC1

∪{c1}|+n · |fC2
∪{c2}|+ · · ·+n · |fCk

∪{ck}| = n(|fC1
∪{c1}|+ |fC2

∪{c2}|+ · · ·+ |fCk
∪{ck}|) = n2.

Therefore, the complexity of the score updating is O(n2). Finally, lines 24 to 27 check for unassigned vertices
and assign each one of them to its nearest center with enough capacity. The complexity of this last assignment
is O(kn) because each vertex v ∈ V has to compare its distance to every center c ∈ C with enough capacity.
In conclusion, the overall complexity of Algorithm 2 is O(k) times O(n2), which is O(kn2).

3.1.3 Overall complexity of OHCKC

The OHCKC heuristic (Algorithm 1) performs a binary search over the non-decreasing ordered list of edge
weights (|E| = m), which takes O(log n) steps. The GetFeasibleSolution procedure is executed at each itera-
tion of the binary search (Algorithm 2). So, the overall complexity of the OHCKC heuristic is O(log n) times
the complexity of GetFeasibleSolution, which is O(kn2). Thus, the complexity of OHCKC is O(kn2 log n).
Finally, the last parts (lines 20 to 30) are optional. Lines 20 to 22 aim to compute a solution with exactly
k centers. Lines 23 to 30 aim to perform an adjustment over each formed cluster by solving the 1-center
problem. The complexity of these last operations is lower than O(kn2 log n), so they do not affect the overall
complexity of the proposed OHCKC heuristic. Now, notice that the capacity constraints can be ignored for
L ≥ n, and the problem becomes the uncapacitated vertex k-center problem. Under this scenario, OHCKC
will never execute the GetFeasibleSolution heuristic because there will not be vertices with score greater
than L (line 13 of Algorithm 2). Thus, OHCKC will behave exactly as the CDSh heuristic, which has a
complexity of O(n2 log n). In this sense, the OHCKC heuristic generalizes the CDSh heuristic.

3.2 Integrating parallel computing

One of the advantages of our proposal is that its runtime performance can be improved by using parallel
computing. Specifically by using the SIMD model [15]. This model is particularly applicable to tasks where
it is possible to perform the same computations over multiple input data simultaneously. Fortunately, our
proposal has some segments with this characteristic: the DistanceBasedSelection procedure (Algorithm 3)
and the computation of vertices’ scores (lines 5-7 and 17-21 of Algorithm 2). As described before, the
DistanceBasedSelection receives as input a farthest vertex vf . Then, its closed neighborhood NGr [vf ] is
explored in order to get a pair (c′, fc′) with minimum dv. Since the inspection of each element v ∈ NGr

[vf ]

is independent of the others, this procedure can be parallelized. Thus, multiple processing units can work
together to explore the closed neighborhood NGr

[vf ] in order to find the pair (c′, fc′) more quickly. Taking
Figure 3 as an example, we have two processing units, pu1 and pu2. The set NGr [vf ] can be partitioned
so that pu1 explores {v1, v2} and pu2 explores {v3, v4}. This way, pu2 obtains the pair (c3, fv3) while pu1
obtains the pair (c2, fv2). From these, the one with the minimum dv is selected. Note that pu1 could have
obtained pair (c1, fv1) as well because dv1 = dv2 .

For computing vertices’ scores (lines 5-7 and 17-21 of Algorithm 2) the approach is similar. First, the set
V is partitioned by the number of processing units (lines 5-7 of Algorithm 2). Then, each processing unit
simultaneously computes the score of the vertices in a partition element. Regarding the score update (lines
17-21 of Algorithm 2), the parallel computing strategy works as follows. Given a center and its assigned
vertices fci , for each v ∈ dom(fci) ∪ {ci} the open neighborhood NGr (v) is partitioned by the number of
processing units. Then, the elements of the partition are simultaneously processed.
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4 Empirical analysis

This section presents an empirical analysis of the OHCKC heuristic (Algorithm 1), and the OHCKC+
heuristic, where the OHCKC+ heuristic consists in executing the OHCKC heuristic n times, starting with
a different center each time. All the executions of our proposal performs the optional parts of Algorithm
1. To test the algorithms we used three different datasets: A, B, and C. The purpose of each dataset is
different. So, we separate each experimentation on different subsections. In all datasets, we used values of
k ∈ {5, 10, 20, 40}. The values of L were selected as the smallest integer that ensures that all vertices can
be assigned to the set of centers, including a 5% and 10% variation, i.e., L ∈ {d(n − k)/ke, dd(n − k)/ke ·
1.05e, dd(n − k)/ke · 1.1e}. The main reason for selecting these values is that as the capacity increases, the
problem comes closer to the uncapacitated version, which is relatively easier.

The goal of the experimentation over dataset A is to evaluate how the proposed OHCKC heuristic
compares against a similar constructive heuristic from the literature. In this experimentation, only the
fitness of the generated solutions is compared. The goal of the experimentation over dataset B is to evaluate
the effect of the parallelization strategy. Namely, we compute the speedup of the implemented algorithm
using a supercomputer with 32 physical cores. Finally, the goal of the experimentation over dataset C is to
evaluate both fitness and running time of the OHCKC heuristic.

4.1 Constructive heuristic comparison

Dataset A consists of random instances generated with a uniform random distribution (prefix URDI) from
a two-dimensional Euclidean plane with n ∈ {100, 150, 200, 250}. For each size, 30 instances were generated.
We selected these values because the instances had to be solved optimally, and bigger instances could not
be solved in a reasonable amount of time.

The goal of the experiments carried out over dataset A is to show that the solutions generated by OHCKC
are competitive with regard to the solutions generated by a similar heuristic from the literature. The selected
heuristic corresponds to the constructive phase of a Variable Neighborhood Descent metaheuristic for the
capacitated vertex k-center problem [29]. It is important to emphasize that we only used the constructive
phase to keep a fair comparison. Otherwise, we would be comparing the deterministic polynomial-time
OHCKC heuristic against a stochastic non-polynomial-time metaheuristic with exploration and exploitation
components.

Although the constructive phase mentioned above is a heuristic based on the p-dispersion problem, it
generates feasible solutions for the uniform capacitated vertex k-center problem. We refer to this heuris-
tic as PDISP [14, 29]. This heuristic has a random initialization, and according to our experimentation
it is very sensitive to randomness. So, we removed its randomness, resulting in a O(n2 + L3(n − k)) de-
terministic heuristic with an empirically improved performance. One difference between the PDISP and
OHCKC heuristics is that the assignment of the first is defined as fC : V → C, while it is defined
as fC : V \ C → C in the latter. In other words, OHCKC does not assign centers to other centers,
while PDISP does. However, since the PDISP heuristic always assigns each center to itself, we can per-
form a fair comparison if the PDISP heuristic is executed with capacity values L + 1. Table 3 shows
the results obtained by OHCKC and PDISP over dataset A. Column µ corresponds to the average fit-
ness obtained from the 30 instances for each heuristic. The column with the check symbol Dcorresponds
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to the number of instances in which each heuristic obtained a better solution. The column GAP cor-
responds to the average GAP = ( µ

OPT − 1) · 100% over the 30 instances, where OPT is the size of the
optimal solution. To compute the optimal solutions we used the exact algorithm reported in Cornejo Acosta
et al. [9]. We also performed the Mann–Whitney U nonparametric statistical test (a.k.a. Wilcoxon rank-
sum test). We used the implementation of the Statistics package of the Apache Commons Math library
https://commons.apache.org/proper/commons-math/userguide/stat.html. The tested null hypothesis
H0 is that there is no difference in the performance of the heuristics. The alternative hypothesis H1 is that
such difference exists. The column p corresponds to the p-value of the test and column α corresponds to
significance levels with the corresponding test results. A value of 1 means a rejection of H0. Table 3 shows
that the OHCKC heuristic achieved a lower GAP in most cases. In addition, the OHCKC heuristic was
able to find better solutions for most instances. There are some particular configurations where the number
of checked instances for both heuristics is very similar, such as URDI-150 with k = 10 and L = 16, and
URDI-250 with k = 5 and L = 54. Besides, the Wilcoxon rank-sum test rejects H0 in most cases. Thus,
for such cases, there is enough statistical evidence to conclude that the OHCKC heuristic outperforms the
PDISP heuristic.

Regarding running time, the PDISP heuristic has complexity O(n2+L3(n−k)) and the OHCKC heuristic
O(kn2 log n). This implies that PDISP tends to be faster for small values of L and large values of k, while
OHCKC is faster for small values of k.

4.2 Parallelization analysis

Dataset B consists of relatively large instances with 1000, 2000, 3000, 4000, and 5000 vertices (one instance
for each size). This experimentation aims to quantify the benefit of using the SIMD parallel computing ap-
proach into the OHCKC heuristic. Table 4 shows a comparison between sequential OHCKC and parallelized
OHCKC, where the parallel version was executed with 2, 4, 8, 16, and 32 cores. For each configuration,
column BKS (best-known solution) shows the best result found by OHCKC after 30 executions. Column S
shows the average speedup, S= Tseq

Tpar
, where Tseq is the time taken by the sequential execution, whereas Tpar

is the time taken by the parallel execution. Figures 8 to 12 show how the speedup increases as the number
of cores increase. Figures 13 to 17 show how the running time decreases as the number of cores increase. All
these figures were generated with L = d(n− k)/ke for each value of k.

Table 4 shows that using parallel computing with 32 cores allows us to speed up the running time on
average up to 21.68 times. Besides, we observe the general trend that the larger the n value is, the bigger
the speedup is. In some atypical cases, low speedup values were obtained. This includes instance URDI-1000
with k = 40 and L = 26, 27. However, in most cases, the speedup achieved is considerably good. Figures
8 to 12 show that the usage of parallel computing for this proposal has a good scaling, especially for the
largest instances. In addition, these figures show that the value of k does not influence so much the speedup
behavior when using parallel computing for instances with 2000 to 5000 vertices. This is good, as it implies
that different values of k do not degrade the benefit of using parallel computing.
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Table 3: Performance of the OHCKC heuristic over dataset A
instance n k L

OHCKC PDISP Wilcoxon
µ D GAP µ D GAP p α = 0.05, 0.01

URDI 100 5 19 2202.37 28 38% 3036.80 2 91% 0 1, 1
20 2213.23 20 42% 2594.20 10 67% 9E-03 1, 1
21 2121.27 20 38% 2318.80 10 51% 1E-01 0, 0

10 9 1979.13 30 67% 3232.33 0 170% 0 1, 1
10 1592.63 25 52% 2357.03 5 124% 0 1, 1

20 4 2098.50 25 138% 3248.67 5 267% 0 1, 1
5 1012.20 28 44% 1593.40 2 126% 0 1, 1

40 2 664.60 30 31% 1429.70 0 182% 0 1, 1
3 488.27 30 9% 806.90 0 80% 0 1, 1

URDI 150 5 29 2182.90 30 40% 2845.33 0 83% 0 1, 1
31 2140.87 22 40% 2524.70 8 66% 2E-04 1, 1
32 2128.47 18 40% 2310.47 12 52% 6E-02 0, 0

10 14 1919.50 29 68% 3096.83 1 170% 0 1, 1
15 1852.07 22 77% 2276.43 8 117% 2E-03 1, 1
16 1652.10 16 60% 1790.47 14 73% 7E-01 0, 0

20 7 1340.73 28 79% 2254.27 2 200% 0 1, 1
8 1047.47 27 48% 1460.90 3 106% 0 1, 1

40 3 971.70 30 72% 2070.53 0 263% 0 1, 1
4 623.73 30 28% 1125.97 0 131% 0 1, 1

URDI 200 5 39 2168.67 27 38% 3068.60 3 95% 0 1, 1
41 2183.13 21 42% 2576.90 9 68% 2E-03 1, 1
43 2153.20 15 42% 2326.40 15 53% 2E-01 0, 0

10 19 2034.20 29 82% 3094.17 1 176% 0 1, 1
20 1925.43 23 84% 2308.93 7 121% 3E-03 1, 1
21 1672.73 19 62% 1911.47 11 85% 1E-01 0, 0

20 9 2212.10 30 170% 3282.57 0 300% 0 1, 1
10 1210.43 26 71% 1775.40 4 150% 0 1, 1

40 4 2386.17 29 265% 3713.57 1 467% 0 1, 1
5 730.73 30 49% 1273.73 0 160% 0 1, 1

URDI 250 5 49 2227.97 29 43% 3102.67 1 98% 0 1, 1
52 2204.67 20 43% 2432.80 10 58% 2E-02 1, 0
54 2152.33 16 40% 2242.13 14 46% 3E-01 0, 0

10 24 1909.43 29 73% 3208.00 1 190% 0 1, 1
26 1838.40 20 76% 2183.83 10 110% 1E-02 1, 0
27 1741.10 17 68% 1889.87 13 82% 5E-01 0, 0

20 12 1562.40 26 111% 2284.17 4 209% 4E-06 1, 1
13 1210.77 26 70% 1719.17 4 141% 0 1, 1
14 1091.37 29 55% 1519.17 0 116% 0 1, 1

40 6 860.43 29 73% 1603.80 1 222% 0 1, 1
7 692.30 30 45% 1013.13 0 112% 0 1, 1

Averages 65% 137%
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Table 4: Speedup results on dataset B using parallel computing
instance n k L BKS 2 cores 4 cores 8 cores 16 cores 32 cores

S S S S S
URDI 1000 5 199 1951 1.91 3.71 6.91 11.92 17.83

209 1879 1.96 3.76 7.07 12.88 17.76
219 1796 1.91 3.73 7.06 11.91 17.46

10 99 1783 1.91 3.64 6.73 11.52 16.50
104 1560 1.91 3.64 6.86 11.34 16.76
109 1528 1.93 3.66 6.86 11.12 15.19

20 49 1445 1.89 3.70 6.45 9.79 13.84
52 1216 1.88 3.57 6.11 9.05 11.89
54 1122 1.93 3.54 6.02 9.25 11.13

40 24 2279 1.94 3.63 6.50 10.81 15.16
26 907 1.83 3.33 5.44 7.50 9.00
27 881 1.84 3.38 4.75 7.41 8.35

URDI 2000 5 399 1960 1.97 3.85 7.34 13.51 21.69
419 1943 1.97 3.85 7.31 13.51 20.88
439 1875 1.97 3.84 7.42 13.38 21.07

10 199 1546 1.96 3.81 7.20 13.09 20.31
209 1540 1.95 3.82 7.20 12.96 20.98
219 1530 1.94 3.76 7.27 12.67 20.01

20 99 1488 1.95 3.78 7.17 13.09 20.26
104 1211 1.95 3.77 7.14 12.84 20.48
109 1215 1.93 3.70 6.88 11.97 18.94

40 49 1733 1.94 3.76 7.12 12.84 19.97
52 1017 1.90 3.64 6.51 11.24 16.16
54 926 1.92 3.72 6.46 11.09 14.68

URDI 3000 5 599 2011 1.98 3.90 7.54 14.00 23.90
629 1899 1.98 3.89 7.53 14.16 24.02
659 1993 1.98 3.89 7.57 14.26 24.64

10 299 1727 1.98 3.89 7.49 14.01 23.34
314 2004 1.97 3.89 7.50 14.02 23.79
329 1623 1.98 3.88 7.49 13.99 23.14

20 149 2095 1.98 3.84 7.42 13.88 23.56
157 1323 1.95 3.79 7.24 13.12 20.77
164 1159 1.95 3.79 7.20 12.92 20.93

40 74 1564 1.98 3.87 7.39 13.52 23.35
78 1044 1.94 3.76 7.05 12.69 19.92
82 888 1.94 3.71 7.05 12.22 19.06

URDI 4000 5 799 2138 1.97 3.91 7.66 14.52 25.73
839 2022 1.99 3.93 7.68 14.66 25.85
879 2102 1.99 3.93 7.66 14.63 25.83

10 399 1641 1.99 3.91 7.56 14.26 24.86
419 1646 1.99 3.91 7.58 14.26 24.73
439 1568 1.98 3.91 7.55 14.31 23.77

20 199 1338 1.98 3.87 7.51 14.15 23.95
209 1306 1.96 3.84 7.43 13.98 23.48
219 1200 1.96 3.85 7.45 13.55 21.61

40 99 1400 1.97 3.89 7.52 14.15 24.64
104 1095 1.95 3.82 7.29 13.32 22.02
109 918 1.97 3.81 7.21 13.13 21.47

URDI 5000 5 999 2054 1.99 3.96 7.79 14.87 27.31
1049 1971 1.99 3.92 7.72 14.85 26.38
1099 1936 2.00 3.96 7.80 14.87 26.50

10 499 1958 1.98 3.90 7.68 14.70 25.31
524 1743 1.99 3.93 7.69 14.55 25.80
549 1633 1.98 3.92 7.60 14.38 25.63

20 249 2078 1.99 3.93 7.70 14.73 26.61
262 1305 1.98 3.88 7.52 14.03 24.78
274 1101 1.97 3.90 7.52 14.05 24.27

40 124 2197 1.98 3.90 7.63 14.46 26.12
131 1021 1.97 3.83 7.32 13.61 23.23
137 928 1.96 3.86 7.39 13.61 21.57

Averages 1.95 3.80 7.20 13.02 21.14
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Figure 8: Speedup URDI-1000
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Figure 9: Speedup URDI-2000
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Figure 10: Speedup URDI-3000
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Figure 11: Speedup URDI-4000

Figures 13 to 17 show the following. First, the larger n and k values are, the greater the running time is
when using only one core. Secondly, this behavior changes when the number of cores increases. Namely, the
running time is almost the same in most instances when using 32 cores, independently of the value of k.
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Figure 12: Speedup URDI-5000

Figure 13: Times URDI-1000 Figure 14: Times URDI-2000
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Figure 15: Times URDI-3000 Figure 16: Times URDI-4000

Figure 17: Times URDI-5000

4.3 Fitness evaluation on benchmark dataset

Dataset C consists of instances from the TSPLib library, divided into datasets C1 and C2 [31]. The order of
the graphs in both datasets ranges from 195 to 280 and all of them have edge weights that follow a Euclidean
metric. Table 5 shows the result of applying the OHCKC and OHCKC+ algorithms over C1. The OPT
column shows the size of the optimal solution for each instance, which was computed with an exact algorithm
from the literature [9]. Although OHCKC is a deterministic heuristic, it breaks ties at random. Thus, this
heuristic was executed 30 times with a different seed. Columns under OHCKC show the average solution
size µ, the standard deviation σ of the solution size, the average running time t(s), the average speedup
S, and the average GAP = ( µ

OPT − 1) · 100%. While OHCKC may generate different solutions at different
executions, OHCKC+ tends to always generate the same solution. For this reason, it was executed only
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once. Columns under OHCKC+ show the size r of the found solution, the running time t(s), the speedup
S, and the GAP.
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Table 5: Performance of the OHCKC and OHCKC+ heuristics over dataset C1
instance n k L OPT OHCKC (30 runnings) 8 cores OHCKC+ 8 cores

µ σ t(s) S GAP r t(s) S GAP
rat195 195 5 38 64 101.47 6.64 0.0047 3.36 59% 83 0.8257 3.20 30%

40 64 98.87 6.57 0.0047 3.21 54% 84 0.8057 3.22 31%
42 64 95.70 13.78 0.0050 3.00 50% 78 0.7887 3.11 22%

10 19 41 81.77 9.91 0.0063 3.16 99% 55 1.2140 2.41 34%
20 41 80.63 10.72 0.0070 2.62 97% 52 1.1750 2.31 27%
21 41 70.07 9.55 0.0070 2.38 71% 49 1.1930 2.25 20%

20 9 26 91.57 16.71 0.0147 1.98 252% 44 2.0940 1.69 69%
10 28 47.87 4.52 0.0137 1.37 71% 40 1.9157 1.71 43%

40 4 21 56.13 9.26 0.0197 1.98 167% 35 3.8280 1.24 67%
5 20 27.00 1.84 0.0203 0.98 35% 22 2.9593 1.13 10%

d198 198 5 39 1527 1651.43 119.67 0.0033 5.30 8% 1527 0.9870 3.95 0%
41 1407 1581.57 7.31 0.0050 3.73 12% 1407 0.9557 4.00 0%
43 1139 1525.33 176.37 0.0053 3.50 34% 1139 0.9043 3.92 0%

10 19 1452 1490.47 56.29 0.0103 3.48 3% 1452 1.7573 3.71 0%
20 1407 1446.77 12.05 0.0100 3.37 3% 1441 1.7377 3.63 2%
21 1139 1629.83 186.20 0.0080 2.88 43% 1139 1.5617 3.40 0%

20 9 1380 1785.27 63.12 0.0200 2.82 29% 1452 3.0837 3.25 5%
10 240 598.53 108.46 0.0117 3.31 149% 314 2.2597 2.14 31%

40 4 1347 1713.27 133.19 0.0323 2.67 27% 1347 6.2220 3.03 0%
5 113 148.93 8.54 0.0180 1.30 32% 127 3.2593 1.40 12%

gr202 202 5 40 49 53.60 2.58 0.0050 4.73 9% 49 1.0953 4.32 0%
42 49 54.00 2.27 0.0063 3.95 10% 49 1.0867 4.39 0%
44 49 54.00 2.27 0.0060 3.83 10% 49 1.1123 4.27 0%

10 20 49 49.00 0.00 0.0093 4.00 0% 49 1.9440 3.89 0%
21 37 44.77 5.64 0.0083 4.44 21% 37 1.8270 3.90 0%
22 21 21.40 0.86 0.0073 3.23 2% 21 1.5587 3.09 0%

20 10 21 21.00 0.00 0.0167 2.52 0% 21 2.8993 2.77 0%
11 15 17.37 1.38 0.0133 2.75 16% 15 2.8107 2.96 0%

40 5 6 6.70 0.47 0.0210 1.90 12% 6 3.9333 1.76 0%
6 4 5.13 0.35 0.0177 1.70 28% 5 3.6897 1.51 25%

tsp225 225 5 44 121 173.47 15.70 0.0053 4.50 43% 126 1.1477 3.34 4%
47 114 174.77 16.23 0.0057 3.94 53% 127 1.0647 3.51 11%
49 114 173.37 17.56 0.0060 4.11 52% 126 1.0627 3.48 11%

10 22 77 124.43 20.75 0.0073 3.68 62% 92 1.6803 2.84 19%
24 73 132.93 23.70 0.0077 3.30 82% 80 1.3553 2.98 10%
25 73 116.13 8.69 0.0083 2.76 59% 80 1.3310 2.96 10%

20 11 51 99.37 6.17 0.0127 2.50 95% 74 2.7373 2.22 45%
12 46 80.77 6.30 0.0123 2.14 76% 60 2.4123 2.05 30%
13 46 68.87 3.84 0.0107 2.06 50% 56 2.2480 2.08 22%

40 5 30 72.73 4.20 0.0203 1.98 142% 48 4.2737 1.54 60%
6 30 43.57 3.47 0.0180 1.22 45% 36 3.7777 1.45 20%

gr229 229 5 45 164 165.00 0.00 0.0067 4.75 1% 165 1.6283 4.40 1%
48 159 159.07 0.37 0.0067 4.60 0% 159 1.6293 4.42 0%
50 157 157.87 0.43 0.0070 4.43 1% 157 1.5287 4.47 0%

10 22 157 157.00 0.00 0.0097 4.97 0% 157 2.5480 4.22 0%
24 38 47.27 6.11 0.0090 3.67 24% 38 1.8407 3.25 0%
25 38 45.73 4.88 0.0093 3.43 20% 38 1.7613 3.30 0%

20 11 38 47.13 8.46 0.0167 3.08 24% 38 3.3390 2.81 0%
12 27 33.70 2.59 0.0147 2.43 25% 28 2.7947 2.29 4%
13 23 28.57 1.43 0.0123 2.27 24% 27 2.6963 2.25 17%

40 5 22 30.70 4.02 0.0257 2.12 40% 24 5.3320 1.97 9%
6 18 20.20 0.41 0.0233 1.61 12% 20 4.6750 1.87 11%

Averages 0.0114 3.06 45% 2.1990 2.91 14%
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Table 6: Performance of the OHCKC and OHCKC+ heuristics over dataset C2
instance n k L OPT OHCKC (30 runnings) 8 cores OHCKC+ 8 cores

µ σ t(s) S GAP % r t(s) S GAP %
kroA200 200 5 39 911 1362.93 147.44 0.0057 3.94 50% 1094 0.8650 3.95 20%

41 911 1410.37 181.61 0.0060 3.61 55% 992 0.8767 3.85 9%
43 911 1432.57 185.53 0.0053 3.94 57% 960 0.8783 3.79 5%

10 19 646 1230.67 189.26 0.0083 3.24 91% 946 1.5470 2.98 46%
20 609 1293.97 200.47 0.0083 3.44 112% 712 1.2323 2.57 17%
21 600 1016.83 156.28 0.0080 2.58 69% 707 1.2980 2.61 18%

20 9 499 1654.37 119.19 0.0150 2.98 232% 776 2.3797 2.07 56%
10 407 731.67 74.00 0.0110 2.06 80% 562 2.0607 1.80 38%

40 4 365 1506.00 295.76 0.0237 2.80 313% 712 4.3627 1.70 95%
5 283 417.63 21.50 0.0180 1.26 48% 336 3.5550 1.21 19%

kroB200 200 5 39 918 1433.70 165.79 0.0060 3.78 56% 1090 0.9097 3.94 19%
41 898 1382.27 126.72 0.0050 5.13 54% 1068 0.8827 3.86 19%
43 898 1377.03 105.30 0.0067 3.85 53% 1059 0.8593 3.87 18%

10 19 619 1282.87 175.40 0.0097 3.03 107% 895 1.3680 2.82 45%
20 595 1208.10 274.83 0.0087 3.08 103% 781 1.2890 2.70 31%
21 589 1116.47 244.12 0.0073 3.45 90% 705 1.2957 2.60 20%

20 9 445 1452.07 183.93 0.0153 2.61 226% 690 2.2860 2.03 55%
10 395 733.17 88.71 0.0113 2.15 86% 518 2.0430 1.76 31%

40 4 316 1699.73 231.05 0.0290 2.59 438% 629 4.2530 1.50 99%
5 272 411.20 28.91 0.0167 1.44 51% 344 3.3087 1.26 26%

ts225 225 5 44 4123 6708.00 0.00 0.0063 4.37 63% 6708 1.4507 4.27 63%
47 3905 6282.03 111.38 0.0050 4.00 61% 6265 1.1413 4.19 60%
49 3905 6033.33 611.01 0.0050 3.93 55% 4743 1.0377 3.70 21%

10 22 3041 5779.87 644.65 0.0077 4.22 90% 4000 1.5953 2.86 32%
24 3041 4601.70 348.05 0.0087 2.46 51% 3905 1.5773 2.90 28%
25 3041 4719.33 397.73 0.0073 3.05 55% 3606 1.5287 2.84 19%

20 11 2000 3689.27 346.06 0.0130 2.13 84% 2693 2.5647 1.95 35%
12 1803 3070.17 119.72 0.0130 1.74 70% 2550 2.4313 1.92 41%
13 1803 2844.33 190.65 0.0113 1.76 58% 2121 1.8823 1.93 18%

40 5 1118 2902.50 185.43 0.0203 1.97 160% 2121 4.3637 1.48 90%
6 1118 1903.67 136.19 0.0187 1.41 70% 1581 3.8297 1.44 41%

pr226 226 5 45 4507 6240.07 474.43 0.0047 4.21 38% 5305 1.1143 3.73 18%
48 4104 6487.23 620.73 0.0057 3.53 58% 4952 1.0553 3.70 21%
50 4104 6321.90 697.59 0.0053 4.00 54% 4924 1.0547 3.68 20%

10 22 3239 6497.03 1350.90 0.0100 3.03 101% 4243 1.6953 2.97 31%
24 2864 5048.63 450.74 0.0087 2.77 76% 3650 1.5020 2.98 27%
25 2864 4602.63 504.11 0.0060 3.44 61% 3640 1.5123 2.92 27%

20 11 2463 4195.70 660.55 0.0127 2.42 70% 2879 2.5287 2.14 17%
12 2455 3382.37 244.36 0.0120 2.03 38% 2754 2.3750 2.06 12%
13 2451 3018.50 169.97 0.0093 2.50 23% 2600 2.1870 2.04 6%

40 5 1707 2735.97 315.07 0.0207 1.81 60% 1950 4.6817 1.65 14%
6 1166 1654.10 94.16 0.0177 1.57 42% 1379 3.9213 1.56 18%

a280 280 5 55 71 118.03 11.02 0.0083 4.28 66% 86 1.9863 4.28 21%
58 68 109.77 20.79 0.0070 4.76 61% 77 1.9130 3.99 13%
61 68 92.77 12.54 0.0067 4.45 36% 72 1.6690 3.92 6%

10 27 47 86.97 9.44 0.0123 3.46 85% 62 2.8223 3.38 32%
29 46 90.50 17.19 0.0100 4.40 97% 61 2.7410 3.35 33%
30 46 72.10 6.61 0.0107 3.28 57% 58 2.4770 3.26 26%

20 13 34 114.07 11.41 0.0243 3.58 235% 54 4.2747 2.78 59%
14 29 62.63 7.90 0.0173 2.83 116% 44 4.2453 2.58 52%
15 29 49.83 2.91 0.0163 2.06 72% 39 3.8427 2.44 34%

40 6 24 101.33 34.51 0.0363 3.10 322% 51 8.4193 2.27 113%
7 20 36.07 3.67 0.0200 2.50 80% 27 6.4923 1.76 35%

Average 0.0118 3.06 95% 2.3672 2.75 33%
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Table 5 shows that the running time of the OHCKC heuristic (which varies from 0.0033 to 0.032 seconds)
is much better than the running time of the OHCKC+ heuristic (which varies from 0.7643 to 5.82 seconds).
This was expected, since OHCKC+ consists in executing the OHCKC heuristic n times. It was also expected
that the OHCKC+ heuristic generates better solutions than OHCKC, and with better precision. Hence, in
general the GAP values of OHCKC+ are better. The results from Table 6 are consistent with those from
Table 5. The solutions computed by OHCKC+ are of better quality while their running times are longer.
Specifically, OHCKC tends to return solutions up to 48% (98%) worse than the optimum, while OHCKC+
tends to return solutions up to 14% (36%) worse than the optimum over C1 (C2). From column S of Tables
5 and 6, observe that the average speedup is lower than the average speedup reported on Table 4 when using
8 cores. This may be due that, for small instances, the number of tasks assigned to each core are not enough
to efficiently take advantage of each core. In fact, this confirms the intuitive observation that the bigger the
instance, the greater the speedup.

The OHCKC and OHCKC+ heuristics were implemented in C++. All the experiments were performed
on an platform with Intel(R) Xeon Phi(TM) CPU 7250@1.40GHz (x64), 384 GB RAM, under an OS CentOS
7.3.1611 Kernel 3.10.0-514.6.1.el7.x86_64, x86_64 architecture with a GCC 4.8.5 compiler. All datasets and
implementations can be consulted from https://github.com/alex-cornejo/heuristic_ckc.

5 Conclusions

The capacitated vertex k-center problem is an NP-hard problem that has been approached through approx-
imation [22, 3], heuristic [33], metaheuristic [29], and exact algorithms [26, 2, 23]. Regarding approximation
algorithms, the best known deliver 6-approximated solutions, i.e., solutions of size at most 6 times the size
of the optimal solution [22, 3]. Although the solutions generated by these approximation algorithms may
be impractical, they are considered efficient, because they run in polynomial time. Regarding heuristic and
metaheuristic algorithms, they rely mainly on local search procedures. That is, they construct initial solu-
tions that are iteratively improved by the relocation of centers and reassignment of vertices. According to
the empirical evidence, these methods are among the best for solving this problem [29]. However, they are
computationally intensive and may use more resources when applied to large scale instances. With regard
to the exact algorithms, they are mainly based on integer programming and mixed integer programming
formulations of the problem, and they tend to perform well on instances with some hundreds of vertices
[26, 2, 23]. However, efficient heuristics are needed for obtaining provisional solutions for relatively large
instances of the problem. In this context, the heuristic proposed in this paper comes in handy because it
can quickly find solutions of relatively good quality thanks to its parallel implementation.

The capacitated vertex k-center problem is related to the minimum capacitated dominating set problem.
This paper introduces a parallel constructive heuristic OHCKC for the uniform capacitated vertex k-center
problem based on this relationship. In brief, this heuristic selects the locally best centers to be part of
a capacitated dominating set. Every time a center is selected, up to L vertices are assigned to it. This
assignment is performed trying to minimize the distance from the unassigned vertices to the centers selected
at the next iterations. This way, OHCKC tries to construct a minimum capacitated dominating set. By doing
so over the bottleneck graph Gr of the original input graph, it obtains a feasible solution for the uniform
capacitated vertex k-center problem, where r is a guess on the size of the optimal solution. According to the
results from Tables 5 and 6, both OHCKC and OHCKC+ can get good provisional solutions in relatively
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short amounts of time. Besides, for instances with some thousands of vertices, the implemented parallel
strategy is capable to improve the running time up to 25 times for some instances.

The main property that distinguishes the OHCKC heuristic from other heuristics from the literature
is that once it selects a center or assigns a vertex, that decision never changes. So, by taking this into
account, the performance of the OHCKC and OHCKC+ heuristics is remarkable. The complexity of the
OHCKC heuristic is O(kn2 log n). However, for L ≥ n it behaves exactly as the CDSh algorithm, which has
a complexity of O(n2 log n). In this sense, the OHCKC heuristic generalizes the CDSh heuristic, which is
one of the best heuristics for the uncapacitated vertex k-center problem. Finally, in the future we would like
to integrate the OHCKC heuristic into a metaheuristic framework.
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