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Abstract

Real-time control strategies palliate with the day’s dynamics in bus rapid transit systems. In this work, we

focus on a bus bunching problem that minimizes the number of buses of the same line cruising head-to-tail

or arriving at a stop simultaneously by using bus holding times at the stops. For this, we propose a new

mathematical model with quadratic constraints, whose objective function minimizes the penalties caused by

buses that are bunching. Experimental results on a simulation of a bus rapid transit system in Monterrey,

Mexico, show the efficiency of our approach. The results show a bus bunching reduction of 45% compared

to the case without optimization. Moreover, in some scenarios the passenger waiting times are reduced by

30%.
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1 Introduction

Almost any city encourages public transport to mobilize its population more sustainably. Nevertheless, public

transport systems often lack high-quality service, making them unattractive to users with a private vehicle

[35, 20]. Public transportation companies aim to reduce variability in the user’s waiting times at the stops

to increase customer service satisfaction and attract more customers since quality is positively correlated

to more reliable systems [4, 27]. For this, technology and infrastructure in transportation services enable

better communication with the bus drivers and extensive data collection such as user flows, bus occupancy,

geospatial location of the buses, or road reports. This information provides real-time feedback to the bus

control system that aims to improve the users’ satisfaction [35, 4, 10].

Once a public transportation company establishes the system planning, that is, the buses’ departure

times are set for each stop with a specific frequency, the company uses real-time control strategies to palliate

with the day’s dynamics such as traffic, passenger flow, weather, or accidents. As Wang and Sun [36] and

Ceder [4] mention, a slight frequency deviation can cause many buses to be delayed on their schedule.

In this work, we focus on a bus bunching problem (BBP)[9, 21, 29, 36], where we seek to determine a set

of bus holding times at some stops to minimize the number of buses of the same line cruising head-to-tail

or arriving at a bus stop simultaneously. Bus bunching implies frequency variability that affects the user’s

waiting times at the stops and traveling times. Also, bus bunching involves unbalanced occupancy rates since

many waiting users choose to board the first bus that arrives at the stop, especially when the information

on the arrival of the next bus is unknown, as in most cities in developing countries.

stops

7:00 7:10 7:15

1

2

𝒔

bus 1 bus 2 bus 3

7:20 time

(a) Early departure time.

stops

7:00 7:10 7:20

1

2

𝒔

bus 1 bus 2 bus 3

time

(b) Delayed bus by traffic.

Figure 1: Causes of bus bunching (modified from Ceder [4]).

Figure 1 shows the leading causes of bus bunching for a single bus line. Time is plotted on the horizontal
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axis, while bus stops are on the vertical axis. There are three trips (red, blue, and yellow) with an established

departure time of 7:00, 7:10, and 7:20, respectively. Each plot shows the time-space trajectories of the three

trips. In Figure 1a, the first two trips (red and blue) behave as planned: at any time and space, the time

difference of the trips (known as headway) is equal to ten minutes. Nevertheless, the bus departure of the

third trip (solid yellow trajectory) is five minutes early (dotted yellow trajectory is the ideal one). This

action causes fewer users than expected at stop 1, so the dwelling time of this bus is shorter than expected,

and eventually, it bunches with the second bus. In Figure 1b, the second bus (blue) finds more congestion

than usual between stops 1 and 2. Thus, there are more persons at stop 1, implying a larger dwelling time.

The blue line takes, at stop 2, some passengers that should have taken the yellow trip—eventually, the blue

and the yellow trip bunch. A similar case happens when more people than expected arrive at a stop: a

concert or sports event.

Our objective is to reduce the bus bunching by maintaining quasi-regular headways between each pair of

buses to reduce users’ waiting times at the stops and their overall traveling times. For this, we use a control

strategy consisting of holding the buses for some minutes at some stations after the boarding and alighting

processes have been completed.
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(a) Applying holding time to a bus.
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(b) Applying holding time to multiple buses.

Figure 2: Decreasing bus bunching with the holding time strategy.

Figure 2 shows how the holding bus strategy helps to reestablish regular headways. In Figure 2a, there is

a bunching caused at stop s by buses 2 and 3. We could apply a holding time to bus 2 at station s to avoid

this bunching. However, retaining a single bus (as some local optimization strategies do) is not enough since

bus 3 will bunch up eventually with bus 2 at a future stop. Thus a global tactic, applying holding times to

several buses (see Figure 2b), is a better real-time strategy.
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The proposed solution approach to this BPP has two main processes, as shown in Figure 3. One of

them is an optimization stage that determines the holding times of each bus at each stop by considering

the current information along the bus line and by predicting the future events in the line: persons at each

bus stop, dwelling and alighting times, and the capacity of each one of the buses. This stage is modeled as

a quadratically constrained integer linear programming that yields the holding times for the buses, which

are immediately communicated to the drivers to recover quasi-regular headways between them. This model

is one of the main contributions of this work. While most related studies deal with a non-linear objective

function that minimizes the user’s total waiting time at the optimization stage (see the overview by Ibarra-

Rojas et al. [23]), our BBP methodology uses a linear objective function that speeds up its computational

time. One of main model advantages is that it includes the forecasting of the departure, boarding, and

alighting times for each bus at each future stop more precisely than previous works [9, 21]. Only a few

approaches consider the bus capacity every time the optimization model computes holding times during the

evolution of the simulation process, as we do in this study. A significant feature of our model is that it does

not use origin-destination matrices as most of the other approaches [8, 21, 29, 36, 39], which affects their

efficiency. Instead, we use the user’s arrival rate and the proportions of users that alight at stops.

The other process of our methodology (Figure 3) is collecting data in real-time: the position of the buses,

the actual number of users waiting at stops, and the actual number of users on each bus. This information

is the input of the optimization stage. These two processes are periodically applied one after the other along

the working day to maintain quasi-regular headways between each pair of buses. We developed a discrete

event simulation program, representing a bus rapid transit (BRT) system, to simulate real-data collection

and stress the transit system under different parameters. Thus, we can retrieve simulated real-time data

from the system to validate the efficiency of our mathematical model. This simulation takes as input the

holding times of the optimization stage. Then, it evolves along the time, and when asked, it returns its

actual state, which is the input of the optimization stage.

Real-time data collection
or

Simulation 

Quadratically 
constrained integer 
linear programming 

model

holding times for each bus 
for its next stops

number of users on board
geopostion of the buses

number of users at each stop

Figure 3: Framework for the real-time data retrieving and the mathematical model.
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Maintaining quasi-regular headways in a transit line is different from sticking to the buses’ planned

departure times at the stops. Quasi-regular headways imply a reliable service for users since the variance in

the frequency of the buses is small at each bus stop. This tactic is particularly helpful in cities where the

users do not know the exact scheduling of the buses since they only have an expected frequency estimation

as is the case of systems in developing countries [21].

This paper is organized as follows. In Section 2, we present a related literature review. Section 3 describes

the system characteristics and the description of the mathematical model, as well as the discrete event

simulation that represents a bus rapid transit system. We validate the efficiency of our BBP methodology

with a case study from the city of Monterrey in Mexico in Section 4. Finally, Section 5 presents the

conclusions of this work.

2 Literature review

Significant efforts have been made to address the BBP with real-time monitoring strategies, categorized in

inter-station and station control [23]. Inter-station control strategies are those where decisions are made

at some bus line stops such as holding times [36, 6, 39], skipping stops [31, 15, 5], or boarding time limits

[9, 2, 8]. station control strategies are bus speed regulation [18, 7, 19] or traffic signal priority [13, 26, 25].

Among all the BBP strategies, holding time is the most used and the one that users resent the least.

Table 1 shows the studies related to the holding time strategy (we do not include hybrid strategies). The

first column presents the reference. The second column indicates whether the vehicle capacity is considered

or not. The third column indicates the different types of control points that the system considers, such

as single preset control point (SPCP), multiple preset control points (MPCP), or multiple control points

(MCP) defined by the solution strategy. Column “Alighting” is how the users leave the transport system in

the solution approach: a proportion of the onboard passengers or determined by an origin-destination (OD)

matrix. The fifth and sixth columns indicate the considered objective function and model type, respectively

(QP is for quadratic MILP, MIQCP is for quadratically constrained integer linear programming). The

solution approach is in the “Method” column (B&B is for branch-and-bound), while the “Sim” one indicates

whether the approach is analyzed through the use of any simulation. Finally, the last column reports if a

case study was tested.

The last line of Table 1 considers the approach we propose. Our BPP approach searches for headway

regularity which we show later that implies reducing waiting times. This search for headway regularity allows

us to have a linear objective function that reduces computational times compared to other approaches that

directly optimize waiting times with a quadratic function. We also consider that buses have a capacity, and

the users must wait for the next bus if this capacity is reached. Our optimization process determines the

stops where the buses must hold and the holding times. An enormous gain is obtained by considering that
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Author Cap
Control
points

Alighting Objetive Func.
Model
type

Method Sim
Case
study

Eberlein et al. [12] no SPCP
proportional
onboard
passengers

minimize
waiting time

QP local search yes yes

Hickman [22] no
SPCP
(one bus)

OD matrix
minimize
headway variance

stoch. QP gradient search no no

Sun and Hickman [32] no MPCP
proportional
onboard
passengers

minimize
waiting time

QP heuristic no no

Xuan et al. [39] no MPCP OD matrix
schedule adherence
and headway
regularity

QP
local gradient
search

no no

Delgado et al. [9] yes MPCP OD matrix
minimize
waiting time

QP reduced gradient yes no

Hernández-Landa et al. [21] yes MCP OD matrix headway regularity MILP B&B yes yes

Sánchez-Mart́ınez et al. [29] yes MCP OD matrix
minimize
waiting time

QP
iterative quadratic
approximation

yes no

Wang and Sun [36] no MCP OD matrix
reduce the headway
mean and variance

QP multi-agent system yes no

Our approach yes MCP
proportional
onboard
passengers

headway regularity MIQCP B&B yes yes

Table 1: Literature review of the holding time strategy.

passengers alight a bus via a probabilistic approach since an OD matrix is rarely updated and reliable.

Argote-Cabanero et al. [1] employ a combination of dynamic holding times and en-route driver guidance

to improve schedule adherence. This method is analytically evaluated with simulations to improve reliability.

As in our work, their simulation reflects a real BRT. Hall et al. [17] develop analytical models to obtain the

optimal holding times and waiting times at transfer stations. Their instances are based on actual data

from the Los Angeles transit network. Daganzo [6] propose an adaptive control scheme that dynamically

determines holding times at the stops. The proposed scheme’s objective is to provide quasi-regular headways

while maintaining a commercial speed. The method proves to be effective when minor disturbances arise.

More recently, Gkiotsalitis and Cats [16] employ a periodic holding time control method where holding

times of all running trips are computed simultaneously within each optimization period. They model the

BBP as a discrete non-linear optimization problem. They do not consider additional user’s arrivals when

the bus is waiting at a stop neither the capacity of buses since all users can board the first bus that arrives,

even if this implies longer headways.

He et al. [20] present a dynamic target-headway-based holding strategy validated by a numerical experi-

ment. They observe that the average total waiting time increases at the beginning of their experiment but

decreases along the time, which is the desired behaviour. Delgado et al. [9] incorporate two strategies: hold-

ing time and boarding limits. They propose a mathematical programming model that minimizes total delays

with a quadratic function evaluated in a simulation environment. Nevertheless, their simulation considers
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very short headways, computing holding times when a bus reaches a stop. Although they obtain the value

of the holding times for all the buses in their following stops, they only use the holding time value for the

current stop discarding the other values. Wang and Sun [36] incorporate global coordination and long-term

operation in holding time with a multi-agent deep reinforcement learning framework. However, they do not

consider the bus capacity. Sánchez-Mart́ınez et al. [29] present a quadratic model to compute passengers’

average waiting times costs and separately obtain the holding times. Their simulation only considers ten

buses and equal arrival rates for all origin-destination pairs.

In this paper, we integrate simulation and optimization to reduce the number of bus bunching and

indirectly, reduce the user’s total waiting times. On the one hand, we develop a discrete event simulation of

a BRT system. On the other hand, c The mathematical model has quadratic constraints, but its objective

function is linear, speeding up its computational time.

3 The BBP methodology

Our BBP solution approach has two main processes (see Figure 3). In this section, we describe our bus

rapid transit (BRT) system and introduce its notation. Then, we present the mathematical model of the

optimization stage that determines the holding times of each bus. Finally, we present the simulation stage

that represents the real-time data collection of a BRT case study.

3.1 The bus rapid transit description

Consider a circular bus line corridor with a set S of stops plus the depot denoted as 0, as represented in

Figure 4, operated by a high-frequency bus service. A set of B of buses with capacity Cb for each b ∈ B and

average speed of V constitute the bus service. All buses start their trip at the depot following a departure

frequency of F minutes. Each bus b ∈ B sequentially visits all the stops in the corridor. The buses are

numbered in ascending order in the corridor; bus b+ 1 leaves the deposit after bus b, for b ∈ B \ {|B| − 1}.
Notice that bus passing is not allowed. When a bus b arrives at the last stop, all bus users must alight, and

the bus returns to the depot (no deadheads, since it is a circular corridor). The travel time between a pair

of stops (s−1, s) is denoted as ds, for s ∈ S. The limit case d1 is the distance between stop 1 and the depot.

The users arrive at each stop s ∈ S following a Poisson distribution rate λs. The boarding and alighting

times per user are U and U , respectively. The total time taken by the bus doors for opening and closing

is G. Similarly to Eberlein et al. [12], our work assumes that the number of users alighting from bus b ∈ B
at stop s ∈ S is a proportion γs of the number of onboard users, a crucial point since we avoid using origin-

destination matrices that make heavier models. Additionally, the holding time assigned to a bus at a stop

must not exceed a number H of minutes per station to avoid the despair of the onboard users. This holding

limit is an essential aspect of our model and its solution efficiency.
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Figure 4: Circular bus line corridor with s stops (green circles) and five buses.

Time t0 is when the real data is collected to compute the required decisions to recover a quasi-regular

frequency. We collect the following data for each b ∈ B: the distance between bus b and its following stops

denoted as ms
b, the number of onboard users on bus b is qb, and lb is the last station visited by bus b. Note

that if bus b is at station s at time t0, then lb = s. Also, at time t0, we collect the number of users waiting

at station s denoted by ws for every station s ∈ S.

3.2 The BBP optimization stage

The main variables to formulate the quadratically constrained integer linear programming of the BBP

methodology are hsb that indicate the holding time for bus b ∈ B for all the future stop s = lb + 1, . . . , |S|
that the bus must visit. With the position of the buses at time t0 and the holding time variables, we can

derive the rest of the variables of each bus b ∈ B at stop s = lb + 1, . . . , |S|. Let tsb be the variables that

represent the departure time of bus b from stop s. With these last variables, we can compute the number of

users who want to board bus b at stop s, the number of users who indeed boarded the bus, and the number

of persons that alight that bus, denoted by zsb , xsb, and ysb , respectively, for b ∈ B and s = lb + 1, . . . , |S|.
The headway between the bus pair (b, b+ 1) is defined by the difference of its departure times at a stop

s: tsb − tsb+1, for s ∈ S. Figure 5 shows the headway values between a pair of buses at any fixed stop in

its horizontal axis, while the vertical axis represents the headway penalty function. Since the buses cannot

overtake each other, then this difference is positive. Let κ be the small headway deviation percentage from

the ideal frequency F . Thus, there is a bus bunching between b and b + 1 if their headway is between

[0, (1 − κ)F ]. Consequently, b and b + 1 have a quasi-regular headway if it is between [(1 − κ)F, (1 + κ)F ].

The penalty is a linear function proportional to the headway between a pair of buses and is denoted by psb,

for b ∈ B and s ∈ S. When bus pair (b, b+ 1) has a headway larger than (1 + κ)F , they incur a significant
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penalty:

psb ≥ tsb − tsb+1 + (1− κ)F, b ∈ B, s = lb + 1, (1)

psb ≥ tsb+1 − tsb + (1 + κ)F, b ∈ B, s = lb + 1. (2)

Constraints (1) and (2) define the penalty value of bus b at stop lb + 1. On the one hand, constraints (1) are

activated when buses b and b+ 1 are bunching. On the other hand, constraints (2) are used when the buses

are farther apart than allowed. Note that psb cannot have negative values since it is defined as a positive

variable.

regular

headway

penalty

quasi-regular
headway

Figure 5: The penalty function used by the objective function (3) between a bus pair at a certain stop.

In this way, each pair of buses complement each other in the objective function (3) that minimizes the

bunching penalties for each pair of buses, which results in maintaining quasi-regular headways between the

buses:

min
∑
b∈B

|S|−1∑
s=lb+1

psb. (3)

By minimizing the number of bus bunching, we also minimize the user’s waiting times, as shown in the

experimental results.

For establishing the departure times of the buses at each future station that they will visit after time t0,

there are two cases. For handling the first case, constraints (4), define the departing time of bus b at stop

lb + 1 as the time t0 plus the remaining time to arrive at stop lb + 1, the boarding and alighting times, its

holding time, and the opening and closing of the bus doors. For the second case, constraints (5) define the
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departure time of bus b from stop s = lb + 2, . . . , |S|. Constraints (6) do not allow a bus to leave a stop

earlier than its predecessor, thus ensuring that passing between buses is impossible. Constraints (7) ensure

that the holding times do not exceed the maximum allowed value. These last constraints were also included

in the model by Hernández-Landa et al. [21].

tsb = t0 +
ms

b

V
+ Uxsb + Uysb + hsb +G, b ∈ B, s = lb + 1, (4)

tsb = ts−1b +
ds

V
+ Uxsb + Uysb + hsb +G, b ∈ B, s = lb + 2, . . . , |S|, (5)

tsb ≥ tsb−1, b ∈ B, s = lb + 1, (6)

hsb ≤ H, b ∈ B, s = lb + 1. (7)

The number of users at stop s who are waiting to board bus b is established by constraints (8). They

consider the persons ws that are already at the stop at time t0 plus the persons that arrive with a Poisson

rate during the time that takes the bus to arrive at this stop s:

zsb = ws + λs
(
ms

b

V

)
, b ∈ B, s = lb + 1, . . . , |S|. (8)

Note that not all these users zsb will be able to board bus b at stop s since we are considering that buses

have a finite capacity.

Constraints (9) determine the number of alighting users from bus b at stop s. They consider the onboard

passengers and the users that already alighted in previous stops s′ < s, multiplied by the estimated proportion

γs of passengers alighting at this stop, for s ∈ S.

ysb = γs

(
qb +

s−1∑
s′=lb+1

xs
′

b y
s′

b

)
, b ∈ B, s = lb + 1, . . . , |S|. (9)

The boarding users at stop s is determined with the following constraint (10), for b ∈ B, s = lb+1, . . . , |S|:

xsb = min

{
Cb − qb −

s∑
s′=lb+1

xs
′

b +

s∑
s′=lb+1

ys
′

b , z
s
b −

b−1∑
b′=0

xsb′

}
. (10)

The right side of this minimum considers the case where the number of users waiting at s is less than the

bus capacity. Thus all users board except the ones that already boarded a previous bus. The left side of

the minimum limits the boarding users to the bus current capacity and subtracts the users who boarded

previous buses. Constraints (10) are not linear, but a classical linearization [37] for minimum cannot be

applied in this case because the objective function has positive and negative coefficients. Thus, we introduce

two indicator binary variables for b ∈ B and s = lb + 1, . . . , |S|. The first one, nsb, is equal to 1 if the number

of users waiting for bus b at stop s is less than the actual bus capacity, and 0 otherwise. The second one,

rsb , equals 1 if the available bus capacity is less than the number of users waiting for bus b at stop s, and is

9



0 otherwise. With these two binary sets of variables, we replace equation (10) with linear constraints (11)

and (12), for b ∈ B and s = lb + 1, . . . , |S|:

1 = nsb + rsb , (11)

xsb = nsb

(
zsb −

b−1∑
b′=0

xsb′

)
+ rsb

(
C − qb −

s∑
s′=lb+1

xs
′

b +

s∑
s′=lb+1

ys
′

b

)
. (12)

Constraints (11) indicate that only one case is possible. Either all the users waiting at stop s are going to

board bus b, implying nsb = 1, or some of them will wait for the next bus b + 1; thus rsb = 1. By adding

constraints (12) we explicitly choose between these two options and assign the correct value to the boarding

variable xsb.

To reinforce the mathematical model, we add two families of valid inequalities. Constraints (13) and (14)

bound the boarding passengers variable xsb by either the passengers at the stop or its remaining capacity,

respectively, for b ∈ B and s = lb + 1, . . . , |S|. These constraints are not necessary for the model to be

correct, but they strengthen the convex hull of the discrete solution space, which reduces the resolution time

of the mathematical model [38].

xsb ≤ zsb −
b−1∑
b′=0

xsb′ , b ∈ B, s = lb + 1, . . . , |S|, (13)

xsb ≤ Cb − qb −
s∑

s′=lb+1

xs
′

b +

s∑
s′=lb+1

ys
′

b , b ∈ B, s = lb + 1, . . . , |S|. (14)

To summarize, the mathematical model that determines the best holding times for the buses at their

future stops at time t0 is named H-BPP(t0):

min (3),

s.t. (1), (2),

(4)− (9)

(11), (12),

(13), (14), {valid inequalities}
hsb, x

s
b, t

s
b, z

s
b , y

s
b ∈ R+,

nsb, r
s
b ∈ {0, 1}.

In the H-BBP(t0) model, the forecast of the departure times and the boarding and alighting times play

an essential role for each bus at each future stop. These approximations are one of the critical points of our

study since they are much more precise than the ones made by other related approaches [21, 9].
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3.3 The simulation of the real-time collection stage of the BBP

Our BBP methodology requires real-time data collection. We can obtain this data by using global positioning

or automatic vehicle location systems for each bus in the BRT system. However, this kind of data is not

always available, so we developed a discrete-event microsimulation to mimic a real-time situation described

in Section 3.1. Besides, with our simulation, we can analyze the impact of the optimization model under

different scenarios.

Our discrete-event simulation model is stochastic (with random components on the travel times and the

arrival of the users) but is not dynamic since time is not variable [24, 30]. Indeed, we simulate a single

rush-hour period.

The system state of our microsimulation is composed of four components that contain enough information

to describe the evolution of the transportation system over time: the activation of a bus, the user’s generation,

the movement of the buses that consider the boarding and alighting users, and the holding times obtained

by the optimization stage.

The ActiveBus function ensures that every F minutes, a new bus leaves the depot, recording all its

information at every step of the simulation: the departure times, the number of persons on board, or

alighting, travel times, and holding times.

At each step of the simulation and for each stop s, the UserGeneration(s) function randomly generates

users following a Poisson distribution with mean λs, for each s ∈ S. Each generated user at s is recorded

together with its waiting time to catch the first bus and its traveling time on board. In this manner, at the

end of the simulation, we can compute the total waiting time of the users.

Algorithm 1 MoveBus(s, b)

let s′ = lb + 1
while bus is not at stop s do

advance b up to s′ during ms
b/V of time

at stop s′, hold bus b of Ux̄s
′

b + Uȳs
′

b + hs
′

b +G time
s′ = s′ + 1

end while

The MoveBus(s, b) function, described by Algorithm 1, describes how the buses move in the BRT system.

During each simulation step, a bus b may be advancing or stopped at a stop. A bus dwells at a stop s′ < s

until the users board and alight x̄s
′

b + ȳs
′

b , plus the holding time hsb established by the H-BBP(t0) model, plus

the time needed by the doors to open and close. This addition reflects the case where boarding and alighting

take place through the same door. Note that x̄s
′

b and ȳs
′

b are not variables; they are values computed with

the actual users at the stops and the actual capacity of the bus. Alighting users ȳs
′

b is a proportion γs
′

of

the onboard users. The boarding process follows a First-in-First-out (FIFO) rule, so the first user at the

11



stop is the first to board the bus, provided that the bus has available capacity. Otherwise, the user waits

until the next bus arrives with available capacity. Therefore, x̄s
′

b is the minimum value between the available

capacity of the bus b and the users waiting at a stop. The holding times are obtained from the H-BBP(t0)

model presented in Section 3.

At every step of the simulation, we keep track of the bus capacities and their location, the onboard users,

and the ones at the stops. Therefore, different measures of effectiveness (MOE) may be calculated. The

MOEs reflecting the system performance statistics are the total waiting time of the users to board a bus,

the total travel time of the users, and the number of bus bunching events.

At the initial state of the simulation, there are only B =
⌊
S
2

⌋
active buses in the corridor, uniformly

distributed through the stops. The total execution time of the simulation represents a high demand period of

Tmax minutes. Ω is the frequency at which the holding times are computed by the H-BBP(t0) model where

t0 is distributed evenly in the interval [10%Tmax, 90%Tmax] (the planning period starts at time 0). The first

10% of the simulation time is the warm-up time to reach a steady point, while the last 10% is mainly for

the users to alight the buses, so there is no much interest in computing holding times anymore at the end of

the period.

4 Experimental results

In this section, we test a set of experiments on a case study with various scenarios to verify the effectiveness

of our BBP strategy to mitigate the bus bunching effect and reduce the user’s waiting times.

The system’s current state at time t0 is the input of the mathematical model H-BBP(t0) receives. This

model is coded in C++ and solved using the commercial solver Gurobi 8.11. Since we have a linear objective

function, valid inequalities, and we avoid origin-destination matrices, our formulation can be solved in less

than 15 seconds for most of the instances. In this manner, the rapidly obtained holding times are input for

the discrete event simulation coded in R 3.6.0 every Ω minutes along the planning period.

The experiments were carried out on a computer with macOS Catalina 10.15.5 with an Octa-core of 3

GHz Intel Xeon E5 processor and 16GB 1866MHz DDR3 of RAM. All the instances and the code of the

mathematical model are available at https://doi.org/10.6084/m9.figshare.16688770.v1.

4.1 Case study: Ecov́ıa in Monterrey, Mexico

The case study analyzed in this work contemplates the morning rush-hours (6:00-8:00) of the Ecov́ıa, a BRT

corridor that provides service in Monterrey city and its metropolitan area in Mexico. The corridor has 40

stations, including two terminal stops (Lincoln and Valle Soleado) located at opposite ends of the line, as

schemed by the red line in Figure 6. We consider the BRT Ecov́ıa from Lincoln to Valle Soleado, which length

is around 30.2 km. Notice that it intersects two city underground rapid transit rail system lines: Line 1 at
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Mitras station and Line 2 at Regina station. Mitras is the most critical stop since this bus/subway station

has higher arrival and alighting rates. Although the Ecov́ıa BRT has three types of buses with different

capacities, 80% of the buses are of the same class, so our experiments are performed with only the type of

buses with a maximum capacity of 80 persons.

5/6/2021 Google Maps

https://www.google.com/maps/@25.7080536,-100.3439734,12z 1/2

Map data ©2021 INEGI 2 km 

metro linea 1

metro

Ecovia Estacion Lincoln Monterrey, NL

Ecovía

Line 2

Line 1

Lincoln

Mitras

Valle Soleado

Regina

Figure 6: Map of Monterrey, Mexico. Bus rapid transit Ecov́ıa (red) intersects Line 1 (yellow) and Line 2
(green) of the underground rapid transit rail system. Adapted with permission of the author from [Ecov́ıa
Monterrey], from Google, n.d., https://www.google.com/maps/@25.6983801,-100.3365817,12.41z. All
rights reserved 2021 by Google.

The Ecov́ıa simulation period is of Tmax = 120 minutes with a frequency F of two minutes during the

rush hour. Thus, there could be more than 60 buses at the same time in the corridor.

We have statistically determined parameter vectors (λs)s∈S and (γs)s∈S used in the simulation and the

H-BBP(t0) model through a field survey. At each stop, the users’ arrival process λs, s ∈ S, is a Poisson

distribution with around eight passengers per minute rates at Mitras or Lincoln stations, while as few as

0.12 passengers per minute for the final stations close to Valle Soleado. For the H-BBP(t0) model, we use

the expected value of these distributions. We have also determined the proportion of users alighting at each

station. The first stops have a small proportion of γs = 1%, while in Mitras it is γMitras = 75%. Also, from

our field survey, we fixed the boarding and alighting time per person in Ū = U = 2 seconds, similar to what

was reported in Fernández et al. [14], Tirachini [34]. These times already consider a congested rush-hour

system with passenger friction since users board and alight by the same door. When a bus arrives at a
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station, the process of opening plus closing its doors takes an average of G = 5 seconds [11].

For the simulation, the travel times along the corridor are a Lognormal distribution with a mean of

0.77 and variance of 0.4 minutes as in Delgado et al. [9], Hernández-Landa et al. [21], but one could use

the collected real-date to fine-tune these parameters as in Ricard et al. [28]. For the H-BBP(t0) model, we

consider an average speed of 60 km/h for all buses.

Since we are using a simulation of the Ecov́ıa, we can stress the system to determine high-quality holding

policies. Thus, different scenarios are considered to address the following questions (bold parameters are the

real case). The following are some critical issues we wish to investigate in our experimental work.

• We wish to investigate if the boarding and alighting times are the leading cause of bus bunching. If

this is the case, the companies may evaluate investing in other vehicles with two doors instead of one

or implement different queuing processes. Thus, we consider U = U ∈ {1,2, 3} seconds per person, as

in Tirachini [33].

• We want to know how the bus frequency F impacts the BRT behavior and whether higher frequencies

reduce bus bunching. We consider F ∈ {1,2, 3, 4} buses per minute. F = 4 corresponds to the

COVID-19 situation where traveling in public transportation was not recommended.

• We wish to establish how many times the holding times must be computed along the planning period.

Thus, we test with Ω ∈ {2, 5, 7, 15, 20, ∅}, where ∅ means that no holding times are applied.

• We want to evaluate whether holding times should be an integer number so that drivers adopt them

more easily. In addition, we want to know the effect of rounding a holding time, for example, from

35.8 seconds to 30 seconds or one minute. Thus, we consider both cases, the holding times in the

H-BBP(t0) may be integer or continuous values.

Therefore, |U | × |F | × |Ω| × 2 = 144 configurations were tested to evaluate and compare the H-BBP(t0)

model under different operating conditions. Ten simulation runs were carried out for each scenario to

guarantee statistical sound results.

4.2 Number of bus bunching pairs

The main objective of the H-BBP(t0) model is to avoid paired bus bunching. Thus, we apply our BBP

methodology to the scenarios with boarding and alighting U = U ∈ {1,2, 3} seconds per person corresponding

to the three box-plot graphs of Figure 7. The vertical axis indicates the total number of bus bunching pairs

throughout the two hours. Note that if there are four buses at a station, then there are three bus bunching.

The horizontal axis represents the optimization process’s frequency Ω. The four different types of boxes

correspond to the different frequencies F .
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(a) U = U = 1.
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(b) U = U = 2.
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(c) U = U = 3.

Figure 7: Bus bunching pairs with respect to optimization process frequency Ω when the bus boarding and
alight times are (a) one, (b) two, and (c) three seconds.

Our BBP methodology significantly reduced the number of bus bunching pairs in the evaluation scenarios

so users will perceive a more reliable service. Note that generating the holding times more often (Ω < 2) does

not necessarily imply more reduction of bus bunching pairs. A period of Ω = 5 or Ω = 7 minutes obtains

the best results without overwhelming the drivers with frequent holding requests. On the one hand, when

the boarding time of users U = U is 2 or 3 seconds (Figures 7b and 7c), the least amount of bus bunching

pairs occurs when the optimization process Ω is performed every 7 minutes. On the other hand, when the

boarding time of the users U = U is 1 second (Figure 7a), it is recommended that the optimization phase

runs every 5 minutes. For systems with a low bus frequency F = 4, the bus bunching reduction is not as

drastic as for the high-frequency ones of F = 1 minute. The case study is observed in Figure 7b with a bus
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frequency of F = 2 without a bus bunching strategy, and there are around 470 bunching pairs. With an

intervention every Ω = 5 minutes, we could reduce bus bunching pairs by 45%. The faster boarding and

alighting times are, the more bus bunching reductions we get with the BBP methodology. For Figure 7c,

corresponding to a COVID-19 situation where line frequency is augmented, we observe that the causes of

bus bunching are the boarding and alighting times.

In model H-BBP(t0), constraints (7) bound the holding times by H minutes. We used H = 5 for the

previous experimentation of Figure 7, but we carry out other experiments without this bound obtaining

similar results about the bus bunching reduction. However, longer holding times could be resented by the

users.

4.3 Time-space bus trajectories

Bus trajectories in time-space graphs allow us to observe the bus bunching cases at a glance whenever two

or more lines collide. The four graphs in Figure 8 are similar to the ones in the Section 1. Each line is a bus

trip, where the time in minutes is in the horizontal axis while the position of the buses is in the vertical one.

Figure 8 corresponds to the case study parameters: boarding and alighting times equal two seconds and bus

frequency of two minutes. Graph 8d presents the simulation when no holding times are applied (Ω = ∅). We

observe many bus bunching pairs and long intervals without buses at the stops, especially after kilometer 10.

The optimization stage is done every twenty and ten minutes, respectively, in the time-space graphs 8c and

8b. We can observe a significant change since there are fewer bus bunching cases than without considering

holding times. Indeed, the trips tend to be more equidistant, so there are fewer long intervals without buses.

We obtain the best solution when Ω = 5 minutes corresponding to Figure 8a. A bus bunching reduction of

around 30% is achieved compared to the first scenario.

4.4 User’s waiting times

The objective function in the H-BBP(t0) model seeks to maintain quasi-regular headways to reduce the

amount of bus bunching pairs. The main question is if this strategy positively correlates with a reduction

of the user’s waiting times, which is the essential characteristic of the quality in a public transport system

[3, 12].

Figure 9 shows that in our BBP methodology, the minimization of the bus bunching pairs implies a

reduction of the user’s waiting times. In box-plot graphs of Figure 9, the vertical axis corresponds to the

average user’s waiting time until they board the first bus. The horizontal axis is the optimization process

frequency Ω. As in the previous box-plots of Figure 7, we vary the bus frequency F and the user’s boarding

and alighting times U = U : (a) one, (b) two, and (c) three seconds.

Figures 9a and 9b, show that the more frequent the optimization interventions are, the more the average

waiting times are reduced. For the case study (Figure 9b with F = 2), the average waiting times are
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(b) Ω= 10 minutes.
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(c) Ω= 20 minutes.

B
us

 p
os

iti
on

 (k
m

)

0 100 200 300 400 500 600 700

0
50

10
0

15
0

20
0

25
0

30
0

Tiempo (minutos)

Pa
ra

da
s

150 10530 45 60 75 90

0
5

15
10

20
25

30

Time (minutes)

(d) Ω = ∅.

Figure 8: Bus trajectories in two hours with bus boarding and alight times equal to two seconds (U = U =
2), bus frequency of two minutes, and considering different optimization process frequency: (a) every five
minutes, (b) every ten minutes, (c) every twenty minutes, and (d) without optimization process.

reduced by 30% for Ω = 5 minutes. The box-plot of Figure 9c shows the case with boarding and alighting

times of 3 seconds, which is not usual but observed during the COVID-19 pandemic. In this case, for the

bus frequency of 2 and 3 minutes, the waiting times are only reduced when the optimization frequency Ω

is small. The variances of the average waiting times are short for the case of 1 second for boarding and

alighting (Figure 9a), but they increase as U = U augment.

Figure 10 allows us to analyze further the user’s average waiting times when the BBP methodology is

used. In the figure, there are two percentage ring graphs; both have a bus frequency of F = 2, and boarding

and alighting waiting times of U = U = 2 corresponding to the case study. The inner ring is without

holding times (Ω = ∅), while the outer one has a frequency of holding times computation of Ω = 7 minutes.

The user’s waiting times are classified into five categories: 0-5 minutes, 5-10 minutes, 10-15 minutes, 15-20
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(c) U = U = 3.

Figure 9: Users average waiting times with respect to optimization process frequency Ω when the bus
boarding and alighting times are of (a) one, (b) two, and (c) three seconds.

minutes, and more than 20 minutes.

From Figure 10, we observe that computing the holding times via our mathematical model every Ω = 7

minutes positively impacts users’ waiting time. Indeed, 15% of the users improved their average waiting

times. The bus bunching problem cannot be eradicated with our BBP method, but now only 11% of the

passengers wait for more than 20 minutes to board a bus.
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Figure 10: User’s average waiting times with respect to optimization process frequency Ω = ∅ (inner ring)
and Ω = 7 (outer ring) with bus frequency of F = 2, and boarding and alighting waiting times of U = U = 2.

4.5 Holding times analysis

In this section, we analyze if there is a consequence of considering integer holding times which are easier

to communicate to the drivers. Thus, Figure 11 considers both cases, the holding times in the H-BBP(t0)

model may be integer (Figure 11b) or continuous values (Figure 11a). In both figures, the pentagon’s vertices

indicate the different values that the holding times can have. In Figure 11a, vertex i = 1, . . . , 4 groups all

values in [i−1, i), while vertex 5 group the values of the holding times between [4, 5]. Each internal pentagon

represents the number of occurrences of a holding value type differentiated by the different bus frequencies F .

We consider boarding and alighting waiting times of U = U = 2 and all the optimization frequencies

of Ω.

Figure 11 shows that, independently of the nature of the holding times variables in the H-BBP(t0) model,

the value of five minutes is the one with the highest recurrence regardless of service frequency. Figure 11a

exhibits holding times have values ranging between [0,60] seconds, which can be challenging to apply in a

real case.

We did not notice a significant solving time difference when the holding variables take discrete or con-

tinuous values in the H-BBP(t0) model. On average, the running times for both cases were 15 seconds.

Moreover, the number of bus bunching pairs is not affected by the nature of the holding variables. We also

analyzed the running times when solving the mathematical model with and without valid inequalities (13)

and (14) and considering discrete or continuous holding time variables. A slight improvement in the running

time was observed when using valid inequalities, especially with discrete holding variables.

It is also interesting to analyze in which stations the holding times are more recurrent. With this

information, we could determine the necessity of applying holding times in all the stations or only at some

of them. Figure 12 consists of 12 histograms for which their horizontal axis corresponds to the stops (stop
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(b) Integer holding times variables.

Figure 11: Values of the holding times variables obtained by H-BBP(t0) when they are (a) continuous, and
(b) discrete.

14 is Mitras) while the vertical one corresponds to the number of times that holding times were needed.

We consider the bus frequency F (1,2, 3, and 4 minutes, corresponding to the columns of the figure) and

the boarding and alighting times (1, 2, and 3 seconds, corresponding to the lines of the figure). The colors

represent the different optimization frequencies Ω. This figure shows the case with integer holding times

values.

In Figure 12, the case study is when the bus frequency is F = 2 and the boarding and alighting times

are two seconds. Before Mitras stop, there is a large number of holding times needed. This behavior holds

when U = U = 2 and when F = 2 and F = 3. Nevertheless, when the boarding and alighting times are

short, U = U = 1, the holding times are more uniform through the stops. Thus, the whole Ecov́ıa BRT is

affected by the user’s boarding and alighting. When the boarding and alighting times are equal to two or

three seconds, the tendency is to hold the buses only in the first half of the stops.

20



St
op

s

1
2

Se
rv

ic
e 

fr
eq

ue
nc

y 
𝐹

(m
in

)

1

Alight time (sec)

O
pt

im
iz

at
io

n 
pr

oc
es

s f
re

qu
en

cy
 Ω

 (m
in

)
20

10
7

5
2

3

Number of holdings assigned

4

0

50
0

10
00

15
00

10
20

30
es

ta
ci

on
es

conteos

10203040

C
ou

nt

ho
ld

in
gs

 e
n 

es
ta

ci
on

es
 c

on
tin

uo
 a

lfa
 1

0

50
0

10
00

15
00

10
20

30
es

ta
cio

ne
s

conteos

10203040

Co
un

t

ho
ld

in
gs

 e
n 

es
ta

cio
ne

s 
co

nt
in

uo
 a

lfa
 1

0

50
0

10
00

15
00

10
20

30
es

ta
cio

ne
s

conteos

10203040

Co
un

t

ho
ld

in
gs

 e
n 

es
ta

cio
ne

s 
co

nt
in

uo
 a

lfa
 1

0

50
0

10
00

15
00

10
20

30
es

ta
ci

on
es

conteos

10203040

C
ou

nt

ho
ld

in
gs

 e
n 

es
ta

ci
on

es
 c

on
tin

uo
 a

lfa
 1

2 3

15
0
00

50
0

10
00

15
00

20
00

10
20

30
st

op
s

CantDeHol

12345
Ve

ce
sO

pt

ho
ld

in
g 

en
te

ro
 a

lfa
1 

nc
1

0

50
0

10
00

15
00

20
00

10
20

30

CantDeHol

12345
Ve

ce
sO

pt

ho
ld

in
g 

en
te

ro
 a

lfa
1 

nc
2

0

50
0

10
00

15
00

20
00

10
20

30

CantDeHol

12345
Ve

ce
sO

pt

ho
ld

in
g 

en
te

ro
 a

lfa
1 

nc
3

0

50
0

10
00

15
00

20
00

10
20

30

CantDeHol

12345
Ve

ce
sO

pt

ho
ld

in
g 

en
te

ro
 a

lfa
1 

nc
4

0

50
0

10
00

15
00

20
00

10
20

30

CantDeHol

12345
Ve

ce
sO

pt

ho
ld

in
g 

en
te

ro
 a

lfa
2 

nc
1

0

50
0

10
00

15
00

20
00

10
20

30

CantDeHol

12345
Ve

ce
sO

pt

ho
ld

in
g 

en
te

ro
 a

lfa
2 

nc
2

0

50
0

10
00

15
00

20
00

10
20

30

CantDeHol

12345
Ve

ce
sO

pt

ho
ld

in
g 

en
te

ro
 a

lfa
2 

nc
3

0

50
0

10
00

15
00

20
00

10
20

30

CantDeHol

12345
Ve

ce
sO

pt

ho
ld

in
g 

en
te

ro
 a

lfa
2 

nc
4

0

50
0

10
00

15
00

20
00

10
20

30

CantDeHol

12345
Ve

ce
sO

pt

ho
ld

in
g 

en
te

ro
 a

lfa
3 

nc
1

0

50
0

10
00

15
00

20
00

10
20

30

CantDeHol

12345
Ve

ce
sO

pt

ho
ld

in
g 

en
te

ro
 a

lfa
3 

nc
2

0

50
0

10
00

15
00

20
00

10
20

30

CantDeHol

12345
Ve

ce
sO

pt

ho
ld

in
g 

en
te

ro
 a

lfa
3 

nc
3

0

50
0

10
00

15
00

20
00

10
20

30

CantDeHol

12345
Ve

ce
sO

pt

ho
ld

in
g 

en
te

ro
 a

lfa
3 

nc
4

3
0

20
10

3
0

20
10

3
0

20
10

3
0

20
10

10
0
0

50
0 0

20
0
0

15
0
0

10
0
0

50
0 0

20
0
0

15
0
0

10
0
0

50
0 0

20
0
0

F
ig

u
re

1
2:

N
u

m
b

er
o
f

h
o
ld

in
g

ti
m

es
n

ee
d

ed
a
t

ea
ch

B
R

T
st

a
ti

o
n

.

21



5 Conclusions

With the BBP methodology, we minimize the bus bunching occurrence; that is, the number of buses of the

same line cruising head-to-tail or arriving at a stop simultaneously by determining holding times at the bus

stops.

Our BBP solution approach presents an optimization stage that determines the holding times of each

bus at the stops by considering the actual information along the bus line and by predicting the future events

in the line. This stage is a novel quadratically constrained integer linear programming model that yields

the holding times, which are immediately communicated to the drivers to recover quasi-regular headways

between the buses. We also present a discrete event simulation program that represents a bus rapid transit

system. In this manner, we can retrieve simulated real-time data from the system to validate the efficiency

of our mathematical model.

The experimental results show that our methodology mitigates the bus bunching by reducing it up to

45%, especially in the scenarios with high bus frequency. Moreover, the user’s waiting times also decrease

considerably in scenarios where the dwelling and alighting times are one or two seconds, being reduced by

up to 30%. Every five minutes is the frequency in which the holding times must be computed to have the

best quasi-equidistant headways between the buses.

Future research lines may consider additional strategies such as bus insertion at stations with a high

passenger flow. Also, we could consider a BRT system in which more than one bus line shares stations and

some road segments. This framework may be enhanced by considering uncertainty in the user’s travel and

arrival times and bus speeds, and scenarios where accidents or bus breakdowns may occur. These features

will allow us to have more realistic models and more robust solutions. Finally, one may implement heuristic

methods to determine holding times for more extensive and more complete BRT systems.

Acknowledgments: The research was supported by the Mexican Council for Science and Technology (grant

CONACyT FC 2016-2/1948). The first author was financially supported by graduate scholarship 781117,

also by CONACyT.

References

[1] J. Argote-Cabanero, C. F. Daganzo, and J. W. Lynn. Dynamic control of complex transit systems.

Transportation Research Part B: Methodological, 81:146–160, 2015.

[2] A. Barnett. On controlling randomness in transit operations. Transportation Science, 8(2):102–116,

1974.

22



[3] M. Ben-Akiva and S. R. Lerman. Discrete Choice Analysis: Theory and Application to Travel Demand.

Transportation Studies. MIT Press, Cambridge, 2018.

[4] A. Ceder. Public Transit Planning and Operation: Modeling, Practice and Behavior. CRC Press, Boca

Raton, 2nd edition, 2016.
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transport systems: A literature review. Transportation Research Part B: Methodological, 77:38–75, 2015.

[24] L. M. Leemis and S. K. Park. Discrete-Event Simulation: A First Course. Pearson Prentice Hall, Upper

Saddle River, 2006.

[25] K. Ling and A. Shalaby. Automated transit headway control via adaptive signal priority. Journal of

Advanced Transportation, 38(1):45–67, 2004.

[26] H. Liu, A. Skabardonis, and W.-B. Zhang. A dynamic model for tive bus signal priority. In Proceedings

of the 82nd Transportation Research Board Annual Meeting, Washington, 2003.

[27] E. S. Prassas and R. P. Roess. The highway capacity manual and the committee on highway capacity

and quality of service. In The Highway Capacity Manual: A Conceptual and Research History Volume 2,

volume 12 of Springer Tracts on Transportation and Traffic, pages 1–16. Springer, Cham, Switzerland,

2020.

24



[28] L. Ricard, G. Desaulniers, A. Lodi, and L. M. Rousseau. Predicting the probability distribution of bus

travel time to move towards reliable planning of public transport services. Preprint arXiv:2102.02292v1,

February 2021.

[29] G. E. Sánchez-Mart́ınez, H. N. Koutsopoulos, and N. H. M. Wilson. Real-time holding control for

high-frequency transit with dynamics. Transportation Research Part B: Methodological, 83:1–19, 2016.

[30] J. A. Sokolowski and C. M. Banks. Principles of Modeling and Simulation: A Multidisciplinary Ap-

proach. Wiley, New York, 2011.

[31] A. Sun and M. Hickman. The real–time stop–skipping problem. Journal of Intelligent Transportation

Systems, 9(2):91–109, 2005.

[32] A. Sun and M. Hickman. The holding problem at multiple holding stations. In Computer-aided Systems

in Public Transport, volume 600 of Lecture Notes in Economics and Mathematical Systems, pages 339–

359. Springer, Berlin, Germany, 2008.

[33] A. Tirachini. Bus dwell time: effect of different fare collection systems, bus floor level and age of

passengers. Transportmetrica A: Transport Science, 9(1):28–49, 2013.

[34] A. Tirachini. The economics and engineering of bus stops: Spacing, design and congestion. Transporta-

tion Research Part A: Policy and Practice, 59:37–57, 2014.

[35] Transportation Research Board. Transit capacity and quality of service manual. TCRP Report 165,

URL: http://www.trb.org/Main/Blurbs/169437.aspx, 2013.

[36] J. Wang and L. Sun. Dynamic holding control to avoid bus bunching: A multi-agent deep reinforcement

learning framework. Transportation Research Part C: Emerging Technologies, 116:102661, 2020.

[37] H. P. Williams. Model Building in Mathematical Programming. Wiley, New York, 5th edition, 2013.

[38] L. A. Wolsey. Integer Programming. Wiley, New York, 2nd edition, 2020.

[39] Y. Xuan, J. Argote, and C. F. Daganzo. Dynamic bus holding strategies for schedule reliability: Optimal

linear control and performance analysis. Transportation Research Part B: Methodological, 45(10):1831–

1845, 2011.

25


	Introduction
	Literature review
	The BBP methodology
	The bus rapid transit description
	The BBP optimization stage
	The simulation of the real-time collection stage of the BBP

	Experimental results
	Case study: Ecovía in Monterrey, Mexico
	Number of bus bunching pairs
	Time-space bus trajectories
	User's waiting times
	Holding times analysis

	Conclusions

