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Abstract

The inverse problem of estimating an actual origin-destination (OD) matrix is one of the most

important public transit planning steps. Most of the time, the route choice probabilities by which

a user transits along the network are first calculated, and then the OD matrix is updated. In this

article, these two steps are solved simultaneously by an integer linear programming model based

on partial knowledge of the transit segment flow along the network. A novelty in our methodology

to avoid a quadratic objective function is to measure the difference between the reference and the

estimated OD matrices by defining demand deficits and excesses for the estimated OD matrix. To

test our methodology, we build an instance generator based on small-world graphs to mimic real

transit networks. The results are compared with an augmented Lagrangian model solved by the

dual ascent and multipliers method. Our integer linear model yields high-quality estimators of the

actual OD matrices, the exact flow volume segment counts, and an adequate interval for the route

choice probabilities. Additionally, we test our methodology in a real-world case from the city of

Monterrey, Mexico.

Keywords: Origin-destination matrix; Transit counts; Integer linear programming; Transit assign-

ment problem.



1 Introduction

The dynamics of the city in terms of population and mobility are among the most critical challenges

we face nowadays. A well-planned public transport system is an essential asset for a more livable

and sustainable city. However, public transport systems often fail to offer a high-quality service

that may imply long travel times. This failure may be due to the lack of information about the

daily trips taking place at each period of the day, the specific trip purpose (work, school, hospital,

entertainment), and how people move in the public transportation system. This information is

known as the Origin-Destination matrices (OD matrices). They are usually obtained from home-

based surveys every ten years [3], they are expensive, and their data processing is time-consuming

(six months to one year in our case study). Thus, once the new OD matrix is available, it may be

already obsolete but it may be considered as a reference matrix to be updated. For these reasons,

the inverse problem of estimating the actual OD matrix based on an reference one and people flow

observations at some transit segments is relevant. The basis of the planning, operation, and control

of a public transport system rely on high-quality OD matrices even if demand and travel times

usually follow time-dependent stochastic patterns [22, 2, 19]. OD matrices are relevant at each

stage of the bus network planning process that is usually divided into two main stages [14]. The

first stage is the tactical planning, where correct OD matrices are needed for the bus line design

and the generation of useful timetables (or departure times of all trips). This stage focuses on

offering a high-quality service for the customers: line frequency, waiting times, and short transfers,

as mentioned by Ibarra-Rojas et al. [13]. The second stage is the operational planning, where

the vehicle and crew scheduling problems seek to minimize the transport system operating costs.

Having updated OD matrices guide the decision-makers when more trips are needed, when a driver

does not show up, or when there are accidents and the network should be rapidly restored [4].

Moreover, updating OD matrices allows us to test the current system under more demanding

scenarios and adapt the future demand infrastructure. Figure 1 shows an example of a transit
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0 1 2 3 4 5

0 0 100 80 67 96 37

1 20 0 40 44 77 81

2 34 22 0 32 153 121

3 33 15 47 0 95 64

4 43 98 11 33 0 106

5 55 15 23 39 87 0

Figure 1: Reference OD matrix (left-hand side) of the transit network (right-hand side) with five

lines and six stops.

network and its corresponding OD matrix. Notice that the diagonal entries of the OD matrix are

0 and that it is not a symmetric matrix (in the morning, people go downtown and few to the

peripheries). The bold entry of the OD matrix means that 100 trips originate at node 0 to their
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final destination at node 1 in a certain period of the day. Nevertheless, this OD matrix is obsolete,

so we aim to update the number of trips for every entry (we also say that the demand of the (0,1)

pair must be updated). To update an obsolete OD matrix, we use flow volume observations made

at some network segments obtained by fare-box and automated fare collection systems, automatic

passenger counter systems, geographical positioning on cellular phones, or even surveillance videos.

In this work, we estimate public transit OD matrices and consider small perturbations of the route

choice probabilities to match some network flow observations. We name this OD matrix estimation

as the ODA problem. Let us illustrate the ODA problem to show its importance. Consider the

lines headway transit segment travel time

min. (l, i, j) min.

1-blue 12 (1,0,1) 25

(1,1,0) 25

(2,0,2) 7

2-green 12 (2,2,0) 7

(2,2,3) 6

(2,3,2) 6

(3,2,3) 4

3-red 30 (3,3,2) 4

(3,3,1) 4

(3,1,3) 4

4-black 6 (4,3,1) 10

(4,1,3) 10

(5,0,4) 9

(5,4,0) 9

5-pink 30 (5,4,5) 12

(5,5,4) 12

(5,5,3) 8

(5,3,5) 8

Table 1: The five lines (blue, green, red, black, pink) of the network of the right side of Figure 1

with with the headways and the travel times for each segment.

transit network of Figure 1 with five lines (blue, green, red, black, and pink) and six stops. Table 1

specifies the headway of the line: the difference in minutes between two different vehicles at the

depot. It also indicates the travel time in minutes for each line-node-node transit segment (l, i, j).

An actual but unknown OD matrix is associated with the network of Figure 1. Thus we must

infer it with the observed flow volumes at some transit segments and the reference OD matrix

(left-hand side of Figure 1). Suppose that we want to update the (0, 1) entry of the obsolete OD
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matrix. Figure 2 shows only the links that a user would take to go from origin 0 to destination 1.

Notice that the users paths (or strategy) do not consider taking the pink line since it would increase

their travel times, as it can be validated with data from Table 1. The first and second columns of

Table 2 indicate the lines and segments of the network depicted in Figure 2, respectively. The third

column is the path choice probabilities that mimic how a user moves in a network and is based on

a decision choice model [5]. In this work, we consider that the obsolete path choice probabilities

may be updated, as shown in the fifth column of the table. The obsolete OD matrix indicates that

lines transit obsolete updated

segments probabilities probabilities

1 blue (1,0,1) 0.500 0.475

2 green (2,0,2) 0.500 0.525

(2,2,3) 0.500 0.525

3 red (3,2,3) 0.000 0.000

(3,3,1) 0.080 0.090

4 black (4,3,1) 0.420 0.435

Table 2: Transit segment probabilities associated to Figure 2.

0 1

2 3

100 -100
50

50

50

0

42 8

Figure 2: Transit segments that a user may take to go from origin 0 to destination 1 and the flow

volume at each segment.

stop 0 generates 100 trips going to node 1 (-100 means that node 1 attracts 100 trips from node 0).

Values in the segments of Figure 2 correspond to the number of passengers using each segment to

go from 0 to 1 according to the obsolete OD matrix and the path choice probabilities of the lines,

in the third column of Table 2. With the obsolete path choice probabilities, half of the passengers

use the blue line; the other half use the (2,0,1) and the (2,2,3) segments of the green line. None

use the (2,2,3) segment, while 42% of the passengers arriving at node 3 take the (4,3,1) segment.

Finally, only 8% take the (3,3,1) link to arrive at node 1. Let us suppose that the number of trips

originated at node 0 and destined to node 1 is no longer 100 but 200, also that the infrastructure

of the network has not change. Thus, we suppose that the actual (0,1) OD matrix entry is known.

Using the obsolete probabilities of Table 2 we obtain Figure 3 with the updated volumes at the
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100

100
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Figure 3: The segment flows are generated with the obsolete probabilities for an updated amount

of 200 trips from 0 to 1.

segments. Nevertheless, this distribution of passengers along the network does not match the flow

volume observations made at two segments. Through segment (2,2,3), 105 passengers are traveling,

and through (3,3,1), there are 18, as shown in Figure 4. These values do not correspond to the

volumes obtained with the obsolete path choice probabilities. Thus, these probabilities must also

be updated as well as the number of trips of the OD matrix. Notice that the updated path choice

probabilities, presented in the fourth column of Table 2, must be close to the reference ones, and

the new OD matrix must be similar to the obsolete one to preserve the dynamics of the city [5].

Therefore, the ODA problem aims to update all the OD matrix trips simultaneously and the new

0 1

2 3

200 -200
95

105

105

0

87 18

Figure 4: Updated transit segment flows for an updated amount of 200 trips from 0 to 1.

path choice probabilities by matching the flow volumes observations made at some transit segments

of the network. To the best of our knowledge, we are the first to update the OD matrix and the

route choice probabilities in an integrated way. In other approaches, where continuous variables

are used, the obtained solutions are not integer numbers and it is necessary to make roundings to

implement them in practice. Here, we formulate a mixed-integer linear program (MILP) to solve

the ODA problem, which is the crucial point of our methodology since we avoid a quadratic model.

Indeed, most of the models for updating OD matrices rely on a quadratic objective function that

corresponds to the relative difference between the reference OD matrix and the estimated one. By

having a linear model, we can solve it more efficiently, and it allows us to introduce more details

in the network as the flow volume observations. Another contribution is that we consider that

the number of trips and the network flow volumes are integer numbers contrary to most other

approaches. We also introduce a family of valid inequalities and establish bounds on the variables
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to provide a tighter integer linear programming formulation. To test our methodology, we propose

a random instance generator whose instances are close to real public transportation networks. We

also show the performance of our methodology on a real-world case study. This paper is organized

as follows. We first present the literature review in Section 2. The ODA problem is formally defined

in Section 3. Then, its MILP model is presented in Section 4. Experimental results on generated

networks and in a real-world case study validate our methodology in Section 5. We include a

comparison of our method with a penalty-based quadratic model from the literature. Finally, in

Section 6, we present the conclusions.

2 Literature review

The OD matrix estimation approaches usually combine two stages of the four-stage sequential pro-

cedure. For instance, Fisk and Boyce [10] propose a model that combines trip distribution and

traffic assignment, while Fisk [9] combines the entropy maximization method with traffic assign-

ment. Also, Yang et al. [25] extended these results to congested networks where the link choice

probabilities are not constant. Some literature models update OD matrices in public transportation,

but the approaches adapt to assignment procedures of vehicle traffic flows [5].

The two-stage problems have also been formulated as bi-level optimization problems where

the upper level represents the OD estimation process, and the lower level represents a network

equilibrium assignment [25, 11]. In Shihsien and Fricker [20], the authors propose a two-stage

iterative method to estimate an OD matrix and the variation in link choices among trip makers,

but inconsistencies arise when congestion effects are considered. In Yang et al. [26], the authors

improved this approach by using, in the cost function, the link flows obtained from the stochastic

user equilibrium traffic assignment and estimated OD flows. They use as the objective function a

sum of the squares of errors and propose a successive quadratic algorithm to solve the model. Most

of the shortcomings of the above studies are related to the route choice probabilities due to their

computation from a separate traffic assignment model, especially in a network with congestion.

Based on the user equilibrium principle, some models succeeded in incorporating congestion

effects into the estimation process, but the perception of travel costs does not vary among travelers.

A more realistic approach can be considered allowing for the difference in cost perceptions and

different link choice behavior among travelers using a stochastic user equilibrium assignment as

in Lo and Chan [15].

Most of the mentioned approaches formulate the problem as a quadratic optimization problem

in which they include observed data, such as the flow of people at some segments of the transit

network, and an reference matrix obtained from surveys or projections based on the economic

growth. There are relatively few authors who propose a linear model. For example, Ashok and

Ben-Akiva [1] formulate a model to estimate a dynamic OD matrix. They define a state vector

in terms of the departure rates from each origin to each destination. Pitombeira-Neto et al. [17]

propose a linear model to estimate a dynamic OD matrix to represent the stochastic evolution of

OD flows over time. Link choice probabilities are obtained through a utility model based on past

link costs. They propose a Markov chain Monte Carlo algorithm to approximate the mean OD

flows and the link choice model parameters.

In Chávez-Hernández et al. [7], the authors consider a penalized quadratic model to update OD
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matrices from observed transit flow volumes. They present an augmented Lagrangian model and

its iterative solution by a dual ascent technique and the method of multipliers. In Section 5, we

compare our methodology with theirs.

In this study, we introduce a model to simultaneously estimate the OD matrix and the variation

of the path probabilities, representing the effects of congestion. In addition to being one of the few

linear models in the literature, it has the advantage that it can be extended to model changes in

the perception of the travel cost in each transit segment for each OD pair.

3 The ODA problem

In this section, we formally present the ODA problem. We are considering updating a reference OD

matrix at a specific period of the day. Our methodology is based on an optimization network flow

model that avoids the most often used quadratic models for this problem (e.g., Chávez-Hernández

et al. [7]). Instead, we count the excess or deficit of trips at each OD pair, as shown in Section 4.

Let us consider a multimodal public transit network with a set of lines L. The public transit

system is represented by a directed multigraph G = (N ,A), where N is the set of nodes (bus or

subway stops) and A is the multiset of transit segments (directed links) of the lines in L. Segment

or link a ∈ A is a triplet (l, i, j) indicating the line l ∈ L and the nodes i and j linked by line

l, with both nodes in N . Notice that in link (l, i, j), the line l passes first through i and then

through j. We consider that all the nodes (or centroids) in N are an origin and a destination, thus

PQ = {(p, q) ∈ N ×N and p 6= q}.
The reference OD matrix, denoted by ĝ = {ĝpq}, corresponds to the obsolete number of trips

generated in the transportation network at node p, whose final destination is node q for all (p, q) ∈
PQ. The objective of the ODA problem is to determine the estimated OD matrix denoted by

g = {gpq}, which is close to matrix ĝ and verifies measured observation of the flow volumes at

some transit segments of the network, for (p, q) ∈ PQ. While the updated OD matrix g = {gpq}
corresponds to the variables in our methodology, the reference matrix ĝ = {ĝpq} values are data

known a priori, for (p, q) ∈ PQ.

Based on the concept of optimal strategy introduced by Spiess and Florian [22], let Spq ⊆ A
be the subset of transit segments that a traveler may take to go from p to q, with (p, q) ∈ PQ.

A decision choice model determines these strategies [5] together with its path choice probabilities.

Indeed, an average user would not take a path between two nodes that takes twice as long. Although,

this user may consider a path that takes two more minutes but without transfers. Thus, for one pair

of nodes, there could be several paths that the user may take. After solving an assignment problem

based on the decision choice model, each transit segment a = (l, i, j) ∈ Spq has probability πapq of

being used by a traveler going from p to q, (p, q) ∈ PQ. For a segment a′ /∈ Spq, this probability is

πa
′

pq = 0. The obsolete path choice probabilities are used as a reference and considered a parameter

in this study.

To update the OD matrix, we rely on observed flow volumes of travelers at some transit segments

v̄a in set Ā ⊂ A. We use equivalent notations vapq or v
(l,i,j)
pq depending on the detail we need to

express the equations, for a = (l, i, j) ∈ Spq.
The ODA problem can now be formally stated: find the OD matrix g value that minimizes the

difference between this matrix and the reference OD matrix ĝ such that the flow volumes in the
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observed links v̄a are verified, with a ∈ Ā.

4 Mixed-integer linear programming model for the ODA problem

To formulate a mixed-integer linear programming model for the ODA problem, we must determine

the OD matrix variable g = {gpq} with (p, q) ∈ PQ. These variables are the estimated values of

the OD matrix: the estimated trips from the origins to the destinations.

In this work, we use as an objective function the absolute distance between g and the reference

OD matrix ĝ to allow the new demand to change to reproduce the observed flow volumes at

certain segments. We use two sets of variables to control the differences between the reference

OD matrix and the estimated one. The excess integer variables Epq with (p, q) ∈ PQ indicate

that there are more trips from p to q. Thus, ĝpq < gpq and this manner this excess is defined as

Epq = max{gpq− ĝpq, 0}. Similarly, we introduce deficit variables Dpq with (p, q) ∈ PQ for the case

where there are fewer trips from p to q, that is, ĝpq ≥ gpq. Therefore, Dpq = max{ĝpq − gpq, 0}.
Note that when Dpq > 0 then Epq = 0, and vice versa.

The objective function of the MILP for the ODA problem is to obtain an estimated OD matrix

g as close as possible to the reference one ĝ:

min
∑

(p,q)∈PQ
αDpq + βEpq. (1)

This objective minimizes the total sum of the excess, and the deficits of the estimated OD matrix g.

Notice that linear parameters α and β allow us to give more preference to the excess or the deficits.

For example, for a city that has a growing population over the years, we may expect that there

will be more trips in many of its OD matrix entries, thus β < α. Similarly, a rural zone may be

experiencing a population decrease that should be reflected in many of the trips between origin-

destination pairs (β > α).

To linearly express the deficits and the excess of the estimated OD matrix, we need the following

equations for each (p, q) ∈ PQ:

Dpq ≥ ĝpq − gpq, (2)

Epq ≥ gpq − ĝpq. (3)

The ODA problem updates the OD matrix and determines the volume of people traveling through-

out each link a ∈ Spq ⊂ A that are going from p to q, (p, q) ∈ PQ. Hence, we introduce integer vari-

ables vapq to indicate the actual number of people going from p to q using segment a = (l, i, j) ∈ Spq.
As mentioned before, there are some transit segments a ∈ Ā where the number of flow passengers

v̄a is observed and counted. These observations are our most important tool to update the OD

matrix. We do not know the origin nor the destination of the passengers using this segment. Thus,

we have that the sum of all volumes should be equal to the observations:

v̄a =
∑

(p,q)∈PQ|a∈Spq

vapq, for a ∈ Ā. (4)

The usual way of modeling the passenger volumes from p to q at a link a ∈ A is to multiply the

total number of trips gpq by the assignment probability πapq. Thus, πapqgpq = vapq. Nevertheless, by
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using this equation, the actual passenger volumes, in some cases, might yield infeasible solutions.

That implies that the assignment probabilities are not verified and may have some small deviation.

Indeed, the assignment problem may establish a probability of 0.6, but in reality, it may be 0.59.

Thus, we consider that these probabilities need small adjustments to reflect the actual volumes.

Therefore, we propose to compute them as follows for a ∈ Spq and every (p, q) ∈ PQ:

bmax{(πapq − ε), 0} gpqc ≤ vapq, (5)

dmin{(πapq + ε), 1} gpqe ≥ vapq, (6)

with ε ≥ 0. Interval [max{(πapq − ε), 0},min{(πapq + ε), 1}] represents the allowed change in the

obsolete route choice probabilities. Notice that we are not enforcing equality since we have the

floor operator and positive values of ε. After solving our ODA MILP model, we obtain the updated

OD matrix and the updated assignment probabilities that fit the observations of the flows in the

network.

Then, we must handle the network flow constraints. The sum of the flow volumes at origin

p ∈ PQ must be equal to the number of trips originated at this node, as stated by constraints (7).

Similarly, with constraints (8) all flow volumes arriving at destination q ∈ PQ is equal to the total

trips ending there. Flow conservation at every node is guaranteed by constraints (9): the flow

entering node k ∈ N \ {p, q} must be equal to the flow leaving it.

∑
l∈L

∑
{i|(l,p,i)∈Spq}

v(l,p,i)pq = gpq, (p, q) ∈ PQ, (7)

∑
l∈L

∑
{i|(l,i,q)∈Spq}

v(l,i,q)pq = gpq, (p, q) ∈ PQ, (8)

∑
l∈L

∑
{i|(l,i,k)∈Spq}

v(l,i,k)pq =
∑
l∈L

∑
{j|(l,k,j)∈Spq}

v(l,k,j)pq , k ∈ N \ {p, q}, (p, q) ∈ PQ. (9)

Valid inequalities strengthen a MILP formulation since they do not cut any feasible integer

solution and make the solution space polyhedron closer to the integer solutions convex hull [24, 18].

Thus, we introduce valid inequalities (10) to our MILP to decrease the computational running time

without compromising the optimality of the solution since it bounds the volume of each arc by the

total number of persons going from p to q:

vapq ≤ gpq, a ∈ Spq, (p, q) ∈ PQ. (10)

Inequalities (10) are valid by definition. Notice that by imposing a positive integrality to the

volumes, we also ensure the integrality on the estimated OD values of the matrix and the excess

and deficits. Thus, these last variables may be defined as real variables but will take integer values

as stated by (11)-(13).

vapq ∈ Z+, (p, q) ∈ PQ, a ∈ A, (11)

δ1ĝpq ≤ gpq ≤ δ2ĝpq ∈ R+, (p, q) ∈ PQ. (12)

Dpq, Epq ∈ R+, (p, q) ∈ PQ, (13)
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where δ1 and δ2 are constants known by the user to bound g and remain close to ĝ. For example,

a census or some statistical information may estimate that a particular population has grown no

more than 10%.

To summarize, we denote as the ODA-MILP(ε) the MILP model of the ODA problem parametrized

with a value of ε such that it minimizes objective function (1) subject to constraints (2)-(13). Our

methodology consists of starting with ε = 0 and then increasing it by 0.02 units until a feasible

solution for the ODA-MILP(ε) is reached. In this manner, we obtain an estimated OD matrix and

the actual flow volumes, or equivalently, the actual assignment probabilities of the links.

5 Experimental results

The general scheme of the comparison process we use in this study to validate the ODA-MILP(ε)

model is depicted in Figure 5. We start with the real matrix ḡ; in Section 5.1 we explain how to

generate it. This matrix is usually unknown, but we consider that we are in an ideal case where

we know it to validate our approach. Then, we perturb the real matrix to obtain the reference

or obsolete matrix ĝ. Finally, by using the ODA-MILP(ε) we obtain g which estimates the real

matrix. Two questions must be validated. First, we must assess how close the reference OD matrix

ĝ is to the estimated one g. That would verify the mathematical model correctness and ensure

the previous knowledge on the population dynamics. Second, we must asses how close the real

OD matrix ḡ is to the estimated one g. This is the most challenging question, a fair comparison

between ḡ and g can be drawn with this methodology, validating that the updated OD matrix is

a reasonable estimate of the real population trips.

Figure 5: Comparison process to validate the ODA-MILP(ε) model.

Section 5.1 describes the randomly generated matrices ḡ and how we perturb them to obtain

the reference ones. In Section 5.2, we compare the ODA-MILP(ε) with the augmented Lagrangian

9



method introduced in Chávez-Hernández et al. [7]. Finally in Section 5.3, we present our case study

based on the city of Monterrey, Mexico.

For the ODA-MILP(ε), the excess and deficit parameters of the objective function (1) are set

to α = 1 and β = 1 for all instances. Thus, no previous knowledge about the dynamics of the

centroids is known in advance. The parameters in equation (12) that bound the estimated OD

matrix values are set to δ1 = 0.9 and δ2 = 1.1.

The ODA-MILP(ε) was coded in Python 3.7 and solved with a branch and bound implemen-

tation by Gurobi 8.1 with the default algorithmic parameters. All experiments were executed in a

computer with a processor Intel(R) Core(TM) i7 and 12 Gb of RAM.

5.1 Randomly generated instances

The generation of public transportation instances that mimic the real networks is an active research

area. Public transportation networks have special properties, such as: grow in an evolutionary

way, are embedded into two-dimensional space, have small-world properties, and have hierarchical

organization [23, 6, 21].

Based on these studies, we generate a set of random instances that contain the matrices corre-

sponding to the real OD matrices ḡ and the reference one ĝ and the public transit networks with

the detail of the lines and the passenger volumes per link that we need for our experimental tests.

All our instances and results can be found online1.

(a) 15 nodes. (b) 20 nodes.

Figure 6: Newman-Watts-Strogatz small-world graphs with 15 and 20 nodes.

Each instance representing a public transit system is composed by the real OD matrix ḡ, the

reference OD matrix ĝ, its associated directed multigraph G = (N ,A), where N is the set of nodes

and A is the multiset of directed links between the lines in L, and the route choice probabilities

per segment in A. The following methodology to generate the set of instances is used in this study.

1. The exact OD matrices ḡ are random integers between [0, 500|N |] for each pair (p, q) ∈ PQ.

The diagonal entries are all zeros.

2. A Newman-Watts-Strogatz small-world graph [16] is generated (with Python library Network

[12]) by first creating a ring over |N | nodes. Each node in the ring is connected with its

1https://doi.org/10.6084/m9.figshare.13838819
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k = d0.3|N |e nearest neighbors (or k − 1 neighbors if k is odd). The resulting Newman-

Watts-Strogatz small-world graph has undirected edges, as shown in Figure 6 where we show

two graphs with 15 and 20 nodes, respectively.

3. Now that we have a graph that resembles a public transportation network, we form the transit

lines (corresponding to bus, underground, or any other transit mode) |L|. For each OD pair

of nodes (p, q) ∈ PQ, we compute all the non-intersecting paths between them and select the

|L| ones with the shortest number of segments. If there are fewer than |L| non-intersecting

paths, we choose them all. In this manner, each path is associated with a line l and an edge

(i, j) belonging to the non-intersecting shortest paths between (p, q). Notice that the lines

may visit all the nodes.

4. We establish the same frequency for all the lines. The link choice probabilities πapq for each

a ∈ Spq are then evenly computed along the (p, q) OD pair paths.

5. To generate the reference matrices ĝ, 15% of the OD pairs of the exact OD matrix ḡ are

randomly selected and uniformly perturbed by ±10%. The OD pairs that are not selected

have the same value in the real matrix ḡ and the reference one ĝ. These instances are named

Instances-ED.

6. Using the link probabilities, we compute the segment flows vapq, a ∈ A, (p, q) ∈ PQ, for each

matrix ḡ and ĝ. All the segments flow volumes in the set Instances-ED have been observed.

Set Instances-ED1/2 is composed of the same instances, but this time only half of the transit

segments are observed.

7. Another set of instances is generated to test that the route choice probabilities are indeed

modified. This time, the real matrix and the reference one are equal, so the reference demand

entries are not perturbed. Nevertheless, 15% of the flow volumes at the network segments

are perturbed by ±10%, but all of them are still observed. The resulting instances, named

Instances-ε, aim to show that the assignment probabilities may differ from the initial ones

and must be modified together with the demand OD matrix.

In this manner, we have generated 201 instances with the number of nodes in the transit network

between [4,20] and transit lines between [1,5]: 67 instances in the Instances-ED set, 67 instances

in the Instances-ED1/2 set, and 67 instances in the Instances-ε one.

5.2 Experimental results for the ODA problem

We compare the ODA-MILP(ε) performance with the augmented Lagrangian methodology of

Chávez-Hernández et al. [7], which is based on an iterative dual ascent technique and the La-

grangian multipliers method. Their approach yields high-quality solutions with low CPU time.

In Table 3, we show the comparison results for the instances Instances-ED. The ODA-MILP(ε)

is parametrized with ε = 0, which is sufficient for these instances to find a feasible and optimal

solution (later, this parameter will be forced to change for the set Instances-ε). The first and

second columns correspond to the number of nodes |N | and the number of lines |L| in the transit

system. The third to seventh columns correspond to the results of the ODA-MILP(ε). The rest
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of the columns are for the augmented Lagrangian method. For both methods, rmse(ḡ,g) is the

root mean squared error (rsme) between the reference matrix ḡ and the estimated one g, while

rmse(ĝ,g) is the root mean squared error between the exact demand ĝ and the estimated one g.

Columns labeled as rmse(v̄, v) correspond to the root mean squared error between the observed

and the estimated segment flow volumes. Finally, columns “time” are the CPU time in seconds to

solve the instance with each methodology. Each line of this table is an average. For example, the

first line represents the average of the instances with 4 to 9 nodes but with a single line.

ODA-MILP(0) augmented Lagrangian

|N | |L| rmse(ĝ,g) rmse(ḡ,g) rmse(v̄, v) time rmse(ĝ,g) rmse(ḡ,g) rmse(v̄, v) time

1 182.36 134.66 0.00 0.01 3327.32 3325.85 2782.14 0.01

4-9 2 418.32 318.34 0.00 0.01 7053.29 7042.63 1073.07 0.00

3 408.50 303.20 0.00 0.01 11904.13 11895.27 2789.14 0.05

1 972.13 706.25 0.00 0.02 23758.67 23754.84 9960.47 0.11

10-15 2 1731.19 1223.90 0.00 0.02 38827.60 38769.26 10119.73 0.37

3 2437.99 1404.72 0.00 0.03 55952.64 56148.93 8939.14 0.75

4 3674.35 2510.42 0.00 0.04 104932.99 104909.87 7688.41 2.34

1 1399.07 746.53 0.00 0.03 33624.09 33592.08 19351.70 1.73

2 2697.02 1919.76 0.00 0.05 74077.07 74214.09 11373.41 4.18

16-20 3 3939.14 2303.91 0.00 0.06 109488.89 109556.34 14999.98 4.35

4 5203.55 3212.61 0.00 0.08 129385.39 129667.00 18705.03 5.14

5 6816.88 5045.99 0.00 0.08 181655.45 181777.15 15671.14 9.67

Av. 2490.04 1652.52 0.00 0.04 64498.96 64554.44 10287.78 2.39

Table 3: Comparison between the ODA-MILP(ε) methodology with ε = 0 and the augmented

Lagrangian algorithm of [7] for the Instances-ED set.

As we can observe form the table, the best results are for the ODA-MILP(ε) method. For the

Instances-ED set with ε = 0, we obtain high-quality OD matrix approximations. Contrary to the

augmented Lagrangian, the estimated matrices obtained with ODA-MILP(ε) method are closer to

the real ones than the reference ones are. The difference of the flow volumes is equal to zero for the

ODA-MILP(ε) method since the model tries to reproduce this behavior with equations (4). Notice

that the augmented Lagrangian method does not remain that close to the observed flow volumes.

The larger the instances, the larger the root square mean errors for both methods. Remarkably, the

execution time for the ODA-MILP(ε) method is better than the augmented Lagrangian algorithm.

Although the resolution time for the ODA-MILP(ε) is less than one minute, the construction of

the model is very long. Indeed, the size of the number of variables is O(|N |3 + 3|N |2) while the

size of the number of restriction is O(3|N |3 + |L||N |2 + 5|N |2). A research line is then about the

data structures, preprocessing algorithms, and dominant solution properties to increase the size of

the instances.
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(a) ODA-MILP(ε). (b) Augmented Lagrangian.

(c) ODA-MILP(ε). (d) Augmented Lagrangian.

Figure 7: Scatter plots of the volumes, (a) and (b), and of the OD matrices, (c) and (d), for an

instance with 20 nodes and 5 lines of the Instances-ED set.

Figures 7a and 7b show the scatter plots of the flow volumes at the links, and Figures 7c and 7d

shows the scatter plots for the demand of the estimated OD matrix with respect to the real one for

an instance with 20 nodes and 5 lines of the Instances-ED set. Figures 7a and 7c show the results

for the ODA-MILP(ε) while Figures 7b and 7d show the results for the augmented Lagrangian

approach. As can be seen, the ODA-MILP(ε) recovers almost entirely both the real OD matrices

and the observed segment flow volumes. This is not the case for the augmented Lagrangian method,

where we can see a relatively small scattering in the transit flow volumes but a large one in the

demand OD matrices.

Most of the time, due to faulty measuring instruments, not all the flows of every transit segment

can be observed. Thus, we compare the ODA-MILP(ε) performance when only half of the transit

network links have been observed. These results of the Instances-ED1/2 set are displayed in Table 4,

which has the same structure as Table 3.

Table 4 shows that the ODA-MILP(ε) cannot exactly reproduce the flow volumes observations

since the rmse(v̄, v) are no longer zero as for the Instances-ED set. The differences of the estimated

OD matrix with the real or with the reference ones are larger, which is normal behavior since we

13



ODA-MILP(0) augmented Lagrangian

|N | |L| rmse(ĝ,g) rmse(ḡ,g) rmse(v̄, v) time rmse(ĝ,g) rmse(ḡ,g) rmse(v̄, v) time

1 518.72 546.77 417.96 0.05 3626.40 3626.40 498.12 0.00

4-9 2 404.27 483.43 252.36 0.15 6543.11 6543.11 1054.17 0.00

3 336.24 464.14 191.27 0.15 11968.09 11968.09 1285.14 0.00

1 3086.89 3393.05 1941.77 0.84 17620.94 17620.94 1082.77 0.01

10-15 2 2131.2 2533.54 1411.99 2.57 32150.13 32150.13 11373.13 0.00

3 3318.08 3552.34 1101.28 4.19 56788.61 56788.61 6179.43 0.02

4 4381.59 4979.35 1287.87 4.72 94491.07 94491.07 7521.56 0.15

1 3570.02 3771.38 1498.87 3.11 22171.57 22171.57 10761.14 0.02

16-20 2 3225.94 3462.36 1738.42 6.78 70228.30 70228.30 10263.14 0.26

3 4538.72 4807.14 1631.43 11.67 121422.94 121422.94 8709.94 0.63

4 5421.6 6399.04 1688.64 13.9 133037.24 133037.24 17501.44 0.54

5 6959.75 8255.14 1713.79 20.94 185924.72 185924.72 17467.71 1.27

Av. 3157.75 3553.97 1239.64 5.76 62997.76 62997.76 7808.14 0.24

Table 4: Comparison between the ODA-MILP(ε) methodology with ε = 0 and the augmented

Lagrangian algorithm of [7] for the Instances-ED1/2 set.

have less information provided by the network. Moreover, there could be dependencies between the

non-observed segments due to their geolocation. Although the computational time is still short,

it takes a little longer than the time employed when considering all the observed segments. In

the case of the augmented Lagrangian, we can see that the rmse(v̄, v), the rmse(ḡ,g), and the

computational time decrease with respect to the values obtained with the Instances-ED set.

The difference observed between the two methodologies may be explained by the assumptions

made by each model. The dual ascent and Lagrange multipliers methods are accurate and efficient

especially in large-scale problems with continuous variables. In small networks with integer values,

these assumptions are no longer a sufficient not only for the computational efficiency but also for

the result’s precision. The feasible solution regions (convex hulls) of the discrete and continuous

cases for the same instance have a discrepancy, thus the discrete optimum is underestimated or

overestimated by the computational solution. Furthermore, in small instances the augmented

Lagrangian algorithm is not as efficient as for larger instances since it is an iterative method and

the desired precision cannot be reached.

Figure 8 is similar to Figure 7, but for one instance of the Instances-ED1/2 set with 20 nodes and

2 lines. The scatter plots for the segment flows are depicted in Figures 8a and 8b, while Figures

8c and 8d show the scatter plots of the estimated demand. Figures 8a and 8c show the results

obtained by the ODA-MILP(ε) method, while Figures 8b and 8d show the results obtained by the

augmented Lagrangian. Although we do not obtain a perfect fit between the observed volumes

and those calculated with the ODA-MILP(ε), the differences are small. The adjustment in both
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(a) ODA-MILP(ε) (b) Augmented Lagrangian

(c) ODA-MILP(ε) (d) Augmented Lagrangian

Figure 8: Scatter plots of the volumes, (a) and (b), and of the OD matrices, (c) and (d), for an

instance with 20 nodes and 2 lines of the Instances-ED1/2 set.

volumes and demand of the ODA-MILP is not perfect but the dispersion between the reference

values and the estimates is smaller than the dispersion obtained with the augmented Lagrangian.

Furthermore, for the augmented Lagrangian we can see that although the estimated volumes remain

relatively close to the observed ones, in general the estimated demand is far from the exact solution.

Frequently, the users may have small changes in how they choose their routes because of some

network modifications. An example is presented in Table 2 for the network example of Figure 1.

In our model, this phenomenon is modeled by constraints (5) and (6), where the new probability

of traveling on each transit segment a ∈ A may change a little with respect to the probability πapq
with which the user was previously traveling from p to q, (p, q) ∈ PQ.

Our previous experimental results yield an ε = 0, which means that the behavior of the user

have not changed. That is, the path choice probabilities are equal to the obsolete ones. We now

test the Instances-ε set where we manually change the values of ε until the problem is feasible.

These results are presented in Table 5. As for the previous tables, the first and second columns

correspond to the number of nodes |N | and the number of lines |L| in the transit system. The third

column is the value of the ε parameter needed to obtain a feasible estimated OD matrix. In the

ODA-MILP(ε) method, we start with ε = 0 and then iteratively increase it by 0.02 until we obtain a

feasible solution. The last column shows the time in seconds needed by the ODA-MILP(ε) method.
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The values shown at each line of this table represent averages. Notice that we do not report the

rmse values since our instances were constructed to force the assignment probabilities to change,

such that the real and the reference matrix are the same. Moreover, the augmented Lagrangian

method cannot deal with these instances since it does not modifies the assignment probabilities.

Indeed, it does not converge to any solution. For example, suppose that an assignment probability

at segment a ∈ A from OD pair (p, q) is πapq = 0.5. If the ODA-MILP(ε) yields a value of ε = 0.05,

then the updated probability is now in the interval [0.475,0.525], and it can be computed once we

have the estimated OD matrix and its flow volumes.

ODA-MILP(ε)

|N | |L| ε time

1 0.13 0.00

4-9 2 0.04 0.00

3 0.09 0.00

1 0.05 0.01

10-15 2 0.04 0.01

3 0.04 0.02

4 0.03 0.03

1 0.08 0.01

2 0.03 0.03

16-20 3 0.02 0.10

4 0.03 0.06

5 0.08 0.15

Av. 0.05 0.04

Table 5: Values of ε to obtain a feasible solution and time in seconds for the ODA-MILP(ε)

methodology for the Instance-ε set.

Table 5 shows that the ODA-MILP(ε) methodology can adjust the ε parameter to consider that

path choice decisions are made differently than before. With this consideration, we can obtain an

OD matrix that coincides with the real one. Moreover, the computational time does not increase,

and the assignment probability variation is not radical. That is, the variations on these probabilities

are relatively small.

We have validated the ODA-MILP(ε) methodology with random instances with the previous

experiments. Next section, we apply it to a more realistic network.

5.3 The Monterrey transit network

Let us consider a network that represents the districts of Monterrey City, Mexico, and its surround-

ings consisting of 17 aggregated zones.
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Figure 9: Trips originated at zone 17 in Monterrey to any other zone and with any purpose in 2008

(figure from [8]).

Figure 9 shows the trips from zone 17 in Monterrey to any other zone and with any purpose.

The trips between all the zones in 2008 were taken from [8] and are given in the OD matrix of

Table 6, which we consider as the exact demand ḡ. Since we do not consider the trips within each

zone, then the diagonal of the OD matrix has only zeros. The reference matrix ĝ is obtained by

perturbing all the real matrix entries by a random percentage between [-10,10]%.

For this case study, since we are not introducing information about the transit network, we

consider a bi-directed link (which may represent a hyper path) between each pair of zones corre-

sponding to the network nodes. Thus, we have 272 OD pairs. Here, we made the assumption that

each OD pair is connected by only one link with path probability equals to 1. So the number of

trips assigned to each link can be computed as v̂pqpq = ḡpq. Those flow volumes play the role of

segment counts.

The ODA-MILP(ε) and the augmented Lagrangian methods were used to solve the instance that

represent the network of Monterrey. Table 7 has the same structure as Table 3 and shows the root

mean squared errors end the computing time for the ODA-MILP(ε) and the augmented Lagrangian

method. Comparing the rmse values obtained for each method, we can see that the ODA-MILP(ε)

estimated OD matrix remains closer to the reference one and the exact solution than the OD

matrix obtained with the augmented Lagrangian; also the segment flows are estimated perfectly

in a smaller computing time that the required for the augmented Lagrangian to obtain a bigger

rmse(v̄, v) value. We can validate the usefulness of the ODA-MILP(ε) and its efficiency with respect

to the augmented Lagrangian method. Interestingly, our methodology can recover the real matrix

even if the difference with the reference one is different from zero. With more information about

the growth dynamics of the city of Monterrey and some observations in the most critical transit

segments of the network, we could apply our methodology to estimate the actual OD matrix in the

real transportation network.
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Table 6: Origin destination exact demand for the city of Monterrey and its surroundings in 2008.
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ODA-MILP(0) augmented Lagrangian

|N | |L| rmse(ĝ,g) rmse(ḡ,g) rmse(v̄, v) time rmse(ĝ,g) rmse(ḡ,g) rmse(v̄, v) time

17 272 1176.81 0.00 0.00 0.002 9337.38 9571.45 9911.50 0.016

Table 7: Comparison between the ODA-MILP(ε) methodology with ε = 0 and the augmented

Lagrangian algorithm of [7] for the OD matrix of Monterrey.

6 Conclusions

We solve the inverse problem of estimating the actual OD matrix based on a reference one and

some flow observations at some network links. Indeed, OD matrices are relevant for the bus line

design and the generation of useful timetables, for adding new trips or when drivers do not show

up, or when there are accidents and the network should be rapidly restored. Moreover, updating

OD matrices allows us to test the current system under more demanding scenarios and adapt the

future demand infrastructure.

A integer linear programming model was presented to estimate the OD matrix and simultane-

ously fit the path choice probabilities from a reference OD matrix and observed flow volumes in

the transit segments. We compare the performance of the proposed model with the augmented

Lagrangian model previously introduced by Chávez-Hernández et al. [7]. The results has shown

that the ODA-MILP(ε) offers good quality solutions for small size instances. Compared to the

methodologies in the literature the scatter plots of the demand and the segment flows is consider-

ably lower than those obtained with other approaches. Moreover, the execution times are shorter

with the ODA-MILP(ε). Also, we programmed one of the few instances generator that mimic

transit networks to test the methodology presented in this paper.

Although our model considers only small changes both in the demand matrix and in the prob-

abilities, most authors only consider a change in the demand. Currently, due the pandemic of

COVID-19 in most cities we observe a mobility reduction that can be seen as a decrease in the

number of trips represented on an OD matrix; also, in order to avoid contracting the disease, the

people try to reduce their contact time with others and that modifies their path choices. This

phenomena can be model by the ODA-MILP(ε) and more experiments should be carried out in

scenarios where both the demand and the probabilities change. Therefore, it is an issue to handle

scenarios with more substantial changes. Besides, our approach could be improved by indicating

the assignment probability difference for each OD pair and each transit segment.

Our results are for relatively small networks with a solution computational cost of less than

1 minute. Nevertheless, the most time consuming is the lecture of the model before starting the

branch-and-bound solver. As we mentioned before, the the model consists in O(|N |3 + 3|N |2)
variables and O(3|N |3 + |L||N |2 + 5|N |2) restrictions. A research line is then about the data

structures, preprocessing algorithms, and dominant solution properties to increase the size of the

instances.

Finally, these results were obtained from instances generated as described in Section 5.1, this

generator can be modified in such a way that the path probabilities represent an equilibrium
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assignment [22] for cases without congestion and consider heuristic models to represent cases with

congestion and capacity limits in transport vehicles.
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y vialidad 2008-2030, 2009. URL http://www.cetyv.gob.mx/documentos/pstv.pdf.

[9] C. S. Fisk. Trip matrix estimation from link traffic counts: The congested network case.

Transportation Research Part B: Methodological, 23(5):331–336, 1989.

[10] C. S. Fisk and D. E. Boyce. A note on trip matrix estimation from link traffic count data.

Transportation Research Part B: Methodological, 17(3):245–250, 1983.

[11] M. Florian and Y. Chen. A coordinate descent method for the bi-level O/D matrix adjustment

problem. International Transactions on Operations Research, 2(2):165–179, 1995.

[12] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics, and

function using NetworkX. In G. Varoquaux, T. Vaught, and J. Millman, editors, Proceedings

of the 7th Python in Science Conference (SciPy 2008), pages 11––15, Pasadena, August 2008.

20

http://www.cetyv.gob.mx/documentos/pstv.pdf


[13] O. J. Ibarra-Rojas, R. Giesen, and Y. A. Rios-Solis. An integrated approach for timetabling

and vehicle scheduling problems to analyze the trade-off between level of service and operating

costs of transit networks. Transportation Research Part B: Methodological, 70:35–46, 2014.

[14] O. J. Ibarra-Rojas, F. Delgado, R. Giesen, and J. C. Muñoz. Planning, operation, and control
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