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Abstract

The inverse problem of estimating an actual origin-destination (OD) matrix is one of the most
important public transit planning steps. Most of the time, the route choice probabilities by which
a user transits along the network are first calculated, and then the OD matrix is updated. In this
article, these two steps are solved simultaneously by an integer linear programming model based
on partial knowledge of the transit segment flow along the network. A novelty in our methodology
to avoid a quadratic objective function is to measure the difference between the reference and the
estimated OD matrices by defining demand deficits and excesses for the estimated OD matrix. To
test our methodology, we build an instance generator based on small-world graphs to mimic real
transit networks. The results are compared with an augmented Lagrangian model solved by the
dual ascent and multipliers method. Our integer linear model yields high-quality estimators of the
actual OD matrices, the exact flow volume segment counts, and an adequate interval for the route
choice probabilities. Additionally, we test our methodology in a real-world case from the city of
Monterrey, Mexico.

Keywords: Origin-destination matrix; Transit counts; Integer linear programming; Transit assign-
ment problem.



1 Introduction

The dynamics of the city in terms of population and mobility are among the most critical challenges
we face nowadays. A well-planned public transport system is an essential asset for a more livable
and sustainable city. However, public transport systems often fail to offer a high-quality service
that may imply long travel times. This failure may be due to the lack of information about the
daily trips taking place at each period of the day, the specific trip purpose (work, school, hospital,
entertainment), and how people move in the public transportation system. This information is
known as the Origin-Destination matrices (OD matrices). They are usually obtained from home-
based surveys every ten years [3], they are expensive, and their data processing is time-consuming
(six months to one year in our case study). Thus, once the new OD matrix is available, it may be
already obsolete but it may be considered as a reference matrix to be updated. For these reasons,
the inverse problem of estimating the actual OD matrix based on an reference one and people flow
observations at some transit segments is relevant. The basis of the planning, operation, and control
of a public transport system rely on high-quality OD matrices even if demand and travel times
usually follow time-dependent stochastic patterns [22, 2, [I9]. OD matrices are relevant at each
stage of the bus network planning process that is usually divided into two main stages [14]. The
first stage is the tactical planning, where correct OD matrices are needed for the bus line design
and the generation of useful timetables (or departure times of all trips). This stage focuses on
offering a high-quality service for the customers: line frequency, waiting times, and short transfers,
as mentioned by Ibarra-Rojas et al. [I3]. The second stage is the operational planning, where
the vehicle and crew scheduling problems seek to minimize the transport system operating costs.
Having updated OD matrices guide the decision-makers when more trips are needed, when a driver
does not show up, or when there are accidents and the network should be rapidly restored [4].
Moreover, updating OD matrices allows us to test the current system under more demanding
scenarios and adapt the future demand infrastructure. Figure [1| shows an example of a transit
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Figure 1: Reference OD matrix (left-hand side) of the transit network (right-hand side) with five

lines and six stops.

network and its corresponding OD matrix. Notice that the diagonal entries of the OD matrix are
0 and that it is not a symmetric matrix (in the morning, people go downtown and few to the
peripheries). The bold entry of the OD matrix means that 100 trips originate at node 0 to their



final destination at node 1 in a certain period of the day. Nevertheless, this OD matrix is obsolete,
so we aim to update the number of trips for every entry (we also say that the demand of the (0,1)
pair must be updated). To update an obsolete OD matrix, we use flow volume observations made
at some network segments obtained by fare-box and automated fare collection systems, automatic
passenger counter systems, geographical positioning on cellular phones, or even surveillance videos.
In this work, we estimate public transit OD matrices and consider small perturbations of the route
choice probabilities to match some network flow observations. We name this OD matrix estimation
as the ODA problem. Let us illustrate the ODA problem to show its importance. Consider the

lines  headway | transit segment travel time
min. (1,1,7) min.
1-blue 12 (1,0,1) 25
(1,1,0) 25
(2,0,2) 7
2-green 12 (2,2,0) 7
(2,2,3) 6
(2,3,2) 6
(3,2,3) 4
3-red 30 (3,3,2) 4
(3,3,1) 4
(3,1,3) 4
4-black 6 (4,3,1) 10
(4,1,3) 10
(5,0,4)
(5,4,0)
5-pink 30 (5,4,5) 12
(5,5,4) 12
(5,5,3)
(5,3,5) 8

Table 1: The five lines (blue, green, red, black, pink) of the network of the right side of Figure

with with the headways and the travel times for each segment.

transit network of Figure || with five lines (blue, green, red, black, and pink) and six stops. Table
specifies the headway of the line: the difference in minutes between two different vehicles at the
depot. It also indicates the travel time in minutes for each line-node-node transit segment (1,4, 7).
An actual but unknown OD matrix is associated with the network of Figure Thus we must
infer it with the observed flow volumes at some transit segments and the reference OD matrix
(left-hand side of Figure . Suppose that we want to update the (0,1) entry of the obsolete OD



matrix. Figure [2] shows only the links that a user would take to go from origin 0 to destination 1.
Notice that the users paths (or strategy) do not consider taking the pink line since it would increase
their travel times, as it can be validated with data from Table [I} The first and second columns of
Table [2|indicate the lines and segments of the network depicted in Figure [2], respectively. The third
column is the path choice probabilities that mimic how a user moves in a network and is based on
a decision choice model [5]. In this work, we consider that the obsolete path choice probabilities
may be updated, as shown in the fifth column of the table. The obsolete OD matrix indicates that

lines transit obsolete updated
segments | probabilities probabilities

1 blue (1,0,1) 0.500 0.475
2 green  (2,0,2) 0.500 0.525
(2,2,3) 0.500 0.525
3 red (3,2,3) 0.000 0.000
(3,3,1) 0.080 0.090
4 black  (4,3,1) 0.420 0.435

Table 2: Transit segment probabilities associated to Figure

100

Figure 2: Transit segments that a user may take to go from origin 0 to destination 1 and the flow

volume at each segment.

stop 0 generates 100 trips going to node 1 (-100 means that node 1 attracts 100 trips from node 0).
Values in the segments of Figure [2] correspond to the number of passengers using each segment to
go from 0 to 1 according to the obsolete OD matrix and the path choice probabilities of the lines,
in the third column of Table [2l With the obsolete path choice probabilities, half of the passengers
use the blue line; the other half use the (2,0,1) and the (2,2,3) segments of the green line. None
use the (2,2,3) segment, while 42% of the passengers arriving at node 3 take the (4,3,1) segment.
Finally, only 8% take the (3,3,1) link to arrive at node 1. Let us suppose that the number of trips
originated at node 0 and destined to node 1 is no longer 100 but 200, also that the infrastructure
of the network has not change. Thus, we suppose that the actual (0,1) OD matrix entry is known.
Using the obsolete probabilities of Table |2 we obtain Figure |3| with the updated volumes at the



200 -200

100
O

Figure 3: The segment flows are generated with the obsolete probabilities for an updated amount

of 200 trips from 0 to 1.

segments. Nevertheless, this distribution of passengers along the network does not match the flow
volume observations made at two segments. Through segment (2,2,3), 105 passengers are traveling,
and through (3,3,1), there are 18, as shown in Figure . These values do not correspond to the
volumes obtained with the obsolete path choice probabilities. Thus, these probabilities must also
be updated as well as the number of trips of the OD matrix. Notice that the updated path choice
probabilities, presented in the fourth column of Table [2] must be close to the reference ones, and
the new OD matrix must be similar to the obsolete one to preserve the dynamics of the city [5].
Therefore, the ODA problem aims to update all the OD matrix trips simultaneously and the new
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Figure 4: Updated transit segment flows for an updated amount of 200 trips from 0 to 1.

path choice probabilities by matching the flow volumes observations made at some transit segments
of the network. To the best of our knowledge, we are the first to update the OD matrix and the
route choice probabilities in an integrated way. In other approaches, where continuous variables
are used, the obtained solutions are not integer numbers and it is necessary to make roundings to
implement them in practice. Here, we formulate a mixed-integer linear program (MILP) to solve
the ODA problem, which is the crucial point of our methodology since we avoid a quadratic model.
Indeed, most of the models for updating OD matrices rely on a quadratic objective function that
corresponds to the relative difference between the reference OD matrix and the estimated one. By
having a linear model, we can solve it more efficiently, and it allows us to introduce more details
in the network as the flow volume observations. Another contribution is that we consider that
the number of trips and the network flow volumes are integer numbers contrary to most other
approaches. We also introduce a family of valid inequalities and establish bounds on the variables



to provide a tighter integer linear programming formulation. To test our methodology, we propose
a random instance generator whose instances are close to real public transportation networks. We
also show the performance of our methodology on a real-world case study. This paper is organized
as follows. We first present the literature review in Section[2] The ODA problem is formally defined
in Section [3] Then, its MILP model is presented in Section [4l Experimental results on generated
networks and in a real-world case study validate our methodology in Section We include a
comparison of our method with a penalty-based quadratic model from the literature. Finally, in
Section [0, we present the conclusions.

2 Literature review

The OD matrix estimation approaches usually combine two stages of the four-stage sequential pro-
cedure. For instance, Fisk and Boyce [10] propose a model that combines trip distribution and
traffic assignment, while Fisk [9] combines the entropy maximization method with traffic assign-
ment. Also, Yang et al. [25] extended these results to congested networks where the link choice
probabilities are not constant. Some literature models update OD matrices in public transportation,
but the approaches adapt to assignment procedures of vehicle traffic flows [5].

The two-stage problems have also been formulated as bi-level optimization problems where
the upper level represents the OD estimation process, and the lower level represents a network
equilibrium assignment [25, [I1]. In Shihsien and Fricker [20], the authors propose a two-stage
iterative method to estimate an OD matrix and the variation in link choices among trip makers,
but inconsistencies arise when congestion effects are considered. In Yang et al. [26], the authors
improved this approach by using, in the cost function, the link flows obtained from the stochastic
user equilibrium traffic assignment and estimated OD flows. They use as the objective function a
sum of the squares of errors and propose a successive quadratic algorithm to solve the model. Most
of the shortcomings of the above studies are related to the route choice probabilities due to their
computation from a separate traffic assignment model, especially in a network with congestion.

Based on the user equilibrium principle, some models succeeded in incorporating congestion
effects into the estimation process, but the perception of travel costs does not vary among travelers.
A more realistic approach can be considered allowing for the difference in cost perceptions and
different link choice behavior among travelers using a stochastic user equilibrium assignment as
in Lo and Chan [15].

Most of the mentioned approaches formulate the problem as a quadratic optimization problem
in which they include observed data, such as the flow of people at some segments of the transit
network, and an reference matrix obtained from surveys or projections based on the economic
growth. There are relatively few authors who propose a linear model. For example, Ashok and
Ben-Akiva [I] formulate a model to estimate a dynamic OD matrix. They define a state vector
in terms of the departure rates from each origin to each destination. Pitombeira-Neto et al. [17]
propose a linear model to estimate a dynamic OD matrix to represent the stochastic evolution of
OD flows over time. Link choice probabilities are obtained through a utility model based on past
link costs. They propose a Markov chain Monte Carlo algorithm to approximate the mean OD
flows and the link choice model parameters.

In Chévez-Hernandez et al. [7], the authors consider a penalized quadratic model to update OD



matrices from observed transit flow volumes. They present an augmented Lagrangian model and
its iterative solution by a dual ascent technique and the method of multipliers. In Section [5 we
compare our methodology with theirs.

In this study, we introduce a model to simultaneously estimate the OD matrix and the variation
of the path probabilities, representing the effects of congestion. In addition to being one of the few
linear models in the literature, it has the advantage that it can be extended to model changes in
the perception of the travel cost in each transit segment for each OD pair.

3 The ODA problem

In this section, we formally present the ODA problem. We are considering updating a reference OD
matrix at a specific period of the day. Our methodology is based on an optimization network flow
model that avoids the most often used quadratic models for this problem (e.g., Chavez-Hernandez
et al. [7]). Instead, we count the excess or deficit of trips at each OD pair, as shown in Section

Let us consider a multimodal public transit network with a set of lines £. The public transit
system is represented by a directed multigraph G = (N, A), where N is the set of nodes (bus or
subway stops) and A is the multiset of transit segments (directed links) of the lines in £. Segment
or link @ € A is a triplet ([,4,7) indicating the line [ € £ and the nodes i and j linked by line
[, with both nodes in N. Notice that in link (I,4,7), the line [ passes first through ¢ and then
through j. We consider that all the nodes (or centroids) in N are an origin and a destination, thus
PQ={(p,q) € N x N and p # q}.

The reference OD matrix, denoted by g = {g,q}, corresponds to the obsolete number of trips
generated in the transportation network at node p, whose final destination is node ¢ for all (p, q) €
PQ. The objective of the ODA problem is to determine the estimated OD matrix denoted by
g = {gpq}, which is close to matrix g and verifies measured observation of the flow volumes at
some transit segments of the network, for (p,q) € PQ. While the updated OD matrix g = {gpq}
corresponds to the variables in our methodology, the reference matrix g = {gpq} values are data
known a priori, for (p,q) € PQ.

Based on the concept of optimal strategy introduced by Spiess and Florian [22], let S,, C A
be the subset of transit segments that a traveler may take to go from p to ¢, with (p,q) € PQ.
A decision choice model determines these strategies [5] together with its path choice probabilities.
Indeed, an average user would not take a path between two nodes that takes twice as long. Although,
this user may consider a path that takes two more minutes but without transfers. Thus, for one pair
of nodes, there could be several paths that the user may take. After solving an assignment problem
based on the decision choice model, each transit segment a = (I,4,j) € Spy has probability 7, of
being used by a traveler going from p to ¢, (p,q) € PQ. For a segment a’ ¢ S, this probability is

al

Tpq
in this study.

= 0. The obsolete path choice probabilities are used as a reference and considered a parameter

To update the OD matrix, we rely on observed flow volumes of travelers at some transit segments

in set A C A. We use equivalent notations Upg O vz(;lq’i’j ) depending on the detail we need to

,L—)G,
express the equations, for a = (1,14, j) € Spq.
The ODA problem can now be formally stated: find the OD matrix g value that minimizes the

difference between this matrix and the reference OD matrix g such that the flow volumes in the



observed links 9% are verified, with a € A.

4 Mixed-integer linear programming model for the ODA problem

To formulate a mixed-integer linear programming model for the ODA problem, we must determine
the OD matrix variable g = {g,q} with (p,q) € PQ. These variables are the estimated values of
the OD matrix: the estimated trips from the origins to the destinations.

In this work, we use as an objective function the absolute distance between g and the reference
OD matrix g to allow the new demand to change to reproduce the observed flow volumes at
certain segments. We use two sets of variables to control the differences between the reference
OD matrix and the estimated one. The excess integer variables E,, with (p,q) € PQ indicate
that there are more trips from p to ¢. Thus, gpq < gpg and this manner this excess is defined as
E,q = max{gpq — Jpq, 0}. Similarly, we introduce deficit variables D, with (p,q) € PQ for the case
where there are fewer trips from p to ¢, that is, g,y > gpq. Therefore, D,; = max{gp; — gpq,0}.
Note that when D, > 0 then E,, = 0, and vice versa.

The objective function of the MILP for the ODA problem is to obtain an estimated OD matrix
g as close as possible to the reference one g:

min Y. aDyg+ BE,,. (1)
(p,9)ePQ
This objective minimizes the total sum of the excess, and the deficits of the estimated OD matrix g.
Notice that linear parameters o and 3 allow us to give more preference to the excess or the deficits.
For example, for a city that has a growing population over the years, we may expect that there
will be more trips in many of its OD matrix entries, thus 5 < «. Similarly, a rural zone may be
experiencing a population decrease that should be reflected in many of the trips between origin-
destination pairs (5 > «).
To linearly express the deficits and the excess of the estimated OD matrix, we need the following
equations for each (p,q) € PQ:

Dypg > Gpq — Ipgs (2)
Epg > 9pq — Gpg- (3)

The ODA problem updates the OD matrix and determines the volume of people traveling through-
out each link a € Sp; C A that are going from p to ¢, (p, q) € PQ. Hence, we introduce integer vari-
ables vy, to indicate the actual number of people going from pito q using segment a = (1,4, j) € Spq.

As mentioned before, there are some transit segments a € A where the number of flow passengers

¢ is observed and counted. These observations are our most important tool to update the OD

v
matrix. We do not know the origin nor the destination of the passengers using this segment. Thus,
we have that the sum of all volumes should be equal to the observations:

4 = > vl,, forae A (4)
(p,g)EPQlacSpq

The usual way of modeling the passenger volumes from p to ¢ at a link a € A is to multiply the
total number of trips gp, by the assignment probability 7. Thus, 7, g, = vp,. Nevertheless, by

7



using this equation, the actual passenger volumes, in some cases, might yield infeasible solutions.
That implies that the assignment probabilities are not verified and may have some small deviation.
Indeed, the assignment problem may establish a probability of 0.6, but in reality, it may be 0.59.
Thus, we consider that these probabilities need small adjustments to reflect the actual volumes.
Therefore, we propose to compute them as follows for a € Sy, and every (p,q) € PQ:

[max{(my, — €),0} gpq) < v, (5)
[min{(ﬂgq +¢€),1} gpg| > Vpas (6)

with € > 0. Interval [max{(mp, — ¢),0}, min{(7p, + ¢),1}] represents the allowed change in the
obsolete route choice probabilities. Notice that we are not enforcing equality since we have the
floor operator and positive values of €. After solving our ODA MILP model, we obtain the updated
OD matrix and the updated assignment probabilities that fit the observations of the flows in the
network.

Then, we must handle the network flow constraints. The sum of the flow volumes at origin
p € PQ must be equal to the number of trips originated at this node, as stated by constraints .
Similarly, with constraints all low volumes arriving at destination ¢ € PQ is equal to the total
trips ending there. Flow conservation at every node is guaranteed by constraints @: the flow
entering node k € N\ {p, ¢} must be equal to the flow leaving it.

Z Z Uz(vldp’i) = 9pg> (p,q) € PQ, (7)

leL {i|(l,p,i)E€Spq }

> D v =m, (p,q) € PQ, )

leL {i|(1,3,9)€Spq}

oo W=y Y Wl ke N\ {p.a} (p,g) € PQ. (9)

1€L {i|(1,i,k)ESpq } leL {j|(1,k,5)€Spq}

Valid inequalities strengthen a MILP formulation since they do not cut any feasible integer
solution and make the solution space polyhedron closer to the integer solutions convex hull [24] 1§].
Thus, we introduce valid inequalities to our MILP to decrease the computational running time
without compromising the optimality of the solution since it bounds the volume of each arc by the
total number of persons going from p to g¢:

U;q S gpqa ac Splp (p7 Q) € PQ (10)

Inequalities are valid by definition. Notice that by imposing a positive integrality to the
volumes, we also ensure the integrality on the estimated OD values of the matrix and the excess
and deficits. Thus, these last variables may be defined as real variables but will take integer values

as stated by -.

Upg € Z7, (p,q) € PQ,a € A, (11)
01pq < Gpq < 020pg € R, (p,q) € PQ. (12)
Dipg, Epg € R, (p,q) € PQ, (13)



where d; and do are constants known by the user to bound g and remain close to g. For example,
a census or some statistical information may estimate that a particular population has grown no
more than 10%.

To summarize, we denote as the ODA-MILP(¢) the MILP model of the ODA problem parametrized
with a value of € such that it minimizes objective function subject to constraints -. Our
methodology consists of starting with ¢ = 0 and then increasing it by 0.02 units until a feasible
solution for the ODA-MILP (¢) is reached. In this manner, we obtain an estimated OD matrix and
the actual flow volumes, or equivalently, the actual assignment probabilities of the links.

5 Experimental results

The general scheme of the comparison process we use in this study to validate the ODA-MILP(¢)
model is depicted in Figure [5l We start with the real matrix g; in Section we explain how to
generate it. This matrix is usually unknown, but we consider that we are in an ideal case where
we know it to validate our approach. Then, we perturb the real matrix to obtain the reference
or obsolete matrix g. Finally, by using the ODA-MILP(¢) we obtain g which estimates the real
matrix. Two questions must be validated. First, we must assess how close the reference OD matrix
g is to the estimated one g. That would verify the mathematical model correctness and ensure
the previous knowledge on the population dynamics. Second, we must asses how close the real
OD matrix g is to the estimated one g. This is the most challenging question, a fair comparison
between g and g can be drawn with this methodology, validating that the updated OD matrix is
a reasonable estimate of the real population trips.

Real OD matrix
e —
“p| 8
Q
Qé® 5
Reference OD matrix
/g\ Are they close?
Estimated OD matrix

g

Are they close?

Figure 5: Comparison process to validate the ODA-MILP (&) model.

Section describes the randomly generated matrices g and how we perturb them to obtain
the reference ones. In Section we compare the ODA-MILP(¢) with the augmented Lagrangian



method introduced in Chévez-Herndndez et al. [7]. Finally in Section we present our case study
based on the city of Monterrey, Mexico.

For the ODA-MILP(¢), the excess and deficit parameters of the objective function are set
to @« = 1 and § = 1 for all instances. Thus, no previous knowledge about the dynamics of the
centroids is known in advance. The parameters in equation that bound the estimated OD
matrix values are set to 41 = 0.9 and o = 1.1.

The ODA-MILP(e) was coded in Python 3.7 and solved with a branch and bound implemen-
tation by Gurobi 8.1 with the default algorithmic parameters. All experiments were executed in a
computer with a processor Intel(R) Core(TM) i7 and 12 Gb of RAM.

5.1 Randomly generated instances

The generation of public transportation instances that mimic the real networks is an active research
area. Public transportation networks have special properties, such as: grow in an evolutionary
way, are embedded into two-dimensional space, have small-world properties, and have hierarchical
organization [23], 6], 21].

Based on these studies, we generate a set of random instances that contain the matrices corre-
sponding to the real OD matrices g and the reference one g and the public transit networks with
the detail of the lines and the passenger volumes per link that we need for our experimental tests.
All our instances and results can be found onlind!]

(a) 15 nodes. (b) 20 nodes.

Figure 6: Newman-Watts-Strogatz small-world graphs with 15 and 20 nodes.

Each instance representing a public transit system is composed by the real OD matrix g, the
reference OD matrix g, its associated directed multigraph G = (N, .A), where N is the set of nodes
and A is the multiset of directed links between the lines in £, and the route choice probabilities
per segment in 4. The following methodology to generate the set of instances is used in this study.

1. The exact OD matrices g are random integers between [0, 500|\|] for each pair (p,q) € PQ.
The diagonal entries are all zeros.

2. A Newman-Watts-Strogatz small-world graph [16] is generated (with Python library Network
[12]) by first creating a ring over |N| nodes. Each node in the ring is connected with its

"https://doi.org/10.6084/m9.figshare.13838819

10



k = [0.3|N|] nearest neighbors (or k — 1 neighbors if k is odd). The resulting Newman-
Watts-Strogatz small-world graph has undirected edges, as shown in Figure [f] where we show
two graphs with 15 and 20 nodes, respectively.

3. Now that we have a graph that resembles a public transportation network, we form the transit
lines (corresponding to bus, underground, or any other transit mode) |£|. For each OD pair
of nodes (p, q) € PQ, we compute all the non-intersecting paths between them and select the
|L| ones with the shortest number of segments. If there are fewer than |£| non-intersecting
paths, we choose them all. In this manner, each path is associated with a line [ and an edge
(i,7j) belonging to the non-intersecting shortest paths between (p,q). Notice that the lines
may visit all the nodes.

4. We establish the same frequency for all the lines. The link choice probabilities 7y, for each
a € Spq are then evenly computed along the (p,q) OD pair paths.

5. To generate the reference matrices g, 15% of the OD pairs of the exact OD matrix g are
randomly selected and uniformly perturbed by +10%. The OD pairs that are not selected
have the same value in the real matrix g and the reference one g. These instances are named
Instances-ED.

6. Using the link probabilities, we compute the segment flows v§,, a € A, (p,q) € PQ, for each
matrix g and g. All the segments flow volumes in the set Instances-ED have been observed.
Set Instances-ED'/? is composed of the same instances, but this time only half of the transit

segments are observed.

7. Another set of instances is generated to test that the route choice probabilities are indeed
modified. This time, the real matrix and the reference one are equal, so the reference demand
entries are not perturbed. Nevertheless, 15% of the flow volumes at the network segments
are perturbed by +10%, but all of them are still observed. The resulting instances, named
Instances-¢, aim to show that the assignment probabilities may differ from the initial ones
and must be modified together with the demand OD matrix.

In this manner, we have generated 201 instances with the number of nodes in the transit network
between [4,20] and transit lines between [1,5]: 67 instances in the Instances-ED set, 67 instances
in the Instances-ED'/? set, and 67 instances in the Instances-¢ one.

5.2 Experimental results for the ODA problem

We compare the ODA-MILP(e) performance with the augmented Lagrangian methodology of
Chévez-Herndndez et al. 7], which is based on an iterative dual ascent technique and the La-
grangian multipliers method. Their approach yields high-quality solutions with low CPU time.

In Table |3, we show the comparison results for the instances Instances-ED. The ODA-MILP(¢)
is parametrized with € = 0, which is sufficient for these instances to find a feasible and optimal
solution (later, this parameter will be forced to change for the set Instances-c). The first and
second columns correspond to the number of nodes |N| and the number of lines |£] in the transit
system. The third to seventh columns correspond to the results of the ODA-MILP(e). The rest

11



of the columns are for the augmented Lagrangian method. For both methods, rmse(g,g) is the
root mean squared error (rsme) between the reference matrix g and the estimated one g, while
rmse(g, g) is the root mean squared error between the exact demand g and the estimated one g.
Columns labeled as rmse(v,v) correspond to the root mean squared error between the observed
and the estimated segment flow volumes. Finally, columns “time” are the CPU time in seconds to
solve the instance with each methodology. FEach line of this table is an average. For example, the

first line represents the average of the instances with 4 to 9 nodes but with a single line.

ODA-MILP(0) augmented Lagrangian
INT  |£] | rmse(g,g) rmse(g,g) rmse(d,v) time | rmse(g,g) rmse(g,g) rmse(v,v) time
1 182.36 134.66 0.00 0.01 3327.32 3325.85 2782.14 0.01
4-9 2 418.32 318.34 0.00 0.01 7053.29 7042.63 1073.07  0.00
3 408.50 303.20 0.00 0.01 | 11904.13 11895.27 2789.14 0.05
1 972.13 706.25 0.00 0.02 | 23758.67 23754.84 9960.47 0.11
10-15 2 1731.19 1223.90 0.00 0.02 | 38827.60 38769.26 10119.73  0.37
3 2437.99 1404.72 0.00 0.03 | 55952.64 56148.93 8939.14 0.75
4 3674.35 2510.42 0.00 0.04 | 104932.99 104909.87 7688.41 2.34
1 1399.07 746.53 0.00 0.03 | 33624.09 33592.08 19351.70  1.73
2 2697.02 1919.76 0.00 0.05 | 74077.07 74214.09 11373.41 4.18
16-20 3 3939.14 2303.91 0.00 0.06 | 109488.89 109556.34  14999.98 4.35
4 5203.55 3212.61 0.00 0.08 | 129385.39 129667.00 18705.03 5.14
) 6816.88 5045.99 0.00 0.08 | 181655.45 181777.15 15671.14  9.67
Av. 2490.04 1652.52 0.00 0.04 | 64498.96 64554.44 10287.78  2.39

Table 3: Comparison between the ODA-MILP(e) methodology with ¢ = 0 and the augmented
Lagrangian algorithm of [7] for the Instances-ED set.

As we can observe form the table, the best results are for the ODA-MILP(¢) method. For the
Instances-ED set with € = 0, we obtain high-quality OD matrix approximations. Contrary to the
augmented Lagrangian, the estimated matrices obtained with ODA-MILP(g) method are closer to
the real ones than the reference ones are. The difference of the flow volumes is equal to zero for the
ODA-MILP(¢) method since the model tries to reproduce this behavior with equations (4). Notice
that the augmented Lagrangian method does not remain that close to the observed flow volumes.
The larger the instances, the larger the root square mean errors for both methods. Remarkably, the
execution time for the ODA-MILP(e) method is better than the augmented Lagrangian algorithm.
Although the resolution time for the ODA-MILP(¢) is less than one minute, the construction of
the model is very long. Indeed, the size of the number of variables is O(|N|? + 3|A|?) while the
size of the number of restriction is O(3|NV|? + |L||N|? + 5|A|?). A research line is then about the
data structures, preprocessing algorithms, and dominant solution properties to increase the size of
the instances.
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Figure 7: Scatter plots of the volumes, (a) and (b), and of the OD matrices, (c) and (d), for an

instance with 20 nodes and 5 lines of the Instances-ED set.

Figures [7a] and [7D] show the scatter plots of the flow volumes at the links, and Figures[7c|and [7d]
shows the scatter plots for the demand of the estimated OD matrix with respect to the real one for
an instance with 20 nodes and 5 lines of the Instances-ED set. Figures[7a] and [7c| show the results
for the ODA-MILP(e) while Figures and show the results for the augmented Lagrangian
approach. As can be seen, the ODA-MILP(g) recovers almost entirely both the real OD matrices
and the observed segment flow volumes. This is not the case for the augmented Lagrangian method,
where we can see a relatively small scattering in the transit flow volumes but a large one in the
demand OD matrices.

Most of the time, due to faulty measuring instruments, not all the flows of every transit segment
can be observed. Thus, we compare the ODA-MILP(¢) performance when only half of the transit
network links have been observed. These results of the Instances-ED'Y? set are displayed in Table
which has the same structure as Table [3l

Table [4] shows that the ODA-MILP(e) cannot exactly reproduce the flow volumes observations
since the rmse(v, v) are no longer zero as for the Instances-ED set. The differences of the estimated
OD matrix with the real or with the reference ones are larger, which is normal behavior since we

13



ODA-MILP(0) augmented Lagrangian
INT  |£] | rmse(g,g) rmse(g,g) rmse(d,v) time | rmse(g,g) rmse(g,g) rmse(v,v) time
1 918.72 546.77 417.96 0.05 3626.40 3626.40 498.12 0.00
4-9 2 404.27 483.43 252.36 0.15 6543.11 6543.11 1054.17 0.00
3 336.24 464.14 191.27 0.15 11968.09 11968.09 1285.14 0.00
1 3086.89 3393.05 1941.77 0.84 17620.94 17620.94 1082.77 0.01
10-15 2 2131.2 2533.54 1411.99 2.57 32150.13 32150.13 11373.13  0.00
3 3318.08 3552.34 1101.28 4.19 56788.61 56788.61 6179.43 0.02
4 4381.59 4979.35 1287.87 4.72 94491.07 94491.07 7521.56 0.15
1 3570.02 3771.38 1498.87 3.11 22171.57 22171.57 10761.14  0.02
16-20 2 3225.94 3462.36 1738.42  6.78 | 70228.30 7022830  10263.14  0.26
3 4538.72 4807.14 1631.43 11.67 | 121422.94 121422.94 8709.94 0.63
4 5421.6 6399.04 1688.64 13.9 | 133037.24 133037.24 17501.44 0.54
) 6959.75 8255.14 1713.79  20.94 | 185924.72 185924.72  17467.71  1.27
Av. 3157.75 3553.97 1239.64 5.76 62997.76 62997.76 7808.14 0.24

Table 4: Comparison between the ODA-MILP(e) methodology with ¢ = 0 and the augmented
Lagrangian algorithm of [7] for the Instances-ED'/? set.

have less information provided by the network. Moreover, there could be dependencies between the
non-observed segments due to their geolocation. Although the computational time is still short,
it takes a little longer than the time employed when considering all the observed segments. In
the case of the augmented Lagrangian, we can see that the rmse(v,v), the rmse(g,g), and the
computational time decrease with respect to the values obtained with the Instances-ED set.

The difference observed between the two methodologies may be explained by the assumptions
made by each model. The dual ascent and Lagrange multipliers methods are accurate and efficient
especially in large-scale problems with continuous variables. In small networks with integer values,
these assumptions are no longer a sufficient not only for the computational efficiency but also for
the result’s precision. The feasible solution regions (convex hulls) of the discrete and continuous
cases for the same instance have a discrepancy, thus the discrete optimum is underestimated or
overestimated by the computational solution. Furthermore, in small instances the augmented
Lagrangian algorithm is not as efficient as for larger instances since it is an iterative method and
the desired precision cannot be reached.

Figureis similar to Figure|7] but for one instance of the Instances-ED'/? set with 20 nodes and
2 lines. The scatter plots for the segment flows are depicted in Figures and while Figures
and [8d] show the scatter plots of the estimated demand. Figures [8a] and [8c| show the results
obtained by the ODA-MILP(g) method, while Figures [8b| and [8d| show the results obtained by the
augmented Lagrangian. Although we do not obtain a perfect fit between the observed volumes
and those calculated with the ODA-MILP(¢), the differences are small. The adjustment in both
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instance with 20 nodes and 2 lines of the Instances-ED"/* set.

volumes and demand of the ODA-MILP is not perfect but the dispersion between the reference
values and the estimates is smaller than the dispersion obtained with the augmented Lagrangian.
Furthermore, for the augmented Lagrangian we can see that although the estimated volumes remain
relatively close to the observed ones, in general the estimated demand is far from the exact solution.

Frequently, the users may have small changes in how they choose their routes because of some
network modifications. An example is presented in Table [2| for the network example of Figure
In our model, this phenomenon is modeled by constraints and (@, where the new probability
of traveling on each transit segment a € A may change a little with respect to the probability 5,
with which the user was previously traveling from p to ¢, (p,q) € PQ.

Our previous experimental results yield an € = 0, which means that the behavior of the user
have not changed. That is, the path choice probabilities are equal to the obsolete ones. We now
test the Instances-¢ set where we manually change the values of ¢ until the problem is feasible.

These results are presented in Table bl As for the previous tables, the first and second columns
correspond to the number of nodes |N| and the number of lines |£] in the transit system. The third
column is the value of the € parameter needed to obtain a feasible estimated OD matrix. In the
ODA-MILP(g) method, we start with & = 0 and then iteratively increase it by 0.02 until we obtain a
feasible solution. The last column shows the time in seconds needed by the ODA-MILP (¢) method.
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The values shown at each line of this table represent averages. Notice that we do not report the
rmse values since our instances were constructed to force the assignment probabilities to change,
such that the real and the reference matrix are the same. Moreover, the augmented Lagrangian
method cannot deal with these instances since it does not modifies the assignment probabilities.
Indeed, it does not converge to any solution. For example, suppose that an assignment probability
at segment a € A from OD pair (p, q) is 7, = 0.5. If the ODA-MILP (¢) yields a value of € = 0.05,
then the updated probability is now in the interval [0.475,0.525], and it can be computed once we
have the estimated OD matrix and its flow volumes.

ODA-MILP(¢)
N |L] 5 time
1 0.13 0.00
4-9 2 10.04 0.00
3 0.09 0.00
1 0.05 0.01
10-15 2 0.04 0.01
3 0.04 0.02
4 1 0.03 0.03
1 0.08 0.01
2 10.03 0.03
16-20 3 0.02 0.10
4 10.03 0.06
) 0.08 0.15
Av. | 0.05 0.04

Table 5: Values of ¢ to obtain a feasible solution and time in seconds for the ODA-MILP(¢)

methodology for the Instance-¢ set.

Table |5|shows that the ODA-MILP (g) methodology can adjust the £ parameter to consider that
path choice decisions are made differently than before. With this consideration, we can obtain an
OD matrix that coincides with the real one. Moreover, the computational time does not increase,
and the assignment probability variation is not radical. That is, the variations on these probabilities
are relatively small.

We have validated the ODA-MILP(e) methodology with random instances with the previous
experiments. Next section, we apply it to a more realistic network.

5.3 The Monterrey transit network

Let us consider a network that represents the districts of Monterrey City, Mexico, and its surround-
ings consisting of 17 aggregated zones.
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Figure 9: Trips originated at zone 17 in Monterrey to any other zone and with any purpose in 2008
(figure from [§]).

Figure [9] shows the trips from zone 17 in Monterrey to any other zone and with any purpose.
The trips between all the zones in 2008 were taken from [§] and are given in the OD matrix of
Table [6], which we consider as the exact demand g. Since we do not consider the trips within each
zone, then the diagonal of the OD matrix has only zeros. The reference matrix g is obtained by
perturbing all the real matrix entries by a random percentage between [-10,10]%.

For this case study, since we are not introducing information about the transit network, we
consider a bi-directed link (which may represent a hyper path) between each pair of zones corre-
sponding to the network nodes. Thus, we have 272 OD pairs. Here, we made the assumption that
each OD pair is connected by only one link with path probability equals to 1. So the number of
trips assigned to each link can be computed as 0hd = gp,. Those flow volumes play the role of
segment counts.

The ODA-MILP(¢) and the augmented Lagrangian methods were used to solve the instance that
represent the network of Monterrey. Table [7| has the same structure as Table [3] and shows the root
mean squared errors end the computing time for the ODA-MILP(g) and the augmented Lagrangian
method. Comparing the rmse values obtained for each method, we can see that the ODA-MILP(¢)
estimated OD matrix remains closer to the reference one and the exact solution than the OD
matrix obtained with the augmented Lagrangian; also the segment flows are estimated perfectly
in a smaller computing time that the required for the augmented Lagrangian to obtain a bigger
rmse(v, v) value. We can validate the usefulness of the ODA-MILP(g) and its efficiency with respect
to the augmented Lagrangian method. Interestingly, our methodology can recover the real matrix
even if the difference with the reference one is different from zero. With more information about
the growth dynamics of the city of Monterrey and some observations in the most critical transit
segments of the network, we could apply our methodology to estimate the actual OD matrix in the
real transportation network.
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ODA-MILP(0) augmented Lagrangian
INT L] | rmse(g,g) rmse(g,g) rmse(d,v) time | rmse(g,g) rmse(g,g) rmse(v,v) time

17 272 | 1176.81 0.00 0.00 0.002 | 9337.38 9571.45 9911.50  0.016

Table 7: Comparison between the ODA-MILP () methodology with ¢ = 0 and the augmented
Lagrangian algorithm of [7] for the OD matrix of Monterrey.

6 Conclusions

We solve the inverse problem of estimating the actual OD matrix based on a reference one and
some flow observations at some network links. Indeed, OD matrices are relevant for the bus line
design and the generation of useful timetables, for adding new trips or when drivers do not show
up, or when there are accidents and the network should be rapidly restored. Moreover, updating
OD matrices allows us to test the current system under more demanding scenarios and adapt the
future demand infrastructure.

A integer linear programming model was presented to estimate the OD matrix and simultane-
ously fit the path choice probabilities from a reference OD matrix and observed flow volumes in
the transit segments. We compare the performance of the proposed model with the augmented
Lagrangian model previously introduced by Chévez-Hernédndez et al. [7]. The results has shown
that the ODA-MILP(¢) offers good quality solutions for small size instances. Compared to the
methodologies in the literature the scatter plots of the demand and the segment flows is consider-
ably lower than those obtained with other approaches. Moreover, the execution times are shorter
with the ODA-MILP(g). Also, we programmed one of the few instances generator that mimic
transit networks to test the methodology presented in this paper.

Although our model considers only small changes both in the demand matrix and in the prob-
abilities, most authors only consider a change in the demand. Currently, due the pandemic of
COVID-19 in most cities we observe a mobility reduction that can be seen as a decrease in the
number of trips represented on an OD matrix; also, in order to avoid contracting the disease, the
people try to reduce their contact time with others and that modifies their path choices. This
phenomena can be model by the ODA-MILP(¢) and more experiments should be carried out in
scenarios where both the demand and the probabilities change. Therefore, it is an issue to handle
scenarios with more substantial changes. Besides, our approach could be improved by indicating
the assignment probability difference for each OD pair and each transit segment.

Our results are for relatively small networks with a solution computational cost of less than
1 minute. Nevertheless, the most time consuming is the lecture of the model before starting the
branch-and-bound solver. As we mentioned before, the the model consists in O(|N|? + 3|N|?)
variables and O(3|N|? + |L||N|? + 5|N|?) restrictions. A research line is then about the data
structures, preprocessing algorithms, and dominant solution properties to increase the size of the
instances.

Finally, these results were obtained from instances generated as described in Section this
generator can be modified in such a way that the path probabilities represent an equilibrium
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assignment [22] for cases without congestion and consider heuristic models to represent cases with

congestion and capacity limits in transport vehicles.
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