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Abstract

We address the problem of locating primary health care centers, incorporating a set of basic

services, and considering capacitated outpatient service. Complimentary services such as nutri-

tion consultant, dental care service, psychological service, clinical analysis, and imaging services are

modeled with covering constraints. The objective is to maximize the covered demand by the compli-

mentary services while the total travel distance for the outpatient service allocation is constrained.

The cost of opening new facilities and updating the existing ones in the network is restricted to a

budget. Two auxiliary bi-objective integer linear programming models that help identify the trade-

off between the total travel distance and the budget limit are proposed. A case study based on the

Mexican public health care system is presented. Optimal solutions were found for a set of instances

composed of 1,086 demand nodes and 411 candidate locations. The auxiliary models are solved

by an augmented ε-constraint method. The empirical work shows the usefulness of the proposed

models.

Keywords: Health care planning; Facility location; Integer programming; Bi-objective integer pro-

gramming.



1 Introduction

The public health care system in Mexico is segmented into multiple institutions. The planning of

the resources of each institution is based on the needs of its insured members. This circumstance

brings many problems related to access equity and the quality of the institutions [4]. The lack of

standardization in the design of health care facilities is one of the significant problems for establishing

single joint planning of infrastructure among institutions. The Institute of Health for Well-being

(INSABI, from Instituto de Salud para el Bienestar) is an institution created in 2020 to supply all

health care services to the uninsured population. Formerly, each state was in charge of planning

resources and the budget to invest in them. INSABI aims to centralize the significant decisions to

reach equity through transparent processes.

According to a report [17] issued in 2015 by the Mexican Institute of Statistics, Geography,

and Informatics (INEGI), the three leading causes of death in Mexico were cardiovascular diseases

(25.5%), endocrine, nutritional, and metabolic diseases (17.5%), and malignant tumors (13%). The

importance of the Primary Health Care Center (PHC) is owing to they are the first-level of action to

prevent these diseases or provide a timely diagnosis. In a more general definition, the PHCs are the

first contact points for the population to prevent and promote their health, and when it is required

to provide outpatient care. These centers are the primary way of accessing specialized health care

services.

Aligned with INSABI goals, this work’s motivation is to create an adequate model for the

planning of all primary health care facilities by using Operations Research tools. The objective is

to maximize the access and quality of the first level of health care in public institutions. In the

literature, most of the facility location problems related to primary health care focus on evaluating

an only service. However, in developing countries such as Mexico, there is an urgent need for

integrating more than an only service in the decision-making process. A group of services forms the

basic set of primary health care services integrated by the outpatient consultation, nutrition care,

dental care, psychological care, clinical analysis, and imaging. Even in some PHCs, some specialized

services, such as gynecology or pediatrics, are provided.

The PHCs in the public sector of Mexico are classified in diverse levels of service. The most basic

unit is formed by medical staff, including a general physician, one or two nurses, and a technical staff

member. This group is referred to as the basic kernel. They provide outpatient service, and they are

in charge of vaccination campaigns, promotion of health care, family planning, and the detection

and control of chronic diseases. The number of basic kernels increases with the size of the PHC,

including the complementary services that require additional staff and resources [34]. In Mexico,

basic PHCs are located in rural areas, while the PHCs with the highest capacity and services are

located in urban areas to maximize access to their services.

In this paper, it is addressed a facility location problem with a set of basic services, referred
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to as FLPBS. In this problem, the outpatient service is considered as a capacitated service, each

demand point is allocated to a single PHC, and the total travel distance (TTD) by the patients is

handled as a constraint. The population assignment for the outpatient service is required to control

the clinical record of each inhabitant and make possible the planning of the resources needed in

each PHC. The complementary services are addressed as uncapacitated services with a critical

coverage distance. The objective is to maximize the covered demand of each service by at least

one PHC. The use of a maximal coverage distance is meant to ensure a minimum level of service

to the largest population who require the service. The annual budget destined for infrastructure

planning in health care to guarantee the total access to primary health care services is insufficient

in Mexico. In that sense, a budget limit for the investment in new facilities or updating the existing

ones is typically imposed. For this problem, a mixed-integer linear programming model (MILP) is

introduced. As part of the solution methodology, two auxiliary bi-objective integer programming

models are proposed for identifying feasible ranges for both the TTD bound and the budget. The

first auxiliary model is used to identify both bounds’ minimum value combination to get feasible

solutions to the problem. In contrast, the second model is used to identify the maximum value

combination to avoid the budget’s sub-utilization. The Pareto front is obtained by applying the

augmented ε-constraint method, AUGMECON2 [22].

Numerical experiments were carried out to assess the usefulness of the model and its auxiliary

models. These experiments were based on real-world data from a region composed of 17 municipal-

ities in the northern zone of the State of Mexico, evaluating 1,086 demand points. The information

used to create the case study is based on the available data by the INEGI and the Mexican Ministry

of Health (SS, for Secretaría de Salud).

The remainder of this paper is organized as follows. In Section 2, a literature review of facility

location problems with applications in primary health care centers is presented. In Section 3, the

integer programming model is presented, including the assumptions, the auxiliary models, and their

interpretations. This is followed by Section 4 where the solution methodology is described. Section

5 presents an empirical assessment of the proposed model based on real-world data. Finally, some

concluding remarks and discussion on future work are outlined in Section 6.

2 Literature Review

The Facility Location Problem (FLP) is one of the most studied problems in location theory. Dif-

ferent versions of the problem have been used and adapted to solve a large number of problems in

the industry and the public sector. An extensive compilation of models is presented by Farahani

and Hekmatfar [9]. Our research is applied to the health care area, which also has a large number

of contributions. A recent survey on health care facility location is presented in Ahmadi-Javid et al.

[1], but other important surveys have been done throughout the last decades by Papageorgiou [29],
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Smith-Daniels et al. [39], Daskin and Dean [8], Rahman and Smith [31], and Rais and Viana [32].

Multi-objective models and methods on facility location are surveyed by Farahani et al. [10].

The FLPBS draws concepts and ideas from the Capacitated Facility Location Problem (CFLP)

and the Maximal Covering Location Problem (MCLP). To the best of our knowledge, the FLPBS

has not been addressed before. The Capacitated Maximal Location Problem (CMLP) is a related

problem initially addressed by Chung et al. [5], and later studied byCurrent and Storbeck [7] and

Pirkul and Schilling [30]. In this problem, the objective is to maximize the population assigned to

a facility within a coverage distance, while the facilities are limited by their capacity. Yin and Mu

[41] extends this model by incorporating multiple capacity levels in a similar way as the FLPBS. A

recent application of this problem about locating drone launching sites for distributing resources is

made by Chauhan et al. [3]. However, the main difference between CMLP and FLPBS is the number

of services integrated into the problem. While CMLP evaluates capacity and coverage limits for the

same service, FLPBS incorporates the main service as a capacitated service and the complementary

service with coverage radius.

The Fixed Charge Facility Location Problem (FLP) with coverage constraints is another related

problem proposed by Nozick [27]. This problem minimizes the total cost of serving a set of demand

locations using the covering constraints to set a minimum level of uncovered demand. Although

the objective function is not the same as the FLPBS, both problems have similar characteristics.

However, the problem is also evaluated for a single service.

In this paper, two auxiliary models are proposed to find an efficient bound for the total travel

distance with budget limit for the FLPBS. The first model, based on the capacitated p-median

problem with a budget limit, must decide where to install new facilities or how to upgrade existing

facilities. The second model is related to the FLP with the set of coverage constraints for the

complementary services.

In Table 1, related works for the health care facility location problem are summarized, partic-

ularly the problems related to primary health care centers. We compared the proposed model for

the FLPBS, with the other related works. The FLPBS takes classic characteristics of the facility

location problem as it can be seen in the table, with the addition of the new characteristics previ-

ously mentioned. All the reviewed papers also considered the demand as a parameter. The travel

distance/time is one of the most used parameters in the problems. The fixed and variable costs

are evaluated by more than half of them. The facility capacity [14, 15, 24, 35, 36], as well as the

incorporation of multiple services [13, 14, 18, 20, 25, 38, 40] are parameters used to a lesser extent.

The use of both parameters was only presented in Griffin et al. [14], Shishebori and Yousefi Babadi

[36], and the proposed FLPBS.

The facilities’ location is the mandatory decision in this type of problem, while the allocation of

demand is also evaluated in most of the problems. The demand coverage is evaluated in the FLPBS

for the complementary services, and the demand coverage was only assessed by Smith et al. [38]
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and Taymaz et al. [40].

The maximum travel distance is one of the most common constraints in this type of problem.

In the FLPBS, the total travel distance is bounded. The maximum number of facilities is also

a common constraint that we do not consider because the number of facilities is limited by the

available budget.

Table 1: Survey of related facility location problem for primary health care facilities.

Model asumptions Variables Constraints

Paper D
em

an
d

T
ra
ve
lt
im

e/
di
st
an

ce
Fa

ci
lit
y
ca
pa

ci
ty

F
ix
ed

an
d/

or
va
ri
ab

le
co
st
s

M
ul
ti
pl
e
se
rv
er
s

M
ul
ti
pl
e
se
rv
ic
es

E
la
st
ic

de
m
an

d
H
ie
ra
rc
hi
ca
ls

ys
te
m

U
nc
er
ta
in
it
y

Lo
ca
ti
on

of
fa
ci
lit
ie
s

A
llo

ca
ti
on

of
de
m
an

d
po

in
ts

N
um

be
r
of

re
so
ur
ce
s
re
qu

ir
ed

C
ov
er
ag
e
of

de
m
an

d
Fu

ll
co
ve
ra
ge

P
ar
ti
al

co
ve
ra
ge

M
ax

im
um

nu
m
be

r
of

fa
ci
lit
ie
s

M
ax

im
um

tr
av
el

di
st
an

ce
M
ax

im
um

av
ai
la
bl
e
re
so
ur
ce
s

Se
rv
ic
e
ca
pa

ci
ty

(m
in

or
m
ax

le
ve
l)

B
ud

ge
t

M
od

el
in
g
ap

pr
oa
ch

So
lu
ti
on

m
et
ho

d

This paper X X X X X X X X X X X a G
Marianov et al. [19] X X X X X X X X a GH
Marianov et al. [20] X X X X X X X X X X a G
Mitropoulos et al. [24] X X X X X X X X X X ad G
Ndiaye and Alfares [26] X X X X X X X a G
Griffin et al. [14] X X X X X X X X X a
Ratick et al. [33] X X X X X X X X X a G
Smith et al. [37] X X X X X X X a G
Shariff et al. [35] X X X X X X X X X a GM
Güneş et al. [15] X X X X X X X X X X X X a
Cocking et al. [6] X X X X X X X a G
Smith et al. [38] X X X X X X X X X X acd G
Mitropoulos et al. [25] X X X X X X X X X X ade G
Kim and Kim [18] X X X X X X X X X X a GL
Ghaderi et al. [12] X X X X X X X b GHM
Beheshtifar et al. [2] X X X X X X X X ad M
Graber-Naidich et al. [13] X X X X X X X X X a G
Shishebori et al. [36] X X X X X X X X X X af G
Núñez Ares et al. [28] X X X X a O
Taymaz et al. [40] X X X X X X X X X e G
Modeling approach Solution method
a = Mixed-integer linear programming G = General purpose branch-and-bound solver
b = MINLP L = Lagrangian relaxation
c = Goal programming H = Heuristics
d = Multi-criteria decision making M = Metaheuristics
e = Stochastic programming O = Other
f = Robust optimization

As we can see from Table 1, most modeling approaches are mixed-integer linear programing
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(MILP) models. There are a few of them that consider multi-objective or multi-criteria models

[2, 24, 25, 38]. A few stochastic models have been studied as well as [36, 40].

In Smith et al. [38], a set of hierarchical models is proposed to locate public services. They

proposed a MCLP that integrates the location of facilities, allocation, and coverage of demand

decisions in a single problem as the same as the FLPBS, also considering multiple services and

multiple facility levels. They limit the number of locations according to a number, while the FLPBS

considers a budget limit. The main difference is the hierarchical structure in their formulation and

the inclusion of a capacitated service in the FLPBS.

In summary, a novel model that integrates features from CFLP and MCLP for the location of

primary health care centers in the public sector is proposed in this paper. Multiple facility types

that have different costs and services are included. The main service is modeled similarly to CFLP

since an allocation scheme is required to meet demand. Given the complementary services are

limited, the MCLP is a good approximation to cover these services. The problem takes into account

the current infrastructure because the objective is the continuous improvement of the system with

a periodic capital investment to open new facilities or to improve the existing ones. This problem

can be applied to the infrastructure planning of other developing countries with related health care

systems.

3 Problem Description

There are two types of services: (1) the Main Service (MS) related to outpatient service provided

by general physicians and (2) Complementary Services (CS) such as nutrition consultant, dental

care service, psychological service, clinical medicine analysis, and imaging services. The outpatient

service has a limited capacity based on the number of persons that can be affiliated with a facility.

This number is determined by the facility type. Each demand point (locality) must be allocated

to a single facility, and all demand must be covered. For complementary services, the coverage is

based on a critical radius of the distance between facilities and localities.

Different types of facilities are evaluated in the problem. Each one has a limited capacity for the

outpatient service and provides a set of complementary services. There is a setup cost for installing

new facilities and an upgrading cost to expand the current facilities’ capacity. A set of candidate

locations is defined to install new facilities. Some factors, such as level of population, type of locality

(urban or rural), and connectivity with other localities, are important to determine which type of

facility is feasible in each candidate location.

For the outpatient service, the objective is to allocate all demand points limited by the facility’s

capacity while the Total Travel Distance (TTD) of the demand is constrained. For the complemen-

tary services, the objective is the maximization of the sum of the covered demand. The budget

restricts the investment cost of installing and updating facilities. This cost will be named as Total
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Cost (TC) in the remaining of the paper. In the following sections, when the TTD is mentioned,

we refer to the total travel distance from demand points to the facilities to receive the outpatient

service.

3.1 Formulation

The sets, parameters, variables, and the mathematical formulation of the FLPBS described as

follows:

Sets and indices:

M Set of demand points (localities) (i ∈M).

N Set of candidate locations for new installation or upgrading of facilities (j ∈ N). N is

partitioned into two subsets, NA and NB.

NA Subset of locations such that a new facility can be installed.

NB Subset of locations such that a facility is already installed.

K Set of candidate facility types (k ∈ K)

K(j) Subset of candidate facility types to install or update at location j ∈ N , K(j) ⊆ K.

S Set of services (s ∈ S).

S(i) Subset of services that are required in demand point i ∈ M , S(i) ⊆ S. Some demand point

could be covered by service s by an existing facility that is not integrated in the problem.

Parameters:

λs The associated weight of service s ∈ S in the objective function.

F k Fixed cost of installing facility type k ∈ K.

Uk
j Fixed cost of upgrading facility located at j ∈ N to facility type k ∈ K.

B Available budget for installing or upgrading facilities.

Dij Distance from demand point i ∈M to the facility located at j ∈ N .

Pi Demand (number of people) of the main service at point i ∈M .

Ck Capacity (number of people) of facility type k ∈ K for providing the main service.

TTD Upper bound on the total distance traveled by population.
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Rs Critical distance of coverage for service s ∈ S.

Aks
ij The coverage parameter that is equal to 1 if a facility of type k in candidate location j covers

the demand point i for service s. The coverage occurs when the facility of type k can provide

service s, and when the distance between Dij ≤ Rs for service s.

Decision variables:

Y k
j Binary variable equal to 1 if a facility of type k is located at site j; 0, otherwise.

Xij Binary variable equal to 1 if demand point i is allocated to facility located at j for the main

service; 0, otherwise. Xjj represents a facility located at demand point located at j.

V s
i Binary variable equal to 1 if service s of demand point i is covered; 0, otherwise.

Mathematical formulation:

(FLPBS) Maximize
∑
i∈M

∑
s∈S(i)

λsPiV
s
i (1)

subject to
∑
j∈N

Xij = 1 i ∈M (2)

∑
i∈M

PiXij ≤
∑
k∈K

CkY k
j j ∈ N (3)

Xjj ≥
∑
k∈K

Y k
j j ∈ N (4)

∑
k∈K(j)

Y k
j ≤ 1 j ∈ NA (5)

∑
k∈K(j)

Y k
j = 1 j ∈ NB (6)

∑
j∈NA

∑
k∈K

F kY k
j +

∑
j∈NB

∑
k∈K

Uk
j Y

k
j ≤ B (7)

∑
i∈M

∑
j∈N

PiDijXij ≤ TTD (8)

V s
i ≤

∑
j∈N

∑
k∈K

Aks
ij Y

k
j i ∈M, s ∈ S(i) (9)

Xij ∈ {0, 1} i ∈M, j ∈ N (10)

Y k
j ∈ {0, 1} j ∈ N, k ∈ K (11)

V s
i ∈ {0, 1} i ∈M, s ∈ S (12)

The objective function (1) maximizes the sum of demand covered by the complementary services.

Each complementary service has a defined weight (λs) in the objective function. Constraints (2)

allocate each demand point to only one facility. The allocation of demand points is limited by the
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capacity of each facility in constraints (3). In constraints (4), it is defined that demand points

located in the same locality of a facility are allocated to this facility. Constraints (5) ensure that

only one facility can be installed at most in a candidate location, while constraints (6) ensure that

existing facilities remain the same or they can be updated. The number of additional and updated

facilities is limited to a budget, according to the constraint (7). Constraint (8) defines an upper

bound for the total distance traveled by the population in the allocation of demand points for the

main service. In constraints (9), the variables V s
i will take a value equal to 1 if the demand point

i is covered for service s by at least one facility. The nature of decision variables is defined by

constraints (10)–(12).

Computational complexity : To show that the FLPBS is NP-hard, it is used a reduction from

the MCLP as follows. Consider a particular instance of the FLPBS where there is only one facility

type (K = {1}) and one complementary service (S = {1}) in the problem. Let the capacity of the

outpatient service be greater than or equal to the total demand in the system (C ≥
∑

i∈M Pi). Let

the TTD bound be larger than or equal to the worst-case solution in the problem (e.g. TTD =∑
i∈M PiDij∗ such that j∗ = arg max

j
{Dij |j ∈ N} ∀i ∈M ). It is assumed there are no current

facilities in the system (N = NA). Let the cost in constraint (7) be fixed to one, and the budget

represents the number of facilities to be opened (
∑

j∈N Yj ≤ B). Under this special instance, any

possible value of the Xij variables does not affect the objective function since constraints (3) and

(8) will be inactive in the optimal solution. Therefore, the related constraints can be removed from

the problem, and the remaining problem is just an instance of the MCLP. That is, the MCLP

is polynomially reducible to the FLPBS. Clearly, the feasibility of the FLPBS can be checked in

polynomial time. Since the MCLP is known to be NP-hard [23] it follows that the FLPBS is also

NP-hard.

3.2 Auxiliary Formulations

Constraints (7)-(8) can be modeled as additional objective functions to be minimized in a multi-

objective optimization problem. Instead of working with a set of solutions for Pareto front, the

decision of which TTD bound and the amount of budget available for the improvement of the

health care system are predefined by the design-makers. However, two auxiliary bi-objective integer

linear programming models are proposed to find reasonable bounds for TTD when there is a budget

limit. This method provides a broader perspective to understand the solution behavior.

Auxiliary Model 1 (AM1)

The first objective (13) minimizes the total distance traveled by the population from each demand

point to the allocated facility. The second objective (14) minimizes the total cost of opening or

updating the facilities of the system. Constraints (2)-(6), (10), and (11) remain in the model.
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Minimize Z1 =
∑
i∈M

∑
j∈N

PiDijXij (13)

Minimize Z2 =
∑
j∈NA

∑
k∈K

F kY k
j +

∑
j∈NB

∑
k∈K

Uk
j Y

k
j (14)

subject to Constraints (2)− (6), (10), (11)

Auxiliary Model 2 (AM2)

This model is the same as the AM1 with the addition of constraints (17) which ensures that each

demand point is covered at least by one facility for each complementary service

Minimize Z1 =
∑
i∈M

∑
j∈N

PiDijXij (15)

Minimize Z2 =
∑
j∈NA

∑
k∈K(j)

F kY k
j +

∑
j∈NB

∑
k∈K(j)

Uk
j Y

k
j (16)

subject to
∑
j∈NA

∑
k∈K(j)

Aks
ij Y

k
j ≥ 1 i ∈M, s ∈ S(i) (17)

Constraints (2)− (6), (10), (11)

Interpretation of AM1 and AM2

In Table 2, a summary of the auxiliary models’ features is presented. The main difference between

the AM1 and the AM2 is the additional constraints that guarantee the coverage of each demand

point in the AM2. Since the TTD bound and the budget are defined by the decision-maker, the

Pareto front of the AM1 allows to identify the minimum TC to get feasible solutions in the FLPBS

for a given TTD bound. On the other hand, the Pareto front of the AM2 allows identifying the

maximum required budget to cover all demand points for the complementary services for a given

TTD bound.

Table 2: Model features.

Model Minimize TTD for the MS Maximize coverage of CS Minimize total cost
AM1 Objective function Not evaluated Objective function
AM2 Objective function Constraint Objective function

FLPBS Constraint Objective function Constraint

To illustrate how both auxiliary models can be used to get useful bounds for the FLPBS, Figure

1 shows an illustrative example of the relationships among the models for a given instance. In this

figure, the TTD vs. the TC of the solutions of the three models is plotted. The AM1 Pareto front

is represented by the blue points, while the AM2 Pareto front is represented by the red points. In
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both cases, the problem is integer, and the set of possible solutions is discrete. Each model has its

own optimal solutions range, but the behavior is similar. The best TTD is found with the highest

TC, and the lowest TC has the highest TTD. The solutions of the AM2 will have a higher cost

than the solutions of the AM1 for a given TTD value because more facilities are opened or updated

to guarantee the total coverage of demand for the complementary services. Therefore, the TTD

bounds and the budget of the FLPBS must be inside the area between the two sets of solutions to

be efficient. The area below the blue points will produce unfeasible solutions, and the area above

the red points will produce solutions with not efficient use of the budget.

For example, the solution of three different points with the same TTD bound are represented

in Figure 1 by P1, P2, and P3. The solution at P1 represents the minimum budget to get a feasible

solution with TTD1 as the bound, the solution at P3 represents the maximum budget to cover all

demand points with the same TTD bound, and the solution at P2 represents a solution between

these two points. The range of coverage increases from 80% at P1 to 100% at P3. The cost increment

to obtain a solution from 80% to 100% is nonlinear because to cover the last remaining part of the

demand becomes more expensive. Therefore, a partial increment in the budget starting from the

minimum one required could get an important improvement in the coverage of demand as it is

observed in the solution at P2, which has a coverage of 95%. This is shown in Section 5.

Figure 1: Graphical representation of AM1 and AM2 Pareto fronts.

The FLPBS is needed because the required budget to cover all demand could be very difficult

to achieve in a real-world instance. However, AM2 can be used if there is no budget limit in the

planning of the resources. FLPBS finds an efficient solution with a limited budget and with a

predefined maximum TTD for the allocation of demand for the outpatient service. Since the TTD
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metric can be challenging to interpret, an alternative equivalent metric is the Mean Travel Distance

(MTD), which is calculated by dividing the TTD by the total demand. This value represents the

mean distance that the population travels between demand points to facilities.

4 Solution Methodology

The augmented ε-constraint method (AUGMECON) was proposed by Mavrotas [21] for solving

multi-objective programming models. An improved version of the algorithm (AUGMECON2) was

later developed by Mavrotas and Florios [22]. This method is used to find the exact Pareto set of a

multi-objective integer programming problem. The method avoids the production of weakly Pareto

optimal solutions and accelerates the whole process by avoiding redundant iterations.

4.1 Applying AUGMECON2 for Solving the Auxiliary Models

The following implementation of the AUGMECON2 is proposed by keeping Z1 as the main objective

function and Z2 as a constraint. However, the role of each objective function can be swapped. The

notation used in this subsection is the following:

Parameters and variables:

q The total number of grids in the objective function range of Z2.

r1 The range of possible bounds in the TTD constraint.

r2 The range of possible bounds in the budget constraint.

ep The right-hand side coefficient in the budget constraint for the grid point p.

ε A very small value, given by 1× 10−9.

b The bypass coefficient.

S1 Slack variable for the TTD constraint.

S2 Slack variable for the budget constraint.

The first step is to construct the payoff table that provides the extreme points of the optimal

Pareto set. The problem is firstly solved by minimizing objective function Z1. Then, the problem is

solved again, minimizing Z2, but including the previously found objective value of Z1 as a constraint

bound. The values of Z1 and Z2 in the solution of the second model corresponds to an extreme

solution of the optimal Pareto set. These steps are repeated, swapping the objective functions to

found the second extreme point.
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The payoff table provides the range of each objective function that is going to be used as

constraints. The range r2 that corresponds to the objective Z2 is divided in q − 1 intermediate

equidistant grid points (ep). The density of the efficient set is controlled by the parameter q. There

is a trade-off between the density of the efficient set and the computation time. The original problem

is modified as follows:

Minimize Z1 − ε
(
S2
r2

)
(18)

subject to Z2 + S2 = ep (19)

constraints (2)− (6), (10), (11), (17)∗

S2 ≥ 0 (20)

Note: (*) Constraints (17) are only added for AM2.

For each grid point (ep), the model is solved to find an optimal Pareto set point. AUGMECON2

implements a slight modification in the objective function when more than two objectives are eval-

uated, which is not the case of these models. A second improvement is estimating the bypass

coefficient to omit redundant iterations that find the same Pareto optimal solution. This coefficient

is calculated as follows:

b =

⌊
qS2
r2

⌋
(21)

When the surplus variable S2 is larger than r2/q, the iteration can be omitted because no new

Pareto optimal solution is generated. The coefficient b indicates how many consecutive iterations

can be omitted.

This procedure is the same for both auxiliary models. The only difference is the addition of

constraints (17) in AM2.

4.2 Solving the FLPBS

The Branch-and-Bound algorithm provided by conventional optimization software such as CPLEX

is used in this work. Some slight modifications are proposed to the original FLPBS to find efficient

solutions. The maximization of the complementary services coverage and the minimization of the

TTD are independent objectives. The improvement of one objective does not mean the improvement

of the other one. The TTD is constrained by a boundary value in the model, but when there are

multiple optimal solutions, the TTD value found in the solution may not be the one with the lowest

value. To ensure that the solution with the lowest TTD is found in the solution, the model is

modified as follows using the previous notation of the AUGMENCON2 procedure.

12



Maximize
∑
i∈M

∑
s∈S(i)

λsPiV
s
i + ε

(
S1
r

)
(22)

subject to
∑
i∈M

∑
j∈N

PiDijXij + S1 = TTD (23)

constraints (2)− (7), (9)− (12)

S1 ≥ 0 (24)

The range r is obtained from the payoff table as the difference between the extreme values of

Z1 in both auxiliary models. This modification allows finding the best TTD when multiple optimal

solutions are found in the problem because the algorithm maximizes the slack variable S1.

MIP Start Strategy

When dealing with large-scale problems, some feasible solutions to the FLPBS could be challenging

to achieve by the B&B algorithm. This was observed in the preliminary experimental work for

scenarios close to the AM1 optimal Pareto front. A large amount of memory and time was spent

trying to find a feasible solution. In this case, the B&B algorithm can start using an initial solution

to avoid this problem. The solution is not required to be feasible, and it can be obtained from a

related problem.

An alternate model (named Reduced_FLPBS) is suggested. This model is formed by constraints

(2)-(8) and (10)-(11), maximizing only the slack variable S1. This problem can be used to find an

initial solution to the FLPBS. The number of constraints and variables is lower because constraints

(9) are not considered. The feasible region is the same as that of the FLPBS, but with another

objective function. This modification is observed to be extremely helpful, making the B&B algorithm

converge a lot faster.

5 Empirical Work

5.1 Description of Case Study

The model is applied to a case study composed of 17 municipalities in the northern zone of the

State of Mexico with a total of 1,086 demand points with an estimated population of 1.3 million

inhabitants in 2019 and with a land area of 5,287 km2 (Figure 2). This group of municipalities

was chosen since they have similar characteristics of the population, and their primary health care

centers belong to a group of three sanitary jurisdictions. Most of the information is obtained from

publicly available data sources, while some information was generated based on real-world cases.

The details of the sources are shown in Table 9 (Appendix A).
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Figure 2: A map of the State of Mexico showing the 17 municipalities.

To give an idea of the population distribution around the area of study, Table 3 displays the

localities classified in ranges according to the number of inhabitants. The ranges of the popula-

tion are shown in the first column, the number of localities and population average are shown in

the second and third columns, respectively. In the third- and second-to-last rows, the demand is

classified by the type of locality (urban and rural). We can observe that most of the localities are

rural (93%), with 63% of the population of the region. For these localities, 79% of them have less

than 1,000 inhabitants on average. The urban localities represent 7% of localities, with 37% of the

inhabitants of the region. Some facility types can only be installed in urban localities, as explained

later. The last row shows the total number of localities and the total number of inhabitants in the

region.

The types of health care facilities and their characteristics are shown in Table 4. For rural

localities (R), only the first three facility types can be installed because these types of localities

present in general low population density and they may be located in not very accessible places. All

the facility types are available for urban localities (U). The outpatient service capacity is shown in

column three; this capacity represents the number of people (#p) that can be permanently allocated

to each facility type. The capacity of facility type 1 was set to 2,400 inhabitants, and the capacity

of the following facility types is a multiple of this value. According to Secretaría de Salud [34], the

basic capacity must be 3,000 inhabitants, but this was reduced to 2,400 inhabitants for experimental

purposes. This change allows us to evaluate the location of new facilities to cover the outpatient
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Table 3: Characteristics of the localities.

Population Number of Population
range localition points average
≤ 100 159 33

101 - 500 385 278
501 - 1,000 250 717
1,001 - 2,000 172 1,431
2,001 - 3,000 57 2,859
3,001 - 4,000 21 4,323
4,001 - 5,000 20 4,824
> 5,000 22 11,050

Urban localities 76 711
Rural localities 1,010 5,438

Total 1,086 1,131,193

service; otherwise, the problem would be limited to the allocation problem. The number of actual

facilities and the total capacity are shown in the last two columns for each facility type. In the last

row, the total number of facilities (294) and their capacity for the outpatient service is shown. If we

compare the total capacity and the population, there is a capacity shortage of 425,593. The number

of candidate locations to install new facilities is 117, integrating the network up to 411 potential

facility locations.

Table 4: Types of health care facilities and the services provided.

Facility Outp. service Setup Compl. service coverage Existing capacity
type Category capacity cost CS1 CS2 CS3 CS4 CS5 Facilities Outp. service
1 U, R 2,400 4.0 0 0 0 0 0 179 429,600
2 U, R 4,800 6.7 0 0 0 0 0 83 199,200
3 U, R 7,200 14.5 1 1 1 0 0 27 64,800
4 U 9,600 16.8 1 1 1 0 0 2 4,800
5 U 12,000 22.9 1 1 1 1 0 3 7,200
6 U 14,400 31.7 1 1 1 1 0 0 0
7 U 16,800 33.0 1 1 1 1 1 0 0
8 U 19,200 35.7 1 1 1 1 1 0 0
9 U 21,600 36.9 1 1 1 1 1 0 0
10 U 24,000 38.4 1 1 1 1 1 0 0
11 U 26,400 41.7 1 1 1 1 1 0 0
12 U 28,800 42.6 1 1 1 1 1 0 0

Critical coverage radius (km) 6 12 12 18 24
Total 294 705,600

The setup cost in million of pesos (M) is shown in the fourth column in Table 4. The complemen-

tary services are nutrition service (CS1), dental care (CS2), mental health services (CS3), clinical

analysis (CS4), and radio-diagnosis and imaging (CS5). The weight in the objective function will be

the same for all the services. The services available for each facility type are shown in the following

five columns as binary values (1 if the service is provided, otherwise 0). In the penultimate row,
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the critical coverage radius in kilometers for each complementary service is shown. These values are

proposed for this experimental analysis. The costs of updating the facilities to other facility types

are shown in Table 10 (Appendix A).

5.2 Computational Results

The Branch-and-Bound algorithm from the CPLEX callable library, version 12.8, with a C++ API

was used to find the optimal solution to FLPSB and for solving the subproblems in the AUG-

MECON2 method. The experiments were carried out in an Intel Core i7-5600U at 2.60GHz with

16GB of RAM, under Windows 10 operating system. A relative gap tolerance of 1×10−6 was set

as a stopping criterion without a time limit. Table 5 shows the payoff table of the AM1 and AM2

objective functions for the AUGMECON2 implementation. A set of 101 equidistant grid point was

used for the budget constraint, while the TTD was minimized. Some statistics about the B&B

CPU time for solving AM1 and AM2 are shown in Table 6. The number of instances (N), the mean,

the standard deviation, the minimum and maximum values, the first and third quartiles, and the

median of the CPU time are shown for each model. The last quarter of the AM1 instances close

to the lowest budget were the most difficult to solve. From there on, all the instances were solved

in reasonable running times. The smallest TTD objective value was the same in both auxiliary

models. Still, the highest value was different because AM2 requires more facilities to ensure the

coverage of complementary services, which helps reduce the TTD at the same time.

Table 5: Payoff table of AM1 and AM2.

Model Objective Z1 Z2

(m) ($ MX)
AM1 Min Z1 426,420,121 1,082,556,795

Min Z2 1,745,757,649 371,484,933
AM2 Min Z1 426,420,121 1,571,530,037

Min Z2 1,278,662,321 906,097,190

Table 6: Summary of CPU time (in seconds) statistics summary for the B&B.

Model N Average Standard Deviation Minimum Q1 Median Q3 Maximum
AM1 101 2,804 13,408 27 35 51 404 111,997
AM2 101 195 435 31 41 65 176 3,773

Figure 3 shows the solutions of the Pareto front of each auxiliary model. The values of the

corresponding extreme points of each model are shown in the plot. A set of 18 samples for the

FLPBS were chosen in the area between both Pareto fronts. The instances were grouped into two

types to identify the effect of changing the TTD and budget bounds. In the first ones (FLPBS_H),

the budget limit was fixed, and the TTD bound was varied. In the second group of instances

(FLPBS_V), the TTD bound was fixed, and the budget was varied. Figure 3 shows the results of
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all the FLPBS samples grouped by type. For instance, samples 1 to 3 (subgroup H1) have the same

budget with different TTD bounds, and samples 10 to 12 (subgroup V1) have the same TTD bound

with different budgets. The sample number and the coverage percentage of each sample are shown

in parentheses near each point. The samples near AM1 Pareto front have the lowest coverage rates,

while the ones near to the AM2 Pareto front have the highest coverage rates. The intermediate

samples (2, 5, 8, 14, and 17) obtained percentages of coverage higher than 99%. These results show

that a small increase in the budget, starting from the AM1 Pareto front, can significantly improve

the percentage of the complementary services coverage. For the AM1 solutions, it was observed

that the TTD could be reduced by 76% from the worst to the best value if the budget is increased

2.9 times. For AM2, the budget only requires an increase of 1.73 times, reducing the TTD by 67%.

Figure 3: Graphical representation of the solutions to the AM1, the AM2, and the FLPBS.

A detailed summary of the results for each FLPBS sample is shown in Table 7. Each column’s

definition is described in Table 11 (Appendix A) to support the information’s understanding. The

number of existing facilities was 294, some of them were updated, and new facilities were opened

in the solutions. The results show that new facilities are required in more proportion than updated

facilities if the main objective is to reduce the TTD (samples 1, 4, 7, 10-12). In contrast, more

updated facilities help to increase the demand covered by the complementary services (samples 3,

6, 9, 16-18).

When the available budget is not enough to get the desired coverage goal for the complementary
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Table 7: Summary of results for the FLPBS instances.

Constraints
Results Main Service Complementary Services

Facilities Cost TTD MTD % of Demand Utilization Mean
Cov. Percentage of coverage

S
am

p
le

T
y
p
e

Budget TTD New Upd. Tot. New Upd. <1km <5km <10km Mean SD (%) CS1 CS2 CS3 CS4 CS5

1 H1 1,083 426 117 91 1,083 577 506 426 377 83 17 100 64 20 84.4 79 98 98 78 70
2 H1 1,083 557 62 85 1,082 386 696 557 493 78 22 100 72 22 99.9 99 100 100 100 100
3 H1 1,083 688 31 103 1,082 235 847 688 608 73 27 100 73 23 100.0 100 100 100 100 100
4 H2 990 430 116 80 990 554 436 430 381 83 17 100 67 21 79.1 78 97 97 76 48
5 H2 990 632 43 84 990 307 683 631 558 75 24 100 74 22 99.9 99 100 100 100 100
6 H2 990 833 14 104 990 143 847 831 734 69 30 99 75 23 100.0 100 100 100 100 100
7 H3 905 449 109 68 905 507 398 449 397 83 17 100 70 21 82.8 78 97 97 76 66
8 H3 905 864 13 91 902 157 745 863 763 69 30 99 76 23 100.0 100 100 100 100 100
9 H3 905 1,279 3 98 903 62 841 1,228 1,086 66 30 96 78 22 100.0 100 100 100 100 100
10 V1 1,083 426 117 91 1,083 577 506 426 377 83 17 100 64 20 84.4 79 98 98 78 70
11 V1 1,327 426 117 98 1,327 666 661 426 377 83 17 100 63 21 99.2 96 100 100 100 100
12 V1 1,572 426 117 123 1,572 664 908 426 377 83 17 100 61 22 100.0 100 100 100 100 100
13 V2 492 846 16 64 492 101 391 846 748 70 29 99 82 19 84.6 78 97 97 76 75
14 V2 739 846 14 74 739 140 598 846 748 70 30 99 78 21 99.1 96 100 100 100 100
15 V2 986 846 13 103 984 139 845 846 747 69 30 99 76 23 100.0 100 100 100 100 100
16 V3 393 1,262 1 60 393 4 389 1,262 1,116 66 28 95 87 17 81.8 78 97 97 76 61
17 V3 649 1,262 1 75 649 15 635 1,261 1,115 65 29 95 82 19 99.2 96 100 100 99 100
18 V3 906 1,262 3 99 906 62 844 1,201 1,061 66 30 96 78 23 100.0 100 100 100 100 100

services, the TTD bound of the main service can be enlarged to increase the demand coverage,

waiving some quality in this objective. This effect is observed in samples type H1, H2, and H3. For

instance, when the TTD bound was changed from 426×106 m in sample 1 to 557×106 m in sample

2, the coverage percentage increases from 84% to 99% with the same budget.

Samples type V1, V2, and V3 help to identify the impact in the coverage of complementary

services when the budget is modified, but the TTD bound is kept as a fixed bound. For instance,

the budget increase between samples 10 and 11 was about to $244 M. This increased the covered

demand from 84% to 99%.

The TTD value is challenging to interpret by itself. This parameter does not provide informa-

tion about the distance variability between demand points and facilities. In Table 7, the demand

percentages who travel a distance equal to or lower than 1 km, 5 km, and 10 km are shown. This

indicator could help the decision-maker to identify the distribution of the distance allocation among

the demand. For instance, in the worst-case solution, 96% of the demand travels less than 10 km.

Another important indicator is the utilization rate, which evaluates the demand allocated to

each facility compared to its maximum available capacity for the outpatient service. A higher

value of the mean utilization rates indicates a better use of the resources, while a higher standard

deviation (SD) indicates an unequal distribution of demand among the facilities. The utilization

rate of samples V1, V2, and V3 showed a decrease when the coverage of complementary services

increased because more facilities or facilities with additional capacity were required to meet this

objective. A lower number of facilities increase the utilization rate but with an increase in the TTD.

The results about the coverage of complementary services in a solution must be analyzed one by

one. If some services have more priority in resource planning, they must have a higher weight in the
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FLPBS objective function. In this experimental work, all services were equal-weighted. However,

the service S1 has the lowest amount of covered demand in the solutions because its critical coverage

radius (6 km) is the lowest. More facilities are needed for this service to extend its, increasing the

total cost. Therefore, the critical coverage radius must be defined very carefully for each service

because the percentage of coverage in the solution is affected by this parameter. Another observation

in the results is that CS2 and CS3 have the same coverage radius and, they are available in the

same facility types. This coincidence causes the coverage percentage is the same for both of them.

Both services could be integrated as a single one in the model with greater weight in the objective

function to reduce the complexity of the problems.

The incorporation of the slack variable S1 in the FLPBS objective function helps the algorithm

to select the solution with the lowest TTD value when there are multiple optimal solutions in a

given scenery. This was observed in samples 9 and 18 in Figure 3, which their TTD values were

significantly lower than their TTD bounds.

5.3 Assessment of MIP Start Strategy

A set of 21 instances was tested to evaluate the implementation of the MIP start strategy with a

budget range between the Pareto front of AM1 and AM2 and a TTD equal to or lower than 845,783

km. The stopping criterion was set to one hour of CPU time. The test instances were solved with

the three schemes: the Reduced_FLPBS, the FLPBS, and the FLPBS with the MIP start. A

comparison among these schemes is shown in Table 8. As we can see from the table, all instances

were optimally solved under the Reduced_FLPBS model in less than one hour of CPU time, while

only eight instances of the FLPBS were optimally solved. The solutions of the other eight samples

were found with an average relative optimality gap of 0.05%. Five instances of the FLPBS were

not solved since the B&B algorithm did not found an integer solution in one hour of CPU time.

When the MIP start strategy was applied to the FLPBS, all samples were solved, eleven of them

were optimally solved, and the remaining were solved with an average relative optimality gap of

0.04%. Finally, it can be observed in Figure 4 that instances of the FLPBS with the lowest budget

value were not solved. Thus, it is evident that the problem becomes more difficult to solve when the

constraints (7) or (8) become tighter, and the use of MIP start strategy can be useful to improve

the performance of the B&B algorithm.

Figure 5 shows the solutions of the FLPBS with the MIP start. The TTD bound is fixed for

these instances, and the budget is varied according to the auxiliary models’ results. $492 M is the

minimum investment for the problem to be feasible, and $985 M is the maximum investment to

ensure the complete coverage of demand for all complementary services. Thus, the budget has a

range of about $466 M from the minimum required. In the plot, we can observe that only 5% of the

budget range is needed to go from 85% to 91% of the covered demand (the greatest improvement),
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Table 8: Comparison of solution schemes.

Reduced_FLPBS FLPBS FLPBS + MIP start
Average Average Average

Termination criteria Instances Relativegap (%)
CPU

time (s) Instances Relativegap (%)
CPU

time (s) Instances Relativegap (%)
CPU

time (s)
Optimal solution found 21 0.00 165 8 0.00 1,155 11 0.00 1,288
Time limit:

-Integer solution found - - - 8 0.05 3,600 10 0.04 3,600
-No integer solution found - - - 5 - - - - -

Figure 4: Classification of solutions
for each model

Figure 5: Comparison of solutions
for the FLPBS with MIP start

and 80% of the budget range only improves the coverage from to 96% to 100%. This logarithmic

behavior is observed in the plot. We conclude that maximizing the coverage instead of guaranteeing

the complete coverage of demand can produce significant savings in the investment of new facilities.

A small increase in the minimum required budget can significantly improve the level of coverage.

5.4 Graphical Results

Figure 6 shows the graphical representation of a solution. The result corresponds to instance number

14, according to Table 7. The allocation of the demand points for the main service is shown in plot

6(a). The coverage of the complementary services is displayed in plots 6(b)–6(f). The red points

represent the demand points not covered by any facility. For the CS1, 10% of the localities are not

covered, but these represent only 4% of the total demand. We can observe that the same solution

was found for the CS2 and CS3 since they have the same coverage radius and availability in the

facility types. For the CS4, 11 demand points representing 1.0% of localities, and 0.4% of demand

were not covered. Finally, all demand was covered by the CS5.
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(a) Allocation of demand points for the MS. (b) Coverage of CS1.

(c) Coverage of CS2. (d) Coverage of CS3.

(e) Coverage of CS4. (f) Coverage of CS5.

Figure 6: Graphical representation of instance 14 solution.
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6 Conclusions

In the paper, we have studied the problem of locating primary health care centers with multiple ser-

vices under different characteristics. The outpatient service is considered a capacitated service with

demand allocation, and the demand coverage of complementary services is maximized. The problem

is motivated by a real-world application in the Mexican Health Care System, and the results can be

extended to developing countries with similar systems. This problem-solution allows the planning

of primary health care infrastructure with an integral and standardized scheme. Since limited bud-

gets always play a vital role, the objective is to find a solution under this tight requirement. The

proposed model can be easily adjusted to handle other objectives.

A case study is presented using real-world data from the State of Mexico to assess the model.

The case study results suggest a negative relationship between the total travel distance for the

allocation of the outpatient service and the total costs of the solutions. This negative relationship

is because more facilities are required to reduce the distance between demand points and facilities.

The coverage of complementary services also increases the total cost when the coverage radius

is relatively small or when the cost associated with the facility type that provides the service is

relatively high. Besides, we introduced two auxiliary models, namely AM1 and AM2. The use of

the auxiliary bi-objective programming models helps the decision-maker select efficient bounds for

the main problem. The Pareto front of AM1 helps to identify the minimum budget required to get

feasible solutions to the problem. In contrast, the Pareto front of AM2 determines the maximum

required budget to cover all demand by the complementary services, both of them for a set of TTD

bounds. Both auxiliary models were formulated as bi-objective integer programs and efficiently

solved by the augmented ε-constraint method AUGMECON2.

Optimal solutions were always found for a network of 1,086 demand points and 411 candidate

potential facility location points. It was challenging for samples with tight bounds to find an

initial feasible solution by the algorithm, spending considerable time in this task. To this end, we

implemented a start strategy using a reduced version of the FLPBS model for providing a feasible

initial solution to the corresponding subproblem of the FLPBS. The experimental work shows the

effectiveness of this strategy, causing a significant reduction in CPU time.

The solutions show that an additional partial increase of the budget starting from the AM1.

Pareto front for a given TTD bound could significantly improve the coverage level of the complemen-

tary services. In that sense, the FLPBS could be used as a decision-making tool when the resources

are finite for planning primary healthcare units. The solutions ensure the capacity feasibility for

the outpatient service and provide a maximum total travel distance for the demand point to facil-

ities. The demand covered for the complementary services is maximized to benefit as many users

as possible under the limited budget. The coverage radius of each complementary service directly

affects the quality of the solution. It requires a previous analysis based on the characteristics of the
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real case to be solved.

It is clear that if the aim is to solve the model over a considerably more extensive region, using

significantly more demand points and potential facility sites, the model may become intractable. The

development of heuristics or decomposition techniques could be an important area of opportunity

for further research in this area. Along this line, the model and technique presented in this paper

can be valuable.
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A Complementary Information for the Case Study

Table 9 shows each data source used to generate the instances of Section 5. The information obtained

from each source is described, and the reference is provided in the last column.
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Table 9: The data sources for the empirical assessment

Data Description Source Ref.
Localities and their demand Geographic location and population at 2010. INEGI [16]

Projection of population at 2020. CONEVAL (a)
Proportion of demand of each institution. INEGI [17]

Primary health care centers The existing facilities, their location, their type and
capacity.

MHM (b)

Distance matrix The geographic locations were converted to Universal
Transverse Mercator system to found the euclidian
distance from each point to the others.

INEGI [16]

Facility types, their capacity,
and their fixed and operative
costs

All data related to the facility types. MHM [34]

(a) Web site: https://www.coneval.org.mx/
(b) Web site: http://www.dgis.salud.gob.mx

Table 10 shows the updating cost of each facility type used in the Case Study in Section 5. The

costs are presented in thousands of Mexican pesos. The cells with a “-” mark represent an infeasible

combination.

Table 10: Cost of updating a facility

To:
From: 2 3 4 5 6 7 8 9 10 11 12

1 2,796 11,715 14,089 20,426 30,424 31,811 34,597 35,843 37,388 40,888 41,880
2 - 8,919 11,292 17,630 27,628 29,015 31,800 33,046 34,592 38,092 39,084
3 - - 2,374 8,711 18,709 20,096 22,882 24,128 25,673 29,173 30,165
4 - - - 6,337 16,335 17,722 20,508 21,754 23,300 26,800 27,792
5 - - - - 9,998 11,385 14,171 15,416 16,962 20,462 21,454
6 - - - - - 1,387 4,173 5,418 6,964 10,464 11,456
7 - - - - - - 2,786 4,031 5,577 9,077 10,069
8 - - - - - - - 1,246 2,791 6,291 7,283
9 - - - - - - - - 1,546 5,046 6,038

10 - - - - - - - - - 3,500 4,492
11 - - - - - - - - - - 1,035

Table 11 contains the description of each parameter presented in Table 5 of Section 5.2. The

second-to-last column indicates the units of each parameter. The last column shows the complete

description of each parameter.
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Table 11: Description of parameters of Table 5

.

Header Units Description
Sample The number of sample displayed in the Figure 3
Type The type of instance. V1, V2, V3 corresponds to

the group FLPBS_V and H1, H2, H3 to the group
FLPBS_H

Constraints Budget millions of MX
pesos The value used in the RHS of constraint (7)

TTD thousands of km The value used in the RHS of constraint (8)

Results

Facilities New
number of units

The total number of new facilities
Upd. The total number of updated facilities

Cost
Tot.

millions of pesos
The total cost of installing or updating facilities

New The cost associated to install new facilities
Upd. The cost associated to update existing facilities

TTD thousands of km The total travel distance of demand points to
facilities for the main service

MTD meters The mean travel distance in the solution
<1km The percentage of demand that travels less than 1

km to their facility
Main service % of

Demand
<5km % of population The percentage of demand that travels less than 5

km to their facility
<10km The percentage of demand that travels less than 10

km to their facility
Utilization Mean The mean utilization rate of the facilities

rate SD % of population The standard deviation of the utilization rate of
facilities

Complementary
services

Mean cov. % of population The mean percentage of demand covered by the
complementary services

% of coverage (CS1–CS5) % of population The percentage of demand covered by each comple-
mentary service
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