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Abstract

In this paper, the problem of locating and upgrading primary healthcare units within a multi-

institutional public system is addressed. The problem is motivated by a real-world application in the

Mexican Healthcare System. Decisions also involve allocating customer demand to those facilities

with the goal of minimizing the total travel distance in a capacitated facility location problem.

The capacity is measured in units named basic kernels composed by a group of medical staff for

outpatient services. A mixed-integer linear programming model is proposed. A computational

study based on a case study in the State of Mexico is carried out. Test instances are successfully

solved by branch and bound. The distribution of patient-to-healthcare unit distances and the

variation of the capacity utilization rate of health care units are analyzed. Among the results, we

found that balancing the utilization rates between healthcare units has a negative impact on the

total travel distance. The capacity of a kernel can be modified to balance the utilization rates

or when the demand is greater than the capacity in the system. The results presented in this

paper open the opportunity of using OR tools in the planning of healthcare resources in developing

countries to face the challenges of the next decade in health matters.
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1 Introduction

The planning of public resources implies analyzing a considerable quantity of information to make

the best decisions for the community. In developing countries, some decisions are not optimized

because the decision-makers do not have access to technology, data and adequate tools for this

purpose. In this sense, this paper tries to show the application of Operation Research (OR) tools

to improve the access and quality of the public primary healthcare services through the planning

of resources.

In Mexico, for instance, according to INEGI, the Mexican Institute of Statistics, Geography,

and Informatics, the three main causes of death in 2015 were ischemic heart disease, chronic kidney

disease, and diabetes mellitus [18]. These problems could be controlled or avoided by prompt

preventive healthcare attention. The lack of access and the deficient quality attention prevent the

population from check-up or follow-up their health. High quality in the provision of healthcare

services can help the government tackle some of these problems [45].

The State of Mexico was the most populated in Mexico with more than 15 million inhabitants,

being 1.7 times more inhabited than the second place in 2010 [17], and this trend continues in 2015

[18]. This state has two types of contrasting regions. One of them is the urban area nearest to

Mexico City with a high population density presenting remarkably high rates of poverty with regular

access to healthcare services but with a current overload of demand due to the high population

density. On the other hand, the rural areas present elevated levels of poverty but with separate

healthcare units (HCUs) with low rates of demand.

In Mexico, the healthcare system is composed of many institutions that supply services to

different segments of the population. The three main public institutions are the Ministry of Health,

the Mexican Social Security Institute (IMSS, from Instituto Mexicano de Seguro Social), and the

Institute of Security and Social Services for State Workers (ISSSTE, from Instituto de Seguridad

Social para los Trabajadores del Estado). In Figure 1, the institutions that offer healthcare services

in the State of Mexico are shown. The Institute of Health for Well-being (INSABI, from Instituto

de Salud para el Bienestar) is an institution created this year (2020) to provide the services for

people without insurance in all the country. This institution uses the resources of the Institute

of Health in the State of Mexico (ISEM, from Instituto de Salud del Estado de México) and the

IMSS-Bienestar (the institution that belongs to IMSS created to attend extreme poverty regions).

The ISEM, in collaboration with INSABI, controls the resources about 75% of all public HCUs

in the State of Mexico. Formerly, each inhabitant was assigned to a unique HCU with “public

insurance” (currently extinct). The assignment was based on the proximity between the localities

and the location of HCUs. This allocation is named as “regionalization” because this term has

been used by healthcare institutions when referring to this type of issue [16], and it is likely that
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Figure 1: The composition of the healthcare system in the State of Mexico.

regionalization continues being used in the following years. Other institutions such as the IMSS,

the ISSSTE, and ISSEMyM have fewer HCUs concentrated in urban areas of some municipalities.

Therefore, insured people have fewer problems finding which clinic they are affiliated to.

We summarized some detected problems of the current regionalization of primary healthcare

services of the ISEM in recent years.

• The capacity and the allocated demand are not well balanced in some HCUs. In some cases,

HCUs are crowded while others are empty.

• The allocation is restricted to municipal limits, even though, this local entity does not provide

the services. Removing those limitations will increase the options to the population since the

nearest HCU is not necessarily in the same municipality in some cases.

• There is no evident collaboration between institutions to improve the coverage of primary

healthcare services.

The regionalization must consider the closeness with localities and the capacity, eliminating the

municipality limits. Although the population is not compelled to follow the regionalization, it has

benefits for them and the institutions because they have a medical history, and the institutions can

have better planning of resources.

In the ISEM, the capacity of the primary HCUs is defined by the number of “kernels”. A kernel

is compound by a doctor, two nurses, and one technical staff, but this could change depending on

the disposition of the human resources in the region. Sometimes a medical intern or only one nurse

are assigned to HCUs. The management of services and staff in the ISEM is conformed by sanitary

jurisdictions, each of them is integrated by several municipalities.
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One of the contributions of this in this paper is the integration of the other public healthcare

institutions, to consider multiples municipalities into the analysis (e.g., by jurisdictions), the stan-

dardization of capacity through the use of the kernel as basic unit for all institutions, and the

evaluation of additional capacity or location of new HCU.

To this purpose, an integer programming model to define the regionalization of primary health-

care services applied to Mexico Healthcare System is presented. This problem considers the mini-

mization of the total distance traveled (TDT) by the population, with the objective of improving

access to healthcare. The usage of the capacity of HCUs is constrained to balance the workload.

To illustrate the usefulness of the proposed model, a case study taken from the State of Mexico,

one of the most complicated states of Mexico due to the variety of characteristics of the population

and geographical regions, is presented.

Table 1: The population characteristics in the State of Mexico by jurisdictions.

Jurisdiction Mun. Area Population Localities Density Extreme Lack of HC Lack of HC
(km2) (1 000 inh.) (inh/km2) Poverty (%) Services(%) Insurance (%)

Group 1 95 18,639 5,987 4,422 321 53.8 32.3 44.05
Ixtlahuaca 6 1,982 551 499 278 8 1.5 4.76
Jilotepec 7 2,065 255 306 124 2.4 0.6 2.05
Tejupilco 6 3,476 205 894 59 3.9 0.3 1.61
Valle de Bravo 9 2,003 306 430 153 5.2 0.8 2.67
Atlacomulco 4 1,233 268 281 217 3.5 0.9 2.17
Tenancingo 12 2,778 408 568 147 5 1.3 3.5
Tenango del Valle 13 803 392 220 488 2.6 2.2 3.02
Teotihuacán 7 908 347 231 382 2.1 1.9 2.72
Xonacatlán 7 888 796 296 896 4.3 3.6 5.06
Amecameca 14 1,504 1,498 455 996 12.9 12.5 10.91
Zumpango 9 999 961 242 962 3.8 6.8 5.57

Group 2 31 3,747 10,200 840 2,722 46.2 67.7 55.95
Atizapán 3 403 945 70 2,348 2.9 6.1 4.83
Cuautitlán 8 540 1,611 137 2,982 5 10.6 7.28
Ecatepec 2 195 1,962 9 10,048 8.4 15.2 10.37
Naucalpan 2 276 863 79 3,124 3 5.4 4.17
Nezahualcóyotl 2 100 1,334 25 13,323 5.8 9.3 7.83
Texcoco 9 842 1,318 209 1,566 10.3 10.5 9.96
Tlalnepantla 1 77 701 5 9,080 2 3.9 3.1
Toluca 4 1,314 1,467 306 1,116 8.8 6.6 8.41

Total 125 22,388 16,188 5,262 723 100 100 100

Sources:[17; 18], CONEVAL:https://www.coneval.org.mx

In Table 1, all the characteristics of the population in the State of Mexico, segmented by

jurisdictions, are presented. The number of municipalities, the territorial surface, the number of

inhabitants, the number of localities, and the population density by sanitary jurisdictions are shown

in columns 2 to 5. Some indicators obtained from CONEVAL (https://www.coneval.org.mx/ ) are

shown in the last three columns: the percentage of the population that lives in extreme poverty, the

percentage of the population with lack of healthcare services, and the percentage of the population

with lack of healthcare insurance. The jurisdictions are divided into two groups. Group 1 represents
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the rural regions with lower population density compared with the ones of group 2. The case study

is based on data from group 1 since it represents 75% of municipalities and 85% of the land area,

with 53% of people that live in extreme poverty. For group 2, detailed data is not available to

apply the model yet, but this work is also extendable to this type of region.

The remainder of the paper is organized as follows. A discussion of relevant literature is given in

Section 2. Section 3 describes the problem and presents the proposed integer programming model.

The application of the model in a case study in the State of Mexico is presented in Section 4. This

includes a sensitivity analysis on several key parameters, such as HCU capacity. Finally, concluding

remarks and future research directions are shown in Section 5.

2 Literature Review

Facility location models have been widely used for addressing location decisions in many areas such

as logistics, supply chain management, operation management, emergency services, public services,

and healthcare planning, for naming a few. Excellent surveys on facility location are presented by

ReVelle and Eiselt [35]; Klose and Drexl [20]; ReVelle et al. [36]; Farahani and Hekmatfar [9]; Melo

et al. [23]. In terms of healthcare facility location models, a survey in the context of the public sector

is presented by Daskin and Murray [7], and a more recent survey is presented in Ahmadi-Javid

et al. [2]. In particular, this last review of primary healthcare facilities is revisited and extended in

Appendix A.

We focus our discussion on some relevant contributions in the field of facility location in health-

care that have been recently studied. In Shariff et al. [38], a maximal covering location problem with

limited capacity was proposed to study the healthcare facilities of one of the districts in Malaysia.

Given the intractability of the integer programming model, the authors developed a genetic algo-

rithm that was able to solve an instance of 809 nodes. In Syam and Côté [43] was proposed an

integer programming model to locate specialized healthcare services for US veterans in a network

of facilities, minimizing the total cost of service incorporating retention rates based on the distance

traveled, and multiple levels of patient acuity that are used to define targets. Another model ap-

plied to locate a specialized service (sleep apnea service) for veterans was proposed by Benneyan

et al. [4]. A multi-period model was proposed minimizing the total installation and operation costs

of the service, considering the number of sleep beds required in each facility each period.

In Kim and Kim [19], a healthcare facility location problem with two types of patients (low-

income and high-income) and two types of facilities (public and private) was proposed. The ob-

jective was to maximize the number of patients allocated to the healthcare facilities constrained

to a budget for the establishment of new public facilities. The problem was applied in Korea

using a heuristic algorithm based on Lagrangian relaxation and subgradient optimization. Two
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mixed-integer linear programming models were developed by Mestre et al. [27]. The first model

considers location as the first-stage decision and the second considers location, and allocation as

the first-stage decision. Uncertainty was associated with demand. The authors presented a case

study based on the Portuguese National Health Service.

In Zhang et al. [46], a multi-objective location-allocation model for healthcare facilities was

applied in a case study in Hong Kong. The objectives were to maximize the accessibility of the

population, to minimize the inequity of accessibility, to minimize the uncovered population, and to

minimize the cost of building new healthcare facilities. This multi-objective problem was addressed

by employing a genetic algorithm. The capacity level was a decision variable, just as we do in this

paper. In Taymaz et al. [44], a stochastic healthcare facility location problem for mobile workers

that incorporates multiple diseases and multiple services was proposed. A risk-averse approach

was integrated into the decision making process associated with the lack of coverage based on the

location of clinics.

Previous works that dealt with location-allocation of resources in public healthcare with inter-

institutional collaboration were presented by Mendoza-Gómez et al. [25]; Mendoza-Gómez et al.

[24]. Those works focused on the planning of specialized healthcare services in a network of public

hospitals in Mexico. The authors presented an integer programming model and develop a meta-

heuristic based on the iterated greedy algorithm with a variable neighborhood search.

We provide an integer programming model for finding an optimal solution to a real-world plan-

ning problem that currently faces a tremendous challenge due to the actual conditions of healthcare

in Mexico. The proposed model incorporates novel features, such as the multiple institution scheme

in the public sector and the use of a basic unit to measure the capacity of the facilities. These

are particular characteristics of the Mexican Healthcare System that are included. We present

a case study in Mexico as a new open resource for the application of facility healthcare location

theory. This tool for decision-makers can be straightforwardly implemented with available data

and off-the-shelve integer programming solvers.

3 Problem Description

The problem is the allocation of demand to HCUs of multiple institutions and the location of

additional capacity to minimize the total distance traveled by people from the demand points to

the location of the HCUs. In this scheme, institutions have their demand and their HCUs, but the

capacity can be shared among them to enlarge the global capacity of the system. The capacity of

an HCU is determined by its number of kernels. This basic unit of capacity determines the amount

of the population that can be covered by a medical work team (doctor, nurses, and technicians).
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3.1 Formulation

This problem was formulated as a capacitated location problem with additional side constraints to

account for the particular requirements of the problem. The notation, parameters, and variables

used in the problem formulation are the following:

Indices and sets:

i ∈ N Set of demand locations.

j ∈M Set of locations for HCUs (actual and potential locations).

k, l ∈ K Set of institutions.

Parameters:

C Maximum number of people covered by a kernel.

dij Distance from location i to location j.

wk
i Demand in location i for institution k.

Al
j The number of current kernels in the HCU of institution l located in j. A

value of Al
j equal to zero indicates there is no current HCU at that place,

and therefore, it is a potential site for installing a HCU.

F l
j Maximum number of kernels that can be installed in location j for a HCU

of institution l.

Gl Minimum percentage of capacity to be allocated in each HCU of institution

l.

P l Maximum percentage of capacity in a HCU of institution l that can be shared

to the demand of other institutions.

H l Maximum number of additional kernels of institution l that can be installed.

Decision variables:

xklij Fraction of demand at location i from institution k allocated in a HCU of

institution l located at j.

ylj Integer variable equal to the number of additional kernels to be opened in a

HCU located in j of institution l.

The model is then given by:

Minimize f(x, y) =
∑
i∈N

∑
j∈M

∑
k,l∈K

wk
i dijx

kl
ij (1)

subject to:
∑
j∈M

∑
l∈K

xklij = 1 i ∈ N, k ∈ K (2)

∑
i∈N

∑
k∈K

wk
i x

kl
ij ≤ (Al

j + ylj)C j ∈M, l ∈ K (3)
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∑
i∈N

∑
k∈K

wk
i x

kl
ij ≥ (Al

j + ylj)G
l j ∈M, l ∈ K (4)

∑
i∈N

∑
k∈K:k 6=l

wk
i x

kl
ij ≤ P l(Al

j + ylj)C j ∈M, l ∈ K (5)

Al
j + ylj ≤ F l

j j ∈M, l ∈ K (6)∑
j∈M

ylj ≤ H l l ∈ K (7)

xklij ≥ 0 i ∈ N, j ∈M, k, l ∈ K (8)

ylj ∈ Z+ j ∈M, l ∈ K (9)

The objective function (1) minimizes the sum of all demand allocated to each healthcare unit

multiplied by its distance. Constraints (2) ensure that all demand of each location is allocated.

Constraints (3)-(7) are used to define and to control the allocation of capacity. In constraints (3),

the sum of demand allocated to each HCU must be equal or lower than its maximum capacity that

is determined by its number of kernels (Al
j + ylj). Constraints (4) ensure a minimum percentage of

allocated demand for each HCU based on its available capacity. Constraints (5) are used to control

the percentage of demand of other institutions allocated to a HCU, this percentage is defined by

each institution. The maximum number of kernels of a HCU is limited by constraints (6). The

total number of new kernels to be opened by institutions is fixed in constraints (7). Finally, the

nature of the decision variables is given by (8)-(9).

This problem is NP-hard. This can be argued as follows. First, feasibility can be clearly

checked in polynomial time as there are a polynomial number of variables and constraints. Thus

the problem is in NP. Then, if we take a special case of our problem by setting Al
j = 0 and F l

j = 1

for all j ∈M, l ∈ K; and Gl = 0 and P l = 1 for all l ∈ K; assuming that the fixed costs of opening

candidate facilities are zero, we are left with a Capacitated Plan Location Problem (CPLP), which

is known to be NP-hard [28]. That is, CPLP is polynomially reducible to our problem, and hence

it follows that our problem is NP-hard.

3.2 Assumptions

Some assumptions of the model are discussed next. Note that xklij are continuous variables because

some localities in a real scenario have more demand than capacity. Therefore, the demand may

be allocated to more than one HCU. To consider the use of binary variables for the allocation is

required that INEGI divides these localities into smaller basic geographic areas with lower demand

than the current ones.

The idea of integrating all public healthcare institutions has been proposed by the government
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of many countries, and some initiatives have been carried out in isolation. Since each institution

attends a different segment of the population, it is challenging to integrate the population into a

single institution. Nevertheless, collaboration is possible when there is enough capacity to provide

a service. In the introduced model, the capacity of each HCU can be shared to satisfy the demand

of other institutions. This level of sharing is determined by each institution.

It is assumed that only one HCU can be installed in each location. In most of the cases, this

assumption is valid, but in some places with high population density such as cities, more than one

facility could exist. However, we can consider them as in single variable, adding up their capacities

in the model.

This model does not allow to reduce the actual capacity of HCU. This assumption could help

to redistribute capacity among HCUs, but the cost in a real situation would be impractical.

For instance, with a large quantity of idle capacity, a solution could suggest that some existing

HCU might not be used. These solutions are not realistic in real situations because this would imply

to close or transfer existing capacity and resources to another place with considerable additional

costs. Therefore, constraints (4) are required to guarantee a minimum level of service for all HCUs.

4 A Case Study in the State of Mexico

In this section, we analyze a case study in the State of Mexico. To this purpose, real-world

data taken from Mexican databases are used. The size of instances is defined by the sanitary

jurisdictions that are the territorial sections in which the management of resources is regulated by

the public healthcare institutions. These jurisdictions are integrated by a number of municipalities.

We proposed the regionalization of HCUs by jurisdictions instead of municipalities to have more

alternatives in the allocation of demand. The jurisdictions are separated into two groups, as shown

in Table 1 and discussed in Section 1. The distribution of locations and current HCU of the foremost

healthcare institution in 2019 is shown in Figure 2. We analyzed the allocation of 4,422 localities

out of a total of 5,262, which is 84% of total localities in the state.

Some additional assumptions are required to apply the integer programming model to the

available data. They are listed below:

• The centroid point of each locality was used to evaluate distance; this was obtained from

INEGI [17].

• It is assumed that HCUs are located at the centroid point of each location.

• Distance between locations is computed using Euclidean distance between centroids.

• Demand is estimated based on INEGI [17], with projection to 2019 according to CONEVAL

8



Figure 2: A map of the State of Mexico showing the demand areas and HCU locations.

• Demand of each institution is evenly distributed among localities according to the global

percentage of affiliated demand of each institution by municipalities, obtained from INEGI

[18].

• Additional kernels are considered for instances with over-demand, according to the demand

not covered by each institution.

• For rural locations, the maximum number of kernels was fixed to 3, and for urban locations

were fixed to 12, according to Secretaŕıa de Salud [37]. The HCUs which already had capacity

exceeding these limits maintained their current values of kernels.

• Rural locations with low demand rates are not considered as candidates for installing a new

HCU.

• Constraints (4) and (5) are not considered in this assessment, but a sensitivity analysis is

conducted for each set of them.

In Table 2, the capacity (Cap) and demand (Dem) in thousands of inhabitants for each institu-

tion and jurisdiction are shown. This information is used as input in the forthcoming experiments.

Since ISEM and IMSS-Bienestar attend the same segment of the population, there is a single column

for the demand for both of them. They were considered as a unique institution in the experiments.

IMSS, ISSSTE, and ISSEMyM have their demand. In the last three columns, the sum of capacity
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and total demand, and the difference of capacity minus demand for each jurisdiction, are displayed.

Each jurisdiction (row) is associated with a problem instance. As we can see, there are two types of

instances. Type 1 instances (1 to 6) present excess of capacity. Type 2 instances (7 to 11) present

a deficit of capacity. These types are handled differently as the needs are different, as it will be

shown in the following experiments.

Table 2: Capacity and demand (in thousands of inhabitants) for institutions in each jurisdiction.

Instances ISEM IMSS-B IMSS ISSSTE ISSEMyM Total
Type # Jurisdiction Cap Cap Dem Cap Dem Cap Dem Cap Dem Cap Dem Diff

1

1 Ixtlahuaca 690 24 519 27 30 12 6 36 11 789 566 223
2 Jilotepec 366 3 237 30 18 18 5 45 5 462 265 197
3 Tejupilco 285 9 198 9 3 18 3 78 9 399 213 186
4 Valle de Bravo 336 39 297 33 11 6 3 45 3 459 314 145
5 Atlacomulco 336 15 240 21 16 12 7 15 14 399 277 122
6 Tenancingo 378 15 386 27 12 12 6 96 18 528 422 106

2

7 Tenango del Valle 294 0 305 45 70 6 11 33 18 378 404 -26
8 Teotihuacán 216 0 276 15 68 21 18 18 5 270 367 -97
9 Xonacatlán 459 0 532 117 190 18 20 54 19 648 761 -113

10 Amecameca 627 24 1,098 402 355 36 77 105 21 1,194 1,551 -357
11 Zumpango 267 0 540 72 352 12 58 9 19 360 969 -609

Total 4,254 129 4,629 798 1,126 171 214 534 142 5,886 6,109 -223

4.1 Experimental Design

In the following paragraphs, the classifications of instances, how to interpret the solutions, and the

scenarios tested in the instances are described.

Types of instances. The number of additional kernels can be estimated from the last column

of Table 2. For instances 1 to 6, the problem consists in only allocating the current capacity since

not additional capacity is required. This type of instances is named as instance type 1. Instances 7

to 11 require additional capacity to cover all demand. The solution to the problem will determine

where to install additional capacity while the total distance traveled (TDT) of allocated demand

points is minimized. This type of instances is referred as type 2.

Analysis of solutions. Two aspects are considered: (1) the distance between population and

HCUs, and (2) the utilization rate of HCU. We define the utilization rate (UR) as the percentage of

demand regarding to the capacity of each HCU. To evaluate the distance, the TDT, and distribution

of the population by ranges of distance will be presented. To evaluate the UR, the mean, the

standard deviation, and the distribution of UR between HCUs will be presented. In a high-quality

solution, the distance from demand points to HCUs must be low-rate to improve access to healthcare

services, and the UR must be at the same level in all HCUs to balance the workload of the HCUs.

Type of scenarios. Scenario 1: the capacity of a kernel is fixed to 3,000 people, as defined

by the Health Ministry of Mexico. For instances 7-11, the number of additional kernels is fixed

according to the missing demand of each institution. Scenario 2: the capacity of a kernel is
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determined by dividing the total demand among the available number of kernels with a small

tolerance. The differences in data applied to each scenario are shown in Table 3. Scenario 1

provides the natural solution of the problem, while Scenario 2 presents a sensitivity analysis when

the capacity of the kernels is modified.

Table 3: Differences of data between Scenario 1 and 2.

Instances

Scenario Parameters
Type 1 Type 2

1 2 3 4 5 6 7 8 9 10 11

1

Kernel Capacity (C) 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000
H1 0 0 0 0 0 0 4 18 19 109 92
H2 0 0 0 0 0 0 7 16 19 0 93
H3 0 0 0 0 0 0 0 0 0 0 3
H4 0 0 0 0 0 0 2 0 1 10 15

2
Kernel Capacity (C) 2,200 1,800 1,700 2,100 2,100 2,500 3,300 4,100 3,600 3,900 8,100
H1, H2, H3, H4 0 0 0 0 0 0 0 0 0 0 0

The instances are solved by using the branch-and-bound algorithm from the CPLEX callable

library, version 12.8, with a C++ API. All instances were optimally solved in less than one hour

of CPU time.

4.2 Analysis of Scenario 1

The capacity of all instances is fixed to 3,000 inhabitants by each basic kernel. The results of the

solutions associated with the travel distance of demand are shown in Table 4, and the outcomes

relate to the utilization rates of HCUs are shown in Table 5.

The first three columns of Table 4 indicate the distance range (km), and the following 11 columns

indicate the percentage of demand that travels a distance in each range from their demand points

to their HCUs for each instance. For example, for instance 1, 60.6% of demand travel between 0.0

and less than 0.5 km of distance to access their HCUs, 4.9% of demand has to travel between 0.5

and less than 1.0 km, and so on. The classification of the 11 instances by their type of instance is

in the second row, and the third row shows the kernel capacity to compare solutions of Scenario 2.

The worst-case rows (WC) indicate the largest distance from a demand point to its HCU, with its

corresponding demand proportion shown in the following row. The last row indicates the objective

function value (TDT) for each instance. Table 6 has the same interpretation, but for Scenario 2.

As can be seen from the table, the allocated distance for the majority of demand points is very

reasonable. 62% of the population on average is within 500 meters to their HCUs, and 94% of the

population on average is located within 5 km from its assigned HCUs. The amount of people that

travel more than 10 kilometers is lower than 0.2% of the total demand in all instances except for

instances 6 and 8 with 2.6% and 1.4% of demand, respectively.

The results related to the utilization rates (URs) are presented in Table 5. The kernel capacity,

used as a parameter in this experiment, is shown in the header (fourth row). Each row represents
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Table 4: Scenario 1. Distance distribution as percentages of demand.

Instances
Type 1 Type 2

1 2 3 4 5 6 7 8 9 10 11
Kernel Capacity 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000

D
is
ta
n
ce

(k
m
) From: to: (<) Percentage of Demand (%)

0 0.5 60.6 56.9 44.5 49.1 67.0 48.2 72.1 66.6 61.8 81.7 73.6
0.5 1 4.9 1.6 2.7 5.0 3.9 4.6 6.1 0.3 3.6 1.4 3.0
1 3 26.9 24.8 27.1 32.2 21.6 19.3 13.0 17.0 13.5 6.3 11.8
3 5 5.2 12.4 19.0 10.3 7.3 12.2 6.7 8.0 6.5 5.1 9.7
5 10 2.4 4.3 6.6 3.4 0.2 13.0 2.0 6.8 14.4 5.3 1.8

10 - 0.00 0.05 0.09 0.00 0.00 2.56 0.06 1.37 0.19 0.20 0.19

WC
Distance (km) 8.8 10.1 11.4 8.3 6.0 16.6 13.5 17.6 10.5 18.9 10.2
Demand (%) 0.038 0.046 0.004 0.067 0.040 0.355 0.002 0.152 0.191 0.008 0.097
TDT (×108) 4.7 3.3 3.7 3.9 1.9 8.9 2.8 4.8 12.0 10.3 7.9

a specific UR range. For example, for instance 1, there are 3 HCUs with an UR between 0 and

10%, and there are 74 HCUs in the range between 90% and 100% of UR. The number of total

HCUs is 153. The average UR for instance 1 is 76%, with a standard deviation of 0.279. For

instances type 2, new HCUs are opened, in the Number of HCUs row the initial HCU is presented

in parenthesis. As can bee seen, for type 1 instances, we found more dispersion in the utilization

rates of the HCUs than the ones found in type 2 instances. This is due to the slack in the use of

capacity as it is observed in the last column of Table 2 for type 1 instances. Since the capacity of

the type 2 instances is just the required to meet all demand, there is no space for under-utilization

of capacity. We can conclude that the variation of the UR depends on the amount of idle capacity

in the system.

Table 5: Scenario 1. Utilization rate distribution of HCUs.

Instances
Type 1 Type 2

1 2 3 4 5 6 7 8 9 10 11
Kernel Capacity 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000
From: to: (<) Number of facilities

R
a
n
g
es

o
f
U
R

0 10% 3 4 5 4 3 2 0 0 0 0 1
10% 20% 4 4 4 0 4 0 0 0 0 0 0
20% 30% 7 2 6 0 2 9 0 0 0 0 0
30% 40% 7 7 10 0 4 5 1 1 0 1 0
40% 50% 10 11 13 0 7 8 0 0 1 0 0
50% 60% 12 12 13 0 10 4 1 0 0 0 0
60% 70% 10 5 8 0 11 5 0 0 1 0 0
70% 80% 8 7 9 0 8 5 1 1 0 0 0
80% 90% 18 6 4 0 9 2 2 1 1 0 1
90% 100% 74 25 14 222 28 73 55 44 84 81 105

Number of HCUs 153 83 86 226 86 113 60 (48) 47 (42) 87 (69) 82 (40) 107 (41)
Average UR (%) 76 64 56 67 69 81 97 98 99 99 99

Standard Deviation 0.279 0.294 0.282 0.31 0.277 0.286 0.111 0.101 0.072 0.068 0.011
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4.3 Analysis of Scenario 2

For Scenario 2, the results of the allocated distance are presented in Table 6, and the result for

the utilization rates are shown in Table 7. The objective is to compare the characteristics of the

solutions regarding Scenario 1. The capacity of a kernel is shown in the header of both tables.

The capacity of a kernel is reduced for type 1 instances, and the capacity is increased for type 2

instances.

For type 1 instances, the utilization rates are more balanced than the results of Scenario 1.

However, the TDT is increased to double the original value in almost all cases. For this type of

instance, we conclude that variation of the UR can be adjusted, modifying the kernel capacity to

balance the workload of the HCUs but with a negative impact in the TDT. For type 2 instances,

the UR values are quite similar in both scenarios, since in both cases, the total capacity is very

close to the total demand to cover. However, additional kernels are used in Scenario 1 to cover all

unmet demand, while the kernel capacity is increased in Scenario 2 to cover the same demand with

fewer HCUs. Therefore, with fewer options of HCUs under Scenario 2, the TDT is also increased

compared to Scenario 1, and most of the HCUs have over-demand since the recommended value

must be 3,000 inhabitants by kernel unit.

The distance of traveling is increased in Scenario 2 compared with the results of Scenario 1.

For example, the percentage of people that is located between 0 to 5 kilometers to their HCUs

decreases on average from 94% in Scenario 1 to 79% in Scenario 2. The percentage of people that

travel more than 10 kilometers increases from 0.42% to 9.9%. For type 1 instances, the distance of

traveling is increased because there is less slack in the allocation of demand points to HCUs due to

the reduction of the kernel capacity. For type 2 instance, the same occurred due to there are fewer

HCUs for the allocation of demand.

In conclusion, if there is enough budget to open new kernels to cover all demand, the kernel

capacity can be increased in the model to allocate all demand points, but HCUs will have an

overload of patients. On the other hand, if the current capacity is enough to cover all demand, the

addition of new kernels will reduce the TDT in the system.

4.4 Relationship between distance and utilization rate

There is a relationship between the TDT of demand and the utilization rates of the HCUs. To get

insight into this effect, we solve the problem with different values for the capacity of a kernel for

instances 1, 2, 4, 5, and 6.

The results are presented in Figure 3. The TDT is the optimal value of the objective function

of each instance. All values are normalized, assuming 1 for the lowest TDT, and the other values

are considered as a factor of this. Augmenting the capacity of a kernel increases the capacity of the
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Table 6: Scenario 2. Distance distribution as percentages of demand.

Instances
Type 1 Type 2

1 2 3 4 5 6 7 8 9 10 11
Kernel Capacity 2,200 1,800 1,700 2,100 2,100 2,500 3,300 4,100 3,600 3,900 8,100

D
is
ta
n
ce

(k
m
) From: to: (<) Percentage of Demand (%)

0 0.5 55.6 51.6 43.8 48.1 62.2 47.3 67.7 59.7 50.9 81.1 53.8
0.5 1 4.0 1.1 2.6 2.7 2.0 3.4 6.4 0.3 2.2 0.5 0.7
1 3 22.0 16.7 18.3 20.0 12.8 11.5 11.1 1.5 10.3 1.5 4.2
3 5 9.3 11.3 16.1 11.2 8.9 8.9 5.6 3.7 6.7 0.7 9.0
5 10 8.9 9.0 12.7 12.5 8.8 13.1 6.4 10.5 22.2 11.1 6.2

10 - 0.2 10.3 6.5 5.5 5.2 15.7 2.8 24.4 7.7 5.0 26.0

WC
Distance (km) 13 35 20.8 20.8 19.7 27.6 13.5 30.1 29.7 28.1 30.9
Demand (%) 0.04 0.05 0.50 0.15 0.01 0.11 0.002 0.51 0.003 0.17 0.03
TDT (×108) 7.9 8.8 6.1 7.8 5.3 15.9 5.4 17.5 29.4 25.0 49.4

Table 7: Scenario 2. Utilization rate distribution of HCUs.

Instances
Type 1 Type 2

1 2 3 4 5 6 7 8 9 10 11
Kernel Capacity 2,200 1,800 1,700 2,100 2,100 2,500 3,300 4,100 3,600 3,900 8,100
From: to: (<) Number of facilities

R
a
n
g
es

o
f
U
R

0 10% 0 0 1 0 0 0 0 0 0 0 0
10% 20% 1 0 0 0 0 0 0 0 0 0 0
20% 30% 1 0 0 0 0 2 0 0 0 0 0
30% 40% 0 0 0 2 0 3 0 0 1 0 0
40% 50% 0 0 1 0 0 3 0 0 1 0 0
50% 60% 0 2 3 0 0 2 1 1 3 1 0
60% 70% 1 5 1 1 1 0 1 0 0 0 0
70% 80% 1 1 4 2 0 2 1 0 1 0 0
80% 90% 2 3 5 0 0 1 2 0 0 0 1
90% 100% 138 72 71 85 85 100 43 44 69 61 40

Number of HCUs 144 83 86 90 86 113 48 45 75 62 41
Average UR (%) 98 96 94 98 100 94 97 99 96 99 99

Standard Deviation 0.101 0.109 0.154 0.103 0.036 0.176 0.092 0.073 0.128 0.051 0.028

system. Therefore, the TDT can be reduced as it is shown in the left-chart. Moreover, the slack

in the capacity of the system causes a high variation in the utilization rates as it was shown in the

right-chart.

For instances with slack in the capacity, the kernel capacity can be adjusted to control the

variation of utilization rates. If we reduce the tolerance in the allocating options, we can homogenize

the workload in HCUs, but this has an important cost in the TDT.

4.5 Sensitivity analysis for P l

A limit in the percentage of capacity shared with other institutions is used for institutions where

affiliated users pay a fee to get access to healthcare services. The institution primarily must ensure

the service coverage for their users, and only if there is slack in the capacity, this can be shared

with other institutions. If there is no excess capacity for institution l, the percentage of P l must

be zero. The effect in solutions for modifying this percentage is determined with an experiment

conducted for instances 1, 2, 4, 5, and 6. The P l was set to values between 0 and 1 for institutions

14



Figure 3: Comparison of total distance traveled and utilization rate.

2, 3, and 4 (institution 1 is open to all users).

The TDT and the standard deviation of the utilization rates are shown in Figure 4. In general,

the TDT was reduced when the value of P l was close to 1 because, in that case, constraints 5 are

omitted, and the solution space is more extensive. The impact in the TDT is entirely different

for each instance. For example, for instance 6 the increase of the TDT was almost 1.8 larger than

the best TDT, and for instance 5, the increment was only 1.006 as large than the best TDT. On

the other hand, the standard deviation of the utilization rates did not show a generalized pattern.

Therefore, we conclude that there is no direct relationship between P l and the variation of the

utilization rates.

4.6 Sensitivity analysis for Gl

This value is used to fix a lower bound in the utilization rates of all HCUs of institution l. When

capacity is near to demand, constraints (4) are not necessary. However, when capacity is consider-

ably larger than the demand, these constraints will help institutions to work at least at a minimum

rate in all HCUs. Different values of Gl are tested for all institutions to measure the effect in the

TDT and the standard deviation of utilization rates.

The results for instances 1, 2, 4, 5, and 6 are shown in Figure 5. As it can be seen, the TDT

has an explosive growth when the values of Gl are increased from 0 to 0.5, while a nonlinear decline

is observed in the standard deviation of the URs of the HCUs. The values of Gl must be carefully

set by decision-makers since, at some point, an unfeasible solution could be reached.
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Figure 4: Results for different values of P l.

5 Conclusions

In this paper, we have addressed a problem of locating and upgrading primary healthcare units

within a multi-institutional public system A novel integer programming model was introduced fro

providing a more efficient regionalization of the resources. The problem is motivated by a real-world

application in the Mexican Healthcare System.

This study can be used as an essential preventive strategy to deal with the main causes of

death and to improve the quality of people’s life that suffer chronic degenerative diseases. The

optimization of the total distance traveled by the population can help to improve access to the

services. In contrast, the assurance and proper distribution of the healthcare capacity can help

improve the quality of the service.

The proposed model incorporates an inter-institutional collaboration to share the capacity, and

the location of additional capacity to improve the coverage of primary healthcare services. The

standardization of capacity allows to integrate into the same planning scheme all the healthcare

institutions.

The case study in the State of Mexico allowed us to find interesting results. When capacity is

enough to meet demand, the allocated distance from locations to HCUs is very short. However, the

minisum objective could discriminate some locations with low demand rates. In the implementation

of this solution to a real scenario, these locations could be reallocated to a near HCU if the level

of demand does not represent a significant additional workload for HCUs. In other words, the

solutions to the integer programming model are only a guide for the planning more than a strict
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Figure 5: Results for the minimum values of utilization rate.

rule to follow.

The variation in utilization rates between HCUs was observed when the values of capacity and

demand were very distant from each other. In these cases, constraints (4) can be used to set a

minimum utilization rate at each HCU, and at the same time, the variation is reduced.

The modification of the kernel capacity can be used in two situations: (i) To reduce the variation

of the utilization rate of HCUs when capacity is larger than the demand, and (ii) to find a feasible

solution when demand is greater than capacity. The addition of capacity is an opportunity to

improve the TDT, but this depends on the available budget of each institution.

The potential use of this model can be extended country-wise, since the data required to apply

the model, it can be obtained by the population census and the reports of infrastructure resources

of each institution. The use of a distance matrix API could improve the precision of solutions

concerning a real application.

There are several avenues for future work. An important improvement in the solution can be

made if a more extensive set of municipalities is integrated into a single problem instance. In the

case of the State of Mexico, there are 5,262 locations, but some of them require a more specific

partition due to their high population density. Naturally, if the proposed model proves unsolvable

for such large instances, heuristic methods might be needed.

The model can also be extended by seeking the integration of multiple services at some HCU,

such as gynecology, pediatrics, and dental care. Alternative or additional objectives could be evalu-

ated such as the minimization of fixed and variable costs, or the maximization of coverage. Altough

the model arises from a real-world application in the Mexican Healthcare system, it certainly has
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features that may make it useful in developing countries.
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A Summary of Literature Survey on Healthcare Location

In this appendix, we present in Table 8 an extension of literature on healthcare location from the

computational perspective originally presented by Ahmadi-Javid et al. [2] for primary care facilities

(hospitals, clinics, off-site public access devices, etc.) We have added the works from lines 26 to 33.

The definition of each term shown in every cell is given in Table 9.
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Table 8: Survey on non-emergency healthcare facility location.

No. Reference UNC
Multi-
period

Model settings Objective Decision Constraints Location Modeling Solution Case

(year) function variables model approach method study

1 [5] (2000) N S P1, P12 O10 D1, D2
C1, C4, C9-1, C9-2,

C11
SCL

MILP, GP,
MCDM

SL Y

2 [21] (2001) N S P1, P3, P5-1, P5-2 O7 D1, D4 C4, C5, C10, C11 MCL ILP SC, H Y
3 [10] (2002) N S P1, P3, P8, P11, P12 O3 D1, D8 C1, C4, C9-1, C10 PML MILP SC, LR Y

4 [22] (2004) Y S
P1, P3, P5-1, P5-2, P8,

P12
O7 D1, D4 C4, C5, C10, C11 MCL ILP, O(QT) SC N

5 [42] (2004) N D-2 P3, P4, P5-2, P7, P12 O3, O4, O9, O10 D7, D8 C9-1 FCL MILP, MCDM MH-TS Y
6 [29] (2006) N S P1, P3, P4 O3, O5 D1, D4 C1, C4, C5, C8, C9-1 PML MILP, MCDM SX Y
7 [8] (2006) Y S P1, P3, P4 O10 D4, D8 C4, C9-1, C9-2, C11 O PSP, MINLP SO Y
8 [31] (2008) N D-1 P1, P5-1, P5-2 O4 D1, D4, D8 C1, C4, C9-2 FCL ILP SL Y
9 [13] (2008) N S P1, P4, P5-1, P5-2, P8 O7 D1, D4, D8 C5, C9-1, C10, C11 MCL MILP – Y

10 [34] (2009) N S P1, P3, P5-1, P5-2, P11 O9 D1, D4, D8 C4, C5, C10 MCL MILP SO Y
11 [40] (2009) N S P1, P3, P11, P12 O10 D1, D4 C4, C5, C11 O ILP SX Y

12 [26] (2012) N S
P1, P2, P4, P8, P11,

P12
O3

D1, D4, D7,
D8

C1, C5, C9-1, C9-2,
C11

PML MILP SG Y

13 [38] (2012) N S P1, P3, P4 O7 D1, D4 C1, C4, C5, C9-1 MCL ILP
SC,

MH-GA
Y

14 [15] (2012) N S P1, P3, P4, P7, P9 O3/O6/07 D1, D4, D7
C1, C4, C8, C9-1,

C9-C11
MCL ILP – Y

15 [6] (2012) N S P1, P3, P5-1, P5-2 O3 D1, D4, D8 C1, C10, C11 FCL MILP SC Y
16 [41] (2013) N S P1, P3, P8, P11, P12 O3, O10 D1, D4 C1, C4, C5, C11 PML ILP, MCDM SX Y

N N P1, P3, P8, P11, P12 O7, O10 D1, D4, D5-1 C4, C5, C11 MCL
MILP, GP,
MCDM

SX Y

17 [30] (2013) Y S P1, P3, P8, P12 O3, O10 D1, D4, D8 C1, C5, C9-2 PML
MILP, PSP,

MCDM
SX Y

18 [19] (2013) N S P1, P3, P5-1, P8, P12 O7 D1, D4 C5, C9-1, C10, C11 MCL ILP SC, LR Y

19 [11] (2013) N D-2 P1, P3, P5-1, P5-2, P12 O4 D1, D4, D8 C1, C10, C11 FCL MINLP
SC,

MH-SA, H
Y

20 [3] (2014) N S P1, P3, P5-1, P12 O3/04/O10 D1, D4, D8 C1, C4, C9-1, C9-2 PML MILP, MCDM MH-GA Y

21 [33] (2014) Y S P1, P2, P4, P5-1, P5-2 O4, O10 D1, D4 C1, C4 FCL
INLP, 2-SSP,

MCDM
SG, MH-O Y

22 [12] (2014) N S
P1, P3, P5-1, P5-2, P8,

P12
O3, O4, O10 D1, D4 C1, C5, C9-2 FCL MILP SC Y

23 [27] (2015) Y D-2
P1, P2, P5-1, P5-2,
P5-3, P8, P11,P12

O3, O4, O9 D1, D7, D8 C4, C5, C9-1, C9-2 FCL, MCL
MILP,

2-SSP,MCDM
SG Y

24 [39] (2015) Y S
P1, P3, P4, P5-1, P5-2,

P12
O4 D1, D4, D8 C4, C9-1, C10, C11 FCL MILP, RO SG Y

25 [32] (2016) N S P1, P2, P12 O10 D1, D8 C4, C11 O MILP O Y

26 [4](2012) N S/D-2
P1, P3, P4, P5-1, P5-2,

P5-3, P12
O4 D1, D4 C4, C5, C8, C9-1, C11 FCL ILP SL Y

27 [43](2012) Y S
P1, P3, P4, P5-1, P5-2,

P5-3, P12
O4 D1, D4, D7

C4, C5, C8, C9-1, C9-2,
C11

FCL ILP SC Y

28 [14](2016) N S P1, P3, P4, P8, P12 O1/ O3/ O7
D1, D4, D5-1,

D7
C1, C4, C5, C8, C9-1,

C11
PML/MCL ILP – Y

29 [46](2016) N S P1, P2/P3, P4, P5-1, O4, O9, O10 D1, D8 C9-1 O NLP MH-GA Y
30 [44] (2019) Y S P8, P12 O7 D1, D5-2, D8 C4, C11 MCL SP-O MH-GA Y

31 [25][24](2019) N D-2
P1, P4, P5-1, P5-2,
P5-3, P7, P8, P12

O4 D2, D4, D8 C9-1, C9-2, C11 FCL ILP SC N

32 [1](2020) Y S
P1, P3, P4, P5-1, P5-2,

P6, P8, P12
O4 D1, D2,D7 C5, C6, C9-1, C11 FCL INLP SC N

33 This paper N S P1, P2, P4, P7, P12 O3 D1, D4 C4, C8, C9-1 PML ILP SC Y

Sources: From No. 1 to 25 the reviews were obtained from Ahmadi-Javid et al. [2].
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Table 9: Definition of terms in Table 8.

Specific feature Code Description

(UNC) Consideration Y Considering uncertainties

of uncertainty N Not considering uncertainties

Multi-period setting S Static

D-1 Dynamic: Multi-period short-term decisions(e.g.,ambulance de-

ployment or shift resource allocation)

D-2 Dynamic: Multi-period long-term decisions(e.g., location)

Model settings P1 Demand

P2 Travel time

P3 Travel distance

P4 Facility capacity

P5-1 Fixed cost

P5-2 Variable cost

P5-3 Penalty for lost demand

P6 Waiting time

P7 Multiple servers :Considering several servers at each facility

P8 Multiple services/ Multi-type demand

P9 Elastic demand: Demand depends on distance, waiting time,

etc.

P10 Busy fraction: Probability of an ambulance being busy

P11 Hierarchical system

P12 Other items, e.g.,number of periods and different coefficients

Objective function O1 Minimize total number of facilities

O2 Minimize total number of ambulances

O3 Minimize total travel distance (or time)

O4 Minimize sum of costs

O5 Minimize maximum travel distance (or time)

O6 Maximize participation

O7 Maximize demand coverage

O8 Maximize multiple coverage

O9 Minimize number of uncovered demand

O10 Other objectives, e.g., maximize number of voluntary facilities,

minimize number of ambulance relocations, and minimize maxi-

mum transfer time between stations

Decision variable D1 Location of facilities

D2 Allocation of resources

D3 Deployment (location or relocation) of ambulances in stations

D4 Allocation of HCFs to demand points

D5-1 Demand coverage: Once
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Table 9: (continued)

D5-2 Demand coverage: More than once

D6 Dispatch (assignment) of ambulances to demand points

D7 Number of required resources

D8 Other items, e.g., demand flow and number of required facilities

C1 Full coverage

Constraints C2 Partial coverage

C3 Multiple coverage

C4 Maximum number of required facilities

C5 Maximum travel distance (or time)

C6 Ambulance reliability/service level (probabilistic coverage)

C7 Maximum number of ambulances at each station

C8 Maximum available resources

C9-1 Service capacity: Maximum capacity for demand response

C9-2 Service capacity: Minimum capacity for demand response

C10 Budget

C11 Other items: e.g., no-vacant and flow constraints

Basic location SCL Set covering location problem

problem MCL Maximal covering location problem

PCL p-center location problem

PML p-median location problem

FCL Fixed charge facility location problem

O Other items, e.g., p-dispersion, maxisum dispersion, MNSF loca-

tion problems

Modeling approach ILP Integer linear programming

INLP Integer nonlinear programming

MILP Mixed-integer linear programming

MINLP Mixed-integer nonlinear programming

GP Goal programming

NLP Nonlienar programming

FP Fuzzy programming

PSP Stochastic programming: Probabilistic (or chance-constraint)

programming

1-SSP Stochastic programming: Single-stage stochastic programming

2-SSP Stochastic programming: Two-stage stochastic programming

M-SSP Stochastic programming: Multi-stage stochastic programming

SP-O Stochastic programming: Other

DP Dynamic programming

SDP Stochastic dynamic programming

RO Robust optimization
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Table 9: (continued)

MLP Multi-level optimization

CP Constraint programming

MCDM Multi-criteria decision making

MPDM Multi-person decision making (Game Theory)

O Other items, such as queuing theory (QT), graph theory (GT),

and network theory (NT)

Solution Method SL General-purpose optimization software package: Lingo

SC General-purpose optimization software package: CPLEX

SX General-purpose optimization software package: Xpress

SG General-purpose optimization software package: GAMS

SO General-purpose optimization software package: Other

BB Branch and bound

BC Branch and cut

BP Branch and price

BCP Branch and cut and price

CP * Cutting plane

LR * Lagrangian relaxation

BD * Benders decomposition

DP * Dynamic programming

O * Other items, such as combinatorial and randomized algorithms

H ** Heuristic

MH-TS ** Metaheuristics (MH): Tabu Search

MH-GA ** MH: Genetic algorithm

MH-SA ** MH: Simulated Anneling

MH-AC ** MH: And Colony

MH-O ** MH: Other items

S-SBO ** Approximate stochastic optimization (S): Simulated-based

optimization

S-SA ** S: Stochastic approximation

S-SAA ** S: Sample average approximation

S-SO ** S: Scenario optimization

S-O ** S: Others

Case study Y With case study

inclusion N Without case study

* Class A: Accurate methods (exact or bounded-error methods)

** Class B: Inaccurate methods: methods without any error analyses
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