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Abstract 
The planning of primary healthcare infrastructure is essential for improving population access to healthcare services, 
especially in developing countries where access to healthcare is limited. In this work, we propose the use of a bi-
objective optimization model to support the decision-making process related to the strategic decisions of locating new 
Primary Healthcare Units (PHUs), upgrading the installed capacity in the PHUs network, and allocating demand points 
to PHUs. We present a case study based on the State of Guanajuato, Mexico; a federal entity with more than 6 million 
inhabitants in 2020, where more than 21% of the population lacks formal healthcare insurance and the other 35% is 
affiliated to a public healthcare institution. The problem addressed was solved for each of the state's eight regions, 
with instances between 650 and 1398 demand points, generating the Pareto set for five different budget scenarios. The 
problem minimizes the weighted total travel distance from demand points to PHUs for general medical consultation 
while maximizing the demand coverage for complementary services such as nutrition counseling, dental care, mental 
health, clinical analysis, and imaging. An augmented version of the 𝜖𝜖-constraint method is used to find the Pareto sets, 
and the Cplex solver is employed to solve all the generated instances. The model's usefulness is shown through its 
application in the case study. 
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1. Introduction 
According to the World Health Organization, universal access to high-quality medical services is fundamental for 
societal well-being [1]. In developing countries, healthcare disparities, marked by unequal resource distribution, 
limited geographical accessibility, and varying care quality, present challenges for a significant portion of the 
population without health insurance [2]. In Mexico, the Ministry of Health (SSA, by its acronym in Spanish) is crucial 
for healthcare, addressing public health issues by providing medical care through Primary Healthcare Units (PHUs) 
and hospitals [3]. However, Mexico's healthcare system is complex, reflecting factors, such as institutional divisions, 
limited funds, and the need to adapt to changing population needs. Optimizing resource planning is crucial to ensure 
medical care reaches those with the greatest need.  In this context, this paper is focused on Guanajuato, Mexico, where 
the National Institute of Statistics and Geography (INEGI, by its acronym in Spanish) reported in 2020 that around 
21% of the population (1.2 million) lacks formal health insurance [4]. This underscores the urgent need to address 
healthcare disparities. This work aims to tackle this challenge through an optimization model for locating new PHUs, 
considering service demand and capacity. A bi-objective mixed-integer linear programming model is proposed to 
enhance access to primary healthcare services by optimizing SSA's PHU investments. Services include basic medical 
consultations and complementary services, such as nutrition counseling, dental care, mental health, clinical analysis, 
and imaging. For the primary service, demand is allocated to capacitated PHUs to minimize travel distance. 
Complementary services aim to maximize demand coverage in specific PHUs, all this subject to a budget constraint. 
The problem is divided into eight regions in Guanajuato, and the Pareto set is obtained using the 𝜖𝜖-constraint method.  
Focusing on Mexican healthcare, [5] and [6] address the critical challenge of optimizing PHUs allocation and 
minimizing patient travel distances. [7] propose an undisclosed mathematical modeling approach to optimize existing 
Primary Healthcare Centers, aiding resource allocation and network performance improvement in the face of evolving 
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demographics and limited investments. [8] explore the efficient deployment of mobile units to enhance healthcare 
coverage, particularly in low-income areas. These studies provide valuable tools for optimizing healthcare facilities 
and resource allocation, with potential global applications. However, our contribution involves combining the 
Capacitated Facility Location Problem and the Maximal Covering Location Problem to address the localization of 
PHUs within the public sector. The obtained results provide the potential to generate effective solutions for the 
complex task of healthcare facility planning within the constraints of limited resources. 
 
2. Problem Description  
The following problem was based on [6]. However, in this case, we are dealing with a bi-objective problem, while in 
the original model, a single objective function problem was addressed, and the other objective was set as a constraint. 
There are two types of services: the main service (MS) corresponds to the outpatient service provided by a physician 
and the complementary services (CS) are other services available in some PHUs such as nutrition counseling, dental 
care, mental health, clinical analysis, and imaging. Demand for MS must be allocated in the problem to PHUs without 
exceeding their capacities. The objective of this service is to minimize the sum of the travel distance of all the demand. 
In the case of CS, the objective is to maximize the coverage of demand. To evaluate the coverage, a critical coverage 
radius is considered for each CS type. In the problem, there are various levels of PHU, as the level, additional capacity 
of the MS, and additional CS are available, but the investment cost increases. In the problem is considered the option 
to upgrade existing PHUs to a higher level, but also is considered the option to open new PHUs in candidate site. 
These decisions are limited by a budget. The notation, parameters, and variables used in the problem formulation are 
the following: 

Sets: 
𝑀𝑀: Set of demand points; 𝑖𝑖 ∈ 𝑀𝑀 . 
𝑁𝑁: Set of existing PHUs and candidate locations to install new 
PHUs; 𝑗𝑗 ∈ 𝑁𝑁. 
𝑁𝑁𝐴𝐴: Subset of locations such that a PHU is already installed. 
𝑁𝑁𝐵𝐵: Subset of locations such that a new PHU can be installed. 
𝐾𝐾: Set of PHU types; 𝑘𝑘 ∈ 𝐾𝐾. 
𝐾𝐾(𝑗𝑗): Subset of PHU types to install or upgrade at location 𝑗𝑗 ∈
𝑁𝑁. 
𝑆𝑆: Set of complementary services; 𝑠𝑠 ∈ 𝑆𝑆. 
Parameters: 
𝐹𝐹𝑘𝑘: Fixed cost of installing the PHU type 𝑘𝑘 ∈ 𝐾𝐾   
𝑈𝑈𝑗𝑗𝑘𝑘: Fixed cost of upgrading the PHU located at 𝑗𝑗 ∈ 𝑁𝑁𝐴𝐴to a PHU 
type 𝑘𝑘 ∈ 𝐾𝐾. 
Β: Available budget for installing or upgrading PHUs. 
𝐷𝐷𝑖𝑖𝑖𝑖: Distance from demand point 𝑖𝑖 ∈ 𝑀𝑀 to the PHU located at 
𝑗𝑗 ∈ 𝑁𝑁.  
𝑃𝑃𝑖𝑖: Demand (number of people) of the main service and the 
complementary services at point 𝑖𝑖 ∈ 𝑀𝑀 . 
𝐶𝐶𝑘𝑘: Capacity (number of people) of the PHU type 𝑘𝑘 ∈ 𝐾𝐾 for 
providing the main service. 

𝑇𝑇𝑇𝑇𝑇𝑇: Upper bound on the total travel distance by the demand 
for receiving the main service. 
𝑅𝑅𝑠𝑠: Critical distance of coverage for each complementary 
service 𝑠𝑠 ∈ 𝑆𝑆. 
𝑇𝑇𝑘𝑘𝑘𝑘: Auxiliary parameter equal to 1 if the complementary 
service 𝑠𝑠 ∈ 𝑆𝑆 is provided by the PHUs type 𝑘𝑘 ∈ 𝐾𝐾 ;  and 0, 
otherwise. This parameter does not appear in the model, but it 
is used for computing parameters 𝐴𝐴𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 showed below. 
𝐴𝐴𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘: Coverage parameter equal to 1 if a PHU type 𝑘𝑘 ∈ 𝐾𝐾(𝑗𝑗) 
located at site 𝑗𝑗 ∈ 𝑁𝑁 covers the demand point 𝑖𝑖 ∈ 𝑀𝑀 for each 
complementary service 𝑠𝑠 ∈ 𝑆𝑆. 

Decision variables: 
𝑦𝑦𝑗𝑗𝑘𝑘: Binary variable equal to 1 if the PHU type 𝑘𝑘 ∈ 𝐾𝐾(𝑗𝑗) is 
located at site 𝑗𝑗 ∈ 𝑁𝑁 and 0, otherwise. 
𝑥𝑥𝑖𝑖𝑖𝑖: Binary variable equal to 1 if the demand point 𝑖𝑖 ∈ 𝑀𝑀 is 
allocated to the PHU located at 𝑗𝑗 ∈ 𝑁𝑁 for the main service; 
and 0, otherwise. 𝑋𝑋𝑗𝑗𝑗𝑗 = 1 represents a facility located at 
demand point 𝑗𝑗. 
𝑣𝑣𝑖𝑖𝑠𝑠: Binary variable equal to 1 if the service 𝑠𝑠 ∈ 𝑆𝑆 of the 
demand point 𝑖𝑖 ∈ 𝑀𝑀 is covered; and 0, otherwise. 

min 𝑍𝑍1 = ∑ ∑ 𝑃𝑃𝑖𝑖  
𝑗𝑗∈𝑁𝑁

 
𝑖𝑖∈𝑀𝑀 𝐷𝐷𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖   (1) 

max 𝑍𝑍2 = ∑ ∑ 𝑃𝑃𝑖𝑖  
𝑠𝑠∈𝑆𝑆

 
𝑖𝑖∈𝑀𝑀 𝑣𝑣𝑖𝑖𝑠𝑠         (2) 

st ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 
𝑖𝑖∈𝑀𝑀 = 1  𝑖𝑖 ∈ 𝑀𝑀   (3) 

 ∑ 𝑃𝑃𝑖𝑖 
𝑖𝑖∈𝑀𝑀  𝑥𝑥𝑖𝑖𝑖𝑖 ≤ ∑ 𝐶𝐶𝑘𝑘 

𝑖𝑖∈𝑀𝑀  𝑦𝑦𝑗𝑗𝑘𝑘     (4) 

 𝑥𝑥𝑗𝑗𝑗𝑗 ≥ ∑ 𝑦𝑦𝑗𝑗𝑘𝑘   
𝑖𝑖∈𝑀𝑀     (5) 

 ∑ 𝑦𝑦𝑗𝑗𝑘𝑘 
𝑘𝑘∈𝐾𝐾(𝑗𝑗) = 1  𝑗𝑗 ∈ 𝑁𝑁𝐴𝐴 (6) 

 ∑ 𝑦𝑦𝑗𝑗𝑘𝑘 
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ≤ 1  𝑗𝑗 ∈ 𝑁𝑁𝐵𝐵 (7) 

 𝑣𝑣𝑖𝑖𝑠𝑠 ≤ ∑ ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

 
𝑗𝑗∈𝑁𝑁𝐴𝐴  𝑦𝑦𝑗𝑗𝑘𝑘  𝑖𝑖 ∈ 𝑀𝑀,  𝑠𝑠 ∈ 𝑆𝑆             (8) 

 ∑ ∑ 𝑈𝑈𝑗𝑗𝑘𝑘𝑦𝑦𝑗𝑗𝑘𝑘 
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

 
𝑗𝑗∈𝑁𝑁𝐴𝐴    +   ∑ ∑ 𝐹𝐹𝑘𝑘𝑦𝑦𝑗𝑗𝑘𝑘 

𝑘𝑘∈𝐾𝐾(𝑗𝑗)
 
𝑗𝑗∈𝑁𝑁𝐵𝐵   ≤ 𝐵𝐵   (9) 

 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1}  𝑖𝑖 ∈ 𝑀𝑀,  𝑗𝑗 ∈ 𝑁𝑁                    (10) 

 𝑦𝑦𝑗𝑗𝑘𝑘 ∈ {0,1}  𝑗𝑗 ∈ 𝑁𝑁,  𝑘𝑘 ∈ 𝐾𝐾(𝑗𝑗)                    (11) 

 𝑣𝑣𝑖𝑖𝑠𝑠 ∈ {0,1}  𝑖𝑖 ∈ 𝑀𝑀,  𝑠𝑠 ∈ 𝑆𝑆                    (12) 
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The first objective function (1) aims at minimizing the total travel distance of the demand to the PHU for receiving 
the main service. The second objective function (2) seeks to maximize the total demand coverage of the 
complementary services. Constraints (3) ensure that each demand point is allocated to a single facility for the main 
service. Constraints (4) ensure that the total demand allocated to each PHU must not exceed its capacity. Constraints 
(5) force to allocate demand of a site where a PHU is located. Constraints (6) ensure that an existing PHU can be 
upgraded to another PHU type or can remain its current type. Constraints (7) allow opening a single PHU type in a 
candidate’s site. Constraints (8) activate the variable 𝑣𝑣𝑖𝑖𝑠𝑠  if a demand point is covered by a complementary service. 
Constraint (9) limits the number of PHUs to be upgraded and PHUs opened in a candidate's sites according to the 
budget limit. Finally, the nature of the decision variables is specified by constraints (10)– (12). 
 
3. Methodology 
The problem was solved using the epsilon-constraint methodology for multi-objective optimization. The goal is to 
find a set of solutions that optimize the two conflicting objectives simultaneously. This method transforms a multi-
objective optimization problem into a series of mono-objective problems by introducing an epsilon parameter and 
turning one objective into a constraint while optimizing the others. The method found in the Pareto set is the set of 
solutions in the decision space where no solution is superior to another in all the objectives. These solutions are 
considered Pareto optimal, as they represent a trade-off between objectives, and there is no way to improve one 
objective without degrading another. The AUGMECON method represents an enhancement of the original epsilon-
constraint method and is widely recognized for its effectiveness in generating Pareto front representations. In this 
study, we employed AUGMECON2 [9], an improvement upon AUGMECON [10] that leverages information from 
slack variables in each iteration. This enhancement leads to a reduction in computation time by avoiding redundant 
iterations and optimizing the overall process.  
 
4. Case Study 
The problem was applied to the state of Guanajuato, one of the 32 federal entities of Mexico. This territorial unit is 
divided into 46 municipalities, encompassing a total of 12,340 demand points subject to this analysis. Covering an 
area of 30,606.7 km², the state accounts for approximately 1.6% of Mexico's total landmass. For the sources of data 
used in the case study, the geographic location of the demand points and their corresponding demands were obtained 
from INEGI [4]. Utilizing longitude and latitude data for each locality in Guanajuato, the coordinates were transformed 
into the Universal Transverse Mercator projection system. The existing PHUs, their types, and capacities were sourced 
from the official website of the Directorate General of Health Information of the SSA [11]. The fixed cost for each 
type of facility was extracted from the report "Resource Models for Planning Health Units" published by the Ministry 
of Health in 2010 [12]. It is essential to note that these costs were updated to reflect the economic conditions of the 
year 2023. Additionally, the cost for facility updates was estimated based on the supplementary expenses incorporated 
into the establishment of new facilities.  
 

Table 1. Regional healthcare and demand data summary. 

Region Demand Points Demand 
(users) 

Healthcare 
Units 

Main Service Candidate 
Sites Capacity 

(users) 
Utilization 

(%) 
1 650 219,599 64 396,000 55 20 
2 1,260 570,838 81 630,000 91 35 
3 1,398 365,851 63 429,000 85 100 
4 1,303 497,621 69 543,000 92 69 
5 988 685,565 62 687,000 100 44 
6 980 328,068 47 288,000 114 32 
7 963 409,419 58 480,000 85 42 
8 1,362 362,808 71 432,000 84 144 

Total 8,904 3,439,769 515 3,885,000 89 486 
 
To solve the problem, the state is divided into eight regions. The territorial division plays a crucial role in this study, 
providing the necessary framework for analyzing regional patterns and evaluating the model's impact in various 
specific geographical areas.  Table 1 provides a comprehensive overview of demand points, demand quantity (users), 
existing healthcare units in each region, their capacities for the main service, current utilization rates, and potential 
candidate sites for PHU installations. Capacity is determined by considering the type of PHU multiplied by the 'basic 
kernel,' equivalent to the capacity to serve 3,000 users. The selection of candidate sites was based on locations not 
close to existing PHUs. A total of 486 candidate sites were identified throughout the state of Guanajuato.  
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Table 2 offers an overview of the PHU types and their respective characteristics. The second column provides details 
on the main service capacity, indicating the number of users each facility can permanently serve. Facility type 1 has a 
capacity of 3,000 users, and subsequent facility types have capacities as multiples of this value, following the 2010 
guidelines set by the SSA. The availability of these services for each facility type is presented in the following five 
columns as binary values (1 denoting service provision and 0 otherwise). The potential to upgrade existing facilities 
to a higher-tier category depends on the specific type of settlement, incorporating factors such as population density, 
infrastructural development, and the overall needs of the community. Furthermore, the critical coverage radius (𝑅𝑅𝑠𝑠) 
in kilometers for each complementary service is presented as a key aspect of the proposed analysis. All data of the 
case study is available in the following link: [hidden for the blind review]. 
 

Table 2. Types of PHUs and offered services. 
Facility 

Type 
MS capacity 

(users) 

Complementary Service Coverage 
CS
1 CS2 CS3 CS4 CS5 

1 3,000 0 0 0 0 0 
2 6,000 0 0 0 0 0 
3 9,000 1 1 1 0 0 
4 12,000 1 1 1 0 0 
5 15,000 1 1 1 1 0 
6 18,000 1 1 1 1 0 
7 21,000 1 1 1 1 1 
8 24,000 1 1 1 1 1 
9 27,000 1 1 1 1 1 
10 30,000 1 1 1 1 1 
11 33,000 1 1 1 1 1 
12 36,000 1 1 1 1 1 
Critical coverage 

radius (km) 5 5 5 10 10 

 
Table 3. Selected budgets for each region 

 (1×106 MXN). 
Region  Budgets  

B1 B2 B3 B4 B5 
1 439 579 859 1,138 1,418 
2 714 838 1,088 1,337 1,586 
3 1,062 1,315 1,821 2,327 2,834 
4 1,022 1,203 1,565 1,927 2,288 
5 874 934 1,054 1,174 1,294 
6 595 709 939 1,169 1,399 
7 731 895 1,222 1,548 1,875 
8 1,354 1,651 2,245 2,839 3,434 

 
 
 

 
For the empirical analysis, five different budget scenarios were generated, as shown in Table 3. B1 is the minimum 
budget to have feasible solutions and B5 is the maximum budget required to get the best possible values for both 
objectives (𝑍𝑍1 and 𝑍𝑍2) given the other constraints. To obtain the value of the minimum budget (B1), the problem was 
solved with the objective function of minimizing the total cost removing constraint (9). For the maximum budget (B5), 
the problem was solved with both objective functions (1) and (2) separately, and then, the problem was solved again 
by minimizing the total cost with the objective functions (1) and (2) as constraints using the obtained as bounds. Then, 
B2, B3, and B4 represent budgets equally distributed between B1 and B5. In the 𝜖𝜖-constraint method, one objective 
function is defined as a constraint of the problem.  In this case, the objective function 𝑍𝑍2 was constrained. The bound 
of this constraint was gradually modified to generate different Pareto points. In this case, we decided to generate one 
hundred equidistant bounds.  
To solve all integer programming models generated with the 𝜖𝜖-constraint method, the Branch-and-Bound algorithm 
from CPLEX 20.1 solver was used, with the callable library of C++. The experiments were conducted on a computer 
with an Intel(R) Core (TM) i5-4590 processor running at 3.30 GHz, supported by 16 GB of RAM, and operating under 
Windows 10. All instances were solved with a CPU time limit of one hour obtaining optimal and near to optimal 
solutions in all the cases. A total of 100 iterations were attempted for each instance of the model to determine the 
Pareto set in each region using the AUGMECON2 method. It is crucial to note that each instance involves solving the 
problem in a specific region with a defined budget. There is a significant variation in the number of Pareto points 
found and the percentage of demand covered based on the budget invested. The average computation time was in 
average 286 seconds. This is a reasonable computation time, as there is no need to employ a heuristic procedure to 
solve the problem. 
We selected two regions as examples to show the Pareto frontiers for the different budgets. These results are presented 
in Figures 1 and 2, revealing distinct behaviors for both frontiers. For instance, region 5 corresponds to the region 
where the City of León is located, an urban area with advanced infrastructure that already satisfies most needs, as 
depicted in Figure 1. Even with a minimum budget (B1), over 95% of the demand can be covered on average with 
complementary services. In contrast, in the rural region of San Luis de la Paz, classified as region 8, there is a 
noticeable need for more substantial investment. This is particularly evident when utilizing the maximum budget (B5) 
to ensure coverage of complementary services, only 90% of the demand was covered on average, as illustrated in 
Figure 2. This variability highlights the essential link between needs and budgetary amounts, determined by specific 
factors. Demographic differences, prevalent health conditions, geographic accessibility, socio-economic levels, and 
existing infrastructure play pivotal roles in this context. Larger populations or those with higher health challenges may 
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require proportionally higher investments, while geography and socio-economic disparities also influence health 
demand and the need for investment. A meticulous assessment of these factors is essential to tailor health investment 
strategies that address the specific needs of each region. 

 

 
Figure 1. Representation of the Pareto Frontier of 

region 5. 

 
Figure 2. Representation of the Pareto Frontier of 

region 8. 

 

 
Figure 3. Graphical Representation of the solutions in the state of Guanajuato. 

 
We choose one solution of the Pareto set for each region for the budget B2 to show the graphical representations of 
the solutions in the eight regions. Figure 3 illustrates the graphical representation of integrating the solutions of all 
the regions in a single one. In Figure 3a, the location of all facilities is shown, identifying the existing PHU that 
remains equal, potential candidate sites with new PHUs, and PHUs that have been upgraded. There are a total of 853 
existing PHUs, 486 candidate sites for new PHUs, and 170 PHUs that were upgraded with the budget B2 of each 
region. The allocation of demand points for the main service is depicted in Figure 3b, with connecting lines and colors 
representing demand allocation to each PHU, averaging a Euclidian distance of approximately 2.083 km for each 
assignment across all regions. The coverage of complementary services is displayed in plots 3c–e. Black points 
represent demand points and circular shapes represent healthcare units providing the complementary service. Any 
point covered by the circular shape indicates that the demand point is covered by the service. The results shows that 

a) Arrangement of PHUs

PHUs in candidate sites
PHUs not upgraded
PHUs upgraded

b) Allocation of demand points for the MS

c) Coverage of CS1, CS2, and CS3 d) Coverage of CS4 e) Coverage of CS5
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76% of demand points are covered for CS1, representing 91% of the total demand. It is observed that the same solution 
was found for CS2 and CS3 due to their identical coverage radius and availability in the same types of facilities. For 
CS4, there are 96 PHUs with this service, accounting for 9.63% of the total. For CS5, 71% of demand points are 
covered, representing 85% of the total demand. Overall, these solutions provide short assignment distances for the 
main service, and the coverage level of complementary services is highly efficient.  
 
5. Conclusions 
This article addresses primary healthcare infrastructure planning, focusing on the Mexican healthcare system with a 
case study applied to the State of Guanajuato, Mexico. It emphasizes the critical need for comprehensive medical 
service coverage in resource-constrained environments. The bi-objective integer programming model proves effective 
for data-driven decision-making and resource optimization, validated with real data from Guanajuato, Mexico. The 
study recognizes the significance of optimizing coverage for complementary services within budgetary constraints. 
While the primary focus is on the Mexican healthcare system, the methodology demonstrates applicability in similar 
healthcare systems in developing countries, expanding its reach. Practical and viable solutions in healthcare systems 
with limited resources are emphasized. Future research could explore alternative multi-objective optimization methods 
to enhance the Pareto frontier and expand the case study nationwide. Addressing the integration of infrastructure from 
other public institutions into the planning process stands out as an important aspect for consideration. 
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