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Abstract

In this paper we present our computational
experience with a heuristic for the problem of
minimizing fuel cost on steady-state gas
transmission problems on cyclic networks. The
procedure is based on a two-stage iterative
procedure, where, in a given iteration, gas flow
variables are fixed and optimal pressure variables
are found via dynamic programming in the first
stage. In the second stage, the pressure variables
are fixed and an attempt is made to find a set of
flow variables that improve the objective function
by exploiting the underlying network structure.
This work focuses on cyclic network topologies,
that is, networks with at least one cycle containing
two or more compressor stations. This kind of
topol ogies posses the highest degree of difficulty in
real-world problems.

1 Introduction

A gas transmission network for delivering
natural gas involves a broad variety of physica
components such as pipes, regulators, and
compressor stations to name a few. As the gas
travels through the pipe, gas pressure is lost due to
friction with the pipe wall. Some of this pressure is
added back at compressor stations, which raise the
pressure of the gas passing through them. In a gas
transmission network, the overall operating cost of
the system is highly dependent upon the operating
cost of the compressor stations in a network.
Operating cost, however, is generally measured by
the fuel consumed at the compressor station.
Hence, the goa is to minimize the total fuel
consumption used by the stations while satisfying
specified delivery requirements throughout the
system.

Gas transmission network problems differ
from traditional network flow problems in some
fundamental aspects. First, in gas networks, a
pressure variable is defined at every node in
addition to the flow variables representing mass
flow rates through each pipe. Second, in addition
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to the network flow conservation constraint set,
there exist two other type of constraints: (1) a
nonlinear equality constraint on each pipe, which
represent the relationships between the pressure
drop and the flow; and (2) a nonlinear non-convex
set for each compressor station, which represents
the feasible operating limits for pressure and flow
within the station.

The problem is very difficult to solve due to
the presence of non-convexities in both the
objective function and the set of feasible solutions.
Optimization algorithms (most of them based on
dynamic programming) for non-cyclic gas network
topologies are in a relatively well-developed stage.
However, effective algorithms for cyclic topologies
are practically non-existent.

In this paper we propose a heuristic for the
fuel cost minimization on gas transmission systems
with a cyclic network topology, that is, networks
with at least one cycle containing two or more
compressor station arcs.  The network based
heuristic (NBH) is based on a two-stage iterative
procedure. In aparticular iteration, at afirst stage,
gas flow variables are fixed and optimal pressure
variables are found via dynamic programming
(DP). At the second stage, the pressure variables
are fixed and an attempt is made to find a set of
flow variables that improve the objective function
by exploiting the underlying network structure.

2 Problem Formulation

Let G = (N, L, M) be a directed network
defined by a set N of n nodes, aset L of | pipes, and
aset M of m compressor stations. The mass flow
rate on a pipe (i, j)T L is represented by Ui,
and the mass flow rate through a compressor
station (i, )T M is represented by V; . Note
that each compressor station is represented by a
special pipe which connects a par of
nodes(i, j)T M, where i and | are the
corresponding suction and discharge nodes,
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respectively. Let u and v be the vectors of u;'s and
u={u; : G, )T L},
V:{Vij (i, DT M}, and let w be the vector

Vij 'S, ie,

defined by w=(u,v)". Let p=(p,...,p,)"
be the pressure vector with p, the pressure at
nodei. Let S=(S,...,S,)" be the source vector

with s the source a node i. If S is positive

(negative), this corresponds to the gas supply limit
(demand requirement) at node i. For the steady-
state model, the sum of the sources is assumed to

be zero, i.e,, é inzls =0.

The flow balance equation at a node has the
following meaning: the sum of flows coming out of
the node is equal to the sum of the flow entering
the node. It can be represented as

éWij' é.Wji:S iT N @

j«(i,)) LEM j:(j.il LEM

where W represents either U, if (i,)H)T L or
v, if (i, )T M.

The physical law that relates the flow in the
pipe to the difference of pressure at its two ends for
high-pressure networks is given, as discussed in
Osiadacz [4], by the Weymouth's formula:

pr- Py =kyui (DT L @

where kij is a constant whose value depends on
the pipe physical properties.

The physical operationad limits a each
compressor station are another set of constraints,
which includes  the  maximum/minimum
compressor speed ratio, the maximum/minimum
allowable volumetric flow rate. A compressor
station is typically of many compressor units
(which in turn can be of many types) arranged in
different configurations settings. Let us assume
that each compressor station (i,j) has k centrifugal
compressor units hooked up in parallel.

Let Dilj‘ denote the feasible compressor

domain for varisbles (v, p;,P;). and let

gilj‘ (Vij Py Py ) denote its corresponding fuel cost
function. Recent work by Wu et al. [8] contains a
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detailed explanation about the structure of the

domain Dilj‘, and the behaviour of the fuel

consumption function gi‘j‘ :

The fuel cost function gﬁ in a single
compressor unit is computed by

gi}(vijv o pj) =
R )
aﬁjVij?%g 'lg (v, Py Py Di} @)
(]

where a”- and a are constants which are

determined by the specific type of compressors
involved.

The mathematical formulation of the problem
is given by

Minimize & g; (v, P, ;) (4a)
@, m
Subject to
éWij' é.Wji:S il N (4b)
ji«(i,)) LEM j:(j.il LEM
piz_ pjzzkijui? (I,j)i L (4c)
(v, )T D ()T M (4d)

The difficulty in solving this problem arises
from the presence of non-convexity in both the set
of feasible solutions and the objective function. In
addition, the type of underlying network topology
becomes a crucial issue. For non-cyclic network
topologies, dynamic programming (DP)
approaches have been applied with relative
success. See Carter [2] and Rios-Mercado [6] for
details of the DP agorithms.

These procedures rely heavily on theoretical
results establishing that, for this type of (non-
cyclic) systems, the involved flow variables can be
uniquely determined in advance, and thus,
eliminated from the problem (e.g. see [5]). For
network topologies with cycles, the problem
becomes more difficult because the flow variables
cannot be uniquely determined, so they indeed
have to be explicitly treated in the model.
Addressing cyclic networks becomes the main
focus of this work.
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3 Description of Heuristic

Let x°=(v°, p°) be an initia feasible
solution to problem (4). For a tree structured gas
transmission network, flow variables v are
uniquely determined. However, for cyclic
networks, one may obtain better a objective

function by modifying the current flow setting Vo,
For this purpose, we introduce the residual
network concept (e.g., see Ahuja et a. [1]). The
residual network was originally introduced to find
the optimal flow (or to prove its optimality) in
minimum cost network flow problems. We define

the residual network G'(v°) with respect to the

current flow vector V° as follows. We replace
each arc (i, j) in the original network by two arcs, a
forward arc (i, j) and a backward arc (j, i). The arc

(i, j) has cost C; and the arc (j, i) has cost - Cj -

In our heuristic flow modification step, the
costs of the residual network are approximated by
the derivatives of the objective function with
respect to the flow on each compressor station, that
is,

ap, 0 U
Cj > & ?ae&: - ©)
b g H

where p;, p; are the current solution values
delivered by dynamic programming with fixed
flow variables. This cost C; is assigned at each

forward edge of the residual network, while - C;,

is assigned at each backward edge.

Thecyclecost t ., total cost of the cycle Cin
aresidual network, is defined by

[o]
te= ad;(C)g;, ®)
(i, Mc
where d; (C) equals Lif (i, j) is both contained in
the cycle C and a forward arc of G'(V°), -1 if
(j,DT C and (j, i) is a backward arc of
G'(v°), and $0$ otherwise, and M .. isthe set of

compressor stations located inthe cycle C. If t  is
negative, then we call it a negative cycle and
denoteitas C™ .
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Flow modification is done by augmenting flow
through a negative cycle C™. That is, if there
exists a negative cogt ¢ ycle C” , then we augment
positive flow through C~, and hence update the

current flow setting. This flow modification step
can be represented as

v =v2+] >d(C), @)

where | > O isthe positive amount of flow which
will be added through the cycle, and d (C ™) isthe

vector of d;(C"), a vector representing the

negative cycle C™ . The flow modification step of
NBH can be viewed as a nonlinear programming
algorithm in which we try to find a direction (a
vector of flow modification) such that by moving
| units in this direction, the objective function
decreases. In our heuristic procedure, a negative
cycle vector d(C™) corresponds to the search
direction.

The value | is bounded below by zero and
above by |, which can be obtained by considering

the complex inequality constraint set Di:f,

(i, )T C . 1f I =0, then the algorithm stops.

Otherwise, weset | =1 >0.

For the newly obtained flow setting V™", we
need to find pressure variables, which requires

rerunning DP with fixed flow setting v"™". If DP
with V™ has no feasible solution or no
improvement has been achieved, we reduce the
sizeof | by setting | =g , where 0<g <1,

and apply DP until we get a desirable result. The
algorithm is summarized below.
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Step1l: Find an initial feasible solution
XO — (VO, pO)

Step2:  Construct the residual network
G'(v°), and find a negative
cycleC™ with (negative) cost t c

Step 3 |If |[C_|<e, where e is a small

number, stop. Otherwise, go to Step
4.

Step4: Set | =] . If | =0, stop.
Otherwise
(@) Modify the current flow by

v =v® +| xd(C).

(b) Calculate pressure values using
dynamic programming  with
modified flow V™. If DPyields
infeasible solution, or

g™-9g°>0, then st
| =d , with 0<g<1, and

go to Step 4a. Otherwise, update

v? = V™ and go to Step 2.

To determine the step size | , we need to
consider the feasible domain Dijk, equation (4d), for
each compressor station. A procedure for this
purpose has been developed. The details of each

step of the algorithm can be found in Kim [3].

4 Finding an Initial Feasible Solution

Like most optimization algorithms, our
algorithm starts from a feasible point. According
to gas specialists in the industry, getting a feasible
solution for the complex network topology is quite
a difficult task. Using our implementation of the
solution methodology, we can obtain constructive
information that can be used to find a feasible
solution of the given problem. The current flow
setting of the network satisfies the flow balance
equations. We do not know yet whether this setting
is feasible or not. The maximum capacity of the
flow through the compressor station depends on
the number of compressor units connected in
parallel.

Our implementation can be used for detecting
infeasibility, that is, if the current flow setting
yields an infeasible solution. The algorithm also
gives us information on how much the current flow
can be augmented or reduced to meet the capacity
of the specific compressor station. Starting from
an initial feasible set flow rates, we arrive at an
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improved solution using our proposed iterative
solution methodology. However, solutions vary
based on the different starting points used.

5 Computational Work

Because of the lack of test problems in gas
pipeline literature, we designed our own data sets.
These were carefully constructed so as to represent
real-world instances. In fact, al of the
compressor-related data were kindly provided by
Scientific Software Intercomp, Inc, a consulting
firm in the pipeline industry. The algorithm, as
described previously, consists of about 15,000 lines
of C code. Numerical experiments based on three
different cyclic topologies were carried out on a
SGI Power Challenge L workstation running IRIX
6.2. Even though our solution methodology can
handle non-cyclic topologies, our computational
experiments targeted the cyclic structure case.
Three network topologies were used in the
experiment: (A) a single-cycle problem with 5
compressor stations, 9 pipe legs, and 15 nodes; (B)
a three-cycle problem with 21 stations, 28 pipe
legs, and 47 nodes; and (C) a more complex 4-
cycle problem with 17 stations, 23 pipe legs, and
37 nodes. Topology A isasimple form of acyclic
structure. Topology B and C, with multiple cycles,
are more complex example, with topology C
representing the most complex because their cycles
are dependent of each other, that is, they share
several arcsin common.

We applied our solution methodology starting
with three different flow settings for each of these
problems. Table 1 shows the results. A star (*) in
column 4 means the algorithm terminates in the
very first iteration and no better solution was
found.

Problem Initial Time Improvement
flow (CPU percentage
Sec) (%) from
initial
solution
A Settingl 2.6 24.9
Setting2 4.6 211
Setting 3 20.2 41.8
B Settingl 6.1 *)
Setting2 6.2 *)
Setting3 23.8 17.3
C Setting1l 41.2 4.6
Setting 2 42.7 3.3
Setting3  74.5 8.2

Table1: Summary of results
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The cost improvement obtained by applying
our solution methodology was found to range from
3.3% to 41.8 %, with respect to an initial feasible
solution found by conventiona  methods.
According to Wu [7], even a 1 % savings on gas
transportation cost may be worth 48.6 million
dollars.  Thus even a smal percentage of
improvement in the solution quality delivered by
an algorithm may represent a very important
amount of savings for the pipeline company.

Another issue investigated was the choice of
the parameters | and g. These two parameters

play a significant role in terms of computational
time. Asexplained earlier, the greater the value of
parameter | , the higher probability the iteration
will move out of the feasible region. On the other
hand, a larger | value yields a faster algorithm
convergence. Parameter ¢ is needed if the new

solution is not feasible, or if we have no improved
solution obtained. During our experiments, we
found that | ranging between 0.8 and 0.85, and
g around 0.5 yields adequately fast convergence.

The distribution of the running time among
the various types of operations in the algorithm
was studied as well. |t was found, that the most of
time (about 95 %) is spent on solving DP. This
result highlights the importance of having an
efficient procedure for solving DP. A more
complete  presentation of the numerica
experimentation can be found in Kim [3].

6 Conclusions

In this paper we have presented a heuristic for
the fuel cost minimization on natural gas
transmission networks in steady state.  The
algorithm focuses on addressing cyclic network
topologies. The mathematical model, which has
an underlying network topology, has a non-convex
objective function and non-convex feasible
domain, which makes it difficult to solve. The
main contribution of this work is precisely on
providing a method for handling cyclic topologies,
which had not been done to the best of our
knowledge. Further, our work incorporates the
most accurate model of compressor stations to
date. In general, the problem we have presented is
too computationally complex to be solved
efficiently using standard mathematical
programming  techniques. A dynamic
programming approach has proved to be an
excellent choice for simple network structures
(such as gun-barrel and the tree networks). For a
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system with cycles containing compressor stations,
dynamic programming has been applied only after
the flow variables have been fixed. The flow
modification step of our solution methodology
exploits the underlying network configuration, and
seems robust for the tested problems. It is
necessary, though, further computational work that
would assess the effectiveness of the proposed
procedure under many different settings and a
larger set of test problems.

Acknowl edgments: This research has been
supported by the National Science Foundation
(grant No. DMI-9622106), the Texas Higher
Education Coordinating Board through its
Advanced Research Program (grant No. 999903-
122), the Mexican National Council of Science and
Technology (grant No. J33187-A), and by the
UANL through its Scientific and Technological
Research Support Program (grant No. CA555-01).

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.
Network Flows. Prentice-Hall, Englewood
Cliffs, New Jersey, 1993.

[2] R. G. Carter. Pipeline optimization: Dynamic
programming after 30 years. In Proceedings
of the 30'th PSIG Annual Meeting, Denver,
October 1998.

[3] S. Kim. Minimum-Cost Fuel Consumption on
Natural Gas Transmission Network Problem.
PhD thesis, Texas A&M University, College
Station, 1999.

[4] A. J. Osiadacz. Smulation and Analysis of
Gas Networks. Gulf Publishing Company,
Houston, 1987.

[5] R. Z. Rios-Mercado, S. Wu, E. A. Boyd, and
L. R. Scott. Preprocessing on natura gas
transmission networks.  Technical Report
PISIS-2000-01, Systems Engineering
Program, Universidad Autonoma de Nuevo
Ledn, San Nicolds de los Garza, México,
November 2000.

[6] R. Z. RiosMercado. Natural gas pipeline
optimization. In P. Pardalos and M. G. C.
Resende, editors, Handbook of Applied
Optimization, Oxford University Press.
Forthcoming.

[71 S. Wu. Seady-State Smulation and Fuel
Cost Minimization of Gas Pipeline Networks.
PhD thesis, University of Houston, Houston,
1998.

[8] S.Wu, R. Z. RiosMercado, E. A. Boyd, and L. R.
Scott. Model relaxations for the fuel cost
minimization of steady-state gas pipeline networks.
Mathematical and Computer Modelling, 31(2-
3):197-220, 2000.


xuwei
3122




