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Abstract 
 
       In this paper we present our computational 
experience with a heuristic for the problem of 
minimizing fuel cost on steady-state gas 
transmission problems on cyclic networks.  The 
procedure is based on a two-stage iterative 
procedure, where, in a given iteration, gas flow 
variables are fixed and optimal pressure variables 
are found via dynamic programming in the first 
stage.  In the second stage, the pressure variables 
are fixed and an attempt is made to find a set of 
flow variables that improve the objective function 
by exploiting the underlying network structure.  
This work focuses on cyclic network topologies, 
that is, networks with at least one cycle containing 
two or more compressor stations.  This kind of 
topologies posses the highest degree of difficulty in 
real-world problems. 
 
 
1  Introduction 
 
       A gas transmission network for delivering 
natural gas involves a broad variety of physical 
components such as pipes, regulators, and 
compressor stations to name a few.  As the gas 
travels through the pipe, gas pressure is lost due to 
friction with the pipe wall. Some of this pressure is 
added back at compressor stations, which raise the 
pressure of the gas passing through them. In a gas 
transmission network, the overall operating cost of 
the system is highly dependent upon the operating 
cost of the compressor stations in a network. 
Operating cost, however, is generally measured by 
the fuel consumed at the compressor station.  
Hence, the goal is to minimize the total fuel 
consumption used by the stations while satisfying 
specified delivery requirements throughout the 
system. 
 
       Gas transmission network problems differ 
from traditional network flow problems in some 
fundamental aspects.  First, in gas networks, a 
pressure variable is defined at every node in 
addition to the flow variables representing mass 
flow rates through each pipe.  Second, in addition 

to the network flow conservation constraint set, 
there exist two other type of constraints: (1) a 
nonlinear equality constraint on each pipe, which 
represent the relationships between the pressure 
drop and the flow; and (2) a nonlinear non-convex 
set for each compressor station, which represents 
the feasible operating limits for pressure and flow 
within the station. 
 
       The problem is very difficult to solve due to 
the presence of non-convexities in both the 
objective function and the set of feasible solutions.  
Optimization algorithms (most of them based on 
dynamic programming) for non-cyclic gas network 
topologies are in a relatively well-developed stage.  
However, effective algorithms for cyclic topologies 
are practically non-existent. 
 
       In this paper we propose a heuristic for the 
fuel cost minimization on gas transmission systems 
with a cyclic network topology, that is, networks 
with at least one cycle containing two or more 
compressor station arcs.  The network based 
heuristic (NBH) is based on a two-stage iterative 
procedure.  In a particular iteration, at a first stage, 
gas flow variables are fixed and optimal pressure 
variables are found via dynamic programming 
(DP). At the second stage, the pressure variables 
are fixed and an attempt is made to find a set of 
flow variables that improve the objective function 
by exploiting the underlying network structure. 
 
 
2  Problem Formulation 
 
       Let G = (N, L, M) be a directed network 
defined by a set N of n nodes, a set L of l pipes, and 
a set M of m compressor stations.  The mass flow 

rate on a pipe Lji ∈),(  is represented by iju , 

and the mass flow rate through a compressor 

station Mji ∈),(  is represented by ijv . Note 

that each compressor station is represented by a 
special pipe which connects a pair of 
nodes Mji ∈),( , where i and j are the 

corresponding suction and discharge nodes, 
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respectively. Let u and v be the vectors of iju 's and 

ijv 's, i.e., { }Ljiuu ij ∈= ),(: , 

{ }Mjivv ij ∈= ),(: , and let w be the vector 

defined by Tvuw ),(= .  Let T
nppp ),,( 1 K=  

be the pressure vector with ip  the pressure at 

node i. Let T
nsss ),,( 1 K=  be the source vector 

with is  the source at node i.  If is  is positive 

(negative), this corresponds to the gas supply limit 
(demand requirement) at node i.  For the steady-
state model, the sum of the sources is assumed to 

be zero, i.e., 0
1

=∑ =

n

i is .  

 
       The flow balance equation at a node has the 
following meaning: the sum of flows coming out of 
the node is equal to the sum of the flow entering 
the node. It can be represented as  
 

 Nisww i
MLijj

ji
MLjij
ij ∈=− ∑∑

∪∈∪∈

     
),(:),(:

 (1) 

 

where ijw represents either iju  if Lji ∈),(  or 

ijv  if Mji ∈),( . 

 
       The physical law that relates the flow in the 
pipe to the difference of pressure at its two ends for 
high-pressure networks is given, as discussed in 
Osiadacz [4], by the Weymouth's formula:  
 

 Ljiukpp ijijji ∈=− ),(     222  (2) 

 

where ijk  is a constant whose value depends on 

the pipe physical properties. 
 
       The physical operational limits at each 
compressor station are another set of constraints, 
which includes the maximum/minimum 
compressor speed ratio, the maximum/minimum 
allowable volumetric flow rate. A compressor 
station is typically of many compressor units 
(which in turn can be of many types) arranged in 
different configurations settings.  Let us assume 
that each compressor station (i,j) has k centrifugal 
compressor units hooked up in parallel. 
 

       Let k
ijD  denote the feasible compressor 

domain for variables ),,( jiij ppv , and let 

),,( jiij
k
ij ppvg denote its corresponding fuel cost 

function. Recent work by Wu et al. [8] contains a 

detailed explanation about the structure of the 

domain k
ijD , and the behaviour of the fuel 

consumption function k
ijg .  

 

       The fuel cost function 1
ijg  in a single 

compressor unit is computed by 
 
  =),,(1

jiijij ppvg  

 1),,(     ,1 ijjiij
i

j
ijij Dppv

p

p
va ∈
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 (3) 

where ija  and α are constants which are 

determined by the specific type of compressors 
involved.  
 
       The mathematical formulation of the problem 
is given by 
 

Minimize     ∑
∈Mji

jiijij ppvg
),(

1 ),,(  (4a) 

 
Subject to 
 

 Nisww i
MLijj

ji
MLjij
ij ∈=− ∑∑

∪∈∪∈

     
),(:),(:

 (4b) 

 

 Ljiukpp ijijji ∈=− ),(     222  (4c) 

 

 MjiDppv k
ijjiij ∈∈ ),(     ),,(  (4d) 

 
       The difficulty in solving this problem arises 
from the presence of non-convexity in both the set 
of feasible solutions and the objective function. In 
addition, the type of underlying network topology 
becomes a crucial issue. For non-cyclic network 
topologies, dynamic programming (DP) 
approaches have been applied with relative 
success.  See Carter [2] and Ríos-Mercado [6] for 
details of the DP algorithms. 
  
       These procedures rely heavily on theoretical 
results establishing that, for this type of (non-
cyclic) systems, the involved flow variables can be 
uniquely determined in advance, and thus, 
eliminated from the problem (e.g. see [5]).  For 
network topologies with cycles, the problem 
becomes more difficult because the flow variables 
cannot be uniquely determined, so they indeed 
have to be explicitly treated in the model.  
Addressing cyclic networks becomes the main 
focus of this work. 
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3  Description of Heuristic 
 

       Let ),( 000 pvx =  be an initial feasible 

solution to problem (4).  For a tree structured gas 
transmission network, flow variables v are 
uniquely determined. However, for cyclic 
networks, one may obtain better a objective 

function by modifying the current flow setting 0v .  
For this purpose, we introduce the residual 
network concept (e.g., see Ahuja et al. [1]).  The 
residual network was originally introduced to find 
the optimal flow (or to prove its optimality) in 
minimum cost network flow problems.  We define 

the residual network )(' 0vG  with respect to the 

current flow vector 0v  as follows.  We replace 
each arc (i, j) in the original network by two arcs, a 
forward arc (i, j) and a backward arc (j, i). The arc 

(i, j) has cost ijc and the arc (j, i) has cost jic− . 

 
       In our heuristic flow modification step, the 
costs of the residual network are approximated by 
the derivatives of the objective function with 
respect to the flow on each compressor station, that 
is,  

 

 





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



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
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j
ijij p

p
ac  (5) 

 

where ip , jp  are the current solution values 

delivered by dynamic programming with fixed 

flow variables. This cost ijc  is assigned at each 

forward edge of the residual network, while jic−  

is assigned at each backward edge. 
  

       The cycle cost Cτ , total cost of the cycle C in 

a residual network, is defined by 
 

 ∑
∈

⋅=
CMji

ijijC cC
),(

)(δτ , (6) 

 

where )(Cijδ  equals 1 if (i, j) is both contained in 

the cycle C and a forward arc of )(' 0vG , -1 if 

Cij ∈),(  and (j, i) is a backward arc of 

)(' 0vG , and $0$ otherwise, and CM  is the set of 

compressor stations located in the cycle C. If Cτ  is 

negative, then we call it a negative cycle and 

denote it as −C . 
 

       Flow modification is done by augmenting flow 

through a negative cycle −C .  That is, if there 

exists a negative cost c ycle −C , then we augment 

positive flow through −C , and hence update the 
current flow setting. This flow modification step 
can be represented as  
 

 )(0 −⋅+= Cvv new δλ  , (7) 

 
where 0>λ  is the positive amount of flow which 

will be added through the cycle, and )( −Cδ  is the 

vector of )( −Cijδ , a vector representing the 

negative cycle −C . The flow modification step of 
NBH can be viewed as a nonlinear programming 
algorithm in which we try to find a direction (a 
vector of flow modification) such that by moving 
λ units in this direction, the objective function 
decreases. In our heuristic procedure, a negative 

cycle vector )( −Cδ  corresponds to the search 

direction. 
 
       The value λ  is bounded below by zero and 

above by λ , which can be obtained by considering 

the complex inequality constraint set k
ijD , 

−∈ Cji ),( .  If 0=λ , then the algorithm stops. 

Otherwise, we set 0>= λλ .  
 

       For the newly obtained flow setting newv , we 
need to find pressure variables, which requires 

rerunning DP with fixed flow setting newv . If DP 

with newv  has no feasible solution or no 
improvement has been achieved, we reduce the 
size of λ  by setting γλλ = , where 10 << γ , 

and apply DP until we get a desirable result. The 
algorithm is summarized below. 
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Step 1: Find an initial feasible solution 

),( 000 pvx =  

Step 2: Construct the residual network 

)(' 0vG , and find a negative 

cycle −C  with (negative) cost −C
τ . 

Step 3: If ετ <−C
, where ε  is a small 

number, stop. Otherwise, go to Step 
4. 

Step 4: Set λλ = . If 0=λ , stop.  
Otherwise 

(a) Modify the current flow by 

)(0 −⋅+= Cvv new δλ . 

(b) Calculate pressure values using 
dynamic programming with 

modified flow newv .  If DP yields 
infeasible solution, or 

00 >− gg new , then set 

γλλ = , with 10 << γ , and 

go to Step 4a.  Otherwise, update 
newvv ←0 , and go to Step 2. 

 
       To determine the step size λ , we need to 
consider the feasible domain Dij

k, equation (4d), for 
each compressor station.  A procedure for this 
purpose has been developed.  The details of each 
step of the algorithm can be found in Kim [3]. 
 
 
4  Finding an Initial Feasible Solution 
 
       Like most optimization algorithms, our 
algorithm starts from a feasible point.  According 
to gas specialists in the industry, getting a feasible 
solution for the complex network topology is quite 
a difficult task.  Using our implementation of the 
solution methodology, we can obtain constructive 
information that can be used to find a feasible 
solution of the given problem.  The current flow 
setting of the network satisfies the flow balance 
equations. We do not know yet whether this setting 
is feasible or not. The maximum capacity of the 
flow through the compressor station depends on 
the number of compressor units connected in 
parallel. 
 
       Our implementation can be used for detecting 
infeasibility, that is, if the current flow setting 
yields an infeasible solution. The algorithm also 
gives us information on how much the current flow 
can be augmented or reduced to meet the capacity 
of the specific compressor station.  Starting from 
an initial feasible set flow rates, we arrive at an 

improved solution using our proposed iterative 
solution methodology. However, solutions vary 
based on the different starting points used. 
 
 
5  Computational Work 
 
       Because of the lack of test problems in gas 
pipeline literature, we designed our own data sets.  
These were carefully constructed so as to represent 
real-world instances.  In fact, all of the 
compressor-related data were kindly provided by 
Scientific Software Intercomp, Inc, a consulting 
firm in the pipeline industry.  The algorithm, as 
described previously, consists of about 15,000 lines 
of C code.  Numerical experiments based on three 
different cyclic topologies were carried out on a 
SGI Power Challenge L workstation running IRIX 
6.2.  Even though our solution methodology can 
handle non-cyclic topologies, our computational 
experiments targeted the cyclic structure case.  
Three network topologies were used in the 
experiment: (A) a single-cycle problem with 5 
compressor stations, 9 pipe legs, and 15 nodes; (B) 
a three-cycle problem with 21 stations, 28 pipe 
legs, and 47 nodes; and (C) a more complex 4-
cycle problem with 17 stations, 23 pipe legs, and 
37 nodes.  Topology A is a simple form of a cyclic 
structure.  Topology B and C, with multiple cycles, 
are more complex example, with topology C 
representing the most complex because their cycles 
are dependent of each other, that is, they share 
several arcs in common.   
 
       We applied our solution methodology starting 
with three different flow settings for each of these 
problems.  Table 1 shows the results.  A star (*) in 
column 4 means the algorithm terminates in the 
very first iteration and no better solution was 
found. 
 
Problem Initial 

flow 
Time 
(CPU 
sec) 

Improvement 
percentage 
(%) from 
initial 
solution 

A Setting 1 2.6 24.9 
 Setting 2 4.6 21.1 
 Setting 3 20.2 41.8 
B Setting 1 6.1 (*) 
 Setting 2 6.2 (*) 
 Setting 3 23.8 17.3 
C Setting 1 41.2 4.6 
 Setting 2 42.7 3.3 
 Setting 3 74.5 8.2 
Table 1:  Summary of results 
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       The cost improvement obtained by applying 
our solution methodology was found to range from 
3.3% to 41.8 %, with respect to an initial feasible 
solution found by conventional methods. 
According to Wu [7], even a 1 % savings on gas 
transportation cost may be worth 48.6 million 
dollars.  Thus even a small percentage of 
improvement in the solution quality delivered by 
an algorithm may represent a very important 
amount of savings for the pipeline company. 
 
       Another issue investigated was the choice of 
the parameters λ and γ .  These two parameters 

play a significant role in terms of computational 
time.  As explained earlier, the greater the value of 
parameter λ , the higher probability the iteration 
will move out of the feasible region. On the other 
hand, a larger λ  value yields a faster algorithm 
convergence. Parameter γ  is needed if the new 

solution is not feasible, or if we have no improved 
solution obtained. During our experiments, we 
found that λ  ranging between 0.8 and 0.85, and 
γ  around 0.5 yields adequately fast convergence. 

 
       The distribution of the running time among 
the various types of operations in the algorithm 
was studied as well.  It was found, that the most of 
time (about 95 %) is spent on solving DP.  This 
result highlights the importance of having an 
efficient procedure for solving DP.  A more 
complete presentation of the numerical 
experimentation can be found in Kim [3]. 
 
 
6  Conclusions 
 
       In this paper we have presented a heuristic for 
the fuel cost minimization on natural gas 
transmission networks in steady state.  The 
algorithm focuses on addressing cyclic network 
topologies.  The mathematical model, which has 
an underlying network topology, has a non-convex 
objective function and non-convex feasible 
domain, which makes it difficult to solve.  The 
main contribution of this work is precisely on 
providing a method for handling cyclic topologies, 
which had not been done to the best of our 
knowledge.  Further, our work incorporates the 
most accurate model of compressor stations to 
date.  In general, the problem we have presented is 
too computationally complex to be solved 
efficiently using standard mathematical 
programming techniques.  A dynamic 
programming approach has proved to be an 
excellent choice for simple network structures 
(such as gun-barrel and the tree networks).  For a 

system with cycles containing compressor stations, 
dynamic programming has been applied only after 
the flow variables have been fixed.  The flow 
modification step of our solution methodology 
exploits the underlying network configuration, and 
seems robust for the tested problems.  It is 
necessary, though, further computational work that 
would assess the effectiveness of the proposed 
procedure under many different settings and a 
larger set of test problems.   
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