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Abstract: Natural gas pipeline operations in-
evitably involves imbalances. Most pipelines
allow for some small imbalance tolerances.
However, if imbalances are not resolved by the
end of the month, the pipeline will penalize
the shipper by imposing cash out prices. End-
of-the-month imbalances are resolved by cash
transactions between the pipeline and the ship-
pers based on such prices. Depending on the
amount of the imbalance position, this penalty
may be onerous. Nevertheless, as long as one
can anticipate the amount of penalty associ-
ated with a given imbalance position on any
given day, day to day operations can be man-
aged accordingly. The problem, is how to op-
timally managing shippers daily imbalance po-
sitions so as to minimize the cash-out penalty
impossed by the pipeline company. We in-
troduce a mixed integer bilevel programming
model for this problem, and propose a concep-
tual simulated annealing heuristic for its solu-
tion.

Introduction: The natural gas industry has
been going through a deregulation process

since the mid 1980s leading to signi�cant mar-
ket changes. What this means is that now the
decision making process of gas buying, selling,
storing, transporting, and so on, is inmerse in a
very complex world where producers, pipelines
(transporters), and brokers, play all a very im-
portant role in the chain. There are many
problems of practical importance, however, it
is still surprising to �nd only a few that have
been tackled by the operations research com-
munity. Guldman and Wang [4] account for
part of that work.

The problem addressed in this paper arises
when a natural gas shipping company draws
a contract with a pipeline company to deliver
certain amount of gas between pre-speci�ed lo-
cations. What is actually deliver may be more
or less of what was originally contracted (this
is called an imbalance). When this situation
occurs, the pipeline penalizes the shipper by
imposing a cash-out penalty policy. Since this
penalty is a function of the operating daily im-
balances, an important issue for the shipper is
how to carry out their daily imbalances so as
to minimze their incurred penalty.



In this paper we present a mathematical
framework for the problem of minimizing the
cash-out penalty from the shipper's perspec-
tive. The problem is modeled as a mixed-
integer bilevel linear programming problem
(mixed-integet BLP or MIBLP), where the
shipper plays the role of the leader (�rst level
decisions) and the pipeline represents the fol-
lower (second level decisions). BLP is NP-hard
in general. Mixed-integer BLP posses even a
higher degree of diÆculty as the typical con-
cepts for fathoming in traditional branch and
bound algorithms for mixed-integer program-
ming (MIP) can not be directly applied to
mixed-integer BLP. In order to �nd good solu-
tions for this problem, we proposed a heuristic
based on simulated annealing and discuss a few
implementation issues related to BLP. Exten-
sive computational work will be presented in
a follow up paper as this represents work in
progress.

Problem Description: Assume that a ship-
per has entered into a contract to deliver a
given amount of natural gas from a receipt to
a delivery meter in a given time frame. (In
the following gas and natural gas are treated
as synonyms.) The shipper must stipulate ti-
tle transfer agreements with the meter opera-
tors and a transportation agreement with the
pipeline. Under such agreements, the shipper
nominates a daily amount of gas to be injected
by the receipt meter operator into the pipeline
and to be withdrawn by the delivery meter op-
erator from the pipeline. The pipeline trans-
ports the gas from the receipt meter to the
delivery meter.

Due to the nature of the natural gas indus-
try, what is actually transported is inevitably
di�erent from what is nominated. Such a dif-
ference constitutes an imbalance. There ex-
ist operational and transportation imbalances.
The �rst type of imbalances refers to di�er-
ences between nominated and actual 
ows,
while the latter involves di�erences between
net receipts (receipts minus fuel) and deliver-
ies. While pipelines allow for small imbalances,

they issue penalties for both operational and
transportation imbalances to the other parties.
In the following the cash out penalties associ-
ated with operational imbalances are analyzed.

On the shipper side, an operational imbal-
ance can be either positive or negative. A pos-
itive imbalance (negative) arises when the ship-
per leaves (takes) gas in (from) the pipeline.
Alternatively, a positive (negative) imbalance
means that the actual 
ow is smaller (greater)
than the nominated amount of gas. A positive
(negative) end-of-the-month imbalance implies
a cash transaction from the pipeline (shipper)
to the shipper (pipeline). Cash out prices are
set in a way that whenever a shipper sells
(buys) gas to (from) the pipeline, he does so
at a very low (high) price. The relation be-
tween cash out price and imbalance position
depends non-linearly on the average, maxi-
mum and minimum gas spot price for the past
month.

Shippers daily nominate gas 
ows taking
into account the constraints deriving from their
buy/sell activity, their contractual constraints,
and future market opportunities. The gas price
is one of the major factors a�ecting their de-
cisions. In the absence of cash out provisions,
historically shippers would take out high cost
gas in the winter from the pipeline (causing
negative imbalances), and pay the transporter
back with low cost gas in the summer. This
corresponds to a speculative behavior by the
shippers, whereby imbalances are created and
managed as pseudo-storage in order to take ad-
vantage of movements in the gas price. Cash
out penalties were designed in order to avoid
such pricing arbitrages. In the present frame-
work, shippers are concerned with avoiding
costly cash out penalties.

Cash-Out Penalty Rules: The cashout penalty
assessment is di�erent from one company to
the others. Most of the time, a pipeline will
come up with an undisclosed procedure to de-
termine the cashout penalty for their shippers.
For this study, we will assume that a pipeline
company will use the following rules in its cash-



out procedure.

(1) At the end of the month, the shipper im-
balance positions must be cashed out.

(2) In the process of cashing out these im-
balances, the pipeline can reallocate the
imbalances for this shipper in such a way
that the �nal money transaction between
both parties is minimized.

(3) The positive imbalance at any zone can
be used to o�set the negative imbalance
at any other zone.

(4) For forward movement, the shipper needs
to pay the transportation cost based on
the forward movement volume.

(5) However, if the positive imbalance is
moved backward, the shipper will get a
back haul credit based on the backward
movement volume.

(6) The �nal size of imbalance position (either
positive or negative) cannot be greater
that of the initial one.

Mathematical Model: As stated in the pre-
vious section, the decision making process for
the shipper (leader) is to determine hot to
carry out their daily imbalances such as to min-
imize the penalty that will be imposed by the
pipeline (follower). It is assumed that all of
the problem data is known with certainty.

The following notation is used to describe
the model.

Indices and Sets

i; j; k zone pool indices; i; j; k 2 J

t time index; t 2 T

Data

xLti; x
U
ti bounds on daily imbalances at (end

of) day t in zone i; t 2 T , i 2 J

xLt ; x
U
t bounds on total daily imbalances

at (end of) day t; t 2 T

sLti; s
U
ti bounds on balance swings during

day t in zone i; t 2 T , i 2 J

eij percentage of fuel retained for mov-
ing one dekatherm (dt) of gas from
zone i to j; i; j 2 J

fij transportation charge for moving
one dt of gas from zone i to j;
i; j 2 J , i < j

bij backward haul credit for moving
one dt of gas from zone j to i;
i; j 2 J , i < j

ri gas selling price at zone i; i 2 J

x0j initial imbalance (start of day 1) in
zone j; j 2 J

Decision Variables

xti imbalance at (end of) day t in zone i;
t 2 T , i 2 J

sti imbalance swing during day t in zone
i; t 2 T , i 2 J

yi �nal imbalance at zone i; i 2 J

uij forward haul volume moved from zone
i to j; i; j 2 J , i < j

vij backward haul volume moved from
zone j to i; i; j 2 J , i < j

z total cash-out revenue for shipper

Auxiliar Variables

pi binary variable equal to 1 (0) if xjT j;i
is nonnegative (nonpositive) (used in
(2e)); i 2 J

q binary variable equal to 1 (0) if �nal
imbalances are all nonnegative (nonpos-
itive) (used in eq. (2f))

Here we provide the set of constraints in-
volved in both the �rst and second level of the
problem.



First Level Model:

Objective: Shipper's revenue.

max h1(x; s; y; u; v; z) = z (1a)

Constraints:

xLti � xti � xUti
t 2 T; i 2 J (1b)

sLti � sti � sUti
t 2 T; i 2 J (1c)

xLt �
X
i2J

xti � xUt

t 2 T (1d)
xti = xt�1;i + sti

t 2 T; i 2 J (1e)
xti; sti free

t 2 T; i 2 J (1f)

Second Level Model:

Objective: The penalty is determined by
minimizing the amount of cash transac-
tions. In many cases, both shipper and
pipeline agree in a policy that represents
a compromise between the two, so rather
than maximizing revenue for shipper, it is
agreed to minimize deviations from zero.
So the follower objective is given by

min h2(x; s; y; u; v; z) = jzj (2a)

Balance constraints: This constraint iden-
ti�es the relationship between the imbal-
ance at day jT j, forward and backward
haul volumes, retained fuel, and �nal im-
balance at zone i.

yj = xjT j;j +
X
i:i<j

(1� eij)uij +
X
k:k>j

vjk

�
X
k:k>j

ujk �
X
i:i<j

vij j 2 J (2b)

Gas conservation: This constraint ensures
no gas loss occurs.
X
i2I

yi +
X

(i;j):i<j

eijuij =
X
i2I

xjT j;i (2c)

Note that
P

(i;j) eijuij � 0, so
P

i yi �P
i xjT j;i.

Zone upper bounds: This constraints pre-
vents cyclic movements of gas. It simply
states that, at any given zone, we cannot
move more than any initial positive imbal-
ance.

X
i:i<j

uij +
X
k:k>j

vjk � maxf0; xjT j;jg

j 2 J (2d)

Forward haul upper bounds: These bounds
prevent positive-to-positive and negative
forward movement of imbalances.

uij �

8><
>:

xjT j;i if xjT j;i > 0

and xjT j;j < 0

0 otherwise

i; j 2 J ; i < j (2e)

Sign on �nal imbalances: This is a busi-
ness rule that states that �nal imbalances
for all zones must have the same \sign"
(i.e., all nonpositive or nonnegative). sign,
i.e., an imbalance must not change sign.

�M(1� q) � yi �Mq i 2 J (2f)

where M is a large number and q is a bi-
nary 0{1 variable.

Shipper's revenue: This equation repre-
sents the revenue from ths shipper's point
of view.

z =
X
i2J

riyi +
X

(i;j):i<j

bijvij

�
X

(i;j):i<j

fij(1� eij) (2g)

Variable types:

yi; z free (2h)

uij; vij � 0 (2i)

q 2 f0; 1g (2j)



Constraint (2d) is a disjunctive constraint
that can be linearized by replacing it with

X
i:i<j

uij +
X
k:k>j

vjk � Mpj

j 2 J (3a)X
i:i<j

uij +
X
k:k>j

vjk � xjT j;j +M(1� pj)

j 2 J (3b)

Constraint (2e) can be modeled by

uij � Mpi i; j 2 J (4a)

uij � M(1� pj) i; j 2 J (4b)

The Bilevel Program:

max z (5)
subject to (1b){(1f) (6)

min jzj (7)
subject to (2b){(2j) (8)

In the �rst level, there are 2jT jjJ j conti-
nouos variables and 3jT jjJ j + jT j constraints.
In the second level, there are jJ j(jJ j + 1) +
jJ j continuous variables, jJ j + 1 binary vari-
ables, and jJ j(jJ j � 1) + 7jJ j + 4 linear con-
straints. However, once the �rst level vari-
ables xjT j;i are known, all binary variables in
constraints (2e) are not needed, so we are left
with only one binary variable (constraint (2f)),
the same number of continuous variables, and
jJ j(jJ j � 1) + 4jJ j + 4 linear constraints (with
jJ j(jJ j + 1) + 2jJ j out of these being simple
bound constraints). The problem is classi�ed
in BLP literature as a mixed-integer Linear
BLP, which is known to be NP-hard [2].

Solving Mixed-Integer Linear BLPs:

BLPs are NP-hard, even for the linear case.
Algorithms designed to solve integer programs
generally rely on some form of separation,
relaxation, and fathoming to construct even
tighter bounds on the solution. Separation
is usually accomplished by placing contradic-
tory constraints on a single variable. This ap-
proach is directly applicable to mixed integer

BLP. The natural relaxation derives from the
removal of the integrality requirements on the
variables. Fathoming, however, presents sev-
eral diÆculties as some of the typical rules em-
ployed in MIPs do not hold for mixed-integer
BLPs. Details of a branch and bound imple-
mentation for mixed-integer BLP can be found
in [2].

Heuristics: Most of the recent developments
on heuristics for solving bilevel programs ad-
dress the linear case. In particular, approaches
based on meta-heuristics such as tabu search,
genetic algorithms, and simulated annealing,
have been applied with certain degree of suc-
cess to solve some applications of linear BLPs
(e.g., see Gendrau et al. [3], Anandalingam et
al. [1]). Another technique is the grid search
heuristic proposed by Bard [2], which makes
use of parametric programming.

In this work, we propose a simulated anneal-
ing implementation for mixed-integer BLPs
based on the ideas of Anandalingam et al. [1]
for the linear BLP.

Simulated Annealing: Simulated annealing
(SA) was derived from statistical mechanics
with the aim of �nding (near) optimal solu-
tions to large-scale problems. It generalizes
hill climbing methods (in the case of maxi-
mization) and eliminates their main disdvan-
tage: dependence of the solution on the start-
ing point. Moreover, it statistically promises to
deliver a globally optimal solution in the limit.
This is achieved by introducing a probability
� of acceptance (that is the replacement of the
current point by a new point): � = 1 if the new
point provides a better value of the objective
function. In general, � > 0 depends on the
values of the objective function evaluated at
the current and new points, and an additional
control parameter known as the temperature,
denoted by T . The lower the temperature, the
smaller the chances for acceptance of the new
point. During the execution of the algorithm,
T is lowered in steps. Termination occurs for
some small value of T for which virtually no



changes are accepted anymore. Most of the
applications of SA have targeted combinatorial
optimization problems, but the technique has
been adapted to continouos optimization prob-
lems as well (e.g., see Michalewicz [6]). For a
more extense treatment of simulated annealing
the reader is referred to Kirpatrick et al. [5].

Simulated Annealing for the Cash-Out

Problem: Our implementation makes use of
the fact that for a given (x; s), the follower's
rational reaction can be obtained by solving
a mixed integer program (7){(8) wih only one
discrete variable, that is, almost a linear pro-
gram. This implies that only components of
the vector (x; s) need to be generated ran-
domly. Furthermore, it can be seen from the
formulation that the decision variables driving
the leader's decision are xjT j;i, that is, the state
of the imbalances at the very last time period.
Hence, we procede to generate xjT j;i �rst, and
then attempt to �nd a feasible (x; s) vector.
Notation:

F objective of the leader as de�ned
by eq. (1a) for current solution

F � best value of leader's objective
function at current iteration

z� array that stores the solution asso-
ciated with F �

k� maximum allowable iterations
with no change in optimal solution

� temperature reduction parameter

T � minimum temperature allowed for
annealing solution

U [a; b] uniform distribution between a
and b

The Simulated Annealing Heuristic:

Step 0: (Initialization) Set F � = +1,
temperature T = Tmax, and k = 0.

Step 1: Generate solution (xk; sk) in the
neighborhood of (xk�1; sk�1).

xki � U [minxki ;maxxki ]

Step 2: Solve (7){(8) for (xk; sk); obtain
(yk; uk; vk) and current value of F .

Step 3: Compute �F = F � � F .
(3.1) If �F > 0, then F �  F ,
z� = (xk; sk; yk; uk; vk)
(3.2) If �F < 0, let z� =
(xk; sk; yk; uk; vk) with probabil-
ity exp(��F=T ).
(3.3) If � = 0, put k  k + 1.
(3.4) If k > k�, go to Step 4; else go
to Step 1

Step 4: Set k = 0 and lower temperature,
T  �T

Step 5: If T < T � or other termination
criteria met, stop; else go to Step 1.

Current Work: Our work in progress in-
cludes the computational implementation of
the heuristic presented in this paper. A follow
up paper will include our computational work
including a full assesment of the quality of the
solutions delivered by the method in terms of
both their quality and computational require-
ments. Of particular practical importance is
the study of the nature of the solutions for dif-
ferent data (initial imbalances) scenarios and
its impact on the penalty cash-out costs im-
possed by the pipeline companies. This is a
key issue for the decision makers in shipping
companies of natural gas nowadays. Although
the method is being developed for a particu-
lar application of mixed integer BLP, we ex-
pect to make progress toward the development
of a heuristic for general mixed integer BLPs,
for which practically no e�ective technique has
been developed up to date.
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