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Abstract:  In this paper we present a heuristic for the 
problem of minimizing fuel cost on steady-state gas 
transmission problems on looped networks.  The 
procedures is based on a two-stage iterative 
procedure, where, in a given iteration, gas flow 
variables are fixed and optimal pressure variables are 
found via dynamic programming in the first stage.  In 
the second stage, the pressure variables are fixed and 
an attempt is made to find a set of flow variables that 
improve the objective function by exploiting the 
underlying network structure.  This work focuses on 
looped network topologies, that is, networks with at 
least one cycle containing two or more compressor 
stations.  This kind of topologies posses the highest 
degree of difficulty in real-world problems. 
 
Introduction:  A gas transmission network for 
delivering natural gas involves a broad variety of 
physical components such as pipes, regulators, and 
compressor stations to name a few.  As the gas 
travels through the pipe, gas pressure is lost due to 
friction with the pipe wall. Some of this pressure is 
added back at compressor stations, which raise the 
pressure of the gas passing through them. In a gas 
transmission network, the overall operating cost of 
the system is highly dependent upon the operating 
cost of the compressor stations in a network. 
Operating cost, however, is generally measured by 
the fuel consumed at the compressor station.  Hence, 
the goal is to minimize the total fuel consumption 
used by the stations while satisfying specified 
delivery requirements throughout the system. 
 
Gas transmission network problems differ from 
traditional network flow problems in some 
fundamental aspects.  First, in gas networks, a 
pressure variable is defined at every node in addition 
to the flow variables representing mass flow rates 
through each pipe.  Second, in addition to the 
network flow conservation constraint set, there exist 
two other type of constraints: (1) a nonlinear equality 
constraint on each pipe, which represent the 
relationships between the pressure drop and the flow; 

and (2) a nonlinear non-convex set for each 
compressor station, which represents the feasible 
operating limits for pressure and flow within the 
station. 
 
The problem is very difficult to solve due to the 
presence of non-convexities in both the objective 
function and the set of feasible solutions.  
Optimization algorithms (most of them based on 
dynamic programming) for non-looped gas network 
topologies are in a relatively well-developed stage.  
However, effective algorithms for looped topologies 
are practically non-existent. 
 
In this paper we propose a heuristics for the fuel cost 
minimization on gas transmission systems with a 
looped network topology, that is, networks with at 
least one cycle containing two or more compressor 
station arcs.  The network based heuristic (NBH) is 
based on a two-stage iterative procedure.  In a 
particular iteration, at a first stage, gas flow variables 
are fixed and optimal pressure variables are found via 
dynamic programming (DP). At the second stage, the 
pressure variables are fixed and an attempt is made to 
find a set of flow variables that improve the objective 
function by exploiting the underlying network 
structure. 
 
Problem Formulation:  Let G = (N, L, M) be a 
directed network defined by a set N of n nodes, a set 
L of l pipes, and a set M of m compressor stations.  
The mass flow rate on a pipe Lji ∈),(  is 

represented by iju , and the mass flow rate through a 

compressor station Mji ∈),(  is represented by ijv . 

Note that each compressor station is represented by a 
special pipe which connects a pair of 
nodes Mji ∈),( , where i and j are the 

corresponding suction and discharge nodes, 

respectively. Let u and v be the vectors of iju 's and 

ijv 's, i.e., { }Ljiuu ij ∈= ),(: , 



{ }Mjivv ij ∈= ),(: , and let w be the vector 

defined by Tvuw ),(= .  Let T
nppp ),,( 1 K=  be 

the pressure vector with ip  the pressure at node i. 

Let T
nsss ),,( 1 K=  be the source vector with is  

the source at node i.  If is  is positive (negative), this 

corresponds to the gas supply limit (demand 
requirement) at node i.  For the steady-state model, 
the sum of the sources is assumed to be zero, i.e., 

0
1

=∑ =

n

i is .  

 
The flow balance equation at a node has the 
following meaning: the sum of flows coming out of 
the node is equal to the sum of the flow entering the 
node. It can be represented as  
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where ijw represents either iju  if Lji ∈),(  or ijv  

if Mji ∈),( . 

 
The physical law that relates the flow in the pipe to 
the difference of pressure at its two ends for high-
pressure networks is given, as discussed in Osiadacz 
[4], by the Weymouth's formula:  
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where ijk  is a constant whose value depends on the 

pipe physical properties. 
 
The physical operational limits at each compressor 
station are another set of constraints, which includes 
the maximum/minimum compressor speed ratio, the 
maximum/minimum allowable volumetric flow rate. 
A compressor station is typically of many compressor 
units (which in turn can be of many types) arranged 
in different configurations settings.  Let us assume 
that each compressor station (i,j) has k centrifugal 
compressor units hooked up in parallel. 
 

Let k
ijD  denote the feasible compressor domain for 

variables ),,( jiij ppv , and let 

),,( jiij
k
ij ppvg denote its corresponding fuel cost 

function. Recent work by Wu et al. [7] contains a 
detailed explanation about the structure of the 

domain k
ijD , and the behaviour of the fuel 

consumption function k
ijg .  

 

The fuel cost function 1
ijg  in a single compressor 

unit is computed by 
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where ija  and α are constants which are determined 

by the specific type of compressors involved.  
 
The mathematical formulation of the problem is 
given by 
 

Minimize     ∑
∈Mji

jiijij ppvg
),(

1 ),,(  (4a) 

 
Subject to 
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The difficulty in solving this problem arises from the 
presence of non-convexity in both the set of feasible 
solutions and the objective function. In addition, the 
type of underlying network topology becomes a 
crucial issue. For non-looped network topologies, 
dynamic programming (DP) approaches have been 
applied with relative success.  See Carter [2] and 
Ríos-Mercado [5] for details of the DP algorithms. 
  
These procedures rely heavily on theoretical results 
establishing that, for this type of (non-looped) 
systems, the involved flow variables can be uniquely 
determined in advance, and thus, eliminated from the 
problem.  For network topologies with loops, the 
problem becomes more difficult because the flow 
variables cannot be uniquely determined, so they 
indeed have to be explicitly treated in the model.  
Addressing looped networks becomes the main focus 
of this work. 
 

The Network Based Heuristic:  Let ),( 000 pvx =  

be an initial feasible solution to problem (4).  For a 
tree structured gas transmission network, flow 
variables v are uniquely determined. However, for 
looped networks, one may obtain better a objective 

function by modifying the current flow setting 0v .  
For this purpose, we introduce the residual network 



concept (e.g., see Ahuja et al. [1]).  The residual 
network was originally introduced to find the optimal 
flow (or to prove its optimality) in minimum cost 
network flow problems.  We define the residual 

network )(' 0vG  with respect to the current flow 

vector 0v  as follows.  We replace each arc (i, j) in 
the original network by two arcs, a forward arc (i, j) 
and a backward arc (j, i). The arc (i, j) has cost 

ijc and the arc (j, i) has cost jic− . 

 
In our heuristic flow modification step, the costs of 
the residual network are approximated by the 
derivatives of the objective function with respect to 
the flow on each compressor station, that is,  
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where ip , jp  are the current solution values 

delivered by dynamic programming with fixed flow 

variables. This cost ijc  is assigned at each forward 

edge of the residual network, while jic−  is assigned 

at each backward edge. 
  

The cycle cost Cτ , total cost of the cycle C in a 

residual network, is defined by 
 

 ∑
∈

⋅=
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where )(Cijδ  equals 1 if (i, j) is both contained in 

the cycle C and a forward arc of )(' 0vG , -1 if 

Cij ∈),(  and (j, i) is a backward arc of )(' 0vG , 

and $0$ otherwise, and CM  is the set of compressor 

stations located in the cycle C. If Cτ  is negative, 

then we call it a negative cycle and denote it as −C . 
 
Flow modification is done by augmenting flow 

through a negative cycle −C .  That is, if there exists 

a negative cost cycle −C , then we augment positive 

flow through −C , and hence update the current flow 
setting. This flow modification step can be 
represented as  
 

 )(0 −⋅+= Cvv new δλ  , (7) 

 

where 0>λ  is the positive amount of flow which 

will be added through the cycle, and )( −Cδ  is the 

vector of )( −Cijδ , a vector representing the 

negative cycle −C . The flow modification step of 
NBH can be viewed as a nonlinear programming 
algorithm in which we try to find a direction (a 
vector of flow modification) such that by moving 

λ units in this direction, the objective function 
decreases. In our heuristic procedure, a negative cycle 

vector )( −Cδ  corresponds to the search direction. 

 
The value λ  is bounded below by zero and above by 

λ , which can be obtained by considering the 

complex inequality constraint set k
ijD , −∈ Cji ),( .  

If 0=λ , then the algorithm stops. Otherwise, we 

set 0>= λλ .  
 

For the newly obtained flow setting newv , we need to 
find pressure variables, which requires rerunning DP 

with fixed flow setting newv . If DP with newv  has no 
feasible solution or no improvement has been 
achieved, we reduce the size of λ  by setting 

γλλ = , where 10 << γ , and apply DP until we 

get a desirable result. The algorithm is summarized 
below. 
 

Step 1: Find an initial feasible solution 

),( 000 pvx =  

Step 2: Construct the residual network 

)(' 0vG , and find a negative cycle −C  

with (negative) cost −C
τ . 

Step 3: If ετ <−C
, where ε  is a small 

number, stop. Otherwise, go to Step 4. 

Step 4: Set λλ = . If 0=λ , stop.  
Otherwise 

(a) Modify the current flow by 

)(0 −⋅+= Cvv new δλ . 

(b) Calculate pressure values using 
dynamic programming with 

modified flow newv .  If DP yields 
infeasible solution, or 

00 >− gg new , then set γλλ = , 

with 10 << γ , and go to Step 4a.  

Otherwise, update newvv ←0 , and 
go to Step 2. 

 
Finding an Initial Feasible Solution:  Like most 
optimization algorithms, our algorithm starts from a 



feasible point.  According to gas specialists in the 
industry, getting a feasible solution for the complex 
network topology is quite a difficult task.  Using our 
implementation of the solution methodology, we can 
obtain constructive information that can be used to 
find a feasible solution of the given problem.  The 
current flow setting of the network satisfies the flow 
balance equations. We do not know yet whether this 
setting is feasible or not. The maximum capacity of 
the flow through the compressor station depends on 
the number of compressor units connected in parallel. 
Our implementation can be used for detecting 
infeasibility, that is, if the current flow setting yields 
an infeasible solution. The algorithm also gives us 
information on how much the current flow can be 
augmented or reduced to meet the capacity of the 
specific compressor station.  Starting from an initial 
feasible set flow rates, we arrive at an improved 
solution using our proposed iterative solution 
methodology. However, solutions vary based on the 
different starting points used. 
 
Computational work:  Because of the lack of test 
problems in gas pipeline literature, we designed our 
own data sets.  These were carefully constructed so as 
to represent real-world instances.  In fact, all of the 
compressor-related data were kindly provided by 
Scientific Software Intercomp, Inc, a consulting firm 
in the pipeline industry.  The algorithm, as described 
previously, consists of about 15,000 lines of C code.  
Numerical experiments on 12 instances based on 
three different looped topologies were run on a SGI 
Power Challenge L workstation running IRIX 6.2.  
Even though our solution methodology can handle 
non-looped topologies, our computational 
experiments targeted the looped structure case.  The 
problem sizes used in our work range from a single-
loop six-compressor instance to a four-loop 21-
compressor instance.  A more complete presentation 
of the numerical experimentation can be found in 
Kim [3].  Here we limit our exposition to assess the 
algorithmic performance of the algorithm. 
 
The cost improvement obtained by applying our 
solution methodology was found to range from 3.3% 
to 41.8 %, with respect to an initial feasible solution 
found by conventional methods. According to Wu 
[6], 1 % savings on gas transhipment cost is worth 
48.6 million dollars.  Thus even a small percentage 
of improvement in solution by our algorithm is a 
great savings for the company. 
 
Another issue investigated was the choice of the 
parameters λ and γ .  These two parameters play a 

significant role in terms of computational time.  As 
explained earlier, the greater the value of parameter 
λ , the higher probability the iteration will move out 

of the feasible region. On the other hand, a larger λ  
value yields a faster algorithm convergence. 
Parameter γ  is needed if the new solution is not 

feasible, or if we have no improved solution obtained. 
During our experiments, we found that λ  ranging 
between 0.8 and 0.85, and γ  around 0.5 yields 

adequately fast convergence. 
 
The distribution of the running time among the 
various types of operations in the algorithm was 
studied as well.  It was found, that the most of time 
(about 95 %) is spent on solving DP.  This result 
highlights the importance of having an efficient 
procedure for solving DP. 
 
Conclusions:  In this paper we have presented a 
heuristic for the fuel cost minimization on natural gas 
transmission networks in steady state.  The algorithm 
focuses on addressing looped network topologies.  
The mathematical model, which has an underlying 
network topology, has a non-convex objective 
function and non-convex feasible domain, which 
makes it difficult to solve.  The main contribution of 
this work is precisely on providing a method for 
handling looped topologies, which had not been done 
to the best of our knowledge.  Further, our work 
incorporates the most accurate model of compressor 
stations to date.  In general, the problem we have 
presented is too computationally complex to be solved 
efficiently using standard mathematical 
programming techniques.  A dynamic programming 
approach has proved to be an excellent choice for 
simple network structures (such as gun-barrel and the 
tree networks).  For a system with loops containing 
compressor stations, dynamic programming has been 
applied only after the flow variables have been fixed.  
The flow modification step of our solution 
methodology exploits the underlying network 
configuration, and is very simple yet robust.   
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