Minimizing Fuel Usage on Gas Pipelines:

A Network Based Algorithm for L ooped Topologies

Abstract: In this paper we present a heuristic for the
problem of minimizing fuel cost on steady-state gas
transmission problems on looped networks. The
procedures is based on atwo-stage iterative
procedure, where, in a given iteration, gas flow
variables are fixed and optimal pressure variables are
found via dynamic programming in the first stage. In
the second stage, the pressure variables are fixed and
an attempt is made to find a set of flow variables that
improve the objective function by exploiting the
underlying network structure. Thiswork focuses on
looped network topologies, that is, networks with at
least one cycle containing two or more compressor
stations. Thiskind of topologies posses the highest
degree of difficulty in real-world problems.

Introduction: A gas transmission network for
delivering natural gas involves a broad variety of
physical components such as pipes, regulators, and
compressor stations to name afew. Asthe gas
travel s through the pipe, gas pressure is lost due to
friction with the pipe wall. Some of this pressureis
added back at compressor stations, which raise the
pressure of the gas passing through them. In a gas
transmission network, the overall operating cost of
the system is highly dependent upon the operating
cost of the compressor stations in a network.
Operating cost, however, is generally measured by
the fuel consumed at the compressor station. Hence,
the goal isto minimize the total fuel consumption
used by the stations while satisfying specified
delivery requirements throughout the system.

Gas transmission network problems differ from
traditional network flow problemsin some
fundamental aspects. First, in gas networks, a
pressure variable is defined at every node in addition
to the flow variables representing mass flow rates
through each pipe. Second, in addition to the
network flow conservation constraint set, there exist
two other type of constraints: (1) a nonlinear equality
constraint on each pipe, which represent the
relationships between the pressure drop and the flow;
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and (2) anonlinear non-convex set for each
compressor station, which represents the feasible
operating limits for pressure and flow within the
station.

The problem is very difficult to solve due to the
presence of non-convexities in both the objective
function and the set of feasible solutions.
Optimization algorithms (most of them based on
dynamic programming) for non-looped gas network
topologies are in arelatively well-developed stage.
However, effective algorithms for looped topologies
are practically non-existent.

In this paper we propose a heuristics for the fuel cost
minimization on gas transmission systems with a
looped network topology, that is, networks with at
least one cycle containing two or more compressor
station arcs. The network based heuristic (NBH) is
based on a two-stage iterative procedure. Ina
particular iteration, at afirst stage, gas flow variables
are fixed and optimal pressure variables are found via
dynamic programming (DP). At the second stage, the
pressure variables are fixed and an attempt is made to
find a set of flow variables that improve the objective
function by exploiting the underlying network
structure.

Problem Formulation: Let G= (N, L, M) bea
directed network defined by a set N of n nodes, a set
L of | pipes, and aset M of m compressor stations.

The mass flow rate on apipe (i, j)T L is
represented by Uy, and the mass flow rate through a
compressor station (i, j)T M is represented by v -

Note that each compressor station is represented by a
special pipe which connects a pair of

nodes(i, j)T M , wherei and j are the
corresponding suction and discharge nodes,
respectively. Let u and v be the vectors of u;'s and
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V:{Vij (i, T M},andletwbethevector
defined by w=(u,v)". Let p=(p,,..., p,)" be
the pressure vector with p, the pressure at node i.
Let S=(S,,...,S,)" bethe source vector with S,

the source at nodei. If S ispositive (negative), this

corresponds to the gas supply limit (demand
requirement) at nodei. For the steady-state model,

the sum of the sources is assumed to be zero, i.e.,
[¢]

ainzls' =0.

The flow balance equation at a node has the
following meaning: the sum of flows coming out of
the node is equal to the sum of the flow entering the
node. It can be represented as

aw,=s il N @

j:(j.il LEM

o
aWu'

j«(i,) LEM

where W, represents either Uy if (i, DT Lor v;
it (i, )T M.

The physical law that relates the flow in the pipe to
the difference of pressure at its two ends for high-
pressure networks is given, as discussed in Osiadacz
[4], by the Weymouth's formula:

pr- Py =kyui (DT L @

where kK, i is a constant whose value depends on the
pipe physical properties.

The physical operational limits at each compressor
station are another set of constraints, which includes
the maxi mum/minimum compressor speed ratio, the
maxi mum/minimum allowable volumetric flow rate.
A compressor station is typically of many compressor
units (which in turn can be of many types) arranged
in different configurations settings. Let us assume
that each compressor station (i,j) has k centrifugal
compressor units hooked up in parallel.

Let Di;‘ denote the feasible compressor domain for
variables (V;, p;, ;). and let

gi‘j‘ (Vij Py P ) denote its corresponding fuel cost

function. Recent work by Wu et al. [7] contains a
detailed explanation about the structure of the

domain Dilj‘ , and the behaviour of the fuel

consumption function gi‘j‘ :

The fuel cost function gﬁ in a single compressor
unit is computed by
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where a; and a are constants which are determined
by the specific type of compressors involved.

The mathematical formulation of the problem is
given by

Minimize & g; (v, P, ;) (4a)
(. m
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The difficulty in solving this problem arises from the
presence of non-convexity in both the set of feasible
solutions and the objective function. In addition, the
type of underlying network topology becomes a
crucial issue. For non-looped network topologies,
dynamic programming (DP) approaches have been
applied with relative success. See Carter [2] and
Rios-Mercado [5] for details of the DP algorithms.

These procedures rely heavily on theoretical results
establishing that, for this type of (non-looped)
systems, the involved flow variables can be uniquely
determined in advance, and thus, eliminated from the
problem. For network topologies with loops, the
problem becomes more difficult because the flow
variables cannot be uniquely determined, so they
indeed have to be explicitly treated in the model.
Addressing looped networks becomes the main focus
of thiswork.

The Network Based Heuristic: Let x° = (V°, p°)
be an initial feasible solution to problem (4). For a
tree structured gas transmission network, flow
variables v are uniquely determined. However, for
looped networks, one may obtain better a objective
function by modifying the current flow setting Vo,
For this purpose, we introduce the residual network



concept (e.g., see Ahujaet a. [1]). Theresidual
network was originally introduced to find the optimal
flow (or to prove its optimality) in minimum cost
network flow problems. We define the residual

network G'(v®) with respect to the current flow

vector v° asfollows. We replace each arc (i, j) in
the original network by two arcs, aforward arc (i, j)
and a backward arc (j, i). The arc (i, j) has cost

Cjj and the arc (j, i) has cost - Cji

In our heuristic flow modification step, the costs of
the residual network are approximated by the
derivatives of the objective function with respect to
the flow on each compressor station, that is,
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where [, p; arethe current solution values
delivered by dynamic programming with fixed flow
variables. This cost G is assigned at each forward

edge of the residual network, while - C.;

i isassigned

at each backward edge.

Thecyclecost t ., total cost of thecycleCina
residual network, is defined by
o
te = ad;(C)x; (6)
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where dij (C) equals 1if (i, j) is both contained in
the cycle C and aforward arc of G'(v°), -1 if
(j,)T C and (j, i) isabackward arc of G'(V°),
and $0$ otherwise, and M . isthe set of compressor
stations located in the cycle C. If t . isnegative,

then we call it a negative cycle and denoteitas C™ .

Flow modification is done by augmenting flow
through anegative cycle C™ . That is, if there exists
anegative cost cycle C™ , then we augment positive

flow through C~ , and hence update the current flow
setting. This flow modification step can be
represented as

v =vP+| xd(C), @)

where | > Q isthe positive amount of flow which
will be added through the cycle, and d (C™) isthe

vector of d;; (C™) , avector representing the

negative cycle C™ . The flow modification step of
NBH can be viewed as a nonlinear programming
algorithm in which we try to find a direction (a
vector of flow modification) such that by moving

| unitsin this direction, the objective function
decreases. In our heuristic procedure, a negative cycle

vector d (C ") corresponds to the search direction.

Thevalue |

is bounded below by zero and above by
|, which can be obtained by considering the
complex inequality constraint set D, (i, )T C".

]
If I_ = 0, then the algorithm stops. Otherwise, we
st| = >0.

For the newly obtained flow setting V™", we need to
find pressure variables, which requires rerunning DP

with fixed flow setting v™". If DP with v™ has no
feasible solution or no improvement has been
achieved, we reduce thesize of | by setting

| =d ,where 0<g <1, and apply DP until we

get adesirable result. The algorithm is summarized
below.

Find an initial feasible solution
0 _,0 A0
X" =(v,p’)
Construct the residual network
G'(v°), and find a negative cycleC”

Step 1:
Step 2:

with (negative) cost t o

Step 3: |If |[ . | <e,where e isasmall
number, stop. Otherwise, go to Step 4.
Set] =I .1f | =0, stop.
Otherwise

(@) Modify the current flow by

v =v0+] >d(C).

(b) Calculate pressure values using
dynamic programming with
modified flow v™". If DPyields
infeasible solution, or
g™ -9°>0,thenset | =g ,
with 0 <g <1, and go to Step 4a.

Step 4:

Otherwise, update v° = v™, and
go to Step 2.

Finding an Initial Feasible Solution: Like most
optimization algorithms, our algorithm starts from a



feasible point. According to gas specialistsin the
industry, getting a feasible solution for the complex
network topology is quite adifficult task. Using our
implementation of the solution methodology, we can
obtain constructive information that can be used to
find afeasible solution of the given problem. The
current flow setting of the network satisfies the flow
balance eguations. We do not know yet whether this
setting is feasible or not. The maximum capacity of
the flow through the compressor station depends on
the number of compressor units connected in parallel.
Our implementation can be used for detecting
infeasibility, that is, if the current flow setting yields
an infeasible solution. The algorithm also gives us
information on how much the current flow can be
augmented or reduced to meet the capacity of the
specific compressor station. Starting from an initial
feasible set flow rates, we arrive at an improved
solution using our proposed iterative solution
methodology. However, solutions vary based on the
different starting points used.

Computational work: Because of the lack of test
problems in gas pipeline literature, we designed our
own data sets. These were carefully constructed so as
to represent real-world instances. In fact, all of the
compressor-related data were kindly provided by
Scientific Software Intercomp, Inc, a consulting firm
in the pipeline industry. The algorithm, as described
previously, consists of about 15,000 lines of C code.
Numerical experiments on 12 instances based on
three different looped topol ogies were run on a SGI
Power Challenge L workstation running IRIX 6.2.
Even though our solution methodology can handle
non-looped topologies, our computational
experiments targeted the looped structure case. The
problem sizes used in our work range from a single-
loop six-compressor instance to a four-loop 21-
compressor instance. A more compl ete presentation
of the numerical experimentation can be found in
Kim [3]. Here we limit our exposition to assess the
algorithmic performance of the algorithm.

The cost improvement obtained by applying our
solution methodology was found to range from 3.3%
to 41.8 %, with respect to an initial feasible solution
found by conventional methods. According to Wu
[6], 1 % savings on gas transhipment cost is worth
48.6 million dollars. Thus even a small percentage
of improvement in solution by our algorithm isa
great savings for the company.

Another issue investigated was the choice of the
parameters | and g . Thesetwo parameters play a
significant role in terms of computational time. As
explained earlier, the greater the value of parameter

| , the higher probability the iteration will move out

of the feasible region. On the other hand, alarger |
value yields a faster algorithm convergence.
Parameter g is needed if the new solution is not

feasible, or if we have no improved solution obtained.
During our experiments, we found that | ranging
between 0.8 and 0.85, and g around 0.5 yields

adequately fast convergence.

The distribution of the running time among the
various types of operations in the algorithm was
studied aswell. It was found, that the most of time
(about 95 %) is spent on solving DP. Thisresult
highlights the importance of having an efficient
procedure for solving DP.

Conclusions: In this paper we have presented a
heuristic for the fuel cost minimization on natural gas
transmission networks in steady state. The algorithm
focuses on addressing looped network topologies.
The mathematical model, which has an underlying
network topology, has a non-convex objective
function and non-convex feasible domain, which
makes it difficult to solve. The main contribution of
thiswork is precisely on providing a method for
handling looped topologies, which had not been done
to the best of our knowledge. Further, our work
incorporates the most accurate model of compressor
stations to date. In general, the problem we have
presented is too computationally complex to be solved
efficiently using standard mathematical

programming techniques. A dynamic programming
approach has proved to be an excellent choice for
simple network structures (such as gun-barrel and the
tree networks). For a system with loops containing
compressor stations, dynamic programming has been
applied only after the flow variables have been fixed.
The flow modification step of our solution
methodology exploits the underlying network
configuration, and is very simple yet robust.
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