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Abstract: We address the problem of minimizing the fuel consumption incurred by compressor
stations in steady-state natural gas transmission networks. In the real world, these type of
instances are very large both in terms of the number of decision variables and the number of
constraints, and very complex due to the presence of non-linearity and non-convexity in both
the set of feasible solutions and the objective function. In this paper we develop a technique
that can be used to significantly reduce the size of the instances by exploiting the special and

unique structure and properties of gas pipeline networks.

Model: In this paper we consider the problem of minimizing the fuel cost consumption incurred
by compressor stations through natural gas transmission networks.

This problem is represented by a network, where arcs correspond to pipelines and compressor
stations, and nodes correspond to their physical interconnection points. The decision variables
are the mass flow rates through every arc, and the gas pressure level at every node. At each
compressor station, there is a a cost function that depends on the inlet (suction) pressure, the
outlet (discharge) pressure and the mass flow rate through the compressor. This function g is
typically non-convex and nonlinear.

The objective function of the problem is the sum of the fuel costs over all the compressor

stations in the network. This problem involves the following constraints:

(i) mass flow balance equation at each node;
(ii) gas flow equation through each pipe;
(iii) pressure limit constraints at each node;

(iv) operation limits in each compressor station.



The first two are also called steady-state network flow equations. We emphasize that while
the mass flow balance equations are linear, the pipe flow equations are nonlinear; this has been
well documented in [3]. For the medium and high pressure flows, when taking into account the
fact that a change of the flow direction of the gas stream may take place in the network, the

pipe flow equation takes the following form:
pi—p3 = culul (1)

where p; and po are pressures at the end nodes of the pipe, u is mass flow rate through the
pipe, « is a constant (o ~ 1), and the pipe resistance c is a positive quantity depending on the
pipe physical attributes.

The steady-state network flow equations can be stated in a very concise form by using
incidence matrices. Let us consider a network with n nodes, [ pipes, and m compressor stations.
Each pipe is assigned a direction which may or may not coincide with gas flow through the

pipe. Let A; be the n x [ matrix whose elements are

1, if j* pipe comes out from i*” node;
aj; = —1, if j** pipe goes into i*" node;

0, otherwise.

A; is called the node-pipe incidence matrix. Let A,, be the n X m matrix whose elements are

1, if i node is the discharge node of k* station;
ajy = —1, if i node is the suction node of k** station;

0, otherwise.

A, is thus called a node-station incidence matrix. The matrix formed by annexing A,, to the
right hand side of A; will be denoted as A, i.e., A = (A; A,,), which is an n X (I + m) matrix.

A simple network example is shown in Figure 1 which has n = 10 nodes, | = 6 pipes, and
m = 3 stations. Directions assigned to the pipes have been indicated. Note that all nodes,

pipes, and stations have been labeled separately. The matrices A; and A,, for this network are

o o0 o o0 o0 0 1 0
1 0o 0 0 0 O -1 0
-1 0 0 0 0 0 0 1 1
o 1 0 0 0 0 0 -1 0
A= 0o -1 1 1 0 0 A, = 0 0 0
o 0 -1 0 0 0 0 0 0
o 0 o0 -1 0 0 0 0 O
o o0 o 0 1 0 0 0 -1
0 0 0 -1 1 0 0 O
o 0 o0 0 0 -1 0 0
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Figure 1: An example of a simple network

These matrices have a few special characteristics. To name a few, each row in matrix A4;, for
example, corresponds to a node, and each column corresponds to a pipe in the network. In
addition, each column contains exactly two nonzero elements, one is 1 and the other —1, which
correspond to the two end nodes of the pipe.

Let u = (u1,...,w)T, and v = (vy,...,v,)7 be the mass flow rate through the pipes and
stations, respectively. Let w = (u”,v?)T. A component uj or vy, is positive if the flow direction
coincides with the assigned pipe or station direction, negative, otherwise. Let p = (py,...,pn)"
be the pressure vector (p; the pressure at the i node), and s = (s1,...,5,)T be the source
vector (s; the source at the it node). The component s; is positive if the node is a supply node;

negative, if it is a delivery node; and zero, otherwise. We assume, without loss of generality,

the sum of the sources to be zero:
> si=0. (2)

The network flow equations can now be stated as the following:

Aw =s
Al'p? = p(u)
where
p’=l,-pp)",  p(a) = (p1(w),..., du(w))",
in which

bi(ug) = cjujlu;|®
Now suppose the source vector s is given satisfying the zero sum condition, and the bounds

p’, pY of pressures at every node have been specified. The problem is to determine the pressure

vector p and the flow vector w so that the total fuel consumption is minimized, i.e.,



m
Minimize F(w,p) = > gk(Vk,Pkss Pra) (3)

subject to Aw = I;ZI (4)
Alp* = d(u) (5)

p € [p"p"] (6)

(ks Ps,Pra) € Dy k=12,...,m (7)

where vk, prs, and prq are the mass flow rate, suction pressure, and discharge pressure at the
k-th station, g is its corresponding cost function, and Dj is the feasible domain in which
the triple variables (vg, pks, Prq) may vary, See [3] for an in-depth study of the structure and

properties of D; and g. Note that
1. The feasible domains D, are non-convex.
2. The fuel minimization functions g; are nonlinear, non-convex and even discontinuous.
3. The pipe flow equations (1) define a non-convex set.

In general, a problem with these characteristics is very difficult to solve. What we do in
this paper is to propose a technique that significantly reduces the size of any instance to this
problem, making it more tractable. This technique uses concepts from graph theory applied to

natural gas pipeline networks.

Graph Theory Concepts: A directed graph (or digraph) G consists of a set of vertices
V ={v1,vs,...}, a set of edges E = {ey,ea,...}, and a mapping ¥ that maps every edge onto
some ordered pair of vertices (v;,v;). If e € E, v;,v; € V, and ¥(e) = (v;,v;), the edge e is
called incident with vertices v; and v;, or more precisely, out of vertex v;, and into vertex v;. If
v; = vj, e is called a self-loop. If both V' and E are finite, the digraph G is called finite digraph.

A walk is defined as a finite alternating sequence of vertices and edges, beginning and ending
with vertices, such that each edge is incident with the vertices preceding and following it. A
walk in which no vertex appears more than once is called a path. A walk beginning and ending
with the same vertex in which no other vertex appears more than once is called a circuit.

A digraph G is said to be connected if there is at least one path between every pair of
vertices in G. The digraph considered in this paper will be assumed to be finite and connected.
Also we assume the digraph has no self-loops. A tree is a digraph without a circuit. A spanning
tree T of a digraph G is a tree consisting of all the vertices in G. For a giving spanning tree T'
of a digraph G, the edge which is not in the tree T is called a chord. Adding a chord ¢ to the

spanning tree T forms a circuit which is called a fundamental circuit.



Here are some basic results regarding spanning trees and fundamental circuits of a digraph.

Proofs of Theorems 1 and 2 can be found in [1].

Theorem 1 Let n and e be the numbers of the vertices and edges, respectively, in a digraph G.

Let T be a spanning tree of G. Then

1. The number of edges in the spanning tree T is n — 1, the number of chords corresponding

to the spanning tree T is e —n + 1;

2. The number of the fundamental circuits corresponding to o spanning tree T is e —n + 1.

Every other circuit in the digraph G is a linear combination of the fundamental circuits.

Suppose G is a self-loop-free digraph with n vertices and e edges. An incident matriz A of

the digraph G is an n by e matrix, defined by

1, if j' edge is incident out of i** vertex;
aij =< —1, if j" edge is incident into i'* vertex;

0, if j** edge is not incident with i** vertex.

Each row of the incident matrix A represents how the edges are incident with a specific
vertex. Hach column of the incident matrix A represents how the vertices are incident with a
specific edge. Since we have assumed that the digraph G has no self-loops, each column consists
of one 1, one —1, and zeros. It can be proved that the rank of A is n — 1. By deleting one
row from the matrix A, the remainder matrix is called reduced incident matriz, denoted by Ay,
which is n — 1 by e, whose n — 1 row vectors are linear independent. The vertex corresponding
to the deleted row is called reference vertex. The incident matrix of a digraph completely
determines the digraph.

Each circuit in the digraph G, after being arbitrarily assigned an orientation, can be rep-
resented by a vector whose components are 1, —1,0 according to whether and how the edge is
included in the circuit. A circuit matriz B is a matrix each row of which corresponds a circuit

vector, which is defined by

1, if i*" circuit contains j** edge
and their orientations coincide,
bij = —1, if i' circuit contains j* edge

but their orientations are opposite,

0, if i*" circuit does not contain j* edge.

As Theorem 1 stated, only e —n + 1 fundamental circuit vectors with respect to a spanning
tree are independent. The matrix consisting of the e — n + 1 fundamental circuit vectors is

called reduced circuit matriz, denoted by By, which is e —n + 1 by e matrix.



Theorem 2 Let G be a self-loop-free digraph, Ay and By be the reduced incident and circuit

matrices using the same order of edges. Then
AyB} = ByA} =0.

To explain the above concepts and results, we give an example of a simple digraph in Figure 2

which consists of n = 6 vertices and e = 8 edges.
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Figure 2: The fundamental circuits in a digraph

The incident matrix of the digraph, in which the vertices are arranged as 123456, and the
edges abcdef gh, is

o o0 o0 -1 o0 1 0 O

o o0 o0 0 1 -1 1 -1

Ao o o0 o0 o0 o 0 o0 1
-1 -1 -1 0 -1 0 0 O

0 0 1 1 0 -1 0

1 10 0 0 0 0 0

The reduced incident matrix, if taking vertex 3 as its reference vertex, is

o o o0 -1 0 1 0 0

0o 0 0 0 1 -1 1 -1
Aj=| -1 -1 =1 0 -1 0 0 0
0 0 1 1 0 -1 0
1 1 0 0 0 0 0

Edges {a,c,e, f,h} form a spanning tree, indicated by the thick lines in Figure 5.1. Edges

{b,d, g} are the chords corresponding to the spanning tree. The number of fundamental circuits



is e —n + 1 = 3. Each fundamental circuit corresponds to a chord. The reduced fundamental

circuit matrix, whose orientations are shown in Figure 5.1, is

-11 00 O0O0O00O0
By = 00 -11 1100

00 10 -1010
The Pipeline Network Flow Equations: Now let us consider a gas pipeline network system
which consists of only nodes and pipes. We arbitrarily assign a direction for every pipe and view
it as a digraph. Let G be such a digraph with n vertices and e edges. Let w = (w1, ..., w.)! be
the flow vector with w; the mass flow rate through the § edge. wj is positive if the directions
of the flow and the edge coincide, negative otherwise. Let s = (s1,...,s,)” be the source
vector satisfying (2). Let p = (p1,...,pn)” be the pressure vector with p; the pressure at the
i'" vertex.

The network flow equations can now be stated as the following;:

Aw =s
{ ATp? = glw) )

where p? = (p?,...,p2)T, and p(w) = (¢1(w1),. .., ¢e(we))T, in which ¢;(w;) is a function of
wj. In most network flow problems functions {qu}‘f are nonlinear. In the gas pipeline network

area, the most commonly used ¢;’s are

¢j(wy) = cjwjlwi|, 1<j<d,
with ¢; > 0. In some cases, ¢;’s could also be

¢j(wj) = cjwslw;|*, 1<j<d,

where o > 0.

Now suppose the source vector s is given satisfying the zero sum condition (2) and a reference
vertex has been selected whose pressure is also given (which is a necessary condition to solve the
flow equations (8)). The number of the unknowns is e + n — 1 (since we assumed one pressure
is given, the unknowns are n — 1 pressure variables and e flow variables), and the number of
the flow equations is e +n. These are n node flow balance equations and e pipe flow equations.
Since rank(A)= n — 1, only (n — 1) node flow balance equations are linear independent. Let
Ay be the reduced incident matrix with respect to the selected vertex; let By be the reduced

circuit matrix with respect to some spanning tree. Since B fAT = 0, system (8) is equivalent to

AfW = 8¢
Byp(w) =0 (9)
ATp? = ¢(w)



where s¢ is the (n — 1) by 1 vector formed by removing the source term corresponding to the

selected reference vertex from s. The advantage of system (9) is that the first two equations,

AfW = 8¢ (10)
Bré(w) =0

ie.,

contain only the flow vector w. Notice that system (10) consists of e equations and e unknowns
((n — 1) equations in the first equation and (e —n + 1) equations in the second. Unknowns are
e components in the flow vector w). If it has a unique solution, the flow vector w can be solved
separately from the pressure vector p, and the pressure vector p can be directly computed
from the third equation of the system (9) as the pressure at reference vertex is given. We now

address the question on whether system (10) has a unique solution.

Uniqueness and Existence of the Solution: In this section, we show that system (10) has
a unique solution. A direct corollary of this result is that system (8) has a unique solution if
the source vector s¢ and the reference pressure are given. We begin with some definitions.

Let H be a Hilbert space with a scalar product (-, -).
Definition 1 A mapping ¢: H — H is said strongly monotonic if there exists a constant a > 0,

such that, for every =, y € H we have
(¢(z) — d(y),z —y) 2 a(z —y,z —y).
Definition 2 A mapping ¢: H — H is said strictly monotonic if for every x, y € H we have
(¢(z) — d(y),z —y) 20,

and equality holds if and only if z = y.
Definition 3 A mapping ¢: H — H is said to be a basin if for every xy € H, the set

Xeo ={rz € H: (¢(z),x —x0) <0}

is bounded.

Now we prove some basic results related to the above concepts.
Lemma 1 If ¢: H — H is strongly monotonic, ¢ is a strictly monotonic basin.

Proof: Obviously ¢ is strictly monotonic. To show that it is also a basin, we notice that,

for every zo € H, x € Xy,

a(x —zo,z —xo) < (P(x) — Pp(x0),x —z9) (since ¢ is strongly monotonic)
= (¢(z),  — x0) — (P(x0), = — o)
< —(¢(z0),x — o) (since z € Xg,)
< llp(zo)lllz — zoll-



So
1
|z — x| < alld)(wo)ll-

Hence, X, is bounded. [ ]
However, a mapping ¢ that is a strictly monotonic basin is not necessarily strongly mono-

tonic. Here is an example.

Lemma 2 Let H = R? with the Euclid scalar product, d is a positive integer. Let ¢: R? — R?

be a mapping as the following: for every x = (x1,T2,...,74)" € R,

P(x) = (p1(21), p2(22), - ., da(x4))T

where

bj(z5) = cjzslas|®,  for1<j<d,
with ¢; > 0 and o > 0. Then ¢ is strictly monotonic basin.

Proof: For every x = (1,%2,...,24), y = (Y1, ¥2,-..,y4)" € R,
d
(B(x) = ¢(y),x —y) = D cjlzjlag]® — yjly;|*) (@5 — yj)-
i=1

Since o > 0, function h(s) = s|s|* is a strictly increasing function for all s. Hence, each term

at the right-hand side (RHS) is nonnegative. Thus,

(¢(x) = d(y),x —y) 2 0.

Equality holds if and only if every term at the RHS is zero, so z; = y;, for every j. Therefore
¢ is strictly monotonic.

To show that ¢ is a basin, let x° € R%. Then x € X, 0 means

(%, ¢(x)) < (x,$(x)),
ie.,
d d
2 0
> ciagleil® <Y ejaguglagl®.
j=1 j=1
Let p = ||x|| and y = x/p, so, ||y|| = 1. Replace z; by py; in the above inequality, we have

d 1
Sir cadpt Ty ly;|®

Yoy ejpltely;|Fre

p<

d
Ej:l Cj|?/j|1+a
Y9 cjly; e

Iz°]l



Since ¢; > 0, function

awzzéﬁwﬁf
2?21 Cj |yj|2+a
is continuous on the unit sphere ||y|| = 1. Let
G = max g(y),

lyll=1

then, for every x € X,o0, we have
p= x|l < [x°]G.

Hence, Xyo is bounded for every x° € R%; i.e., ¢ is a basin. [ |
Remark: ¢ is not strongly monotonic.
Corollary 1 The identity function ¢: RY — R?, $(x) = x is a strictly monotonic basin.

The following lemma can be found in [2].

Lemma 3 Let H be a Hilbert space. If ¢: H — H 1is continuous and strongly monotonic, then
¢ maps H onto H.

Let r > 0, t > 0, be two integers, and d = r+t. We say a r X d matrix A and a ¢ X d matrix
B are perpendicular to each other if they satisfy
Hypothesis P

1. rank(A) = r, rank(B) = t;
2. ABT = BAT = 0.

Let M = {x € R?: Ax = 0}, and N = {y € R? : By = 0}. By Hypothesis P, we have
M =N+ and
R'=M®aN.

Let py: R? — M be the projection from R? to M, py: R? — N be the projection from R?
to N. Then, for every w € R,
w = pr (W) +pn(W).

Theorem 3 (Uniqueness) Let matrices A and B be perpendicular to each other. Suppose ¢:

R? — RY is strictly monotonic, then, for every s € R, the solution to the system of equations

Aw =s
11
{ Bp(w) =0 (1)

1§ UNique.



Proof: Suppose both u and v are solutions to the system (11), then

{ Alu—v) =

B(¢(u) —p(v)) =0

Hence, u — v € M, and ¢(u) — ¢(v) € N. Thus, (u — v,¢(u) — ¢(v)) = 0. Since ¢ is strictly

monotonic, the above equation implies that u = v. Hence, the solution is unique. [ |
The proof of the existence of the system (11) is not so straightforward. We first prove, in

Lemma 4, that it is true for the continuous and strongly monotonic mapping ¢, and then, in

Theorem 4, we prove that it is also true if the mapping ¢ is a continuous and strictly monotonic

basin.

Lemma 4 Suppose ¢: R? — R? is continuous and strongly monotonic. Then, for every

s € R", system (11) has a solution.

Proof: Let wy be the unique solution of the linear system:

Aw =s
{ Bw =0 (12)

then wg € N. We define ¢): M — M as following: for every x € M,
P(x) = pur(p(x + wo)). (13)

Then, for every x', x> € M, we have

/N
=
™
\:
|
=
><
\/M
™
B
|
><
[N}
N—"
Il
=h
=
=
W
+
g
(=}

) = Par($(x” + wo)), x' —x°)
(pM ¢X +wo)) —pum(ep (X +wyp)), x —x2)
)

+ (pN¢X +wp)) — p(p(x? + wp)), x! )

P(x' 4+ wp) — p(x* + wy), x' — x2)

(
— (g 4 wo) - w+m»w+w%@“wm

,(x + wo) — (x? + wy), (X1+W0)—(X2—|—W0))

Il
o
El

»
»

Hence, v is strongly monotonic on M. Moreover, v is continuous because ¢ is continuous.
By Lemma 3, there is a x € M such that ¢(x) = 0. Thus, by (13), pa(d(x + wp)) = 0.

Let w = x + wy. Since x € M, Awy = s, we have Aw = A(x + wg) = s. Moreover, since

pu(d(w)) = 0, we have p(w) = prr(¢(w)) + pn($(W)) = pn(¢(w). Hence, ¢(w) € N, and so
B¢(w) = 0. Hence, system (11) has a solution w. ]



Theorem 4 Let matrices A and B be perpendicular to each other. Let ¢: R4 — R? be

continuous. Suppose
(i) ¢ is strictly monotonic;
(ii) ¢ is a basin.
Then system (11) has a solution for every s € R".

Proof: Since ¢ is strictly monotonic, for every € > 0, ¢.(w) = ¢(w) + ew is strongly
monotonic because
(¢6(W1) - ¢6(W2)7W1 - W2)
(p(w) — p(w?), w! — w?) + (ew! — ew?, w! — w?)
2 1

> e(w! —w?,w! —w?).

Hence, by Lemma 4, there is a w. € R%, such that

Aw,=s
14
{ Bpe(we) =0 (14)

Let wq be the solution of the linear system (12) as in Lemma 4. Then
A(w, —wp) =0.
Hence, w, — woy € M. The second equation of (14) implies that ¢.(w.) € N. So,
(We — wo, pe(we)) =0, (15)

ie.,

(We — wo, p(We)) + (We — wo, ewe) = 0.
Since ¢ is a basin, there is a G > 0, such that for every w € R%, the inequality
(w —wo, p(w)) <0

implies ||w| < G;. By Corollary 1, y(w) = w is also a basin. Hence, there is a G2 > 0, such
that the inequality

(w—wo,w) <0

implies ||w|| < G. Thus, by (15), we must have
el < max(Gh, Ga).
By Weierstrass theorem, there is a w € R%, such that

|lwe, — W[ — 0 asn — oo,



for some sequence €,. Since ¢ is continuous, by (14), we have

Aw =s
Bp(w) =0

Hence, system (11) has a solution. ]
Corollary 2 System (10) has a unique solution for every s € R" 1.

Proof: Apply Theorem 3 and 4, taking A = Ay and B = By, then use Lemma 2. [

Systems of nonlinear equations could have very strange behaviors. Even a single nonlinear
equation could have no solution or more than one solution. Interestingly, some systems of
nonlinear equations which arise from industrial and engineering problems practically should
have a unique solution. We have proposed one of them in this paper.

For gas pipeline network flow problems, the presented result is quite interesting itself. One
fact is that, since the function ¢ involved in gas pipeline network problems is monotonic,
solving the system (10) by Newton’s Method is very stable, fast, and accurate. These facts lead
us to introduce the Network Reduction Method for networks consisting of nodes, pipes, and
compressor stations. We will show in the next section that this method can greatly reduce the

size of the problem.

The Network Reduction Method: The main result obtained in the previous section is that,
with all the sources (that is, the mass flow rates at all the nodes of the network going into or
out of the network) given, all the flows in pipes are completely determined, while the pressures
at the nodes will be determined if the pressure at one (reference) node is given. It must be

pointed out that this result is based on two facts:

1. Each node has a mass flow balance equation.

2. Each pipe has a pipe flow equation defining the relation between the flow rate and the

pressures at the two end nodes.

As a gas pipeline network consists of not only nodes and pipes, but also compressor stations, we
can see that, for each node, the mass flow balance is still satisfied; but for each edge representing
a station there is no equation relating the flow rate through the station and the pressures at
its suction and discharge sides. Flow rate, suction pressure, and discharge pressure of a station
are actually independent of each other, and there are only certain inequalities these variables
must satisfy. Hence, the result we obtained in the previous section can not be directly applied
to such networks.

In this section, we will introduce the Network Reduction Method for networks consisting of
nodes, pipes, and compressor stations. Our theory begins with deleting the compressor stations

from the network.



By deleting all the stations from a network, which consists of nodes, pipes, and compressor
stations, we should have several disconnected components, each of which, called as a subnetwork,
consists of only nodes and pipes. There are no stations in subnetworks.

On the other hand, if we view each subnetwork as a single (big) node for the network,
i.e., shrinking each subnetwork to a node, we shall get a new network which consists of only
the (big) nodes, each representing a subnetwork, and the stations. There are no pipes in this
network because all the pipes are encapsulated in the (big) nodes. This new network is called a
super-network (where each node represents a subnetwork, and each edge represents a station).
It is easy to see that there is only one (connected) super-network for a given network. The
structure of the super-network could be either a tree or a digraph with loops, depending on the
configuration of these compressor stations in the network.

To explain the concepts about the subnetworks and the super-network of a network, let us

look at the following network example.

Figure 3: A network with five subnetworks

In Figure 3, a pipeline network has been drawn which consists of n = 38 nodes, [ = 38
pipes, and m = 5 compressor stations. Stations are labeled by CS1, CS2, CS3, CS4, and CS5
in the figure. The number of edges (pipes or stations) is e = [ + m = 43. Hence, the number
of fundamental circuits is e —n+ 1 =43 — 38 + 1 = 6. If all the 5 stations are deleted from
this digraph, we shall get 5 disconnected components, i.e., 5 subnetworks, labeled SBN1, SBN2,
SBN3, SBN4, and SBN5. These subnetworks are separated by dotted lines in the figure. The

super-network of this network is shown in Figure 4, which consists of 5 nodes and 5 edges, each



node representing a subnetwork and each edge representing a station. In this example, the

super-network has only one loop.

SBN1 SBN4

SBN2 SBN5
Figure 4: The super-network

For real world gas pipeline networks, we have found that the structures of the super-networks
are much less complicated than those of the original networks. Although, networks themselves
may have a lot of loops, especially loops in pipes, their super-networks are mostly trees. Even
if their super-networks are digraphs with some loops, the numbers of the loops in the super-
networks are significantly fewer than that in the original networks.

In the case that the super-network is a tree, we will show that the mass flow rates through
all the stations are fixed if, as we have always assumed, the sources (supplying or delivering
flow rates) at all nodes are given. This, as we should see, will greatly simplify the fuel cost
minimization problem. On the other hand, if the super-network is a looped digraph, the mass
flow rates through the stations are not uniquely determined but satisfy a system of linear
equations. The number of the independent linear equations in the system is equal to the
number of the fundamental circuits in the super-network. For an example, for the network

shown in Figure 3, there is only one independent linear equation in the system.

Super-network is a Tree: In this section we assume that the super-network is a tree. In this
case, since each node in the super-network represents a subnetwork, we can define the source
at this node as the sum of the sources at all the nodes included in this subnetwork. In this
sense, the sources at all the nodes in the super-network are fixed. Since the super-network is
a tree, all the flow rates through the edges of the super-network are uniquely determined (this
is Corollary 2, with B = 0). Since each edge in the super-network represents a station in the
original network, it means that the flow rates through all the stations are known.

Now let us look at the subnetworks. We can see that, for each subnetwork, the sources
at all the nodes, including the nodes connecting to stations are all known. By Theorem 4, we

conclude that the flow rates through all the pipes in the subnetwork can be uniquely determined.



Moreover, the pressures at all the nodes in the subnetwork are uniquely determined by the
pressure at one node, the reference node. These pressures will also be increased or decreased
as the pressure at the reference node is increased or decreased, respectively.

Hence, we have the following fundamental theorem of the network reduction method
Theorem 5 Suppose
(i) pipeline network consists of only nodes, pipes, and stations;
(11) sources at all the nodes are given;
(113) super-network is a tree.
Then
1. Flow rates through all the pipes and stations are known.

2. For each subnetwork, pressure p at any node is related to the pressure p, at a reference

node by
P’ —p; =

where
c=2_ cjujluj|®
Jje€J
is a constant, where J is an index set of pipes in a path connecting the node and the

reference node, c; and a are constants, u; is the flow rate in the ™ pipe which is known.

Note that the constant c is independent of the selection of the path because the flow rate
u;’s are solved from the equations such that summation };c ; cj ujlu;|* along any loop in a
subnetwork is zero.

Hence, if a network is divided into b subnetworks, the total number of independent variables
in the network is b, i.e., the pressure variables p,’s at the b reference nodes.

The fuel cost minimization problem (3)—(7) can now be greatly simplified by applying the
network reduction method.

Firstly, since the flow rates vi’s through all the stations are known, each function g; in
(3) depends on only (pgs,prq). Thus, the objective function F(w,p), depends on only the
suction and discharge pressures (pgs,Prd), & = 1,...,m. Let z be the vector of these suction
and discharge pressures, i.e., z = {p1s,P1d, - - - » Pms, Pmd}; the objective function F' can now be
represented as G(z), i.e., -

G(z) = gk(Vk: Prs> Ppd),
k=1

where vy, is known.



Further, suppose the network is divided into b subnetworks, the pressure variables in z can
be partitioned into b disjoint vectors z;, each representing the pressures at all the suction or
discharge nodes in the i subnetwork, i.e., z = (z17,...,2p")7. Let z; = (21,...,2,)", where
J; is the number of the suction and discharge nodes in the i** subnetwork. Let us choose z;
as the reference pressure for the i*” subnetwork. Then, according to Theorem 5, pressure p at

every node in the it" subnetwork is related to z;; by
22
P =z =

It is easy to see that there are two constants zzL and le , such that the pressure limit constraints

(6) for nodes in the it subnetwork are equivalent to
7l <z <2

One of the reasons that we introduce the network reduction method is based on the following
observations. We notice that the objective function depends only on the pressures at suction
and discharge nodes. This means we need not take care of the values of pressures at the nodes
other than suction or discharge nodes. However, we must keep all pressure variables within
their pressure limits, or equivalently, satisfying the constraints (6), which can now be fulfilled
by confining the reference pressure z;; in its limits z” and 2Y. Notice that constraints (7)
are irrelevant to the pressures at nodes other than suction or discharge nodes; therefore, these
pressures will disappear in the minimization problem.

On the other hand, the pressures at suction or discharge nodes in the i*" subnetwork must

be related to the reference pressure z;1, i.e.,
2 2 _ . - )
Zij — 21 = Cij, i=2,...,J;

where ¢;;’s are constants.

As for the compressor station constraint (7), since the vy’s are known, it becomes
z € 7,

where Z is the feasible domain of stations to the suction and discharge pressures z.

Hence, the fuel cost minimization problem (3)—(7) can be simplified as the following

Minimize G(z) (16)
subject to zlL <zy < le 1<i<b (17)
Z—zh = oy, 1<i<b j=2,...,J; (18)

z € 7 (19)

Comparing problem (3)—(7) with problem (16)—(19), the simplifications are



1. The number of variables reduces from [ + m + n to the size of vector z which is at most
2m. Notice that, a typical pipeline network may consist of thousands of pipes and nodes,

but only dozens of stations; this reduction is thus significant.

2. The nonlinear equality constraints (5) involve 3 variables, while constraints (18) involve
only 2. The fact is that linearizing a nonlinear constraint involving 2 variables is much

easier and more effective.

3. The number of nonlinear equality constraints reduces from I to 320, (J; — 1) < 2m — b.
Since nonlinear equality constraints are often the main obstacles in optimization problems,

reducing the number of the nonlinear equality constraints can make the problem easier

to solve.
Before reduction After reduction
Configuration l m n I+m+n| b |z|
A 10 2 10 22 2 4
B 44 7 47 98 7 13
C 91 9 180 280 10 18
D 1462 | 37 | 1560 3059 38 73

Table 1: Size of networks before and after reduction

Table 1 displays a comparison of sizes before and after the reduction for some typical network
configurations. We can see that the size of z is often much smaller than the number [ +m + n,
i.e., the size of the reduced problem is much smaller than that of the original problem. We
must point out that the tradeoff for these simplifications is that we need to solve the network
flow equations for each subnetwork. However, our numerical experiments show that a modified
Newton’s method is extremely fast and stable to solve these equations. Moreover, all these

calculations can be done at pre-processing.

Super-network is a Looped Digraph: As the super-network is a digraph with only a few loops,
the network reduction method can still be successfully used. In this case, the mass flow rate v

through the stations satisfies a simple system of linear equations:
Av =S8, (20)

where A is the node-edge incidence matrix for the super-network and S is the sources at the
nodes in the super-network. The i*" element of S is the sum of the sources at all the nodes in
the i subnetwork. Since the flow rate v must be bounded, say, ||v|| < vmaz, We can define a

set V as

V= {V tAv = Sa ||V|| < Uma:v} .



For each v € V| we define a function f(v) on V, which is

flv) = min{GU(z) c () <z < (ZY) 1<i< by

2 2 . .
ZU—Zﬂ:c;}]aISleaJZQaaJZa ZEZU}’

where GV, (2F)?, (2V)?, ¢y and Z¥ depend on v. Hence, the fuel cost minimization problem
becomes minimizing f(v) on the set V. A numerical approximation technique such as grid
generation on v could be applied to find approximate solutions. This method might work
well if the dimension of the kernel of the matrix A is small, or equivalently, the number of
independent variables in the system (20) is small. On the other hand, the dimension of the
kernel of matrix A is equal to the number of the fundamental circuits in the super-network;
therefore, the method is especially effective to networks whose super-network has fewer loops.
The extreme case is that this dimension equals to zero; i.e., the super-network is a tree. In this
case, the v can be uniquely solved from the equation Av = S.

In terms of attempting to solve the problem optimally, decomposition techniques can benefit
from the network reduction method since, at a given iteration, fixing v implies all other flow
variables in the system can also be determined due to the developments presented in the previous

section.
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