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Abstract: We address the problem of minimizing the fuel consumption incurred by compressor

stations in steady-state natural gas transmission networks. In the real world, these type of

instances are very large both in terms of the number of decision variables and the number of

constraints, and very complex due to the presence of non-linearity and non-convexity in both

the set of feasible solutions and the objective function. In this paper we develop a technique

that can be used to signi�cantly reduce the size of the instances by exploiting the special and

unique structure and properties of gas pipeline networks.

Model: In this paper we consider the problem of minimizing the fuel cost consumption incurred

by compressor stations through natural gas transmission networks.

This problem is represented by a network, where arcs correspond to pipelines and compressor

stations, and nodes correspond to their physical interconnection points. The decision variables

are the mass 
ow rates through every arc, and the gas pressure level at every node. At each

compressor station, there is a a cost function that depends on the inlet (suction) pressure, the

outlet (discharge) pressure and the mass 
ow rate through the compressor. This function g is

typically non-convex and nonlinear.

The objective function of the problem is the sum of the fuel costs over all the compressor

stations in the network. This problem involves the following constraints:

(i) mass 
ow balance equation at each node;

(ii) gas 
ow equation through each pipe;

(iii) pressure limit constraints at each node;

(iv) operation limits in each compressor station.



The �rst two are also called steady-state network 
ow equations. We emphasize that while

the mass 
ow balance equations are linear, the pipe 
ow equations are nonlinear; this has been

well documented in [3]. For the medium and high pressure 
ows, when taking into account the

fact that a change of the 
ow direction of the gas stream may take place in the network, the

pipe 
ow equation takes the following form:

p21 � p22 = cujuj�; (1)

where p1 and p2 are pressures at the end nodes of the pipe, u is mass 
ow rate through the

pipe, � is a constant (� � 1), and the pipe resistance c is a positive quantity depending on the

pipe physical attributes.

The steady-state network 
ow equations can be stated in a very concise form by using

incidence matrices. Let us consider a network with n nodes, l pipes, andm compressor stations.

Each pipe is assigned a direction which may or may not coincide with gas 
ow through the

pipe. Let Al be the n� l matrix whose elements are

alij =

8>>><
>>>:

1; if jth pipe comes out from ith node;

�1; if jth pipe goes into ith node;

0; otherwise:

Al is called the node-pipe incidence matrix. Let Am be the n�m matrix whose elements are

amik =

8>>><
>>>:

1; if ith node is the discharge node of kth station;

�1; if ith node is the suction node of kth station;

0; otherwise:

Am is thus called a node-station incidence matrix. The matrix formed by annexing Am to the

right hand side of Al will be denoted as A, i.e., A = (Al Am), which is an n� (l +m) matrix.

A simple network example is shown in Figure 1 which has n = 10 nodes, l = 6 pipes, and

m = 3 stations. Directions assigned to the pipes have been indicated. Note that all nodes,

pipes, and stations have been labeled separately. The matrices Al and Am for this network are

Al =

0
BBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0

1 0 0 0 0 0

�1 0 0 0 0 0

0 1 0 0 0 0

0 �1 1 1 0 0

0 0 �1 0 0 0

0 0 0 �1 0 0

0 0 0 0 1 0

0 0 0 0 �1 1

0 0 0 0 0 �1

1
CCCCCCCCCCCCCCCCCCCCCCCA

Am =

0
BBBBBBBBBBBBBBBBBBBBBBB@

1 0 0

�1 0 0

0 1 1

0 �1 0

0 0 0

0 0 0

0 0 0

0 0 �1

0 0 0

0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCA
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Figure 1: An example of a simple network

These matrices have a few special characteristics. To name a few, each row in matrix Al, for

example, corresponds to a node, and each column corresponds to a pipe in the network. In

addition, each column contains exactly two nonzero elements, one is 1 and the other �1, which

correspond to the two end nodes of the pipe.

Let u = (u1; : : : ; ul)
T , and v = (v1; : : : ; vm)

T be the mass 
ow rate through the pipes and

stations, respectively. Let w = (uT ;vT )T : A component uj or vk is positive if the 
ow direction

coincides with the assigned pipe or station direction, negative, otherwise. Let p = (p1; : : : ; pn)
T

be the pressure vector (pi the pressure at the ith node), and s = (s1; : : : ; sn)
T be the source

vector (si the source at the i
th node). The component si is positive if the node is a supply node;

negative, if it is a delivery node; and zero, otherwise. We assume, without loss of generality,

the sum of the sources to be zero:
nX
i=1

si = 0: (2)

The network 
ow equations can now be stated as the following:
8<
:

Aw = s

AT
l p

2 = �(u)

where

p2 = (p21; : : : ; p
2
n)

T ; �(u) = (�1(u1); : : : ; �l(ul))
T ;

in which

�j(uj) = cjuj jujj
�

Now suppose the source vector s is given satisfying the zero sum condition, and the bounds

pL, pU of pressures at every node have been speci�ed. The problem is to determine the pressure

vector p and the 
ow vector w so that the total fuel consumption is minimized, i.e.,



Minimize F (w;p) =
mX
k=1

gk(vk; pks; pkd) (3)

subject to Aw = s (4)

AT
l p

2 = �(u) (5)

p 2 [pL;pU ] (6)

(vk; pks; pkd) 2 Dk k = 1; 2; : : : ;m (7)

where vk, pks, and pkd are the mass 
ow rate, suction pressure, and discharge pressure at the

k-th station, gk is its corresponding cost function, and Dk is the feasible domain in which

the triple variables (vk; pks; pkd) may vary, See [3] for an in-depth study of the structure and

properties of Dk and gk. Note that

1. The feasible domains Dk are non-convex.

2. The fuel minimization functions gk are nonlinear, non-convex and even discontinuous.

3. The pipe 
ow equations (1) de�ne a non-convex set.

In general, a problem with these characteristics is very di�cult to solve. What we do in

this paper is to propose a technique that signi�cantly reduces the size of any instance to this

problem, making it more tractable. This technique uses concepts from graph theory applied to

natural gas pipeline networks.

Graph Theory Concepts: A directed graph (or digraph) G consists of a set of vertices

V = fv1; v2; : : :g, a set of edges E = fe1; e2; : : :g, and a mapping 	 that maps every edge onto

some ordered pair of vertices (vi; vj). If e 2 E, vi; vj 2 V , and 	(e) = (vi; vj), the edge e is

called incident with vertices vi and vj , or more precisely, out of vertex vi, and into vertex vj . If

vi = vj , e is called a self-loop. If both V and E are �nite, the digraph G is called �nite digraph.

A walk is de�ned as a �nite alternating sequence of vertices and edges, beginning and ending

with vertices, such that each edge is incident with the vertices preceding and following it. A

walk in which no vertex appears more than once is called a path. A walk beginning and ending

with the same vertex in which no other vertex appears more than once is called a circuit.

A digraph G is said to be connected if there is at least one path between every pair of

vertices in G. The digraph considered in this paper will be assumed to be �nite and connected.

Also we assume the digraph has no self-loops. A tree is a digraph without a circuit. A spanning

tree T of a digraph G is a tree consisting of all the vertices in G. For a giving spanning tree T

of a digraph G, the edge which is not in the tree T is called a chord. Adding a chord c to the

spanning tree T forms a circuit which is called a fundamental circuit.



Here are some basic results regarding spanning trees and fundamental circuits of a digraph.

Proofs of Theorems 1 and 2 can be found in [1].

Theorem 1 Let n and e be the numbers of the vertices and edges, respectively, in a digraph G.

Let T be a spanning tree of G. Then

1. The number of edges in the spanning tree T is n� 1, the number of chords corresponding

to the spanning tree T is e� n+ 1;

2. The number of the fundamental circuits corresponding to a spanning tree T is e� n+ 1.

Every other circuit in the digraph G is a linear combination of the fundamental circuits.

Suppose G is a self-loop-free digraph with n vertices and e edges. An incident matrix A of

the digraph G is an n by e matrix, de�ned by

aij =

8>>><
>>>:

1; if jth edge is incident out of ith vertex;

�1; if jth edge is incident into ith vertex;

0; if jth edge is not incident with ith vertex:

Each row of the incident matrix A represents how the edges are incident with a speci�c

vertex. Each column of the incident matrix A represents how the vertices are incident with a

speci�c edge. Since we have assumed that the digraph G has no self-loops, each column consists

of one 1, one �1, and zeros. It can be proved that the rank of A is n � 1. By deleting one

row from the matrix A, the remainder matrix is called reduced incident matrix, denoted by Af ,

which is n� 1 by e, whose n� 1 row vectors are linear independent. The vertex corresponding

to the deleted row is called reference vertex. The incident matrix of a digraph completely

determines the digraph.

Each circuit in the digraph G, after being arbitrarily assigned an orientation, can be rep-

resented by a vector whose components are 1;�1; 0 according to whether and how the edge is

included in the circuit. A circuit matrix B is a matrix each row of which corresponds a circuit

vector, which is de�ned by

bij =

8>>>>>>>><
>>>>>>>>:

1; if ith circuit contains jth edge

and their orientations coincide;

�1; if ith circuit contains jth edge

but their orientations are opposite;

0; if ith circuit does not contain jth edge:

As Theorem 1 stated, only e�n+1 fundamental circuit vectors with respect to a spanning

tree are independent. The matrix consisting of the e � n + 1 fundamental circuit vectors is

called reduced circuit matrix, denoted by Bf , which is e� n+ 1 by e matrix.



Theorem 2 Let G be a self{loop{free digraph, Af and Bf be the reduced incident and circuit

matrices using the same order of edges. Then

AfB
T
f = BfA

T
f = 0:

To explain the above concepts and results, we give an example of a simple digraph in Figure 2

which consists of n = 6 vertices and e = 8 edges.
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Figure 2: The fundamental circuits in a digraph

The incident matrix of the digraph, in which the vertices are arranged as 123456, and the

edges abcdefgh, is

A =

0
BBBBBBBBBBB@

0 0 0 �1 0 1 0 0

0 0 0 0 1 �1 1 �1

0 0 0 0 0 0 0 1

�1 �1 �1 0 �1 0 0 0

0 0 1 1 0 0 �1 0

1 1 0 0 0 0 0 0

1
CCCCCCCCCCCA

The reduced incident matrix, if taking vertex 3 as its reference vertex, is

Af =

0
BBBBBBBB@

0 0 0 �1 0 1 0 0

0 0 0 0 1 �1 1 �1

�1 �1 �1 0 �1 0 0 0

0 0 1 1 0 0 �1 0

1 1 0 0 0 0 0 0

1
CCCCCCCCA

Edges fa; c; e; f; hg form a spanning tree, indicated by the thick lines in Figure 5:1. Edges

fb; d; gg are the chords corresponding to the spanning tree. The number of fundamental circuits



is e � n+ 1 = 3. Each fundamental circuit corresponds to a chord. The reduced fundamental

circuit matrix, whose orientations are shown in Figure 5:1, is

Bf =

0
BBB@

�1 1 0 0 0 0 0 0

0 0 �1 1 1 1 0 0

0 0 1 0 �1 0 1 0

1
CCCA

The Pipeline Network Flow Equations: Now let us consider a gas pipeline network system

which consists of only nodes and pipes. We arbitrarily assign a direction for every pipe and view

it as a digraph. Let G be such a digraph with n vertices and e edges. Let w = (w1; : : : ; we)
T be

the 
ow vector with wj the mass 
ow rate through the jth edge. wj is positive if the directions

of the 
ow and the edge coincide, negative otherwise. Let s = (s1; : : : ; sn)
T be the source

vector satisfying (2). Let p = (p1; : : : ; pn)
T be the pressure vector with pi the pressure at the

ith vertex.

The network 
ow equations can now be stated as the following:
8<
:

Aw = s

ATp2 = �(w)
(8)

where p2 = (p21; : : : ; p
2
n)

T , and �(w) = (�1(w1); : : : ; �e(we))
T , in which �j(wj) is a function of

wj . In most network 
ow problems functions f�jg
d
1 are nonlinear. In the gas pipeline network

area, the most commonly used �j 's are

�j(wj) = cjwj jwjj; 1 � j � d;

with cj > 0. In some cases, �j 's could also be

�j(wj) = cjwj jwj j
�; 1 � j � d;

where � � 0.

Now suppose the source vector s is given satisfying the zero sum condition (2) and a reference

vertex has been selected whose pressure is also given (which is a necessary condition to solve the


ow equations (8)). The number of the unknowns is e+ n� 1 (since we assumed one pressure

is given, the unknowns are n � 1 pressure variables and e 
ow variables), and the number of

the 
ow equations is e+n. These are n node 
ow balance equations and e pipe 
ow equations.

Since rank(A)= n � 1, only (n � 1) node 
ow balance equations are linear independent. Let

Af be the reduced incident matrix with respect to the selected vertex; let Bf be the reduced

circuit matrix with respect to some spanning tree. Since BfA
T = 0, system (8) is equivalent to

8>>><
>>>:

Afw = sf

Bf�(w) = 0

ATp2 = �(w)

(9)



where sf is the (n � 1) by 1 vector formed by removing the source term corresponding to the

selected reference vertex from s. The advantage of system (9) is that the �rst two equations,

i.e., 8<
:

Afw = sf

Bf�(w) = 0
(10)

contain only the 
ow vector w. Notice that system (10) consists of e equations and e unknowns

((n� 1) equations in the �rst equation and (e� n+1) equations in the second. Unknowns are

e components in the 
ow vector w). If it has a unique solution, the 
ow vector w can be solved

separately from the pressure vector p, and the pressure vector p can be directly computed

from the third equation of the system (9) as the pressure at reference vertex is given. We now

address the question on whether system (10) has a unique solution.

Uniqueness and Existence of the Solution: In this section, we show that system (10) has

a unique solution. A direct corollary of this result is that system (8) has a unique solution if

the source vector sf and the reference pressure are given. We begin with some de�nitions.

Let H be a Hilbert space with a scalar product (� , �).

De�nition 1 A mapping �: H ! H is said strongly monotonic if there exists a constant a > 0,

such that, for every x, y 2 H we have

(�(x) � �(y); x� y) � a (x� y; x� y):

De�nition 2 A mapping �: H ! H is said strictly monotonic if for every x, y 2 H we have

(�(x)� �(y); x� y) � 0;

and equality holds if and only if x = y.

De�nition 3 A mapping �: H ! H is said to be a basin if for every x0 2 H, the set

Xx0 = fx 2 H : (�(x); x � x0) � 0g

is bounded.

Now we prove some basic results related to the above concepts.

Lemma 1 If �: H ! H is strongly monotonic, � is a strictly monotonic basin.

Proof: Obviously � is strictly monotonic. To show that it is also a basin, we notice that,

for every x0 2 H, x 2 Xx0 ,

a (x� x0; x� x0) � (�(x) � �(x0); x� x0) (since � is strongly monotonic)

= (�(x); x � x0)� (�(x0); x� x0)

� �(�(x0); x� x0) (since x 2 Xx0)

� k�(x0)kkx� x0k:



So

kx� x0k �
1

a
k�(x0)k:

Hence, Xx0 is bounded.

However, a mapping � that is a strictly monotonic basin is not necessarily strongly mono-

tonic. Here is an example.

Lemma 2 Let H = Rd with the Euclid scalar product, d is a positive integer. Let �: Rd ! Rd

be a mapping as the following: for every x = (x1; x2; : : : ; xd)
T 2 Rd,

�(x) = (�1(x1); �2(x2); : : : ; �d(xd))
T

where

�j(xj) = cjxj jxj j
�; for 1 � j � d;

with cj > 0 and � � 0. Then � is strictly monotonic basin.

Proof: For every x = (x1; x2; : : : ; xd)
T , y = (y1; y2; : : : ; yd)

T 2 Rd,

(�(x)� �(y);x � y) =
dX

j=1

cj(xj jxj j
� � yjjyj j

�)(xj � yj):

Since � � 0, function h(s) = sjsj� is a strictly increasing function for all s. Hence, each term

at the right-hand side (RHS) is nonnegative. Thus,

(�(x)� �(y);x � y) � 0:

Equality holds if and only if every term at the RHS is zero, so xj = yj, for every j. Therefore

� is strictly monotonic.

To show that � is a basin, let x0 2 Rd. Then x 2 Xx0 means

(x; �(x)) � (x0; �(x));

i.e.,
dX

j=1

cjx
2
j jxj j

� �
dX

j=1

cjx
0
jxjjxj j

�:

Let � = kxk and y = x=�, so, kyk = 1. Replace xj by �yj in the above inequality, we have

� �

Pd
j=1 cjx

0
j�
1+�yjjyjj

�

Pd
j=1 cj�

1+�jyj j2+�

� kx0k

Pd
j=1 cj jyjj

1+�

Pd
j=1 cj jyjj

2+�
:



Since cj > 0, function

g(y) =

Pd
j=1 cj jyjj

1+�

Pd
j=1 cj jyjj

2+�

is continuous on the unit sphere kyk = 1. Let

G = max
kyk=1

g(y);

then, for every x 2 Xx0 , we have

� = kxk � kx0kG:

Hence, Xx0 is bounded for every x0 2 Rd; i.e., � is a basin.

Remark: � is not strongly monotonic.

Corollary 1 The identity function �: Rd ! Rd, �(x) = x is a strictly monotonic basin.

The following lemma can be found in [2].

Lemma 3 Let H be a Hilbert space. If �: H ! H is continuous and strongly monotonic, then

� maps H onto H.

Let r > 0, t � 0, be two integers, and d = r+ t. We say a r�d matrix A and a t�d matrix

B are perpendicular to each other if they satisfy

Hypothesis P

1. rank(A) = r, rank(B) = t;

2. ABT = BAT = 0.

Let M = fx 2 Rd : Ax = 0g, and N = fy 2 Rd : By = 0g. By Hypothesis P, we have

M = N? and

Rd =M �N:

Let pM : Rd ! M be the projection from Rd to M , pN : R
d ! N be the projection from Rd

to N . Then, for every w 2 Rd,

w = pM (w) + pN (w):

Theorem 3 (Uniqueness) Let matrices A and B be perpendicular to each other. Suppose �:

Rd ! Rd is strictly monotonic, then, for every s 2 Rr, the solution to the system of equations

8<
:

Aw = s

B�(w) = 0
(11)

is unique.



Proof: Suppose both u and v are solutions to the system (11), then

8<
:

A(u� v) = 0

B(�(u)� �(v)) = 0

Hence, u � v 2 M , and �(u) � �(v) 2 N . Thus, (u � v; �(u) � �(v)) = 0. Since � is strictly

monotonic, the above equation implies that u = v. Hence, the solution is unique.

The proof of the existence of the system (11) is not so straightforward. We �rst prove, in

Lemma 4, that it is true for the continuous and strongly monotonic mapping �, and then, in

Theorem 4, we prove that it is also true if the mapping � is a continuous and strictly monotonic

basin.

Lemma 4 Suppose �: Rd ! Rd is continuous and strongly monotonic. Then, for every

s 2 Rr, system (11) has a solution.

Proof: Let w0 be the unique solution of the linear system:
8<
:

Aw = s

Bw = 0
(12)

then w0 2 N . We de�ne  : M !M as following: for every x 2M ,

 (x) = pM (�(x+w0)): (13)

Then, for every x1, x2 2M , we have

�
 (x1)�  (x2); x1 � x2

�
=

�
pM (�(x1 +w0))� pM (�(x2 +w0)); x

1 � x2
�

=
�
pM (�(x1 +w0))� pM (�(x2 +w0)); x

1 � x2
�

+
�
pN (�(x

1 +w0))� pN (�(x
2 +w0)); x

1 � x2
�

=
�
�(x1 +w0)� �(x2 +w0); x

1 � x2
�

=
�
�(x1 +w0)� �(x2 +w0); (x

1 +w0)� (x2 +w0)
�

� a;
�
(x1 +w0)� (x2 +w0); (x

1 +w0)� (x2 +w0)
�

= a
�
x1 � x2; x1 � x2

�

= a kx1 � x2k:

Hence,  is strongly monotonic on M . Moreover,  is continuous because � is continuous.

By Lemma 3, there is a x 2 M such that  (x) = 0. Thus, by (13), pM (�(x + w0)) = 0.

Let w = x + w0. Since x 2 M , Aw0 = s, we have Aw = A(x + w0) = s. Moreover, since

pM (�(w)) = 0, we have �(w) = pM (�(w)) + pN (�(w)) = pN (�(w). Hence, �(w) 2 N , and so

B�(w) = 0. Hence, system (11) has a solution w.



Theorem 4 Let matrices A and B be perpendicular to each other. Let �: Rd ! Rd be

continuous. Suppose

(i) � is strictly monotonic;

(ii) � is a basin.

Then system (11) has a solution for every s 2 Rr.

Proof: Since � is strictly monotonic, for every � > 0, ��(w) = �(w) + �w is strongly

monotonic because

(��(w
1)� ��(w

2);w1 �w2)

= (�(w1)� �(w2);w1 �w2) + (�w1 � �w2;w1 �w2)

� �(w1 �w2;w1 �w2):

Hence, by Lemma 4, there is a w� 2 R
d, such that
8<
:

Aw� = s

B��(w�) = 0
(14)

Let w0 be the solution of the linear system (12) as in Lemma 4. Then

A(w� �w0) = 0:

Hence, w� �w0 2M . The second equation of (14) implies that ��(w�) 2 N . So,

(w� �w0; ��(w�)) = 0; (15)

i.e.,

(w� �w0; �(w�)) + (w� �w0; �w�) = 0:

Since � is a basin, there is a G1 > 0, such that for every w 2 Rd, the inequality

(w�w0; �(w)) � 0

implies kwk � G1. By Corollary 1, 
(w) = w is also a basin. Hence, there is a G2 > 0, such

that the inequality

(w �w0;w) � 0

implies kwk � G2. Thus, by (15), we must have

kw�k � max(G1; G2):

By Weierstrass theorem, there is a w 2 Rd, such that

kw�n �wk �! 0 as n �!1;



for some sequence �n. Since � is continuous, by (14), we have
8<
:

Aw = s

B�(w) = 0

Hence, system (11) has a solution.

Corollary 2 System (10) has a unique solution for every sf 2 R
n�1.

Proof: Apply Theorem 3 and 4, taking A = Af and B = Bf , then use Lemma 2.

Systems of nonlinear equations could have very strange behaviors. Even a single nonlinear

equation could have no solution or more than one solution. Interestingly, some systems of

nonlinear equations which arise from industrial and engineering problems practically should

have a unique solution. We have proposed one of them in this paper.

For gas pipeline network 
ow problems, the presented result is quite interesting itself. One

fact is that, since the function � involved in gas pipeline network problems is monotonic,

solving the system (10) by Newton's Method is very stable, fast, and accurate. These facts lead

us to introduce the Network Reduction Method for networks consisting of nodes, pipes, and

compressor stations. We will show in the next section that this method can greatly reduce the

size of the problem.

The Network Reduction Method: The main result obtained in the previous section is that,

with all the sources (that is, the mass 
ow rates at all the nodes of the network going into or

out of the network) given, all the 
ows in pipes are completely determined, while the pressures

at the nodes will be determined if the pressure at one (reference) node is given. It must be

pointed out that this result is based on two facts:

1. Each node has a mass 
ow balance equation.

2. Each pipe has a pipe 
ow equation de�ning the relation between the 
ow rate and the

pressures at the two end nodes.

As a gas pipeline network consists of not only nodes and pipes, but also compressor stations, we

can see that, for each node, the mass 
ow balance is still satis�ed; but for each edge representing

a station there is no equation relating the 
ow rate through the station and the pressures at

its suction and discharge sides. Flow rate, suction pressure, and discharge pressure of a station

are actually independent of each other, and there are only certain inequalities these variables

must satisfy. Hence, the result we obtained in the previous section can not be directly applied

to such networks.

In this section, we will introduce the Network Reduction Method for networks consisting of

nodes, pipes, and compressor stations. Our theory begins with deleting the compressor stations

from the network.



By deleting all the stations from a network, which consists of nodes, pipes, and compressor

stations, we should have several disconnected components, each of which, called as a subnetwork,

consists of only nodes and pipes. There are no stations in subnetworks.

On the other hand, if we view each subnetwork as a single (big) node for the network,

i.e., shrinking each subnetwork to a node, we shall get a new network which consists of only

the (big) nodes, each representing a subnetwork, and the stations. There are no pipes in this

network because all the pipes are encapsulated in the (big) nodes. This new network is called a

super-network (where each node represents a subnetwork, and each edge represents a station).

It is easy to see that there is only one (connected) super-network for a given network. The

structure of the super-network could be either a tree or a digraph with loops, depending on the

con�guration of these compressor stations in the network.

To explain the concepts about the subnetworks and the super-network of a network, let us

look at the following network example.
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Figure 3: A network with �ve subnetworks

In Figure 3, a pipeline network has been drawn which consists of n = 38 nodes, l = 38

pipes, and m = 5 compressor stations. Stations are labeled by CS1, CS2, CS3, CS4, and CS5

in the �gure. The number of edges (pipes or stations) is e = l +m = 43. Hence, the number

of fundamental circuits is e � n + 1 = 43 � 38 + 1 = 6. If all the 5 stations are deleted from

this digraph, we shall get 5 disconnected components, i.e., 5 subnetworks, labeled SBN1, SBN2,

SBN3, SBN4, and SBN5. These subnetworks are separated by dotted lines in the �gure. The

super-network of this network is shown in Figure 4, which consists of 5 nodes and 5 edges, each



node representing a subnetwork and each edge representing a station. In this example, the

super-network has only one loop.
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Figure 4: The super-network

For real world gas pipeline networks, we have found that the structures of the super-networks

are much less complicated than those of the original networks. Although, networks themselves

may have a lot of loops, especially loops in pipes, their super-networks are mostly trees. Even

if their super-networks are digraphs with some loops, the numbers of the loops in the super-

networks are signi�cantly fewer than that in the original networks.

In the case that the super-network is a tree, we will show that the mass 
ow rates through

all the stations are �xed if, as we have always assumed, the sources (supplying or delivering


ow rates) at all nodes are given. This, as we should see, will greatly simplify the fuel cost

minimization problem. On the other hand, if the super-network is a looped digraph, the mass


ow rates through the stations are not uniquely determined but satisfy a system of linear

equations. The number of the independent linear equations in the system is equal to the

number of the fundamental circuits in the super-network. For an example, for the network

shown in Figure 3, there is only one independent linear equation in the system.

Super-network is a Tree: In this section we assume that the super-network is a tree. In this

case, since each node in the super-network represents a subnetwork, we can de�ne the source

at this node as the sum of the sources at all the nodes included in this subnetwork. In this

sense, the sources at all the nodes in the super-network are �xed. Since the super-network is

a tree, all the 
ow rates through the edges of the super-network are uniquely determined (this

is Corollary 2, with B = 0). Since each edge in the super-network represents a station in the

original network, it means that the 
ow rates through all the stations are known.

Now let us look at the subnetworks. We can see that, for each subnetwork, the sources

at all the nodes, including the nodes connecting to stations are all known. By Theorem 4, we

conclude that the 
ow rates through all the pipes in the subnetwork can be uniquely determined.



Moreover, the pressures at all the nodes in the subnetwork are uniquely determined by the

pressure at one node, the reference node. These pressures will also be increased or decreased

as the pressure at the reference node is increased or decreased, respectively.

Hence, we have the following fundamental theorem of the network reduction method

Theorem 5 Suppose

(i) pipeline network consists of only nodes, pipes, and stations;

(ii) sources at all the nodes are given;

(iii) super-network is a tree.

Then

1. Flow rates through all the pipes and stations are known.

2. For each subnetwork, pressure p at any node is related to the pressure pr at a reference

node by

p2 � p2r = c;

where

c =
X
j2J

cj ujjuj j
�

is a constant, where J is an index set of pipes in a path connecting the node and the

reference node, cj and � are constants, uj is the 
ow rate in the jth pipe which is known.

Note that the constant c is independent of the selection of the path because the 
ow rate

uj 's are solved from the equations such that summation
P

j2J cj ujjuj j
� along any loop in a

subnetwork is zero.

Hence, if a network is divided into b subnetworks, the total number of independent variables

in the network is b, i.e., the pressure variables pr's at the b reference nodes.

The fuel cost minimization problem (3){(7) can now be greatly simpli�ed by applying the

network reduction method.

Firstly, since the 
ow rates vk's through all the stations are known, each function gk in

(3) depends on only (pks; pkd). Thus, the objective function F (w;p), depends on only the

suction and discharge pressures (pks; pkd), k = 1; : : : ;m. Let z be the vector of these suction

and discharge pressures, i.e., z = fp1s; p1d; : : : ; pms; pmdg; the objective function F can now be

represented as G(z), i.e.,

G(z) =
mX
k=1

gk(vk; pks; ppd);

where vk is known.



Further, suppose the network is divided into b subnetworks, the pressure variables in z can

be partitioned into b disjoint vectors zi, each representing the pressures at all the suction or

discharge nodes in the ith subnetwork, i.e., z = (z1
T ; : : : ; zb

T )T . Let zi = (zi1; : : : ; ziJi)
T , where

Ji is the number of the suction and discharge nodes in the ith subnetwork. Let us choose zi1

as the reference pressure for the ith subnetwork. Then, according to Theorem 5, pressure p at

every node in the ith subnetwork is related to zi1 by

p2 � z2i1 = c:

It is easy to see that there are two constants zLi and zUi , such that the pressure limit constraints

(6) for nodes in the ith subnetwork are equivalent to

zLi � zi1 � zUi :

One of the reasons that we introduce the network reduction method is based on the following

observations. We notice that the objective function depends only on the pressures at suction

and discharge nodes. This means we need not take care of the values of pressures at the nodes

other than suction or discharge nodes. However, we must keep all pressure variables within

their pressure limits, or equivalently, satisfying the constraints (6), which can now be ful�lled

by con�ning the reference pressure zi1 in its limits zLi and zUi . Notice that constraints (7)

are irrelevant to the pressures at nodes other than suction or discharge nodes; therefore, these

pressures will disappear in the minimization problem.

On the other hand, the pressures at suction or discharge nodes in the ith subnetwork must

be related to the reference pressure zi1, i.e.,

z2ij � z2i1 = cij ; j = 2; : : : ; Ji;

where cij 's are constants.

As for the compressor station constraint (7), since the vk's are known, it becomes

z 2 Z;

where Z is the feasible domain of stations to the suction and discharge pressures z.

Hence, the fuel cost minimization problem (3){(7) can be simpli�ed as the following

Minimize G(z) (16)

subject to zLi � zi1 � zUi 1 � i � b (17)

z2ij � z2i1 = cij ; 1 � i � b; j = 2; : : : ; Ji (18)

z 2 Z (19)

Comparing problem (3){(7) with problem (16){(19), the simpli�cations are



1. The number of variables reduces from l +m+ n to the size of vector z which is at most

2m. Notice that, a typical pipeline network may consist of thousands of pipes and nodes,

but only dozens of stations; this reduction is thus signi�cant.

2. The nonlinear equality constraints (5) involve 3 variables, while constraints (18) involve

only 2. The fact is that linearizing a nonlinear constraint involving 2 variables is much

easier and more e�ective.

3. The number of nonlinear equality constraints reduces from l to
Pb

i=1(Ji � 1) � 2m � b.

Since nonlinear equality constraints are often the main obstacles in optimization problems,

reducing the number of the nonlinear equality constraints can make the problem easier

to solve.

Before reduction After reduction

Con�guration l m n l+m+ n b jzj

A 10 2 10 22 2 4

B 44 7 47 98 7 13

C 91 9 180 280 10 18

D 1462 37 1560 3059 38 73

Table 1: Size of networks before and after reduction

Table 1 displays a comparison of sizes before and after the reduction for some typical network

con�gurations. We can see that the size of z is often much smaller than the number l+m+ n,

i.e., the size of the reduced problem is much smaller than that of the original problem. We

must point out that the tradeo� for these simpli�cations is that we need to solve the network


ow equations for each subnetwork. However, our numerical experiments show that a modi�ed

Newton's method is extremely fast and stable to solve these equations. Moreover, all these

calculations can be done at pre-processing.

Super-network is a Looped Digraph: As the super-network is a digraph with only a few loops,

the network reduction method can still be successfully used. In this case, the mass 
ow rate v

through the stations satis�es a simple system of linear equations:

Av = S; (20)

where A is the node-edge incidence matrix for the super-network and S is the sources at the

nodes in the super-network. The ith element of S is the sum of the sources at all the nodes in

the ith subnetwork. Since the 
ow rate v must be bounded, say, kvk � vmax, we can de�ne a

set V as

V = fv : Av = S; kvk � vmaxg :



For each v 2 V , we de�ne a function f(v) on V , which is

f(v) � min
n
Gv(z) : (zLi )

v � zi1 � (zUi )
v; 1 � i � b;

z2ij � z2i1 = cvij; 1 � i � b; j = 2; : : : ; Ji; z 2 Zv
o
;

where Gv, (zLi )
v, (zUi )

v, cvij , and Z
v depend on v. Hence, the fuel cost minimization problem

becomes minimizing f(v) on the set V . A numerical approximation technique such as grid

generation on v could be applied to �nd approximate solutions. This method might work

well if the dimension of the kernel of the matrix A is small, or equivalently, the number of

independent variables in the system (20) is small. On the other hand, the dimension of the

kernel of matrix A is equal to the number of the fundamental circuits in the super-network;

therefore, the method is especially e�ective to networks whose super-network has fewer loops.

The extreme case is that this dimension equals to zero; i.e., the super-network is a tree. In this

case, the v can be uniquely solved from the equation Av = S.

In terms of attempting to solve the problem optimally, decomposition techniques can bene�t

from the network reduction method since, at a given iteration, �xing v implies all other 
ow

variables in the system can also be determined due to the developments presented in the previous

section.
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