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Abstract. This paper addresses a commercial districting problem aris-
ing in the bottled beverage distribution industry. The problem consists
of grouping a set of city blocks into territories so as to maximize ter-
ritory compactness. As planning requirements, the grouping seeks to
balance both number of customers and product demand across terri-
tories, maintain connectivity of territories, and limit the total cost of
routing. A combinatorial optimization model for this problem is intro-
duced. Work on commercial territory design has particularly focus on
design decisions. This work is, to the best of our knowledge, the first to
address both design and routing decisions simultaneously by consider-
ing a budget constraint on the total routing cost in commercial territory
design. A greedy randomized adaptive search procedure (GRASP) that
incorporates advanced features such as adaptive memory and strategic
oscillation is developed. Empirical evidence over a wide set of randomly
generated instances based on real-world data show a very positive impact
of these advanced components. It was observed how these strategies yield
feasible solutions, which is something hard to achieve when these com-
ponentes are not considered. Solution quality is significantly improved
as well.

Keywords: Territory design; Routing cost; GRASP; Strategic oscilla-
tion; Adaptive memory

1 Introduction

Territory design consists of grouping small geographical units into larger clusters
called territories for the purpose of making more manageable the entire set. Cur-
rent applications are vast: political and school districting (Hojati [13], Bozkaya,
Erkut, and Laporte [4]), sales and commercial design (Kalcsics et al. [14], Zolt-
ners and Sinha [20]), health-care districting (Pezzella and Nicoletti [17]), school
districting (Caro et al. [6]), emergency services (Bertolazzi, L. Bianco, and Ric-
ciardelli [3]), salt spreading operations (Muyldermans et al. [16]), recollection
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of waste electric and electronic equipment (Ferndndez et al. [9]), and electrical
power districting (Bergey, Ragsdale, and Hoskote [2]), to name a few. A more
comprehensive survey on territory design can be found in the work of Kalcsics,
Nickel, and M. Schroder [15], Duque, Ramos, and Surinach [7], and Zoltners and
Sinha [21].

This paper deals with a commercial territory design problem (CTDP) moti-
vated by a real-world application in a beverage distribution firm. The firm seeks
to form territories that are as compact as possible subject to planning crite-
ria such as territory balance with respect to two different activities (number of
customers and product demand), territory connectivity, and unique assignment.

The CTDP problem was introduced by Rios-Mercado and Ferndndez [18].
Other variations of this problem have been studied recently [5,19]. In each of
these works, a dispersion measure for assessing territory compactness based on
Euclidean distances is considered. In this regard, a good or desirable district-
ing plan is one with low values of this dispersion measure. This is similar to
certain location problems such as the p-Median Problem and the p-Center Prob-
lem where a dispersion based measure is minimized. Now, it is clear than in
real world applications, network-based distances are more representative of dis-
tances between basic units. In this regard, in many cases one can use models
based on Euclidean distances without loss of generality because one can always
replace Euclidean distances by their corresponding shortest path distances. This
is also true in TDP applications where connectivity constraints are not consid-
ered. When connectivity constraints are taken into account, the fact that the
territory dispersion measure is limited to those paths entirely contained in the
territory leads to very intractable models as the distances between basic units
end up being solution-dependent. Therefore, in previous work on TDPs with
connectivit constraints authors have address the problems under the assump-
tion of the Euclidean-based distances to make the problems more tractable. It
is easy to find examples where a shortest path between two nodes in a given
territory falls outside the territory. In addition, a single budget constraint on
the total routing cost is introduced in our problem. These two aspects (network-
based distances and routing cost) have been often neglected in previous work
on commercial territory design and it represents a more challenging problem.
Among the few works addressing the design and routing simultaneously is the
one of Haugland, Ho, and Laporte [12] but in a different application. To the best
of our knowledge, our work is the first to address these issues in this class of
TDPs.

To address this problem, a Greedy Randomzied Adaptive Search Procedure
(GRASP) with adaptive memory and strategic oscillation is proposed and evalu-
ated over a range of randomly generated instances based on real-world data. The
iterative procedure is formed by three steps (two in a construction phase and one
in an improvement phase). First a partial territory design, where not all units
have been assigned to territories, is built by taking into account the dispersion-
based objective function. In the second step, the remaining unassigned units are
assigned to territories by using a merit function that weights both the objec-
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tive function and the violation of the balancing constraints. This merit function
includes a frequency-based term as an adaptive memory mechanism. In this
construction phase the routing constraint is relaxed. After a solution is built,
routing costs are evaluated by solving a small-scale Traveling Salesman Problem
with Multiple Visits (TSPM) [11] within each territory including the distribution
center. In the post-processing phase, the procedure attempts to improve the ob-
jective function and to satisfy the violated balancing and routing constraints. To
this end, strategic oscillation is performed. Strategic oscillation is a very power-
ful technique [10] that consists of relaxing some constraints and add them to the
objective function with a penalty parameter. This penalty parameter is dynam-
ically updated throughout the execution of the algorithm This dynamic update
allows the search trajectory to oscillate between the feasible and the infeasible
space (those solutions not satisfying these relaxed constraints). The motivation
for this comes from the fact that, by allowing the problem to become temporarily
unfeasible, it is possible to visit solution regions that otherwise would be impos-
sible to explore. The results are very encouraging. Empirical evidence indicates
the great impact of the proposed advanced components, particularly the use of
strategic oscillation within the local search.

The rest of the paper is organized as follows. In Section 2, the problem
description and its corresponding combinatoriaol model are presented. Section 3
describes the proposed approach. The empirical work is discussed in Section 4.
Final remarks are drawn in Section 5.

2 Problem Description

Each node or basic unit (BU) represents a city block which might contain one
or more customers. Every edge represents adjacency between two BUs. Let
G = (V, E) be an undirected and planar graph that represents the distribution
network, where V' is the set of all BUs (nodes) and E is the set of edges, repre-
senting the connectivity between BUs. Let d;; be the Euclidean distance between
BUs i and j, (¢,7) € E. The subset X}, C V represents a territory. Every node
i has two different activities associated to it: number of customers (measured
by parameter w}) and total demand (measured by parameter w?). The size of
territory Xy, with respect to activity a is given as follows: w*(Xy) = >, w,
a = 1,2. The perfect measure of a territory with respect to activity a is defined
by p® = w*(V)/p, where p is the known number of territories. Because of the
discrete nature of the problem, it is almost impossible to obtain this perfect
measure for each activity. To cope with this, the company allows a tolerance
deviation (represented by 7¢) from the average value u®. Let Tg be the shortest
path from node i to node j in G° = (S, E(S)), the subgraph of G induced by
set S, S CV, i,j €V with corresponding length tzsj To model the dispersion of
a given design X = (Xi,...,X,) we use the diameter-based measure given by:

k=1,...p | 4,j€Xx

f(X1,Xe,...,Xp) = max {max {tik}}
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It is required that each territory be connected, i.e., one should be able to
traverse a single territory without having to pass through other territories.

Let IT be the collection of all possible p-partitions of V', and let X =
(X1,...,Xp) be an arbitrary partition X € II. The combinatorial optimization
TDP model is shown below:

. _ Xk
iy /00 = e { e {1} ®
subject to
W (Xy) € [(1— 7, (1+ 7)), a = 1,2 2)

GXr = (X}, E(Xy)) must be connected, k =1,2,...,p  (3)
> R(Xxy<C (4)

k=1,....p

In the objective we use a diameter-based function (1) to measure territory
dispersion. Constraints (2) assure that each territory is appropriately balanced.
The requirement of territory connectivity is represented by (3), which means
that, for every territory Xy, there exists a path from every node in the territory
to every other node in the territory. Constraint (4) imposes a limit (denoted
by C) on the total traveling cost, where R(X}) represents the routing cost of
territory Xj. Assuming the distribution center is represented by node 0, R(Xy)
can be seen as the routing cost incurred when traversing the nodes in Xy from
the distribution center and returing to it. Now, in the real-world problem, each
territory routing is responsability of one truck. As G = (V, E) represents a
planar graph, we cannot assure the existence of a Hamiltonian cycle within each
territory. In fact, what the company simply needs is that each basic unit is
visited at least once, that is, if in a given routing a node is visited more than
once, the truck makes the stop to deliver the product in the first visit only. The
problem of finding a closed walk of minimum length where each node is visited
at least once is known as the Traveling Salesman Problem with Multiple Visits
(TSPM) [11]. This problem can be transformed into a TSP by replacing the edge
cost with the shortest path distances in G. In the absence of negative cycles, such
as our problem, shortest path distances between all pairs of nodes of a graph
can be computed using efficient algorithms. Thus, R(X}) = TSPM (X, U{0}) =
TSP(Xj U {0}), where the TSP operates in a graph that uses shortest path
distances tfj(- * instead of d;;. Given that in our particular problem, each individual
territory has approximately 25-40 BUs in the worst case, computing R(Xy)
is reduced to solving a TSP with 30-40 cities. This can be computed exactly
very efficiently by state-of-the-art branch-and-cut methods. In our case, we use
CONCORDE [1].

3 Proposed Algorithm

GRASP [8] is a metaheuristic that has been widely used to solve a large number
of combinatorial optimization problems. In each GRASP iteration there are two



GRASP with Strategic Oscillation for Territory Design with Routing 5

phases: construction and post-processing. Construction phase aims at building
a feasible solution by combining both greedy heuristics and randomization in a
way that allows to construct a diverse number of good quality solutions. The
post-processing attempts to improve the solution obtained in the first phase by
means of local search.

Our GRASP construction phase has two stages. First a partial solution with p
territories is built by using a GRASP greedy function that considers the objective
function only. Then the remaining units are assigned to the territories by using a
greedy function that incorporates some penalty terms associated to the violation
of the balancing constraints. The post-processing phase consists of a local search
scheme in which a node is selected to be moved from one territory to another.
Both phases are described next.

3.1 Construction Phase

In this phase, the routing constraint is relaxed. After the solution is built, this
constraint is taken into account in the local search phase.

We attempt to build p territories one at a time. We first select one node to
be the seed and then construct the territory by adding nodes (using a greedy
function based only on a dispersion term) until a closing criteria is met. To start
the next territory, we then select the minmax node, that is, the node whose
minimum distance with respect to the territories constructed is the largest, and
start adding nodes again until the same closing criteria is met. This is done until
p territories are formed.

Depending on how tight or loose this user-defined “closing” criteria is, there
may be still many unassigned nodes at the end of this step. The second step
consists of assigning the remaining nodes by following an Adaptive Memory
Programming scheme. In this step a merit function consisting of the sum of the
original function, the violation of the balancing constraints, and a frequency-
based memory term, is used.

Thus, for the first stage of the construction phase, let X be the partial
territory being formed, and let N be the set of nodes adjacent to Xy, that is,
the set of nodes that do not belong to Xj but that share an edge with a node
in Xg. N is called the candidate list. For every v € N we evaluate the greedy
function

o(0) = maox { 7(X0) ma (07}

where fi(X}) is the contribution to the objective function of the k-th terri-
tory. The idea behind GRASP is to construct a restricted candidate list (RCL)
containing the best moves. To do this a quality threshold parameter « is de-
fined and the RCL is formed by those elements in N such that their corre-
sponding greedy function evalution falls within a percent of the best move.
That is RCL = {v € N : ¢(v) < & 4 (@3 — M)} where o € [0, 1],
™M = min,e n{@(v)} and M = max,en{p(v)}. By defining the o this way,
it is clear that a value of @ = 0 corresponds to a purely deterministic greedy ap-
proach, and a = 1 corresponds to a purely randomized approach. We randomly
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choose one node from the RCL and we add it to Vj. In addition to dispersion,
we also wish to have balanced territories according to both activities. As we
are adding nodes to each territory, we are interested in not violating the up-
per bound of the balance constraints. Thus, if there is a € {1,2} such that
w*(Xg) > B(1 + 7%)u® the territory is closed. 8 is a positive parameter that
allows the user to control how early the territory must be closed. The motiva-
tion for introducing this parameter stems from the observation that allowing the
territory to close earlier may give more flexibility for the remaining unassigned
units to be assigned to different territories.
In Step 2, we use the greedy function

p(v) = Ap(v) + (1 = NG (v) + I(v),

where A\ € [0,1], and ¢(v) is the same greedy function used in the previous step,

Gr(v) = S (1/u) max {w (Xi U {v}) — (1 +7)uc, 0}

a

represents the sum of relative infeasibilities with respect to the upper bound of
the balance constraints and 9¥(v) is the average number of times node v ended up
in the same territory than the rest of the nodes in the current territory, that is
I(v) = X iex, frec(i,v)/(|Xyliter), where frec(i,v) tallies the number of times
nodes ¢ and v have belonged to the same territory in the past iter GRASP
iterations. iter is used as normalization factor. This represents the adaptive
memory component. Note that in this construction phase we do not consider the
violation with respect to the lower bound of the balancing constraints because
when we start a territory from zero and we iteratively add nodes, the lower
bound of the balance constraints never gets worse. This is handled in the post-
processing phase.

Once the construction phase ends, we need to evaluate the routing costs.
As stated before, solving the TSPM is equivalent to solving a TSP, so this is
practicaly reduced to solving p TSPs, one for each territory. It is well-known
that nowadays one can solve relatively large TSP’s by branch-and-cut methods.
In our case, the size of each of the individual TSPs to be solved for computing
these costs is no more than 30 to 40 nodes. This implies one can use a branch-
and-cut method for optimally solving each TSP in a relatively short amount of
time. In this specific case, we use CONCORDE [1] to solve the corresponding
TSP within each built territory. The connectivity requirement is kept during the
entire procedure.

3.2 Post-processing Phase

The aim of the local search is to improve the objective function and at the same
time to reduce the infeasibilities of the balance and the routing constraints as
much as possible.

The local search considers a neighborhood N (.S) of a partition S that consists
of all possible movements of node i from its current territory ¢(7) to the territory
of another adjacent node j, ¢(j), such that (,5) € E and t(z) # t(j).
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We use a merit function with three terms. This merit function measures the
objective function, the infeasibility of the budget constraint and the infeasibility
of the balance constraints. This merit function is defined for a given partition
S =(Xy,...,X,) as follows:

P(S) = F(S) + oH(S) +7G(S) (5)

where

_ Xk
#(5) = mp | s ()

is the original dispersion measure (diameter),

H(S) = max {Z R(Xy) — C, 0}
k
is the relaxed budget constraint, and

G =D g"(Xk)

k a€cA

is the sum of all relative infeasibilities of the balance constraints, with

1
g = (2 ) {0t (6 = (L 72, (0 70— 0 (0,0},
and o and v are penalty parameters to be dynamically updated as explained
below.

Strategic oscillation: The parameters o and v in (5) are self-adjustable according
to strategic oscillation [10]. When the budget constraint is violated, o doubles
its value and the same occurs with v when the balance constraints are violated.
When we have a feasible solution, both parameters reduce their values by half.
With this strategy we can guide the search to a larger space by allowing infeasible
moves. This technique has proven successfull in many combinatorial optimiza-
tion problems, particularly in some territory design applications. For instance,
Bozkaya, Erkut, and Laporte [4] make use of this idea for successfully handling
some difficult constraints in a political districting problem. As it will be seen in
the following section, this strategy gave very good results in our case as well.

4 Empirical Work

Our heuristic was coded in C++ and compiled with the GNU g++ version, under
the Ubuntu Linux 9.10 OS in a computer with an Intel Processor(R) Core(TM)2
Quad CPU Q6600 of 2.40 GHz.

We used two types of instances: DU05 and DU10. Both types were taken
from the database of Rios-Mercado and Ferndndez [18]. DU05 instances have a
balance deviation parameter 7 = 0.05 and DU10 have a 7 = 0.10. The budget
limit C' is given by the firm with a value of 20,000 for both types of instances.
The size of these insatnces is of n = 1000 and p = 40.
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4.1 Evaluation of the Effect of 3

The 8 parameter is the one that controls the size of the territories being formed
during the construction phase. A large (low) value of 8 implies a large (low) value
of the territory size. The idea is to assess the trade-off between the degree of
infeasibility obtained in the construction phase and the computational cost. The
introduction of this parameter was based on the observation that trying to hit the
normal upper bound as closing criteria (which corresponds to § = 1) produced
many infeasible solutions. What happens is that when the method is building the
territories, a large value of § implies that the constructed territories are relatively
large, leaving very few choices of nodes to be assigned in the second step of the
construction. These nodes are often located in places where the only available
choice for assignemnt is a bad one. By closing the territories earlier (decreasing
B) the constructed partial territories are smaller, and so more choices for the
remaining nodes can be taken. To accomplish this, we tried different values of
B €{0.4,0.5,0.6,0.7,0.8}. We set our GRASP algorithm with an o = 0.1, which
was the best value obtained in an earlier experiment, and an iteration limit of
500. We also set the value of A = 0.2 (the greedy function prameter).
The deviation from best solution (DFB) is computed as

DFB = 100 x M.

fbest
We have basically two types of constraints: the balance and the budget con-
straints. In the following tables we are comparing not only the average objectives,
but also the degree of infeasibility of these constraints.

Table 1. Sensitivity analysis of 8 on DU10 and DUO5 instances.

B
04 05 06 07

DU10 DFB 144 135 94 2.1
RCI 0.0 0.0 0.0 0.0
BCI 0.1 0.0 0.0 0.0
DUO5 DFB 16.2 169 12.6 2.4
RCI 3.6 0.0 00 0.0
BCI 0.0 0.0 0.0 0.0
(*) All infeasible

I
'S

*

A,.\,.\A,.\,.\
*
—_— —|[

Table 1 shows the average results for DU10 and DUO5 instances. The third
row shows the average deviation from best objective (DFB) for DU10. The fourth
and fifth row show the average relative infeasibility with respect to the budget
(RCI) and balancing constraints (BCI), respectively. BCI is the sum of all the
relative infeasibilities of each balancing constraints, which in turn is computed
as the absolute violation of the balancing constraints divided by the correspond-
ing average target size pu®. For the budget constraint, RCI is computed as the
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absolute violation of the balancing constraint divided by the value of the upper
bound C. Rows 6 to 8 show the results for DU05 instances.

As it can be seen, using a value of 8 = 0.8 makes the method fail on findining
feasible solutions, as explained before. Then, as 3 decreasees (8 = 0.6, 0.7), the
method indeed improves to the point on finding feasible solutions for all instances
tested. As 3 gets smaller, a trade-off is incurred, and the method starts failing
for some instances. In terms of evaluating the objective function, using 8 = 0.7
gives better solutions on average (2.1 and 2.4 % deviation from best for DU10
and DUO05, respectively). Therefore, § = 0.7 was consistently found as the best
choice in terms of both average solution quality and fesibility for both data sets.

4.2 Performance of Local Search

In this part of the experiment, we assess the contribution of the local search in
its rol of attempting to improve the quality of solutions and, more important,
attempting to recover feasibility with respect to the solutions generated in the
construction phase. To this end we run the procedure on 15 DUO05 instances
setting a budget limit of C' = 20,000. The GRASP iteration limit was set at
1000.

Table 2. Improvement of local search.

Construction | Local Search |
Instance| f RCIBCI| f RCIBCI
1 181.29 0 9.3|213.7 0 O
2 178.17 0 12.4{204.6 1.9 0
3 16890 0 5.1(186.4 0 O
4 184.71 0 75(2383 0 O
5 20796 0 7.7(176.9 0 O
6 180.21 0 811914 O 0
7 210.16 0 8.8(206.8 0 O
8 185.76 0 9.6 |191.7 3.6 O
9 172.81 0 11.1|12284 0 0
10 203.86 0 10.3(197.5 0 O
11 166.99 0 85|18.6 0 0
12 181.33 0 7.1(1754 0 O
13 18297 0 7.2|181.2 0 O
14 17458 0 11.6|202.8 0 0
15 200.43 0 9.5(2234 6.2 0

Table 2 displays the results, where columns 2-4 show the objective function
value, RCI, and BCI obtained after the construction phase, respectively, and
columns 5-7 show the same statistics at the end of the local search. It can be
observed that the local search was very successfull on recovering feasibility (12
out of 15). In several instances the objective was also improved. This clearly
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indicates the excellent performance of the local search in reducing practically to
zero the infeasibilities found at the end of the construction phase.

4.3 Assessment of Adaptive Memory

In order to evaluate the adaptive memory component, we compare our algorithm
with (AM) and without (NAM) adaptive memory in both set of instances. In
the following tables we are showing the relative improvement improvement (RI)
of AM over NAM, computed as

fnam — fam

RI =100 x
INam

A negative (positive) value indicates a decrement (increment) in the objective.

Table 3 displays the results for DUO5 instances. In this type of instances
the results between the two startegies are very similar and it is not clear AM
provides an advantage. We can see that there are three infeasible solutions under
NAM and four infeasible solutions under AM. When comparing only the feasible
solutions, we can see that in average there is an improvement of 0.29% of AM
over NAM in solution quality, which is not too large.

Table 3. Evaluation of adaptive memory on DUO5 instances.

NAM AM
Instance] f RCIBCI| f RCIBCI|RI (%)
1 213.71 0 0 (178.97 O 0 16.2
2 204.64 1.9 0 |249.58 O 0 -21.9
3 186.45 0 0 (197.74 O 0 -6.0
4 238.36 0 0 [253.95 O 0 -6.5
5 176.98 0 0 |19193 0 O -8.4
6 19143 0 0 [188.31 O 0 1.6
7 206.85 0 0 [189.28 O 0 8.4
8 191.70 3.6 0 |179.45 2.8 0 6.3
9 22842 0 0 (220.76 2.3 0 3.3
10 197.57 0O 0 (204.57 O 0 -3.5
11 188.61 0 0 (215.12 1.6 O -14.0
12 175.41 O 0 (176.20 O 0 -0.4
13 18123 0 0 |196.56 0 O -8.4
14 120285 0 0 |187.51 O O 7.5
15 223.42 6.2 0 (22537 6.2 0 -0.8
Average 0.8 0 09 0 0.29

Results for DU10 are shown in Table 4. In this case, AM turns out to be
successfull, particularly in terms of finding feasible solutions. We can see that,
in terms of comparing the objective function value, NAM does slightly better
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than AM. However, AM was succesfull on recovering feasibility by finding all
15 out of 15 feasible solutions. Procedure NAM failed in this regard in 20% of
the instances. It can be concluded that the use of AM can result in a valuable
strategy towards better design in terms of feasibility.

Table 4. Evaluation of adaptive memory on DU10 instances.

NAM AM
Instance| f RCIBCI| f RCIBCI|RI (%)
1 212.63 0 0 (190.39 O 0 10.4
2 221.88 3.0 0 (19358 0 O 12.7
3 188.37 0 0 (242.14 O 0 -28.5
4 24258 0.6 0 |200.62 O 0 17.2
5 182.15 0 0 |19221 0O O -5.5
6 22727 0 0 (240.25 O 0 -5.7
7 17741 0 0 |18852 0 O -6.2
8 19159 0 0 |19043 0 O 0.6
9 188.08 0 0 (196.87 O 0 -4.6
10 185.89 0 0 |19390 0 O -4.3
11 165.82 0 0 |19255 0 O -16.1
12 190.82 0 0 (196.49 O 0 -29
13 196.94 0 0 |19565 0 O 0.6
14 17559 0 0 |191.76 O O -9.2
15 169.06 0 0 (171.81 O 0 -1.6
Average 024 0 0 0 -5.86

4.4 Assessment of Strategic Oscillation

As we recall from Section 3.2, in the proposed strategic oscillation parameters
o and v penalize two terms in the merit function (5) changing dynamically
whenever a movement is made and certain conditions are met. In this section we
assess the performance of this strategy by comparing the algorithm with (SO)
and without (NSO) the strategic oscillation. Both use the adaptive memory
component. For NSO, we fixed parameters ¢ = 10 and v = 10 and run the
algorithm to observe the effect of not having a dynamic oscillation.

Tables 5 and 6 display the comparison for data sets DU10 and DUO5, respec-
tively. The information is similar to the one presented in the previous tables. In
Table 5 we see that all the solutions reported by NSO satisfy the routing budget
constraint, but not the balance constraints. The average relative infeasibilities
are relatively high. This means this strategy struggled on trying to recover feasi-
bility. Solutions obtained under SO are all feasible. The objective function values
are better under SO as well. In Table 6 a similar behavior is observed. In this
case, NSO could not obtain any feasible solution, and SO was successfull in
finding feasible solutions in 11 out of 15 instances.
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Table 5. Evaluation of strategic oscillation on DU10 instances.

NSO SO
Instance| f RCIBCI| f RCIBCI
1 218.00 0 55019039 0 O
2 233.96 0 12.0{193.58 0 O
3 192.67 0 5.1(24214 0 O
4 183.99 0 5.9(20062 0 O
5 261.74 0 5.2]19221 0 O
6 23843 0 4.3|24025 0 O
7 200.25 0 4.2]18852 0 O
8 231.74 0 6.4(19043 0 O
9 19225 0 7.0(19687 0 O
10 243.85 0 7.7]193.90 0 O
11 {18731 0 6.0|19255 0 O
12 122793 0 5719649 0 O
13 196.04 0 8.1(19565 0 O
14 21191 0 55|191.76 0 O
15 |198.04 0 4.0(171.81 0 O

Table 6. Evaluation of strategic oscillation on DUO5 instances.

NSO SO
Instance| f RCIBCI| f RCIBCI
1 225.76 0 7.7|17897 0 O
2 265.12 0 9.9]24958 0 O
3 24491 0 5.8(197.74 0 O
4 21849 0 88125395 0 O
5 18434 0 7.2(19193 0 O
6 24439 0 75(18831 0 O
7 248.76 0 8918928 0 O
8 230.26 0 10.5|179.45 2.8 O
9 199.21 0 8.8|220.76 2.3 O
10 (22197 0 7.9|20457 0 O
11 205.56 0 6.4(215.12 1.6 O
12 |219.67 0 6.1|176.20 0 O
13 |203.67 0 6.0|196.56 0 O
14 124162 0 9.7(18751 0 O
15 243.46 0 11.4|225.37 6.2 0
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We can conclude directly that the strategic oscillation had a very positive
impact leading the algorithm to feasible solutions and improving its solution
quality. This clearly shows the excellent performance of the strategic oscillation.

5 Conclusions

We introduced a commercial Territory Design Problem with a routing budget
constraint. This is, to the best of our knowledge, the first work to address both
design and routing decisions within commercial territory design. To solve this
problem we proposed a GRASP with some advance features such as adaptive
memory and strategic oscillation.

The adaptive memory component was introduced during the construction
phase as a diversification mechanism. The strategic oscillation was implemented
within the local search to allow more flexibility in the search trajectory. Empirical
evidence over two different classes of instances indicate the modest sucess of teh
adaptive memori and the effectiveness of the strategic oscillation components.
The incorporation of these two into the procedure helped not only improve the
quality of the solutions but to recover feasibility for almost all of them. Adaptive
memory helped in terms of finding feasible solutions particularly for the DU10
instances. For the DUO5 instances, the use of adaptive memory did not provide
a significant advantage. In contrast, it was observed that the use of strategic
oscillation was very successfull on both obtaining feasible designs, and improving
solution quality. Although these preliminary results are very promising, there is
still room for improvement. For the more difficult instances (set DU05), for
example, there were a few cases (4 out 15) where the use of SO was not enough
to guarantee feasibility. The procedure can certainly be improved by means of
other local search techniques.
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