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Abstract: In this paper a real-world territory design problem arising in a beverage distribution firm is addressed.  The firm 
seeks to find a partition of a set of geographic units into a given number of territories in such a way that a dispersity 
measure of the formed territories is minimized. In addition it is required that the territories are balanced with respect to two 
different node activity measures. A heuristic methodology based on a location-allocation technique is proposed to solve this 
problem. This location-allocation scheme consists of a two-stage iterative process where territory centers are first located 
and then customers are allocated to centers. This methodology has been used with relative success for territory design 
problems involving single balancing constraints. In our work, we extend this approach and propose an adaptation of this 
technique to handle multiple balancing constraints and contiguity constraints simultaneously.  In addition a local search 
technique is applied to improve solution quality. Several experiments were conducted and the results show a good 
performance of the heuristic. 
 
 

1. INTRODUCTION 
 
Territory design can be viewed as the problem of grouping small geographical areas into larger geographical clusters called 
territories. This kind of problems arises in different applications such as political districting, design of school territories, 
social facilities, emergency services, sales and service territory design. The problem studied in this article is motivated by a 
beverage company. The company needs to distribute geographically its customers in the city according to certain planning 
criteria. The company seeks balanced territories (similar in size) with respect to each of two different activity measures 
(number of customers and sales volume). Territory contiguity is also required, that is basic units can reach each other by 
traveling within the territory. In addition, compact territories are desired, that is, customers within a territory are close to 
each other; and finally it is desired a fixed number of territories. 
 In the literature a technique called location-allocation has been studied and applied with relative success to solve this 
kind of problems (Kalcsics, Nickel, and Schröder, 2005). This scheme consists of a two-stage iterative process where 
territory centers are first located and then customers are allocated to centers. However this technique has been designed to 
solve only problems involving single balancing constraints. 
 In this paper we extended this technique and proposed an adaptation to handle multiple balancing constraints and 
contiguity constraints simultaneously. In addition a local search technique developed for this kind of problem (Ríos-
Mercado and Fernández, 2006) is applied to improve the solution quality. The algorithm was implemented and tested on 
several instances based on information provided by our industrial partner. The results show the efectiviness of the proposed 
approach, as it was able to obtain solutions of good quality (both in terms of its compactness measure and feasibility with 
respect to the balancing constraints). Also an experiment was conducted in order to determine the appropriate value for the 
heuristic’s parameter. 

 
 

2. PROBLEM DESCRIPTION 
 
A graph G=(V,E) is used to model the problem, where a customer or basic unit i is represented by a node, and an edge 
between nodes i and j exists if nodes i and j represent adjacent blocks. Every node i∈V has the following parameters: 
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geographical coordinates ( x
ic , y

ic ) and two measurable activities. Let a
iw  be the measure of activity a in node i, and a⊂A, 

where A={1,2} is the set of activities in each node. A territory is represented by a subset of nodes VVk ⊂ , and clearly 
each node must be assigned to one territory only. The number of territories is a given parameter p.  
 A solution to this problem must balance every territory with respect to each activity. Due to the unique assignment 
constraint and to the discrete structure of the problem is practically imposible to get perfectly balanced territories. To 
address this issue, we measure the degree of balance by computing the relative deviation of each territory with respect to its 
ideal weight given by pw

i

a
i

a /∑
∀

=μ . Another important constraint is the contiguity of each territory. This means that 

each territory in the solution must induce a connected subgraph of G to guarantee the existence of a path entirely contained 
in the territory for every pair of nodes. 
 Finally it is desired to get compact territories so that customers are near to each other. There are several measures of 
compactness studied in the literature (Shirabe, 2005). It has been shown that the p-center and p-median distance functions 
yield reasonable compactness measures. In our case we use a dispersity function of the form ∑∑

∈∈ VjVi
ijij xd  where xij takes 

the value of 1 if unit j is assigned to territory with center in i and 0 otherwise, i, j∈V; and dij represents the euclidean 
distance between the nodes i and j. The motivation for this choice is that this dispersity measure produces solutions that are 
easier to handle in the allocation phase of our heuristic. Moreover, this measure was compared to one based on a p-center 
distance function. We found that they have similar optimal solutions in instances under study. Nevertheless, the p-center 
function measure deteriorates the performance in the allocation phase. 
 Then the problem is stated as finding a p-partition of V , satisfying all the specific planning criteria, that minimizes the 
dispersity measure. A mixed integer model is proposed as follows. 
  
 

 
 
 Objective (1) is the measure for territory dispersity that represents the sum of the euclidean distances between each 
node and its center. Constraints (2) guarantee that each node j is assigned to one territory only. Constraint (3) forces the 
number of p territories. Constraints (4)-(5) represent the territory balance with respect to each activity measure establishing 
the territory size within a range (measured by a tolerance parameter aτ ) around the average size aμ . The upper bound 
balancing constraints (4) also ensure that if no center is placed at i, no customer can be assigned to it. Constraints (6) 
guarantee the connectivity of the territories where Ni represents the set of nodes which are adjacent to node i. These 
constraints were proposed by Drexl and Haase (1999), and they are similar to the constraints used in routing problems to 
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guarantee the connectivity of the routes. Note that, as usual, there is an exponential number of such constraints. This model 
was tried to be solved to optimality using GAMS modeling software without the connectivity constraints. Small instances 
of 100 nodes were solved to optimality but parameter tuning was required in order to improve processing time. 
Nevertheless, greater instances of 500 nodes were not solved in a reasonable time. Due to the fact that current instances are 
even greater than those of 500 nodes, the use of a heuristic procedure is proposed.  

 
 

3. PROPOSED SOLUTION METHODOLOGY 
 
The proposed heuristic is based on a location-allocation procedure. This consists of two iterative phases: first a location 
phase where the centers of the territories are chosen, and then an allocation phase where the basic areas are assigned to 
these centers. These two phases are iteratively performed until a stopping criterion is met. As a stopping criterion we 
consider a given number of iterations without solution improvement. The phases of the heuristic are described in the next 
sections. 

 
 

3.1 Location Phase 
 
The choice of territory centers has a considerable impact on the resulting territories in such a way that a “bad” selection of 
centers will seldom yield acceptable territories. In this phase a new configuration of territory centers is found from the last 
allocation phase. The best center for each current territory is easily recomputed as the node that has the minimum of the 
maximum distances to each node within the territory. This is, a 1-median problem is solved for each territory. 
 We would like to emphasize that at the beginning we do not have a configuration of territory centers. One way to 
obtain this initial configuration is to use an existing p-median heuristic in order to get relative good centers to use in the 
next phase. There are several papers that address this issue, such as the work of Resende and Werneck (2004) and Rosing 
and Revelle (1997). One way to get an initial configuration is solving the MILP until a feasible solution is found. However, 
this procedure is not appropriate for larger instances (in size).  Therefore a GRASP heuristic proposed by Caballero-
Hernández, Ríos-Mercado, and López (2007) was used to get the required initial configurations. 
 
  
3.2 Allocation Phase 
 
As input to this phase the configuration of the centers located in the previous phase is used.  Let Vc ⊂V the set of p territory 
centers. We could reformulate problem P0 with a smaller number of variables and constraints, but it has been showed in the 
literature that the resultant problem is still a hard problem (Kalcsics, Nickel, and Schröder, 2005). A new formulation is 
proposed to take advantage of the problem structure and also to get better balanced territories. The tolerance is reduced to 0 
in one activity and the integer constraints on the assignment variables are relaxed. The resulting model is basically a 
transportation problem: 
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This problem can be solved efficiently using a solver that implements the simplex method. It is necesary to emphasize that 
there are two problems, one for each activity. In the optimal solution of each model aP1 the territories are perfectly 
balanced. However, it is possible that the unique assignment constraint is not satisfied due to the continuous variables. A 
basic area j for which more than one variable xij, i∈Vc has positive values is called split area or just split. Note that this 
means that this basic area has been assigned to two or more territories. For a basic (optimal) solution of this model it is easy 
to prove that there are at most p-1 splits due to the fact that there are at most p-1 no basic variables when the model is 
solved by the simplex method. 
 Now it is necessary to round off the fractional variables of every split to one (one variable) or zero (the other 
variables). So the problem is how to round these variables in order to keep the perfect balance as much as possible. This 
problem is called the split resolution problem and the methodology designed to solve it is explained in the next section. 
 
 
3.2.1  Split Resolution Problem 
 
For each split it is necessary to decide to which territory or center it will be assigned. In order to repair a possible 
nonconnected territory we first insert the split node to a non connected territory where the addition of this node repairs the 
connectivity. After that we need to solve every split node that has not been yet assigned to a territory. The criteria that will 
guide these assignments are: 
 i) Connectivity: A split node that causes the territory to become not connected will be discarded. 
 ii) Compactness and balance impact: An impact measure is computed in order to choose the territory with the 
minimum impact. This measure is defined as follows: 
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 Every split is repaired according to these two criteria in order to avoid non-connected territories and also to not 
deteriorate the obtained balance and the compactness. 
 
 
3.3 Local Search 
 
After each iteration of the location-allocation procedure a local search proposed by Ríos-Mercado and Fernández (2006) 
and adapted to this problem is applied. In this local search a basic unit is tried to be moved from one territory to another. 
The merit function is defined as follows: )()1()()( XGXFX λλψ −+=  using the same terms that in the split 
resolution. 
 A neighborhood N(S) consists of all solutions reachable from S by moving a basic unit i from its current territory t(i) 
to a neighbor territory t(j), where j is the corresponding basic unit in territory t(j) adjacent to i, without creating a non-
contiguous solution. Such a move is denoted by move(i, j) and is illustrated in the figure, where move(i, j) is represented by 
arc (i, j) (depicted in bold). Note that move(i, j) is allowed only if }{)( iV jt ∪  is connected (which is always the case if arc 

(i, j) exists), and }/{)( iV jt remains connected. In practice an additional stopping criterion, such as limit_moves, is added to 
avoid performing the search for a relatively large amount of time. So the procedure stops as soon as a local optimal is found 
or the number of moves exceeds limit_moves. 
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Figure 1. Movement from One Territory to Another 

 
 

4. EMPIRICAL EVALUATION  
 
This heuristic was implemented with the Sun C++ compiler workshop 8.0 under the Solaris 9 operating system and run on a 
SunFire V440. For the experimentation, we used a set of randomly generated instances based on data from our industrial 
partner. The topology of the instances was randomly and uniformly generated as a planar graph with coordinates in the 
range from 0 to 500 for each node. After that, for each node, both activities measures were generated from uniformly 
distributed random variables in a range provided by our industrial partner. The size of the test instances are 500 and 1000 
basic units with a tolerance of 10% and 5% in balance, 20 instances were obtained for each combination of size-tolerance. 
 First, it is necessary to calibrate the parameter λ  for the heuristic. All the instances were solved and their objective 
values were compared in order to find which value yields better results. This experiment is shown in Table 1. The values in 
columns 3, 4, 5 and 6 represent the number of times that the heuristic with the fixed value in the parameter  λ  produces the 
best solution compared to the other parameter values. 

 
Table 1. Calibration of Parameter λ  

 
 
 
 
 
 
 
 
 
 
 

As it is observed, the best values are obtained with the value 0.8 in the parameterλ . Consequently, in the 
following experiments a value of λ = 0.8 is used. 
 

Table 2. Experimentation Results 
 

 
 

  
 
 
 
 
 

 

Size Balance 
Tolerance λ =0.7 λ =0.8 λ =0.9 λ =1.0 

500  10% 4 15 1 0 
500  5% 5 13 2 0 

1000  10% 2 16 2 0 
1000  5% 3 15 2 0 

Size Balance 
Tolerance 

% 
Improvement 

LS 

Execution 
time average 

Iterations 
average 

% 
Connectivity 

Average 

500 10% 46.45 % 192.76 seg. 47.43 97.5 % 
500 5% 47.34 % 201.23 seg 48.02 94.4 % 

1000 10% 51.23 % 289.48 seg 63.31 93.1 % 
1000 5% 50. 67 % 291.53 seg 65.29 91.2 % 



Proceedings of the 12th Annual  
International Conference on Industrial Engineering 
Theory, Applications and Practice 
Cancun, Mexico 
November 4-7, 2007 

433 

Table 2 display the following results.  The first two columns indicate the characteristics of the set of instances. The third 
column shows the average improvement obtained when the local search is applied after each algorithm’s iteration. The 
fourth column indicates the average execution time (in seconds) to solve an instance. The iterations needed to solve an 
instance (in average) are shown in the fifth column, and the last column represents the percentage obtained of connected 
solutions, that is the proportion of feasible solutions with respect to the contiguity constraints that are obtained throughout 
the execution of the algorithm. 
 As can be observed, the location-allocation phase of the heuristic was improved in a good enough percentage, 
meaning that the local search is essential to get better solutions. An important result was obtained regarding the execution 
time: even though the instances size was incremented, the execution time and the computational effort was not significantly 
deteriorated. This is because of the nature of the procedure; the most expensive part in the algorithm is the resolution of the 
splits, but the number of splits is determined by the number of desired territories p. In this case this number was the same 
for both sizes of our instances.  
 Another important result of the procedure was the percentage of connected solutions. Even though our method does 
not guarantee that all territories in each solution are connected, the procedure designed to solve the splits was very effective 
since over 90% of the times the procedure yield connected solutions.  

 
 

5. CONCLUSIONS 
 

In this paper we adressed a territory design problem from a specific application from a beverage distribution firm. A 
heuristic methodology based on a location-allocation technique was proposed in order to get good solutions for the 
problem. The general location-allocation technique was adapted to handle multiple balancing constraints and contiguity 
constraints simultaneously. To the best of our knowledge, this has not been tried in the literature. In addition, we proposed a 
way to get connected territories taking advantage of problem structure. We found that the performance of this technique is 
related to the number of requested territories. So, this technique has a good behavior and it is recommended when the 
number of desired territories is small compared to the number of basic areas, even in large instances. We also got a better 
insight of the structure of our problem and we noticed that the connectivity in the territories is easily obtained with this 
simple heuristic in the most of the algorithm iterations.  The local search plays an important role in the solution approach, 
so it could be convenient to conduct more research in order to improve even more this phase. In addition, another 
contribution was the study for the parameter λ  used in the heuristic. 
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