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Abstract

In this paper we consider the problem of minimizing fuel cost on steady-state gas transmission problems
on looped networks. We present a mathematical formulation, and propose a heuristic based on a two-stage
iterative procedure. At a first stage, gas flow variables are fixed and optimal pressure variables are found
via dynamic programming. At the second stage, the pressure variables are fixed and an attempt is made
to find a set of flow variables that improve the objective function by exploiting the underlying network
structure.

Keywords : natural gas, transmission networks, fuel minimization, heuristics

1 Introduction

A gas transmission network for delivering natural gas involves a broad variety of physical components such as
pipes, regulators, and compressor stations to name a few. As the gas travels through the pipe, gas pressure
is lost due to friction with the pipe wall. Some of this pressure is added back at compressor stations, which
raise the pressure of the gas passing through them. In a gas transmission network, the overall operating
cost of the system is highly dependent upon the operating cost of the compressor stations in a network. A
compressor station’s operating cost, however, is generally measured by the fuel consumed at the compressor
station. Hence, the goal is to minimize the total fuel consumption used by the stations while satisfying
specified delivery requirements throughout the system.

Gas transmission network problems differ from traditional network flow problem in some fundamental aspects.
First, in gas networks, a pressure variable is defined at every node in addition to the flow variables representing
mass flow rates through each pipe. Second, in addition to the network flow conservation constraint set, there
exist two other type of constraints: (1) a nonlinear equality constraint on each pipe, which represent the
relationships between the pressure drop and the flow; and (2) a nonlinear non-convex set for each compressor
station, which represents the feasible operating limits for pressure and flow within the station.

In this paper we present a mathematical model for this problem (Section 2) and propose a heuristic solution
procedure, which is described in Section 3.

2 Problem Statement and Mathematical Formulation

Let G = (N,L, M) be a directed network defined by a set N of n nodes, a set L of [ pipes, and a set M
of m compressor stations. The mass flow rate on a pipe (i,j) € L is represented by u;;, and the mass flow



rate through a compressor station (7,j) € M is represented by v;;. Note that each compressor station is
represented by a special pipe which connects a pair of nodes (i,7) € M, where i and j are the corresponding
suction and discharge nodes, respectively. Let u,v be the vectors of u;;’s and v;;’s, i.e., u = {u;j, (i,7) €
L},v = {vij, (i,5) € M}, and let w be the vector defined by w = (u,v)T. Let p = (p1,...,pn)T be the
pressure vector with p; the pressure at node i. Let s = (s1,...,5,)7 be the source vector with s; the source
at node 7. If s; is positive (negative), this corresponds to the gas supply limit (demand requirement) at node
i. For the steady-state model, the sum of the sources is assumed to be zero, i.e., Z?:l s; =0.

The flow balance equation at a node has the following meaning: the sum of flows coming out of the node is
equal to the sum of the flow entering the node. It can be represented as

by D

j:(i,j)ELUM j:(4,8)ELUM

Wij — wj; = Si, Vi€eN, (1)

where w;; represents either w;; if (i,4) € L or vy if (i,7) € M.

The physical law that relates the flow in the pipe to the difference of pressure at its two ends for high-pressure
networks is given, as discussed in Osiadacz (Osiadacz, 1987), by the Weymouth’s formula:
v (i,j) € L, (2)

p; — v} = kijulj,
where k;; is a constant whose value depends on the pipe physical properties.

The physical operational limits at each compressor station is another set of constraints, which includes the
maximum/minimum compressor speed ratio, the maximum/minimum allowable volumetric flow rate. A
compressor station is typically of many compressor units (which in turn can be of many types) arranged in
different configurations settings. Let us assume that each compressor station (i, j) has k centrifugal compressor
units hooked up in parallel.

Let ij denote the feasible compressor domain for variables (vi;,pi,p;), and let gfj (vij, pi,pj) denote its
corresponding fuel cost function. Recent work by Wu et al. (Wu et al., 1999) contains a detailed explanation
about the structure of the domain ij, and the behavior of the fuel consumption function gfj Figure
1 from (Wu et al., 1999) shows an example of domain D;‘j”it (k = 1 centrifugal compressor unit) and a
compound domain Dj;.
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The fuel cost function, gfj”it, in a single compressor unit is computed by

m
Q?jnlt(vij;pi,Pj) = Q;;Vij { <p—J> - 1} ) vV (vij, pispj) € D?jm, (3)
(3

where a;; and m are constants which are determined by the specific type of compressors involved.

: ’ : unit : iq o I — qeinssd(PLym _
In our work, we use function g;;, extended version of gi**, which is given by gi; = a;;vi;{(32) 1},

(vij, piPj) € ij The mathematical formulation of the problem is given by

minimize Z 9:;(Vij, Pi, Pj), (4a)
(i,j)eM

subject to > wii— Y wi=si, Yi€EN, (4b)
J:(4,j)eLUM j:(j,8)eLUM
p? _p? = kl]’u‘?y V(ZL]) € L: (46)
(vij,pi,pj) € Df; C R, (i,5) € M. (4d)

The difficulty in solving this type of problems arises from the presence of non-convexity in both the set of
feasible solutions and the objective function. In addition, the type of underlying network topology becomes
a crucial issue. That is, for a non-looped network topology, dynamic programming approaches have been
applied with relative success. See Rios-Mercado (Rios-Mercado, 1999) and Carter (Carter, 1998) for details
of the dynamic programming algorithms.

These procedures rely heavily on theoretical results establishing that, for this type of systems, the involved
flow variables can be determined in advance, and thus, eliminated from the problem. For network topologies
with loops, the problem becomes more difficult because the flow variables can not be uniquely determined, so
they indeed have to be explicitly treated in the model. This type of looped networks become the main focus
of this work.

3 A Heuristic Solution Procedure

Let z° = (v°,p°) be an initial feasible solution to problem (4). For a tree structured gas transmission
network, flow variables v are uniquely determined. However, for looped networks, one may obtain better
a objective function by modifying the current flow setting v°. For this purpose, we introduce the residual
network concept (Ahuja et al., 1993). The residual network was originally introduced to find the optimal flow
(or to prove its optimality) in minimum cost network flow problems. We define the residual network with
respect to the current flow vector v° as follows. We replace each arc (4, 7) in the original network by two arcs,
a forward arc (i,7) and a backward arc (j,4): the arc (i,j) has cost ¢;; and the arc (j,7) has cost —c;;.

In our heuristic flow modification step, the costs of the residual network are approximated by the derivatives
of the objective function with respect to the flow on each compressor station, that is,

wen{(2) 4

where p;, p; are the current solution values delivered by dynamic programming with fixed flow variables. This
cost ¢;; is assigned at each forward edge of the residual network, while —c;; is assigned at each backward
edge.

The cycle cost 7¢, total cost of the cycle C' in a residual network, is defined by

TC = Z (5”(0) . Cij, (6)

(i,j)EMc



where d;;(C') equals 1 if (4, j) is contained in the cycle C' and (7, j) is a forward arc of G'(v°), —11if (j,i) € C
and (4,7) is a backward arc of G'(v°), and 0 otherwise, and M¢ is the set of compressor stations located in
the cycle C. If 7¢ is negative, then we call a negative cycle and denote it as C'~.

Modification of the flow is done by augmenting flow through a negative cycle C~. That is, if there exists
a negative cost cycle C'~, then we augment positive flow through C~, and hence update the current flow
setting. This flow modification step can be represented as

" =0 + X 5(CT), (7)

where A > 0 is the positive amount of flow which will be added through the cycle, and §(C~) is the vector
of 0;;(C~), a vector representing the negative cycle C~. The flow modification step can be viewed as a
nonlinear programming algorithm in which we try to find a direction (a vector of flow modification) such that
by moving A units in this direction, the objective function decreases. In our heuristic procedure, a negative
cycle vector §(C'~) corresponds to the search direction.

The value A is bounded below by zero and above by X, which can be obtained by considering the complex
inequality constraint set D;;, (¢,7) € C~. If A =0, then the algorithm stops. Otherwise, we set A = X > 0.

For the newly obtained flow setting v™*", we need to find pressure variables, which requires to rerun dynamic
programming with fixed flow setting v™¢*. If dynamic programming with v™¢"* has no feasible solution or no
improvement has been achieved, we reduce the size of A by setting A = v, where 0 < v < 1, and run dynamic
programming until we get a desirable result. We now provide a step-by-step summary of the algorithm.

Step 1 Find an initial feasible solution z° = (v°, p°).

Step 2 Construct the residual network G’, and find a negative cycle C~ with negative cost 7o-.
Step 3 If |7c-| < €, where ¢ is a small number, stop. Otherwise, go to Step 4.

Step 4 Set A = \. If A = 0, stop. Otherwise,

(a) Modify the current flow v! by vi*! = vt + X - §(C7).

(b) Calculate pressure values using dynamic programming with modified flow v!*!.
If dynamic programming yields infeasible solution, or ¢g'*' — g* > 0, then set A = )\, with
0 <y <1, and go to (a). Otherwise, go to Step 2.

Our current ongoing research involves the computational implementation of the heuristic.

Acknowledgements: This research has been supported by the National Science Foundation (grant No.
DMI-9622106) and by the Texas Higher Education Coordinating Board through its Advanced Research
Program (grant No. 999903-122).

References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey.

Carter, R. G. (1998). Pipeline optimization: Dynamic programming after 30 years. In Proceedings of the
30th PSIG Annual Meeting, Denver.

Osiadacz, A. J. (1987). Simulation and Analysis of Gas Networks. Gulf Publishing Company, Houston.

Rios-Mercado, R. Z. (1999). Natural gas. In Pardalos, P. and Resende, M. G. C., editors, Handbook of
Applied Optimization. Oxford University Press. In press.

Wu, S., Rios-Mercado, R. Z., Boyd, E. A., and Scott, L. R. (1999). Model relaxations for the fuel cost
minimization of steady-state gas pipeline networks. Technical report, Dept. of Computer Science, U. of
Chicago, Chicago.




