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Abstract

In this paper we consider the problem of minimizing fuel cost on steady-state gas transmission problems
on looped networks. We present a mathematical formulation, and propose a heuristic based on a two-stage
iterative procedure. At a �rst stage, gas 
ow variables are �xed and optimal pressure variables are found
via dynamic programming. At the second stage, the pressure variables are �xed and an attempt is made
to �nd a set of 
ow variables that improve the objective function by exploiting the underlying network
structure.
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1 Introduction

A gas transmission network for delivering natural gas involves a broad variety of physical components such as
pipes, regulators, and compressor stations to name a few. As the gas travels through the pipe, gas pressure
is lost due to friction with the pipe wall. Some of this pressure is added back at compressor stations, which
raise the pressure of the gas passing through them. In a gas transmission network, the overall operating
cost of the system is highly dependent upon the operating cost of the compressor stations in a network. A
compressor station's operating cost, however, is generally measured by the fuel consumed at the compressor
station. Hence, the goal is to minimize the total fuel consumption used by the stations while satisfying
speci�ed delivery requirements throughout the system.

Gas transmission network problems di�er from traditional network 
ow problem in some fundamental aspects.
First, in gas networks, a pressure variable is de�ned at every node in addition to the 
ow variables representing
mass 
ow rates through each pipe. Second, in addition to the network 
ow conservation constraint set, there
exist two other type of constraints: (1) a nonlinear equality constraint on each pipe, which represent the
relationships between the pressure drop and the 
ow; and (2) a nonlinear non-convex set for each compressor
station, which represents the feasible operating limits for pressure and 
ow within the station.

In this paper we present a mathematical model for this problem (Section 2) and propose a heuristic solution
procedure, which is described in Section 3.

2 Problem Statement and Mathematical Formulation

Let G = (N;L;M) be a directed network de�ned by a set N of n nodes, a set L of l pipes, and a set M
of m compressor stations. The mass 
ow rate on a pipe (i; j) 2 L is represented by uij , and the mass 
ow
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rate through a compressor station (i; j) 2 M is represented by vij . Note that each compressor station is
represented by a special pipe which connects a pair of nodes (i; j) 2 M , where i and j are the corresponding
suction and discharge nodes, respectively. Let u; v be the vectors of uij 's and vij 's, i.e., u = fuij ; (i; j) 2
Lg; v = fvij ; (i; j) 2 Mg; and let w be the vector de�ned by w = (u; v)T . Let p = (p1; :::; pn)

T be the
pressure vector with pi the pressure at node i. Let s = (s1; :::; sn)

T be the source vector with si the source
at node i. If si is positive (negative), this corresponds to the gas supply limit (demand requirement) at node
i. For the steady-state model, the sum of the sources is assumed to be zero, i.e.,

Pn
i=1 si = 0.

The 
ow balance equation at a node has the following meaning: the sum of 
ows coming out of the node is
equal to the sum of the 
ow entering the node. It can be represented as

X
j:(i;j)2L[M

wij �
X

j:(j;i)2L[M

wji = si; 8 i 2 N; (1)

where wij represents either uij if (i; j) 2 L or vij if (i; j) 2M .

The physical law that relates the 
ow in the pipe to the di�erence of pressure at its two ends for high-pressure
networks is given, as discussed in Osiadacz (Osiadacz, 1987), by the Weymouth's formula:

p2i � p2j = kiju
2
ij ; 8 (i; j) 2 L; (2)

where kij is a constant whose value depends on the pipe physical properties.

The physical operational limits at each compressor station is another set of constraints, which includes the
maximum/minimum compressor speed ratio, the maximum/minimum allowable volumetric 
ow rate. A
compressor station is typically of many compressor units (which in turn can be of many types) arranged in
di�erent con�gurations settings. Let us assume that each compressor station (i; j) has k centrifugal compressor
units hooked up in parallel.

Let Dk
ij denote the feasible compressor domain for variables (vij ; pi; pj), and let gkij(vij ; pi; pj) denote its

corresponding fuel cost function. Recent work by Wu et al. (Wu et al., 1999) contains a detailed explanation
about the structure of the domain Dk

ij , and the behavior of the fuel consumption function gkij . Figure

1 from (Wu et al., 1999) shows an example of domain Dunit
ij (k = 1 centrifugal compressor unit) and a

compound domain D4
ij .

0
2

4
6

8
10

x 10
4

200

400

600

800

1000

1200
0

500

1000

1500

2000

mass flow rate Vij (lbm/min)suction pressure Pi (psia)

d
is

ch
a

rg
e

 p
re

ss
u

re
 P

j (
p

si
a

)

(a) Dunit
ij for a compressor station with a single

compressor unit
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(b) Dk
ij for compressor station (i; j) with k = 4

compressor units in parallel

Figure 1: Feasible domain of the compressor station of Wu et al.
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The fuel cost function, gunitij , in a single compressor unit is computed by

gunitij (vij ; pi; pj) = aijvij

��
pj

pi

�m
� 1

�
; 8 (vij ; pi; pj) 2 Dunit

ij ; (3)

where aij and m are constants which are determined by the speci�c type of compressors involved.

In our work, we use function g0ij , extended version of gunitij , which is given by g0ij = aijvijf(
pj
pi
)m � 1g,

(vij ; pi; pj) 2 Dk
ij . The mathematical formulation of the problem is given by

minimize
X

(i;j)2M

g0ij(vij ; pi; pj); (4a)

subject to
X

j:(i;j)2L[M

wij �
X

j:(j;i)2L[M

wji = si; 8 i 2 N; (4b)

p2i � p2j = kiju
2
ij ; 8 (i; j) 2 L; (4c)

(vij ; pi; pj) 2 Dk
ij � R3; (i; j) 2 M: (4d)

The di�culty in solving this type of problems arises from the presence of non-convexity in both the set of
feasible solutions and the objective function. In addition, the type of underlying network topology becomes
a crucial issue. That is, for a non-looped network topology, dynamic programming approaches have been
applied with relative success. See R��os-Mercado (R��os-Mercado, 1999) and Carter (Carter, 1998) for details
of the dynamic programming algorithms.

These procedures rely heavily on theoretical results establishing that, for this type of systems, the involved

ow variables can be determined in advance, and thus, eliminated from the problem. For network topologies
with loops, the problem becomes more di�cult because the 
ow variables can not be uniquely determined, so
they indeed have to be explicitly treated in the model. This type of looped networks become the main focus
of this work.

3 A Heuristic Solution Procedure

Let x 0 = (v0; p0) be an initial feasible solution to problem (4). For a tree structured gas transmission
network, 
ow variables v are uniquely determined. However, for looped networks, one may obtain better
a objective function by modifying the current 
ow setting v0. For this purpose, we introduce the residual
network concept (Ahuja et al., 1993). The residual network was originally introduced to �nd the optimal 
ow
(or to prove its optimality) in minimum cost network 
ow problems. We de�ne the residual network with
respect to the current 
ow vector v� as follows. We replace each arc (i; j) in the original network by two arcs,
a forward arc (i; j) and a backward arc (j; i): the arc (i; j) has cost cij and the arc (j; i) has cost �cij .

In our heuristic 
ow modi�cation step, the costs of the residual network are approximated by the derivatives
of the objective function with respect to the 
ow on each compressor station, that is,

cij � aij

��
pj

pi

�m
� 1

�
; (5)

where pi; pj are the current solution values delivered by dynamic programming with �xed 
ow variables. This
cost cij is assigned at each forward edge of the residual network, while �cij is assigned at each backward
edge.

The cycle cost �C , total cost of the cycle C in a residual network, is de�ned by

�C =
X

(i;j)2MC

�ij(C) � cij ; (6)
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where �ij(C) equals 1 if (i; j) is contained in the cycle C and (i; j) is a forward arc of G0(v�), �1 if (j; i) 2 C

and (j; i) is a backward arc of G0(v�), and 0 otherwise, and MC is the set of compressor stations located in
the cycle C. If �C is negative, then we call a negative cycle and denote it as C�.

Modi�cation of the 
ow is done by augmenting 
ow through a negative cycle C�. That is, if there exists
a negative cost cycle C�, then we augment positive 
ow through C�, and hence update the current 
ow
setting. This 
ow modi�cation step can be represented as

vnew = v0 + � � �(C�); (7)

where � > 0 is the positive amount of 
ow which will be added through the cycle, and �(C�) is the vector
of �ij(C

�), a vector representing the negative cycle C�. The 
ow modi�cation step can be viewed as a
nonlinear programming algorithm in which we try to �nd a direction (a vector of 
ow modi�cation) such that
by moving � units in this direction, the objective function decreases. In our heuristic procedure, a negative
cycle vector �(C�) corresponds to the search direction.

The value � is bounded below by zero and above by �, which can be obtained by considering the complex
inequality constraint set Dij , (i; j) 2 C�. If � = 0, then the algorithm stops. Otherwise, we set � = � > 0.

For the newly obtained 
ow setting vnew , we need to �nd pressure variables, which requires to rerun dynamic
programming with �xed 
ow setting vnew . If dynamic programming with vnew has no feasible solution or no
improvement has been achieved, we reduce the size of � by setting � = 
�, where 0 < 
 < 1, and run dynamic
programming until we get a desirable result. We now provide a step-by-step summary of the algorithm.

Step 1 Find an initial feasible solution x 0 = (v0; p0).

Step 2 Construct the residual network G0, and �nd a negative cycle C� with negative cost �C� .

Step 3 If j�C� j < ", where " is a small number, stop. Otherwise, go to Step 4.

Step 4 Set � = �. If � = 0, stop. Otherwise,

(a) Modify the current 
ow v t by v t+1 = v t + � � �(C�).

(b) Calculate pressure values using dynamic programming with modi�ed 
ow v t+1.
If dynamic programming yields infeasible solution, or gt+1 � gt > 0, then set � = 
�, with
0 < 
 < 1, and go to (a). Otherwise, go to Step 2.

Our current ongoing research involves the computational implementation of the heuristic.
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