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1 Introduction

We present a heuristic approach to a territory design problem motivated by a real-world application
arising in the recollection of waste electrical and electronic equipment (WEEE) in European countries.
The problem may be stated as follows. Given a set of recollection points for waste electrical and
electronic goods, a central agency must assign each recollection point to a corporation that would take
charge of the recollection. In countries like Germany and Spain, for instance, the coordination and
supervision of the collection is done by a central registry which also determines the market share of all
companies that sell equipment in the respective country. According to the law, this assignment must
meet several requirements. For white goods (i.e., dish-washers, fridges, etc.), the assignment of stations
to corporations should be made such that the average amount of returned WEEE items is proportional
to the market share of the corporation. Moreover, the points assigned to a corporation should be evenly
dispersed all over the country to avoid a monopolistic concentration. Note that this criterion is exactly
the opposite of the usual compactness criteria of classical territory design problems [2]. For a general
overview on territory design models and an introduction into the topic the reader is referred to [2].

In this paper, we present an empirical evaluation of three GRASP heuristics for this NP-hard
combinatorial optimization problem. Three different construction mechanisms and three different local
search schemes are derived and evaluated over a range of randomly generated instances. The results
are very good. The local search strategies improve considerably the solutions found in the construction
phase particularly in terms of their infeasibility status. All three procedures reported feasible solutions.

2 Problem Description

Description: White goods are further subdivided into devices that have freezing capabilities and those
that do not (product type 1 and 2, respectively). The average amount of WEEE of a basic area is
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assumed to be proportional to the number of households. Moreover, recycling (measured by means of
suitable performance indicators), all basic areas are classified into three groups: good, mediocre, and
bad. A good basic area is for example one, which has a relatively small geographic extent, contains
few collection stations, and possesses a good infrastructure. The motivation for this classification is
that the actual costs for the recollection and recycling should also be (more or less) proportional to
the market shares of the corporations. As the market shares may differ for the two product types, it is
allowed to split basic areas, i.e., for some basic areas the corporation that collects type 1 products of
type may not be the same as the one that is responsible for the type 2 products. The task is then to
assign basic areas fully or partially to corporations such that (i) for both product types all basic areas
are assigned to a corporation; (ii) for each corporation, the total number of households of all basic areas
assigned to the corporation is proportional to its market share for each of the two product types; (iii)
the good, mediocre, and bad basic areas are evenly distributed among the corporations relative to their
market shares; (iv) the number of split basic areas is not too large; and (v) for each corporation, all
basic areas that are fully or partially assigned to the corporation are as dispersed as possible. The set
of all basic areas assigned to a corporation for at least one of the two product types is called a territory.

Model: Indices and sets: Let V be the set of basic units (BU), with |V | = n, and C the set of
corporations, with |C| = m. Let P be set of product types. In this work |P | = 2. Let Q be the set of
quality indices, where q ∈ Q = {1, 2, 3} stands for good (1), mediocre (2), and bad (3). Let V q be the
set of BUs of quality q, q ∈ Q. Parameters: Let wi represent the number of households of BU i, i ∈ V .
Let qi be the quality of BU i, i ∈ V . Let MS

p
k denote the market share of corporation k for product

p, k ∈ C, p ∈ P . Let dij ] represent the Euclidean distance between i and j, i, j ∈ V . Let τ and β

denote the relative tolerance associated with number of households market share proportionality and
the relative tolerance associated with fair quality distribution of households, respectively. Let S be an
upper limit on the number of allowed split BUs. Computed parameters: Let w(B) (=

∑

i∈B wi) be the
size of set B with respect to node activity, B ⊂ V , with w(V ) = W . Let cq(B) (= |B ∩ V q |) be the
cardinality of set B with respect to BU quality q, q ∈ Q, B ⊂ V . Decision sets: X

p
k is the set of BUs

assigned to corporation k for product p, k ∈ C, p ∈ P ; Xk is the set of BUs assigned to corporation k

for at least one product p ∈ P , k ∈ C, that is, i ∈ Xk ⇔ i ∈ X
p
k for some p ∈ P ; Xs is the set of split

BUs, that is, i ∈ Xs ⇔ ∃k1, k2 ∈ C, k1 6= k2 such that i ∈ X1
k1

∧ i ∈ X2
k2

. Note that for a given value of
p, Xp = (Xp

1 , . . . , Xp
m) is a partition of V . Let Xk be the set of all basic units assigned to territory k

for at least one product p, i.e., Xk = ∪p∈P X
p
k . Model: The problem consists of finding |P | m-partitions

Xp = (Xp
1 , . . . , Xp

m); p ∈ P so as to

Maximize f(X) = min
k∈C

min
i,j∈Xk

{dij} (1)

subject to
1

W
w(Xp

k ) ∈ [(1 − τ)MS
p
k , (1 + τ)MS

p
k ] k ∈ C, p ∈ P (2)

1

|V q |
cq(Xp

k ) ∈ [(1 − β)MS
p
k , (1 + β)MS

p
k ] q ∈ Q, k ∈ C, p ∈ P (3)

|Xs| ≤ S (4)

Objective (1) measures territory dispersion. Constraints (2) represent the territory balance of the
number of households with respect to the market share proportion for each product (measured by
tolerance parameter τ). Constraints (3) assure a fair distribution of the basic areas regarding its
product quality (measured by tolerance parameter β). Constraint (4) sets a limit on the number of
maximum split BUs allowed. We call this problem the Maximu-Dispersion Territory Design Problem

(MaxD-TDP). MaxD-TDP is NP-hard since we can reduce the well-known Partition Problem to it.
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3 Description of Heuristics

GRASP [1] is a well-known multi-start metaheuristic that captures good features of both pure greedy
algorithms and random construction procedures. Ecah GRASP iteration consists of two phases: con-
struction and local search. The construction phase builds a solution, and the local search phase attempts
to imrpove it. The best overall solution is kept as the result. construction procedures. It has been
successfully used for solving many combinatorial optimization problems, including territory design [3].

Construction Phase: Two of the procedures (1 and 1R) try to assign basic areas that are relatively
close to each other to different corporations. The third one (Procedure 2) is based on the complementary
idea of trying to assign to the same corporation basic areas that are relatively far away from each other.

Procedure 1: After sorting the pairwise distances in non-decreasing order, we go through this list step
by step, starting with the smallest non-zero value. At a given iteration, the next largest distance dij

is considered and if i and/or j are yet unassigned, we try to allocate them to different corporations.
The allocation decision is hereby based on a greedy function that takes a distance-based measure and
the sum of the relative violations of the upper balancing constraints into account. More precisely, if
X = (X1, . . . , Xm) is the partial solution obtained so far, for a given basic area i, a corporation k, and
a product p, the relative violation of the upper bound (UB) of the market share balancing constraints
(2) and the UB of the logistics quality balancing constraints (3) is given as

G
p
i (k) = max

{

w(Xk) + wi

W · MS
p
k

− (1 + τ), 0

}

+ max

{

cqi(Xk) + 1

|Vqi
| · MS

p
k

− (1 + β), 0

}

where qi is the quality index of BA i. Note that it makes no sense to include the lower bound violations at
this point, as they will always be violated until the very end of the construction procedure. The greedy
function is then defined as φi(k) = λ Fi(k)− (1−λ) Gi(k), where λ ∈ [0, 1], Gi(k) = G1

i (k)+G2
i (k) and

Fi(k) = di(Xk) := minj∈Xk
dij (in case Xk = ∅, then di(Xk) := ∞). Figure 1 shows the pseudocode of

function ConstructGreedyRandomized 1 (α)
Input: α := GRASP RCL quality parameter.
Output: An assignment X = {Xk}k∈C .

0 Xk = ∅, k ∈ C; V a = ∅ (set of assigned basic areas);
1 sort {dij}, i 6= j, and store them in DL;
2 while (|V a| < |V | AND |DL| > 0) do

3 dij ← D(1) (first element in DL); DL← DL \ {D(1)};
4 if (i ∈ V a AND j ∈ V a) go to step 2;
5 if (i 6∈ V a AND j ∈ V a) [Note: opposite case is symmetric]
6 compute greedy function φi(k), k ∈ C;

7 build RCL; k̂← rand(RCL);

8 if (k̂ = territory of j) then RCL ← RCL\{k̂}; k̂← rand(RCL); endif ;

9 assign i to corporation k̂: X
k̂
← X

k̂
∪ {i}; V a ← V a ∪ {i};

10 endif ;
11 if (i 6∈ V a AND j 6∈ V a)
12 compute greedy function φi(k); k ∈ C

13 build RCL; k̂← rand(RCL);

14 assign i to corporation k̂: X
k̂
← X

k̂
∪ {i}; V a ← V a ∪ {i};

15 compute greedy function φj(k), k ∈ C;
16 build RCL; k′ ← rand(RCL);

17 if (k′ = k̂) then RCL ← RCL \{k′}; k′ ← rand(RCL); endif ;
18 assign j to company k′: Xk′ ← Xk′ ∪ {j}; V a ← V a ∪ {j};
19 endif ;
20 endwhile;
21 return X = {X1, . . . , Xm};
end ConstructGreedyRandomized 1

Figure 1: Construction Procedure 1.

this procedure. DL denotes the list of all pairwise distances ordered by non-decreasing values, with ties
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arbitrarily broken, and D(r) denotes the r-th element of the list. The restricted candidate list is defined
as RCL = {k : φi(k) ≥ φmax

i − α(φmax
i − φmin

i )}, where φmin
i = mink φi(k) and φmax

i = maxk φi(k).

Procedure 1R: As the UB of constraints (2) and (3) have been taken into account in Procedure 1
through the greedy function only, is is likely to obtain infeasible solutions. Therefore, in a variant of
Construction Procedure 1, we try to obtain solutions with no or at least fewer upper bound violations.
Construction Procedure 1R has two phases. In the first one, basic areas are assigned to corporations
as in Construction Procedure 1, provided that they do not violate the UB of (2) and (2). This can
be achieved easily through a modified restricted candidate list: RCL = {k : Gi(k) = 0 ∧ φi(k) ≥
φmax

i − α(φmax
i − φmin

i )}. As some basic areas may remain unassigned at the termination of the first
phase, these areas are assigned to corporations in a second phase in a different fashion. Throughout this
phase, to reduce the violation of the UB of (2) and (3), we use as greedy function just Gi(k). Splitting
of basic areas is allowed in the second phase when no more than |S| basic areas remain unassigned.

Procedure 2: Using a different rationale, we now try to assign to the same corporation basic areas
that are relatively distant from each other. The procedure has two phases. In the first, the iterative
procedure builds m territories, one at a time, using a farthest insertion greedy function that assigns to
the territory Xk currently being built BAs relatively “far away” from Xk. Since, again, no violation of
the UB balancing constraints is allowed, the RCL only contains unassigned BAs for which Gi(k) = 0.
Note that φmax = maxi φ(i) and φmin = mini φ(i). If some BAs remain unassigned at the termination
of this phase, we proceed to a second phase that is exactly as in Construction Procedure 1R.

Local Search: In this phase we attempt to recover feasibility as well as to improve the objective
function value. Solutions are now evaluated by means of a function that weighs both infeasibility with
respect to the balancing constraints as well as the smallest pairwise distance among the territories.
This function is similar to the greedy function φi(k) used in the construction phase, however, with the
difference that now the sum of relative infeasibilities Gi(k) takes into account the violation of the lower
bounds of balancing constraints (2) and (3) as well. The types of exchange moves that we consider
are the following: Type A1: For all products, reassign a basic area i that is currently assigned to some
territory Xk of corporation k to the territory Xk′ of a different corporation k′ 6= k. The size of the
neighborhood is nm. Type A2: Reassign a basic area i just for product p from its current territory to
a different corporation’s territory. Splitting is allowed. The size of the neighborhood is 2nm. Type B:

Exchange the assignment of basic areas i and j currently allocated to different corporations for one or
both products. The size of the neighborhood is 2n2.

4 Empirical Work and Conclusions

We generated problem instances using real-world data. Basic areas correspond to German zip-code
areas with their respective number of households. The instances range from 100 up to 300 basic areas
in steps of 50, and with four up to seven corporations. We generated five instances for each number
of basic areas, except for the last, where we have just four instances. In combination with the four
different numbers of corporations, this yields in total 96 instances. The tolerances for the demands and
for the logistics indices are τ = 0.05 and β = 0.2, respectively. The pairwise distances were computed
as the Euclidean distance between the polygonal representations of the zip-code areas. In that way,
neighboring basic areas have distance zero. The logistics indices were chosen randomly such that we
have approximately the same number of good, mediocre, and bad basic areas. We set S to 20% of the
value of n for each instance. Finally, the market shares of the companies are computed independently
for the two products. A market share is drawn uniformly from the interval [ 0.75

m
, 1.25

m
]. At the end, the

market shares are normalized to obtain a total sum of 1. The heuristic procedures were coded in C++
and compiled with the Sun C++ compiler workshop 8.0 under the Solaris 9 operating system. They
were run on a SunFire V440 with 8 GB of RAM and 4 UltraSparc III procesors at 1062 MHz.

Parameter Tuning: For fine-tuning the RCL parameter α and the weight parameter λ of the greedy

Porto, Portugal, April 29-30, 2009



EUMEeting 2009 5

function, we run the different versions of the GRASP with an iteration limit of 500 and no local search,
and measure both the degree of violation of the balancing constraints and the value of the objective
function. The set of values for λ is {0.5, 0.6, . . . , 1.0}, and for α we take {0, 0.2, . . . , 1.0}. Figure 2,
displays results for Procedure 1 with λ and α fixed, respectively. In these figures, the left vertical
axis measures the average (over all instances) relative infeasibility with respect to the upper and lower
balancing constraints, whereas the right vertical axis measures the average (over all instances) percent
gap between the objective function value of the obtained solution and the best solution found with
all the values of the tested parameters. Similar figures for the other two construction procedures are
omitted here for space reasons, but will be presented at the conference. For Procedure 1, a value of
α = 0.2 consistently finds the best compromise between infeasibility and deviation from maximum
dispersion for each tested value of λ. Comparing the values of λ we observe that λ = 0.5 yields a good
compromise. Due to their mechanism for building solutions, λ plays a minor role in Procedures 1R and
2. Thus, only α was evaluated. We observe that α = 0.2 and α = 0.8 yielded the best compromise
between deviation from maximum dispersion and infeasibility for each of these procedures.
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Figure 2: Construction Procedure 1 with λ = 0.5 as a function of GRASP quality parameter (left-hand
side) and with α = 0.2 as a function of the merit function weight parameter.

Local Search Strategies: Next, we investigate the behavior and effect of the local search. In the
previous section we introduced three different neighborhoods. For our tests we consider three different
combinations of these neighborhoods: LS1 (apply type A1 and then type A2 neighborhood), LS2
(apply type A2 and then type A1 neighborhood), and finally LS3 (apply type A2, then type A1, and
then type B neighborhood). Since the neighborhoods are polynomially bounded and not too large,
we use a best improvement strategy. For Constructive Procedure 1, 1R, and 2, we use (α, λ) values
of (0.2, 0.5), (0.2, 1.0), and (0.8, 1.0), respectively. The GRASP iteration limit was set to 2000. The
results (omitted for space reasons) indicate that, independently of the construction procedure, both
LS1 and LS2 were able to obtain always feasible solutions, which represents a significative improvement
with respect to the construction phase where no feasible solutions were found (although solutions with
relatively small deviations from feasibility were obtained). This shows the effectiveness of the local
search strategies for repairing the infeasibility issue. The results also indicate that LS2 outperforms
LS1 in terms of relative deviations from the best known value for the dispersion objective. In addition,
LS2 uses considerably less CPU time than LS1 (about 40% less in average). Therefore, we conclude
that it is more advantageous to explore A2 first, and then A1.

Heuristic Comparison: Table 1 shows a valid comparison among the heuristics under local search
strategy LS2. This time the relative dispersion gap is computed with respect to best known value of
the dispersion objective found by any procedure under any local search strategy. We observe that, in
terms of solution quality, Construction Procedure 2 exhibits a very poor performance compared to the
other two. Procedures 1 and 1R perform very similarly with respect to both dispersion objective and
CPU time, with Procedure 1 being slightly better than 1R in terms of the dispersion objective. In
particular, for the largest problems (300 basic areas), both heuristics find the same solution for 75% of
the instances. For problem instances below 300 basic areas, Construction Procedure 1 finds the best
solution. Overall, Procedures 1 and 1R each find 76 best solutions. It is important to highlight the
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tremendous benefit reported by the local search phase in each case. Most of the solutions found in the
construction phase were infeasible (feasibility success of 5% and large deviations from feasibility in some
cases). After the local search, feasibility was always recovered in all cases. Neighborhoods A1 and A2
helped to bring this figure up to 100.0%. This suggests further work on the local search schemes could
be worthwhile. We also tested strategy LS3 for the 300-node instances with Procedure 1. For 11 out
of 16 instances, no improvement was found. Moreover, while the overall average relative improvement
is less than 1.5%, the average CPU time for LS3 is 19778.9 seconds, which represents, compared to the
1056.5 seconds for LS2, a very large increase that barely pays off in terms of solution quality.

n Statistic Proc 1 Proc 1R Proc 2

200 Avg. rel. dispersion gap (% from best known) 1.5 0.2 24.1
Worst relative dispersion gap (%) 13.3 3.6 44.6
Number of best solutions 15 18 1
Average CPU time 440 411 787

250 Avg. rel. dispersion gap (% from best known) 0.7 0.7 28.4
Worst relative dispersion gap (%) 3.2 6.2 45.6
Number of best solutions 14 15 0
Average CPU time 699 671 1277

300 Avg. rel. dispersion gap (% from best known) 0.0 0.9 30.7
Worst relative dispersion gap (%) 0.0 7.6 53.2
Number of best solutions 16 12 0
Average CPU time 1056 1067 2064

Total Avg. rel. dispersion gap (% from best known) 0.7 0.9 24.6
Worst relative dispersion gap (%) 13.3 16.6 53.2
Number of infeasible solutions 0 0 0
Number of best solutions 76 76 0

Table 1: Comparison of construction procedures under LS2. 100- and 150-BU instance results are now
shown here but tallied in the total.

Conclusions: We have presented a computational study of a MaxD-TDP motivated by a real-world
case in the recollection of WEEE. To the best of our knowledge, this is the first model based on maximum
dispersion in the territory design literature. We have evaluated three construction procedures and
three local search schemes within a GRASP framework over a range of instances randomly generated
according to real-world scenarios This included heuristic fine tunning and a comparison of several local
search strategies among heuristics with very good results. There are several challenging avenues for
future research, for instance, the design of more sophisticated metaheuristics, and the study of an
extension that would combine the design of the territories with the planning of the collection routes.
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