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Abstract. In this paper, we present a mathematical framework for the
problem of minimizing the cash-out penalties from the point of view
of the natural gas shipper. The problem is modeled as a mixed bilevel
linear programming problem. To solve it efficiently, we reformulate it as a
standard mathematical programming problem and describe an algorithm
of penalty functions for its solution. The algorithm is well-founded and
its convergence is proved.

1 Introduction

In many decision processes there is a hierarchy of decision makers, and decisions
are made at different levels in this hierarchy. One way to handle such hierarchies
is to focus on one level and include other levels’ behaviours as assumptions.
Multilevel programming is the research area that focuses on the whole hierarchy
structure. In terms of modeling, the constraint domain associated with a multi-
level programming problem is implicitly determined by a series of optimization
problems which must be solved in a predetermined sequence. If only two levels
are considered, we have one leader (associated with the upper level) and one
follower (associated with the lower one), and call the problem as a bilevel pro-
gramming problem. If the constraints at both levels are all linear, we have a
bilevel linear programming problem (BLP). In [1], one can find both the essen-
cial fundamentals of the multilevel optimization and its applications to solution
of real systems.

The field of multilevel optimization today is a well-known and important
research field. Hierarchical structures can be found in diverse scientific disci-
plines including environmental studies, classification theory, databases, network
design, transportation, game theory, and economics; and new applications (like
the above described gas cash-out problem) are constantly being introduced. This
is, in turn, positive for the development of new theory and efficient algorithms.

A particular case of the bilevel programming problem is presented by the
following mixed-integer model arising from the problem of minimization of cash-
out penalty costs of a natural gas shipping company. In countries like the United
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States, for instance, the natural gas industry has been going through a dereg-
ulation process since the mid-1980s leading to significant market changes. Now
the decision making procedure of gas buying, selling, storing, transporting, etc.,
is immersed into a very complex world in which producers, pipelines (trans-
porters), and brokers, all play quite important roles in the chain. This chain
becomes even more complex if we take into account the network of pipelines
transporting gas and oil throughout the Latin America, which reaches Canada
at one edge and Argentina at the other edge, passing through the USA, Mexico,
the Central and South Americas. In what concerns Mexico, it is very important
to study and understand this complex phenomenon and moreover, to develop
the supporting techniques that permits one to make decisions well-grounded
when one needs to interact with the foreign counter-partners in the processes of
buying/selling/transporting the gas.

The problem in question arises when a shipper draws a contract with a
pipeline company to deliver a certain amount of gas among several points. What
is actually delivered may be more or less of the amount that had been originally
agreed upon (this phenomenon is called an imbalance). When an imbalance oc-
curs, the pipeline penalizes the shipper by imposing a cash-out penalty policy.
As this penalty is a function of the operating daily imbalances, an important
problem for the shippers is how to carry out their daily imbalances so as to
minimize their incurred penalty.

In [10], a mathematical framework for the above described problem is pre-
sented. The problem is modeled as a mixed-integer bilevel linear programming
problem (BLP) where the shipper is the leader (upper level) and the pipeline
represents the follower (lower level). Even the simplest version of a multilevel op-
timization problem, a linear problem with two levels, is known to be very hard
to solve. Mixed-integer BLP possess even a higher degree of difficulty as the
typical concepts for fathoming in traditional branch-and-bound algorithms for
mixed-integer programming (MIP) cannot be directly applied to mixed-integer
BLP. In order to find good solutions for this problem, the authors [10] propose
a heuristic based on simulating annealing.

In this paper, our principal goal is to develop an efficient method for ad-
dressing the above-described problem of minimizing the cash-out penalties of
the shipper (the leader) subject to the lower level problem reflecting the aims
of the pipeline (the follower). We are going to consider a hierarchical system
where a leader incorporates into its strategy the reaction of the follower to its
decision. The follower’s reaction is quite generally represented as the solution
set to a monotone variational inequality (cf. [1], [2], [6]). For the solution of this
nonconvex mathematical program a penalty approach will be applied, based on
the formulation of the lower level variational inequality as a mathematical pro-
gram. The algorithm is well-based and its convergence to a solution of the initial
bilevel problem is established.

The paper is organized as follows. The problem is specified in Section 2,
whereas the penalty function method is described in Section 3. The algorithm



convergence results are also presented in Section 3, and Section 4 contains con-
clusions and directions of future research..

2 Problem Specification

First, we describe the problem in terms of [10], in order to illustrate the proposed
methodology.

Assume that a shipper has entered into a contract (with other clients) to
deliver a given amount of natural gas from a receipt to a delivery meter in a
given time frame. (From now on, we treat “natural gas” and “gas” as synonims).
The shipper must stipulate title transfer agreements with the meter operators
and a transportation agreement with the pipeline. Under such agreements, the
shipper nominates a daily amount of gas to be injected by the receipt meter
operator into the pipeline and to be withdrawn by the delivery meter operator
from the pipeline. The pipeline transports the gas from the receipt meter to the
delivery meter.

Due to the nature of the natural gas industry, what is actually transported
is inevitably different from what is nominated. Such a difference constitutes
an imbalance. There exist operational and transportation imbalances. The first
type of imbalance refers to differences between nominated and actual flows,
while the latter involves differences between net receipts (receipts minus fuel)
and deliveries. While pipelines allow for small imbalances, they issue penalties
for higher (both operational and transportation) imbalances to the other parties.
In the following, we assume that the shippers are held responsible for imbalance
penalties, and we analyze the cash-out penalties associated with operational
imbalances.

On the shipper side, an operational imbalance can be either positive or neg-
ative. A positive [negative] imbalance arises when the shipper leaves [takes] gas
in [from] the pipeline. Alternatively, a positive [negative] imbalance means that
the actual flow is smaller [greater| than the nominated amount of gas. A posi-
tive [negative] end-of-the-month imbalance implies as cash transaction from the
pipeline [shipper] to the shipper [pipeline]. Cash-out prices are set in a way that
whenever a shipper sells [buys] gas to [from] the pipeline, he does that at a very
low [high] price. The relation between cash-out price and imbalance position
depends non-linearly on the average, maximum and minimum gas spot price for
the past month.

Shippers daily nominate gas flows taking into account the constraints deriving
from their buy/sell activity, their contractual constraints, and future market
opportunities. The gas price is one of the major factors affecting their decisions.
In the absence of cash-out provisions, historically shippers would take out high
cost gas in the winter from the pipeline (causing negative imbalances), and pay
the transporter back with low cost gas in the summer. This corresponds to
a speculative behaviour by the shippers, whereby imbalances are created and
managed as pseudo-storage in order to take advantage of movements in the gas
price. Cash-out penalties were designed in order to avoid such pricing arbitrages.



In the framework below, shippers are concerned with minimizing the cash-out
penalties.

2.1 Notation

As stated in the previous subsection, the decision making process for the shipper
(leader) is to determine how to carry out its daily imbalances so as to minimize
the penalty that will be imposed by the pipeline (follower).
The following notation is used to describe the model.
Indices and Sets
i, J, k zone pool indices; i,j,k € J = {1,2,...,P};
t time index; t € T ={1,2,...,N}.
Parameters
zL, 2 bounds on daily imbalances at (end of) day ¢ in zone i; t € T,
1 € J;
zl 2V bounds on total daily imbalances at (end of) day t; t € T}
sk sl bounds on balance swings during day ¢ in zone i; t € T,i € J;
ei;j percentage of fuel retained for moving one dekatherm (dt) of gas from
zone i to j; i,j € J;
fij transportation charge for moving one dt of gas from zone i to j;
i,j €J,1<y;
bi; backward haul credit for moving one dt of gas from zone j to ¢;
i,j €J,1<y;
xo; initial imbalance (start of day 1) in zone j; j € J.
Decision Variables
x; imbalance at (end of) day ¢ in zone i; t € T, i € J;
s¢; imbalance swing during day ¢t in zone ¢; t € T, ¢ € J;
y; final imbalance at zone i; ¢ € J;
u;; forward haul volume moved from zone i to j; 4,5 € J, i < j;
v;; backward haul volume moved from zone j to 7; ¢,5 € J, ¢ < j;
z total cash-out revenue for shipper.
Auziliary Variables
¢ binary variable equal to 1 (0) if final imbalances are nonnegative (non-
positive).

2.2 Mathematical Model

Here we provide the set of constraints involved in both the upper and lower
levels of the problem.

Upper Level Model:

Objective: Shipper’s revenue.

max hy(x, s,y,u,v,2) = z, (1)

subject to:



mégwtigmg, teT, 1€ J; (2)

sk < sy < 50, teT, ic J; (3)

of <Y wi<w,  teT; (4)
ieJ

Tti = Tt—1,i + Sti, teT,i€J (5)

Lower Level Model:

Objective: The penalty is determined by minimizing the amount of cash trans-
actions. In many cases, both shipper and pipeline agree in a policy that represents
a compromise between them two, so rather that minimizing revenue for shipper,
it is agreed to minimize deviations from zero. Hence, the following objective is
given by

min ho(z, s,y,u,v,2) = |z|, (6)
subject to the constraints below.

Balance constraints: This constraint identifies the relationship between the

imbalance at day N = |T'|, forward and backward haul volumes, retained fuel,and
final imbalance at zone j:

Yj =TN,; + Z(l—eij)uij-i— Z Vi — Z ujk—Zvij, JjEJ; (7)
1:i<g k:k>j k:k>j 1:i<g

Gas conservation: This constraint ensures no gas loss occurs. Although it
follows directly from (7) after summation with respect to all j € J, we keep it
on to make the problem clearer to non-technical users.

Dyt D e = TN (®)
ieJ (4,§):i<j ieJ

Note that Z(”) €ijUij Z 0, hence Zl Yi S Zl TN, ;-

Zone upper bounds: This constraint prevents cyclic movements of gas. It
simply states that, at any given zone, we cannot move more than any initial
positive imbalance.

Z uj + Z vjr <max{0,zn;}, j€J, suchthatazn;>0. (9)
i< j kik>j

Forward haul upper bounds: These bounds prevent positive-to-positive and
negative forward movement of imbalances.

i faxy;>0and zn; <0
< {wN,l it ey, N,j ; 10
Yig = 0 otherwise. (10)

Backward haul upper bounds: These bounds prevent positive-to-positive and
negative backward movement of imbalances.

i ifxy;>0and zn,; <0;
< {wNJ L TN,j N d 11
Vi = 0 otherwise. (11)



Bounds on final imbalances: These bounds ensure that all final imbalances
have the “right” sign, i.e. an imbalance must not change sign.

min{0,zn;} <y; < max{0,zn;:}, j€J (12)

Sign on final imbalances: This is a business rule that states that final imbal-
ances for all zones must have the same “sign” (i.e. all nonpositive or nonnegative);
that means that the imbalances must not change sign from zone to zone:

—M(1—q) <y; < Mg, jeJ (13)

where M is a large number and ¢ is a binary 0 — 1 variable.
Shipper’s revenue: This equation represents the revenue from the shipper’s
point of view:

2= ryi+ Y bygvg— > fiy(l—ei)u. (14)
icd (i,4):i<j (5,§):i<j

Variable types:

Yi, 2 free; (15)
Uij,’l)ij Z 0; (16)
q€{0,1}. (17)

In what follows, we will describe the techniques of solution the problem mak-
ing use of ideas of the penalty method presented in [9].
2.3 Penalty Method

Now we are to apply the penalty function approach to the two resulting bilevel
programs:

max hi(z, s,y,u,v,2) = z, (18)
subject to (2)—(5) and to (19)
min hs(z, 8,1, u,v, 2) = 22, (20)
subject to (7)—(16) y ¢ =0, (21)

and the other which is described by (18)—(21) with ¢ = 1 instead of ¢ = 0.
We consider them as bilevel hierarchical systems in Euclidean space where the
upper level decision maker (hereafter the leader) controls a vector of variables
wy = (z,8) € RVNP x RNP | and the lower level (hereafter the follower) controls a
vector of continuous variables wy = (y,u,v) € RF x RP(P=1)/2 x RP(P=1)/2 and
a binary variable ¢ = 3. The leader makes its decision first, taking into account
the reaction of the follower to its course of action. If we introduce the function

Fly,u,0) =Y riyi+ > byvij— > fi(1—eij)ug (22)

=0 (i,5):i<] (4,5)1i<j



and the set
W2 =Wl (z,s) = {w) = (y,u,v) defined by (7)-(13),(15)-(16), ¢ = B}, (23)
then the reaction wf = wf(z,s) = (y,u,v) of the follower to the leaders’s

decision w; = (z,s) is a solution to an equilibrium problem represented by the
following variational inequality:

(F(wi)VFwd),wy —wi) >0, for all wy € WS (x, s); (24)

here
T
VE() = ((ri)ies, (=i (1 =€) i.gyi<i> (bi)igyii<s) - (25)
We then obtain the two generalized bilevel programs, or GBLP(S):

GBLP(B): F%* = max F(y,u,v), 8=0,1, (26)
(:t,s)EWl,(y’u,v)GWZB(z,s)

subject to (24), where the leader is implicitly restricted to the set W; of
(z, s)-vectors such that the lower level constraint set W (z,s)® be nonempty.
Having solved both problems GBLP(0) and GBLP(1), we can then select the
final solution of the initial problem between the solutions of the two above-
mentioned ones, with respect to the maximality of their optimal values F%*,
B =0,1.

In this paper, we formulate the lower level variational inequality as a param-
eterized equation related to the duality gap of the lower level problem. We then
use this “gap” function as a penalty term for the upper level problem. Since
the gap function characterizing the lower level is nonnegative over the feasible
domain, the penalty term assumes a very simple form.

Namely, we associate with the lower level variational inequality (24) the gap
function

Gl (w,wd) =  max  Pwy,ws,wy), (27)
wQEWE(m,s)

where

1

Blwr,wl, w2) = —~(F(w§)VE(us), wy —wf) — Sallws —wfIP,  (28)
and « is a positive number. The gap function has been used to construct descent
methods for solving variational inequalities. We refer in particular to [7],[8] for
the linear gap function (o = 0), and to [2] for the quadratic, differentiable
function (a > 0).

The function ¢ is concave in w» (strongly concave if « is positive). Also, since
G% is nonnegative over Sp = U, ew, w1 X W (wy), and G (wy,wh) = 0 if and
only if wg is a solution to the lower level variational inequality parameterized
by (z,s), variational inequality (24) can be rewritten as the nonlinear equation

Gg(whwg) - max ¢(w1,w§,w2) - ¢(w17w§>pa(wlaw§)) - 0> (29)

w2€W2ﬁ (z,s)



where po (w1, wh) is any solution of (27). Finally, this leads to a reformulation
of the GBLP(S) as the standard mathematical problem

PRI(p) : max F(y,u,v), (30)
wlz(m,s)ewl,wgz(y,u,v)EWf(m,s)

subject to G (wy,wh) = 0. (31)

3 Inexact Penalization Algorithms

In order to implement the penalty approach, we will approximate PR1(3) by
the penalized problem (cf. [9]):

PR2(6) : min Qa(whwg)u): (32)

(w1 ,wg)ECB

where
Qa(wi,wy, p) = —F(wy) + uGE (wy,w5), (33)

1t is a positive number, and the subset Cj3 is such a set in RF*+2NP that

O = {(w,uf) = @)~ (), (1) - (13),(15) - 16),g=5}. (34
Lemma 1. The subset C is conver and compact for each  =0,1.

Proof. It is easy to see that the constraints (2)—(3) imply that the values of
the variables (z,s) are bounded, whereas the values of y belongs to the cube
[~M, M]F (cf. (13)). The values of variables u and v are bounded since they
satisfy (10), (11) and (16), and values of zn ; are also bounded. Therefore, the
subset Cp is bounded, and being closed it is compact.

To prove the convexity of Cz notice that all the constraints that define Cjp
are linear, with except constraints (10), (11) and (12). But it is evident that
combined with (16), both (10) and (11) obtain the convex subsets. Finally, al-
though (12) define a non-convex subset, they deliver convex subsets combined
with (13). Thus, the subset Cj is convex which completes the proof. m

Therefore, problem PR2(/3) is nonlinear with convex constraints, and its ob-

jective function is continuously differentiable when « is positive. For each value of

the weight u we denote by (wl (1), wg (,u)) a global optimal solution of PR2(f)

which always exists due to the convexity of the feasible set Cz and continu-
ity of the objective function @,. A penalty function algorithm is obtained by
specifying a sequence of increasing (unbounded) positive weights {u} and the
associated sequence of iterates {(w1 (tr), wg(uk) .

Below we state a convergence result for the penalty function algorithm, mak-
ing use of the corresponding techniques from [9]. We omit the proof of the the-
orem as it almost repeats that of Proposition 1 in [9].



Theorem 1. Let {(wf, wé“) }20:1 be a sequence of iterates generated by a penalty
function algorithm based upon the function Q4 from program PR2(S).

Then every limit point of the sequence {(w’f,wé)}zozl is a solution of the
bilevel program PR1(5).

Remark 1. After having obtained two optimal solutions (u‘;f , u_)g ) to the prob-

lems PR1(8), 8 = 0,1, we can find the optimal solution of the initial problem
(1)-(5), (6)—(17) as follows:

wO wO
(wiup) = { b

if F(w3) > F (w}),

otherwise. (35)

4 Conclusions and Directions of Future Research

In this paper, we present a mathematical framework for the problem of minimiz-
ing the cash-out penalties from the point of view of the natural gas shipper. The
problem is modeled as a mixed bilevel linear programming problem. To solve it
efficiently, we reformulate it as a standard mathematical programming problem
and describe an algorithm of penalty functions for its solution. The algorithm is
well-founded and its convergence is proved.

In the next step of our research activity, we are going to demonstrate that
actually, the initial problem can be splitted into two almost independent sub-
problems. Solution set of the first subproblem consists of all feasible imbalances
on the last day of the term, each of which, in its turn, can be chosen as an initial
iterate for the second subproblem, the bilevel leader-follower one. The first sub-
problem can be solved by general methods of linear programming but we hope
to develop a specialized algorithm to solve it, which would take into account the
special structure of the subproblem in question.

The second subproblem must be solved by iterative methods based on penalty
functions. In this paper, we have obtained the convergence results for the inexact
penalty function algorithm, when there is no finite value of the parameter u for
which the solution of the penalized problem agrees with the optimal solution of
GBLP(8). In our future research activity we hope to provide results concerning
the exactness preperty of the penalization scheme based on the “classical” gap
function introduced by Hearn [3] in an optimization setting and corresponding
to the choice @ = 0 in P1(), in both cases of separable and non-separable con-
straints. Results of this kind were obtained in [9] but only for linear constraints.
Since not all the constraints in our initial problem are linear, those results of [9]
are not applicable directly to our problem.

The next step of is to reduce the bilevel problem GBLP(f3) to a bilevel varia-
tional inequality making use of the derivative of the initial objective function. To
thus obtained bilevel variational inequality one can apply the penalty techniques
(cf. [6]).

From a practical point of view, the nonconvex and nondifferentiable (when
a = 0) problems PR1(5) and PR2(8) are difficult to solve. Recently, in the



context of linear bilevel programming, Gendreau et al. [4] proposed an efficient
heuristic for generating a high-quality initial solution, later to be used as a
starting point for local search methods. This procedure was based on a primal-
dual, exact penalty formulation of the linear bilevel program. This techniques can
be adapted within a nonlinear framework, too. In the next step of our research
activity, we will conduct test and practical computing experiments with the
problem of cash-out minimization described above. One of the targets will also
be the application of the optimal or quasi-optimal accuracy control realized at
the iterations of the algorithm. When one is quite far from the optimal solution
one need not fulfil the intermediate steps with too strict accuracy. An optimal
strategy of control of the accuracy at the lower level steps was proposed in [5]
for general bilevel processes. Now we are going to apply these general techniques
to the problems in question.
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