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Resumen: El objetivo principal de una empresa distribuidora de bebidas es construir territorios 
compactos a partir de unidades geográficas (manzanas de la ciudad). Múltiple balance 
territorial y conexidad son requeridos. Este trabajo aborda el uso de la distancia de red a 
diferencia de la comúnmente utilizada distancia Euclideana. Además, se introduce la evaluación 
de costos de ruteo en el proceso de decisión. Debido a que un vehículo atiende a cada territorio, 
en este trabajo se propone una metodología  de solución GRASP (Procedimiento de Búsqueda 
Adaptativo, Voraz y Aleatorizado) donde la función de mérito de la búsqueda local intenta 
aprovechar la estructura del Problema del Agente Viajero (TSP) para cada territorio. 
Experimentos  sobre instancias de hasta 1000 nodos son reportados. 

 
1. Introducción 

 
El diseño territorial consiste en agrupar unidades geográficas en segmentos de mayor tamaño 
denominados territorios. Existen  diversas aplicaciones: diseño de territorios políticos y escolares 
(Garfinkel y Nemhauser 1986), territorios de ventas (Kalcsics et. al., 2005), de servicios (Blais et. al., 
2003), etc. En este trabajo se aborda un problema de territorios comerciales que surge a partir de las 
necesidades de una empresa distribuidora de bebidas. Los requerimientos de la empresa para la 
construcción de los territorios son los siguientes: 
La empresa desea territorios balanceados con respecto a dos diferentes actividades: el número de clientes 
y la demanda total. La conectividad es necesaria dentro de cada territorio para permitir la entrega de los 
productos (cada unidad puede ser alcanzada a partir de cualquier otra). También, se desea obtener 
territorios compactos de manera que los clientes estén lo más cerca posible entre ellos. 
Este problema fue introducido por Ríos-Mercado y Fernández  (2006), además de algunas variaciones 
(Caballero-Hernández et. al., 2007; Segura-Ramiro et. al., 2007).  A diferencia de de la distancia 
Euclideana, en la cual se basan los trabajos antes mencionados, nuestro enfoque de distancia de red  es 
más representativo en el mundo real.  
Como segunda etapa en la planeación, la empresa realiza un ruteo para cada territorio para cumplir con la 
demanda establecida en cada uno de ellos. La introducción de costos de ruteo en nuestro trabajo es 
realizada dentro del proceso de decisión, para que de esta manera se obtengan territorios con una buena 
evaluación de estos costos, sin perder el objetivo de la compacidad. Algunos trabajos han empleado una 
combinación de diseño territorial con ruteo, por ejemplo, Haugland et. al. (2007)  abordan un problema 
de diseño de rutas escolares para el cual realizan en una primera etapa el diseño territorial, seguida del 
ruteo. En este trabajo se introducen los costos de ruteo por primera vez para este tipo de problema. 
 
 
2. Planteamiento del problema 
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2.1 Descripción 
 
Nuestra red de distribución es representada mediante un grafo plano G(V, E) no dirigido, donde V es el 
conjunto de vértices y E el conjunto de aristas. A cada vértice se le asocia una unidad básica (UB). Una 
arista, (i, j) ∈ E, i, j ∈ V, entre dos manzanas representa la existencia de una conexión directa entre ellas 
(Figura 2.1).  Donde su peso está definido por la distancia Euclideana dij. 

 

Figure 2.1: Representación en la red de las manzanas de la ciudad 
 

Cada vértice tiene asignado dos actividades, a ∈ A = {1, 2}, el número de clientes y la demanda total. 
Sea Vk ⊂ V un territorio, k = 1, 2, 3, ..., p, entonces ∑
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número de territorios a construir está dado por el parámetro p, definido por la empresa. 
El objetivo es obtener territorios que tengan la medida perfecta de balance con respecto a ambas 
actividades, la cual definimos para la actividad a como: . La naturaleza discreta del 
problema hace que sea casi imposible obtener territorios con esta medida. Para esto, la empresa define un 
parámetro τ  como desviación a la medida perfecta de balanceo μa. 
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Se requiere además, que cada territorio sea conexo. Es decir, que sea posible visitar cada vértice del 
territorio sin salir del mismo. 
 
2.2 Costos de Ruteo 
 
Cada territorio, visto como un subgrafo de G, requiere la distribución del producto para cada UB. 
Suponiendo que este costo es proporcional a al distancia recorrida, hay dos formas de abordar el 
problema. Uno es verlo como un VRP con restricciones adicionales de sistemas territoriales. Sin 
embargo, resolver el VRP y el TDP simultáneamente impone un grado de dificultad bastante grande. 
Además, en el contexto empresarial es de mucha mayor importancia obtener territorios compactos. Por tal 
motivo, optamos por abordar el problema partiendo de la obtención de territorios compactos e incorporar 
el costo de ruteo viendo cada territorio individualmente. Calcular el costo de ruteo para un territorio ya 
formado, puede verse como resolver un Problema del Agente Viajero (TSP). 
 Debido a que nuestra red de distribución, G(V, A), es considerada como un grafo plano, G(V, A) no es 
completo. Es por esto, que para aprovechar la estructura del TSP, sustituimos la matriz de distancias por 
la matriz de rutas más cortas. Lo que obtendríamos como respuesta al resolver un TSP con esta 
sustitución no es un tour en sí, pero estaríamos encontrando la ruta que minimiza el costo de recorrer 
cada vértice del territorio. Así podemos definir la siguiente función de costo: 
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donde , n(i) representa al nodo de la posición i en la permutación n ∈ Θ(Vk), 

que es el conjunto de todas las posibles permutaciones de Vk. 
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2.3 Modelo Combinatorio 
 
Sea Π = Colección de todas las posibles p-particiones de V. Definimos nuestro siguiente modelo: 
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La función objetivo (1) es una combinación convexa (0 ≤ λ ≤ 1) entre la función de dispersión y los 
costos de ruteo (que hacen referencia a un TSP para cada territorio). Las restricciones (2) aseguran el 
balance territorial con respecto a ambas actividades. El requerimiento de conexidad (3) complementa el 
modelo. 
 
3. Método de Solución 
 
GRASP es una metodología muy utilizada para resolver numerosos problemas combinatorios. Cada 
iteración de GRASP consta de dos fases: la fase de construcción y el postprocesamiento. Nuestro método 
de solución está basado en el enfoque de Ríos Mercado y Fernández (2006). La fase de construcción solo 
toma en cuenta la dispersión, además de un término que maneja las infactibilidades con respecto a las 
restricciones de balance (2).  La fase de postprocesamiento consiste en una búsqueda local con un solo 
vecindario, además de que los costos de ruteo son introducidos aquí. La conexidad se mantiene a lo largo 
de todo el algoritmo 
 
3.1 Construcción  
 
El método considera, a partir de una iteración dada, un territorio parcial e intenta ya sea asignarle un nodo 
que no ha sido considerado ó cerrar el territorio actual y comenzar uno nuevo. Sustituiremos la matriz de 
distancias Euclideanas dij, por la matriz de rutas más cortas tij. Observemos que utilizar , Vk ⊂ V, es 

demasiado costoso debido a la dependencia de este parámetro con la solución. 
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Sea Vk el territorio actualmente activo, sea v un nodo aún no ha sido asignado a algún territorio, se dice 
que es un nodo candidato. Así, la función voraz queda definida como sigue: 
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donde, , es la suma de las infactibilidades con 

respecto a las restricciones de balance, con respecto a su cota superior 

( ) (1/ ) max{ ( { }) (1 ) ,0}a q a a
k kg V w V vμ= ∪ − + aτ μ

(1 )a aτ μ+ .  



Siguiendo la metodología GRASP, una lista restringida de candidatos (RCL) es construida para obtener 
los mejores valores de la función greedy de todos los movimientos posibles (α 100%). Las lista se 
restringe por umbral de calidad α. Es decir, RCL es formada de todos aquellos elementos cuya 
evaluación de la función voraz está dentro de un α% de la mejor posible. 
Así, Vk es construido hasta que el criterio de las actividades de balance es violado y es cuando se decide 
cerrar el territorio y abrir uno nuevo. Al final de la construcción q territorios son construidos. 
 
3.2 Fase de Ajuste 
 
El número final de territorios q puede no ser p, además de no tener territorios totalmente balanceados con 
respecto a ambas actividades. En esta fase se intenta obtener el número deseado de territorios p de 
manera que, si q < p, se combinan territorios y si q > p, se dividen territorios. Para realizar la operación 
de combinar territorios, tomamos el territorio de menor tamaño y lo unimos al territorio vecino de menor 
tamaño, esto se realiza iterativamente hasta que q = p. En contraste con la operación de combinar 
territorios, dividir un territorio resulta por sí mismo un TDP. Esta operación toma el territorio de mayor 
tamaño y lo divide en dos territorios conexos aplicando el mismo algoritmo con p = 2, y de igual manera, 
se realiza hasta que q = p. 
 
3.3 Búsqueda Local 
 
Después de tener el número de territorios requerido, se obtiene el valor óptimo de la suma de costos de 
ruteo para cada territorio construido. Para obtener este valor óptimo, empleamos un método de 
ramificación y corte que resuelve un TSP para cada territorio.  
Sea S = V1, V2, ..., Vp una partición de V, entonces la función de mérito se encuentra definida de la 
siguiente manera: 
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. 0 ≤ λ ≤ 1, mientras que los parámetros σ y γ son 
autoajustables. Para σ tenemos que si la solución mejora, se divide entre dos y en caso contrario toma el 
doble de su valor.  En el caso de γ, si l-número de iteraciones la solución es factible, se divide entre dos y 
si l-número de iteraciones es infactible toma el doble de su valor actual. 
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Para realizar un movimiento es necesario localizar un nodo i en algún territorio que llamaremos t(i) de tal 
forma que exista una arista (i, j) tal que j∉ t(i). Así, si al momento de mover i al territorio t(j), la 
conectividad de ambos territorios t(i) y t(j) se mantiene, entonces diremos que el movimiento es válido.  
 
4. Desempeño computacional 

 
El procedimiento fue compilado en C++ de GNU (g++ 4.1.3) bajo un sistema operativo Ubuntu-Linux 
8.10. Utilizamos las instancias generadas a partir de datos del mundo real en (Caballero-Hernández et. al., 
2007). El número de territorios a construir es de p = 30 y la tolerancia τ = 0.05. Además, se ajustaron los 
parámetros del algoritmo de la siguiente forma: α = 0.2, λcons = 0.8 y λls = 0.6. 
El algoritmo provee tres diferentes respuestas: mejor función objetivo, mejor dispersión y mejor 
evaluación de costos de ruteo. Se utilizaron 30 instancias generadas a partir de datos del mundo real. 
Algunos resultados preliminares se muestran en la tabla 4.1. 
 
 
 
 



Instancias 1000 nodos (τ=0.05) Dispersion Costos de 
Ruteo 

Infact. 
(prom) 

Objetivo                           Mejor 
                                   Promedio   

                                       Peor 

176.642 
190.814 
223.887  

16387.1 
17163.7 
18086  

 
0.00750 

Dispersión                       Mejor 
                                   Promedio   
                                          Peor 

168.721 
182.077 
191.387  

16932.6  
17773.0 
18568.2  

 
0.09396 

Costos de Ruteo               Mejor 
                                   Promedio 

                                        Peor 

181.861 
227.581 
302.801  

16347.8 
16814.4 
17224 

 
0.10527 

Tabla 4.1: Comparación de las tres respuestas del algoritmo GRASP 
 
Podemos observar en la tabla que la respuesta de los costos de ruteo provee la peor dispersión. De igual 
manera, la respuesta de dispersión provee los peores costos de ruteo. Como se esperaba, los resultados  
provistos por la función objetivo tienen un mayor balance entre ambos (dispersión y costos de ruteo). La 
suma promedio de infactibilidades también fue la menor con la respuesta de nuestra función objetivo. 
 
5. Trabajo en Proceso 
 
Un método que introdujo costos de ruteo en el proceso de decisión fue desarrollado. De esta manera 
podemos obtener tres respuestas, que aunque no son un frente de Pareto, proveen al tomador de 
decisiones con diversidad para elegir la que mejor se ajuste a sus necesidades. 
En la mayoría de nuestros resultados, el método arrojó soluciones factibles. Estas soluciones pueden ser 
el comienzo de un algoritmo de búsqueda local más sofisticado como lo es la Búsqueda Local Iterada 
(ILS) que actualmente se encuentra en proceso de ser implementada. 
 
Referencias 
 
Garfinkel, R.S., Nemhauser (1986) “Optimal Political Districting by Implicit Enumeration Techniques”, 
Management Science 
 
Kalcsics, J., Nickel, S., Schröder, M. (2005) “Towards a Unified Territory Design – Applications, 
Algorithms and GIS Integration”, Berichte des Fraunhofer ITWM, Nr, 71 
 
Blais, M., Lapierre, S.D., Laporte, G. (2003) “Solving a Home-Care Districting Problem in an Urban 
Setting”, Journal of Operational Research Society. 54 1141-1147 
 
Ríos-Mercado, R.Z., Fernández, E. (2009) “A Reactive GRASP for Sales Territory Design Problem with 
Multiple Balancing Requirements”, Computers and Operations Research, 36(3): 755-776  
 
Caballero-Hernández, S.I., Ríos-Mercado, R.Z., López, F., Schaeffer, S.E. (2007) “Empirical Evaluation 
of a Metaheuristic for a Commercial Territory Design with Joint Assignment Constraints”, En  
Proccedings of the 12th Annual International Conference on Industrial Engineering; Theory, 
Applications and Practice, pp 422-427,  Cancún, México. IJIE 
 
Segura-Ramiro, J.A., Ríos-Mercado, R.Z., Álvarez-Socarrás, A.M., de Alba-Romenus, K. (2007) “A 
Location-Allocation Heuristic for a Territory Design Problem in a Beverage Distribution Firm”, En 
Proccedings of the 12th Annual International Conference on Industrial Engineering; Theory, 
Applications and Practice, pp 428-434, Cancún, México. IJIE 
 
 Haugland, D., Ho, S.C., Laporte, G. (2007), “Designing Delivery Districts for the Vehicle Routing 
Problem with Stochastic Demands”, European Journal of Operational Research, 180(3):  997-1010 


	3.1 Construcción 

