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Abstract 

In this paper we propose a tabu search (TS) 

heuristic for the problem of minimizing fuel 

usage on cyclic natural gas transmission 

networks in steady-state.  The problem is 

modeled as a nonconvex nonlinear program.  

Although effective approaches, mainly based on 

dynamic programming, exist for handling non-

cyclic topologies, the cyclic case has not been 
address satisfactorily. In this work, we present a 

successful short-term memory strategy that 

overcomes local optimality, and provide 

empirical evidence, based on a number of 

instances using real-world data, of the 

superiority of the proposed TS over existing 

approaches.   
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1.  Introduction 

In this paper, the problem of minimizing the fuel 

consumption incurred by compressor stations in 

the course of natural gas transmission is 

addressed. During this process, energy and 

pressure are lost, this owed to both friction 

between the gas and the pipes' inner wall, and 

heat transfer between the gas and the 

environment. As compressor stations once in a 

while increase its pressure, moving the gas 

through the network system, these normally 

consume about 3 to 5% of the transported gas 

(Schroeder, 1996). This transportation cost is 

significant because the amount of gas being 

transported at large-scale systems is enormous. 

Hence, the problem of finding out how to 
optimally operate the compressors driving the 

gas in a pipeline network becomes significantly 

important. 

This problem is modeled as a nonlinear 

program (NLP), where the cost function is 

typically nonconvex, and the set of constraints is 

typically nonconvex as well. In general, a 

problem with these features is very difficult to 

solve (NP-complete).   

We would like to emphasize that, during the 

past thirty years the research and implementation 

of methodologies have been focused on non-

cyclic networks, having little success on cyclic 
topologies. Thus, cyclic topologies instances are 

regarded among the harder to solve.  This work 

is reviewed in Ríos-Mercado (2002).  As far as 

handling cyclic topologies, no effective methods 

have been developed to date, to the best of our 

knowledge. 



In this work, we propose an improved 

heuristic procedure based on tabu search (TS) 

for achieving high quality local optimal 

solutions on cyclic networks. TS is a technique 

that has proven successful for many 

combinatorial optimization problems. The 

procedure, in turn, makes use of a non-sequential 

dynamic programming technique, proposed by 

Carter (1998), to find a set of optimal pressures 

(for the pre-specified optimal flow). The 

empirical evidence shows that our procedure 

outperforms previous approaches, such as the 
GRG method (Flores-Villarreal and Ríos-

Mercado, 2003). To the best of our knowledge, 

this is the first application of a tabu search 

heuristic to this type of problem.  

 

2.  Model Description 

Assumptions:  In the present paper, we make 

the following modeling assumptions.  We 

assume that the problem is in steady state. This 

is, our model will provide solution for systems 

that have been operating for a relative large 

amount of time.  The network is balanced. This 

means that the sum of all the net mass flow rates 

in each node of the network is equal to zero. 
Each arc in the network has a pre-specified 

direction.  Each parameter is known 

(deterministic model).  Identical centrifugal 

compressor units hooked-up in parallel within 

each compressor stations is assumed. 

 

THE NLP MODEL 

Parameters: 

V: Set of all nodes in the network 

Vs: Set of supply nodes (Vs ⊆ V) 

Vd: Set of demand nodes (Vd ⊆ V) 
Ap: Set of pipeline arcs 

Ac:  Set of compressor station arcs 

A: Set of all arcs; A = Ap∪Ac 

Uij: Arc capacity of pipeline (i,j); (i,j) ∈ Ap 

Rij: Resistance of pipeline (i,j); (i,j) ∈ Ap 

Pi
L,Pi

U: Pressure range for node i; i∈V 

Bi: Net mass flow rate at node i;  i∈N. 

             Bi>0 (<0) if i∈Vs (Vd), Bi=0 otherwise 
 

Variables:  xij: Mass flow rate in arc (i,j) ∈ A 

      pi: Pressure at node i; i ∈ V 

 

Formulation: 
 

Minimize 

∑(i,j)∈Ac  g(i,j) (xij, pi, pj)         (1) 
 

subject to 

∑{j | (i,j) ∈A} xij - ∑{j|(j,i) ∈A} xji = Bi i ∈ V (2) 

xij ≤ Uij (i,j)  ∈ Ap (3) 

 pi
2 - pj

2 = Rij xij
2 (i,j)  ∈ Ap (4) 

 Pi
L ≤ pi ≤ Pi

U i ∈ V (5) 

 (xij, pi ,pj) ∈ Dij (i,j)  ∈ Ac (6) 

 xij, pi ≥ 0   (7) 
 

The objective function (1) is the sum of the 

fuel consumption at each compressor station in 

the network. Constraints (2)-(3) are the typical 

network flow constraints representing node mass 

balance and arc capacity, respectively, where 

∑iεV Bi = 0 is assumed. Constraint (4) represents 

the gas flow dynamics in each pipeline of the 

network assuming steady state. Constraints (5) 

denote the pressure limits in each node. 

Constraint (6) represents the nonconvex feasible 

operating domain for compressor station (i,j). 
More details on this model, and on the nature of 

g(i,j) and Dij, can be found in Wu et al. (2000).  

 

3.  Short-Term Memory Tabu Search 

The basic concept of Tabu Search (TS), as 

described by Glover and Laguna (2001), is a 



meta-heuristic superimposed on another 

heuristic. TS explores the solution space by 

moving at each iteration from a solution xo to the 

best solution in a subset of its neighborhood 

V(xo). TS is an iterative local search procedure 

that can start from any initial feasible solution 

and it is different from other local search 

techniques because the it allows moving out 

from the current solution to a solution that 

makes the objective function worse in the hope 

that it eventually will achieve a better solution. 

Thus, to avoid cycling, solutions possessing 
some attributes of recently explored solutions are 

temporarily declared tabu or forbidden. The 

duration that an attribute remains tabu is called 

its tabu tenure. This is one of the most important 

features of this algorithm.  Here, components of 

the proposed NONDP_TS procedure are briefly 

discussed.   

Trial Solution Generation: To generate a 

trial initial solution, we use an algorithm based 

on a non-sequential dynamic programming 

technique. This is a two-phase procedure where 

in the first phase a feasible set of flow variables 

is found.  Then, for that fixed set of flows, an 

optimal set of pressures is determined by non-
sequential dynamic programming (Borraz-

Sánchez and Ríos-Mercado, 2004).   

Neighbohood V(x): Then a list of neighbors 

of x, V(x), is generated.  Let us define the notion 

of neighborhood V(x) for each solution x∈ℜ. By 

definition V(x) is a set of solutions in ℜ 
reachable from x via a slight modification of 

∆pVx units. 
 







 Ψ∈∆∆⊕=ℜ∈= VxVx p,p''V(x) xxx  

 

where Ψ  contains all possible modifications and 
Vxp' ∆⊕= xx  means that 'x  is obtained by 

applying modification of Vxp∆  units to x .  Note 

that the neighbor definition depends only on x, 

because for a given x, an optimal set of pressures 

can be found very effectively by DP. 
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BEGIN 

Find initial solution x  

'x ∈ Tabu_List  

iter  < = Iter_max 

END 

iter++ 

Parameters Settings: 
{Ttenure, Nei_Size, MAX_ITER} 
  Best_x = x     iter = 1 

Building neighbourhood V )( x : 





 Ψ∈∆∆⊕=ℜ∈= VxVx p,p''V(x) xxx

 

Sort the neighbors∈V(x) 
in nondecreasing order 

'x = first solution on V )( x and remove 

it  

Add 'x to Tabu_List  

x = 'x  

x < Best_x Best_x = x  

Iter_best = iter 

Figure 1: Flowchart of NONDP_TS heuristic algorithm. 



Move Definition: At each step of the 

procedure, a subset V∗∈ℜ is generated and the 

local optimization problem  





 ℜ⊆∈ *V')'g(min xx  is solved. 

In order to escape from local minima, the idea is 

to move to the best neighbor x’ in V∗  even if 

)'g(x > )g( °x .  Following a steepest descent 

approach, a move may result in a best possible 

improvement of the objective function value. 

Without additional control, however, such a 

process can cause a locally optimal solution to 
be re-visited immediately after moving to a 

neighbor, or in a future stage of the search 

process. To prevent the search from cycling 

between the same solutions, a tabu list is 

introduced. 

Tabu List Restriction: The tabu list (TL), 

whose dimension strictly depends on the 

neighborhood selected, it is used to keep 

attributes that created the best solution in the 

past iterations for iterations so that they can not 

be used to create new solution candidates. As the 

iterations proceeds, a new attribute enters into a 

TL and the oldest one is released. Particularly, 
the size of TL is the control parameter of TS. 

The size of TL that provided good solutions 

usually grows with the size of V(x).  

The framework of the overall  NONDP_TS 

procedure, depicted in Figure 1, is described in 

detail in the full version of this paper. 

 

4.  Empirical Evaluation 

The proposed TS was developed in C++ and run 

on a Sun Ultra 10 workstation. In this 

computational evaluation the tabu length of 8 

and stopping criteria of 100 iterations are used. 

All of the compressor-related data, described in 
Villalobos-Morales et al. (2003), was provided 

by a consulting firm in the pipeline industry. 

 

Instance  GRG TS 
Gap 
(%) 

net -c-6c2-C1 2,312,548 2,288,252 1.05 

net -c-6c2-C4 1,393,061 1,393,001 0.04 

net -c-6c2-C7 1,988,998 1,140,097 42.67 

net -c-10c3-C2 Not found 4,969,352 N/A 

net -c-10c3-C4 5,610,932 2,237,507 60.12 

net -c-15c5-C2 6,313,810 4,991,453 20.94 

net -c-15c5-C4 3,555,353 3,371,985 5.15 

net -c-15c5-C5 Not found 7,962,687 N/A 

net -c-17c6-C1 Not found 8,659,890 N/A 

net -c-19c7-C4 Not found 8,693,003 N/A 

net -c-19c7-C8 Not found 7,030,280 N/A 

Table 1. Comparison of GRG and NONDP_TS. 

 
Table 1 shows the excellent behavior of the 

NONDP_TS algorithm against the GRG method 

on cyclic networks (Flores-Villarreal and Ríos-

Mercado, 2003). The instances tested are shown 

in the first column; immediately, the best 

objective values found by each method into the 
analysis are presented. The last column shows 

the percentage of NONDP_TS relative 

improvement over the solutions delivered by 

GRG. First, the NONDP_TS delivered solutions 

to all instances tested, whereas GRG failed for 

five of these. The results indicate that 

NONDP_TS procedure outperforms GRG in 

terms of solution quality. 

We now present a comparative analysis 

showing the improvement achieved by the 

NONDP_TS approach when compared with the 

simple DP approach.  In Table 2, the first 

column shows the instances tested, the second 
column shows the solution delivered by DP, the 

third column shows the best value found 

NONDP_TS, and finally, in its last column 

presents the relative improvement percentage 

from the DP solution.  As can be seen, the 



improvement of NONDP_TS over the DP, is 

larger than 10% on 6 of 11 tested instances, and 

larger than 2% in 8 of the 11 instances.  In only 

one of them the improvement is lower than 1%.  

 

Instance  DP DP_TS  Gap (%)  

net -c-6c2-C1 2,317,794 2,288,252 1.27 

net -c-6c2-C4 1,394,001 1,393,001 0.07 

net -c-6c2-C7 1,198,415 1,140,097 4.86 

net -c-10c3-C2 6,000,240 4,969,352 17.18 

net -c-10c3-C4 2,533,470 2,237,507 11.68 

net -c-15c5-C2 6,006,930 4,991,453 16.90 

net -c-15c5-C4 3,669,976 3,371,985 8.11 

net -c-15c5-C5 8,060,452 7,962,687 1.21 

net -c-17c6-C1 9,774,345 8,659,890 11.40 

net -c-19c7-C4 12,019,962 8,693,003 27.67 

net -c-19c7-C8 8,693,003 7,030,280 19.12 

Table 2.  Comparison of simple DP and DP_TS. 

 
In the next experiment, we attempt to assess 

the quality of the solution delivered by 

NONDP_TS.  For this purpose, we derive a 

lower bound on the objective function as 

follows.  First, we relax constraints (4), so the 

problem is reduced to a problem where we can 

optimize each compressor station individually.  

Still, the objective function is nonconvex, 
however we attempt to exploit the fact that it is 

now a function of three variables only.  

Furthermore, in many cases, some flow can be 

determined in advance, so the problem reduces 

to optimizing a two-variable function.  For the 

purposes of comparison, we performed this by 

an exhaustive evaluation over a finite grid.   

Table 3 shows these results. The first 

column displays the instances tested, the second 

and third columns show the lower bound and the 

best value found by the heuristic, respectively, 

and the last column shows the relative optimality 

gap obtained by NONDP_TS. 

Instance  
Lower 
Bound 

TSf max  Gap (%) 

net -c-6c2-C1 2,287,470.58 2,288,252.53 0.03 

net -c-6c2-C4 1,392,354.29 1,393,001.99 0.05 

net -c-6c2-C7 949,909.48 1,140,097.39 16.68 

net -c-10c3-C2 4,303,483.50 4,969,352.82 13.40 

net -c-10c3-C4 2,015,665.98 2,237,507.93 9.91 

net -c-15c5-C2 4,955,752.90 4,991,453.59 0.72 

net -c-15c5-C4 3,103,697.48 3,371,985.41 7.96 

net -c-15c5-C5 6,792,248.08 7,962,687.43 14.69 

net -c-17c6-C1 8,129,730.11 8,659,890.72 6.12 

net -c-19c7-C4 7,991,897.18 8,693,003.78 8.06 

net -c-19c7-C8 5,897,768.92 7,030,280.45 16.1 

Table 3. Solution quality. 

 
As can be seen from the table, all of the 

tested instances have a relative optimality gap of 

less than 17%, 7 out of 11 instances had a 

relative gap of less than 10%, and 3 of these 

observed a gap of less than 1%.  This shows the 

effectiveness of the proposed approach. 

Finally, although our TS algorithm finds 

better solutions than the GRG method, it is more 

computationally expensive. However, any 
additional computation time leading to even 

marginal improvements can be easily justified 

since the costs involved in natural gas 

transportation are typically huge.  
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Figure 2.  Convergence of the TS algorithm.  

 
Figure 2 shows the convergence of the 

NONDP_TS algorithm on instance net-c-6c2-

C7. Here it can be seen how the solution 



deteriorates but then it improves to a better 

solution, which illustrates how getting stuck at 

local optimality is overcome, which is the main 

advantageous feature of TS.   

 

5.  Closing Remarks  

In this work we have presented a successful 

implementation of a short-term tabu search 

heuristic for solving the steady-state fuel cost 

minimization problem on cyclic topologies.  The 

main contribution of this work is precisely on 

providing a method for handling cyclic 
topologies, outperforming existing approaches 

such as GRG, and simple non-sequential DP.  To 

the best of our knowledge, this is the first 

application of TS to this type of problem. 

There are still, though, many areas for 

further research.   The proposed procedure is a 

basic short-term memory tabu search.  

Intensification and diversification components 

within the tabu search framework have not been 

explored.  In addition, one of the great 

challenges is on addressing time-dependent 

systems.   
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