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Abstract

In this paper we propose a tabu search (TS)
heuristic for the problem of minimizing fue
usage on cyclic naurd gas transmission
networks in steady-state.  The problem is
modeled as a nonconvex nonlinear program.
Although effective approaches, mainly based on
dynamic programming, exis for handling non-
cyclic topologies, the cyclic case has not been
address satisfactorily. In this work, we present a
successful  short-term memory strategy that
overcomes locd optimaity, and provide
empirical evidence, based on a number of
instances using rea-world data, of the
superiority of the proposed TS over exigting
approaches.
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1. Introduction

In this paper, the problem of minimizing the fue
consumption incurred by compressor stations in
the course of natural gas transmisson is
addressed. During this process, energy and
pressure are lost, this owed to both friction
between the gas and the pipes inner wall, and

heat transfer between the gas and the
environment. As compressor stations once in a
while increase its pressure, moving the gas
through the network system, these normally
consume about 3 to 3% of the transported gas
(Schroeder, 1996). This transportation cost is
significant because the amount of gas being
transported at large-scale systems is enormous.
Hence, the problem of finding out how to
optimally operate the compressors driving the
gas n a pipeline network becomes significantly
important.

This problem is modded as a nonlinear
program (NLP), where the cost function is
typicaly nonconvex, and the set of condraints is
typicdly nonconvex as wel. In genera, a
problem with these features is very difficult to
solve (NP-complete).

We would like to emphasize that, during the
past thirty years the research and implementation
of methodologies have been focused on non-
cyclic networks, having little success on cyclic
topologies. Thus, cyclic topologies instances are
regarded among the harder to solve. This work
is reviewed in Rios-Mercado (2002). Asfar as
handling cyclic topologies, no effective methods
have been developed to date, to the best of our
knowledge.
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In this work, we propose an improved
heuristic procedure based on tabu search (TS)
for achieving high qudity locd optima
solutions on cyclic networks. TS is a technique
that has proven successful for many
combinatorial  optimization  problems.  The
procedure, in turn, makes use of a non-sequentia
dynamic programming technique, proposed by
Carter (1998), to find a set of optimal pressures
(for the pre-specified optima flow). The
empirical evidence shows that our procedure
outperforms previous approaches, such as the
GRG method (Flores-Villared and Rios-
Mercado, 2003). To the best of our knowledge,
this is the first application of a tabu search
heurigtic to this type of problem.

2. Model Description

Assumptions: In the present paper, we make
the following modeing assumptions. We
assume that the problem is in steady state. This
is, our mode will provide solution for systems
that have been operating for a relative large
amount of time. The network is balanced. This
means that the sum of all the net mass flow rates
in each node of the network is equa to zero.
Each arc in the network has a pre-specified
direction. Each parameter is known
(determinigtic  modél). Identical centrifuga
compressor units hooked-up in pardld within
each compressor stations is assumed.

THENLP M ODEL

Parameters:

V: Set of al nodes in the network
Vs Setof supply nodes (Vs 1 V)
Vg Setof demand nodes (Vg4 i V)
Ap: Set of pipeline arcs

Ac Set of compressor station arcs
A: Set of all arcs; A = A EA,

Uj:  Arc capadity of pipeline (i,)); (i) T A,

R;:  Redstanceof pipdine (ij); (i,j)T A,

P.“,P,": Pressure range for nodei; il V

B: Net mass flow rate at nodei; il N.
B:>0 (<0) if il Vs (Vy), Bi=0 otherwise

Variables: x;: Massflow rateinarc (i,j)) T A
p: Pressureat nodei;il V

Formulation:

Minimize
g ac 9o (4, P, 1) Q)

subject to
&g Ay Xij - AgigiTay Xi = Ef iTvVv @
Xij £ Uy i)l Ap ©)
p*-p” =Ry X’ i)l Ap (@
P'E£pEPY il v )
(%, p p)T Dy i)l Ac (6
X p° 0 @)

The objective function (1) is the sum of the
fuel consumption at each compressor station in
the network. Congtraints (2)-(3) are the typica
network flow congtraints representing node mass
balance and arc capacity, respectively, where
die B; = 0 is assumed. Constraint (4) represents
the gas flow dynamics in each pipeline of the
network assuming steady state. Congtraints (5)
denote the pressure limits in each node.
Congtraint (6) represents the nonconvex feasible
operating domain for compressor gation (iy).
More details on this model, and on the nature of
Qi) and Dj;, can be found in Wu et d. (2000).

3. Short-Term Memory Tabu Search
The basic concept of Tabu Search (TS), as
described by Glover and Laguna (2001), is a



meta-heuristic  superimposed  on  another
heuristic. TS explores the solution space by
moving at each iteration from a solution X, to the
best solution in a subset of its neighborhood
V(X,). TSis an iterative local search procedure
that can start from any initia feasible solution
and it is different from other local search
techniques because the it dlows moving out
from the current solution to a solution that
makes the objective function worse in the hope
that it eventudly will achieve a better solution.
Thus, to avoid cycling, solutions possessing
some attributes of recently explored solutions are
temporarily declared tabu or forbidden. The
duration that an attribute remains tabu is called
its tabu tenure. Thisis one of the most important
features of this agorithm. Here, components of
the proposed NONDP_TS procedure are briefly
discussed.

Trial Solution Generation: To generate a
tria initid solution, we use an adgorithm based
on a non-sequentid dynamic programming
technique. This is a two-phase procedure where
in the first phase a feasible set of flow variables
is found. Then, for that fixed set of flows, an
optimal set of pressures is determined by non-
sequentid dynamic  programming  (Borraz
Sénchez and Rios-Mercado, 2004).

Neighbohood V(x): Then alist of neighbors
of X, V(X), isgenerated. Let us define the notion
of neighborhood V(x) for each solution xi A. By

definition V(x) is a set of solutions in A
reachable from x via a dight modification of

Dp"* units.
V(X) = i )(T A | szA q)vX’ [X)VXT v g

where Y contains al possible modifications and
X'=xA Dp» means that X is obtained by

applying modification of ppv unitsto x. Note

that the neighbor definition depends only on x,
because for agiven x, an optimal set of pressures
can be found very effectively by DP.

Find initial solution X

v

Parameters Settings:
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v
Building neighbourhood V (X) :
Ve =1 xi A | x=xADp", Dp“T ¥ lg
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v
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Figure 1: Flowchart of NONDP_TS heuristic algorithm.



Move Definition: At each step of the

procedure, a subset V'T A is generated and the
local optimization problem
m'n;: g(x')|x'T Vi A Eué is solved.

In order to escape from local minima, the ideais
to move to the best neighbor X' in V' even if
9(x’) >g(x.) -
approach, a move may result in a best possible
improvement of the objective function value.
Without additiond control, however, suwch a
process can cause a localy optima solution to
be revisted immediately after moving to a
neighbor, or in a future stage of the search
process. To prevent the search from cycling
between the same solutions, a tabu list is
introduced.

Tabu List Restriction: The tabu list (TL),
whose dimenson drictly depends on the
neighborhood selected, it is used to keep
attributes that created the best solution in the
past iterations for iterations so that they can not
be used to create new solution candidates. Asthe
iterations proceeds, a new attribute enters into a
TL and the oldest one is released. Particularly,
the size of TL is the control parameter of TS.
The size of TL that provided good solutions
usually grows with the size of V(x).

The framework of the overall NONDP_TS
procedure, depicted in Figure 1, is described in
detail in the full version of this paper.

Following a steepest descent

4. Empirical Evaluation

The proposed TS was developed in C++ and run
on a Sun Ultra 10 workstation. In this
computational evauation the tabu length of 8
and stopping criteria of 100 iterations are used.
All of the compressor-related data, described in
Villdobos-Mordes et a. (2003), was provided

by a consulting firm in the pipdine industry.

Instance GRG TS g/i‘;’
net-c-6¢2-Cl1 2,312,548 | 2,288,252 1.05
net-c-6¢2-C4 1,393,061 | 1,393,001 0.04
net-c-6¢2-C7 1,988,998 | 1,140,097 | 42.67
net-c-10c3-C2 | Not found | 4,969,352 N/A
net-c-10c3-C4 | 5610932 | 2,237,507 | 60.12
net-c-15¢5-C2 | 6,313,810 | 4,991,453 | 20.94
net-c-15¢5-C4 | 3555353 | 3,371,985 5.15
net-c-15¢5-C5 | "Not found | 7,962,687 N/A
net-c-17¢6-C1 | Not found | 8,659,890 N/A
net-c-19¢7-C4 Not found 8,693,003 N/A
net-c-19c¢7-C8 Not found 7,030,280 N/A

Table 1. Comparison of GRG and NONDP_TS.

Table 1 shows the excdlent behavior of the
NONDP_TS agorithm against the GRG method
on cyclic networks Flores-Villarred and Rios-
Mercado, 2003). The instances tested are shown
in the firsg column; immediately, the best
objective vaues found by each method into the
analysis are presented. The last column shows
the percentage of NONDP_TS relatve
improvement over the solutions ddivered by
GRG. Firgt, the NONDP_TS delivered solutions
to al instances tested, whereas GRG failed for
five of these. The results indicate that
NONDP_TS procedure outperforms GRG in
terms of solution qudity.

We now present a comparative anaysis
showing the improvement achieved by the
NONDP_TS approach when compared with the
smple DP approach. In Table 2, the first
column shows the instances tested, the second
column shows the solution delivered by DP, the
third column shows the best value found
NONDP_TS, and findly, in its last column
presents the relative improvement percentage
from the DP solution. As can be seen, the



improvement of NONDP_TS over the DP, is
larger than 10% on 6 of 11 tested instances, and
larger than 2% in 8 of the 11 instances. In only
one of them the improvement is lower than 1%.

Instance DP DP_TS Gap (%)
net-c-6¢2-C1 2,317,794 2,288,252 1.27
net-c-6¢c2-C4 1,394,001 1,393,001 0.07
net-c-6¢2-C7 1,198,415 1,140,097 4.86
net-c-10c3-C2 6,000,240 4,969,352 17.18
net-c-10c3-C4 | 2,533,470 | 2,237,507 11.68
net-c-15¢5-C2 6,006,930 4,991,453 16.90
net-c-15¢5-C4 | 3,669,976 3,371,985 8.11
net-c-15¢5-C5 8,060,452 7,962,687 1.21
net-c-17¢6-C1 9,774,345 8,659,890 11.40
net-c-19c7-C4 | 12,019,962 | 8,693,003 27.67
net-c-19c¢7-C8 8,693,003 7,030,280 19.12

Table 2. Comparison of simple DPand DP_TS.

In the next experiment, we attempt to assess
the quality of the solution deivered by
NONDP_TS. For this purpose, we derive a
lower bound on the objective function as
follows. First, we relax constraints (4), so the
problem is reduced to a problem where we can
optimize each compressor sation individualy.
Stll, the objective function is nonconvex,
however we attempt to exploit the fact that it is
now a function of three variables only.
Furthermore, in many cases, some flow can be
determined in advance, so the problem reduces
to optimizing a two-variable function. For the
purposes of comparison, we performed this by
an exhaugtive evauation over afinite grid.

Table 3 shows these results. The first
column displays the instances tested, the second
and third columns show the lower bound and the
best value found by the heurigtic, respectively,
and the last column shows the relative optimality
gap obtained by NONDP_TS.

Instance Iégmea frs Gap (%)
net-c-6¢2-C1 2,287,470.58 | 2,288,252.53 0.03
net-c-6¢c2-C4 | 1,392,354.29 | 1,393,001.99 0.05
net-c-6¢2-C7 949,909.48 | 1,140,097.39 16.68
net-c-10c3-C2 | 4,303,483.50 | 4,969,352.82 13.40
net-c-10c3-C4 | 2,015,665.98 | 2,237,507.93 9.91

net-c-15¢5-C2 | 4,955,752.90 | 4,991,453.59 0.72
net-c-15¢5-C4 | 3,103,697.48 | 3,371,985.41 7.96
net-c-15¢5-C5 | 6,792,248.08 | 7,962,687.43 14.69
net-c-17¢6-C1 | 8,129,730.11 | 8,659,890.72 6.12
net-c-19¢7-C4 | 7,991,897.18 | 8,693,003.78 8.06
net-c-19¢7-C8 | 5,897,768.92 | 7,030,280.45 16.1

Table 3. Solution quality.

As can be seen from the table, al of the
tested instances have a relative optimaity gap of
less than 17%, 7 out of 11 instances had a
relative gap of less than 10%, and 3 of these
observed a gap of less than 1%. This shows the
effectiveness of the proposed approach.

Findly, dthough our TS dgorithm finds
better solutions than the GRG method, it is more
computationally expensve. However, any
additiona computation time leading to even
margind improvements can be essly justified
snce the costs involved in naurd gas
transportation are typically huge.

Topology net-c-6¢2-C7
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1100000 4
1000000 A
900000 4
800000 4

700000 4
1 10 19 28 37

Objective

46 55 64 73
Iterations

82 91 100

Figure 2. Convergence of the TS algorithm.

Figure 2 shows the convergence of the
NONDP_TS dgorithm on instance net-c-6¢2-
C7. Here it can be seen how the solution



deteriorates but then it improves to a better
solution, which illustrates how getting stuck at
local optimdity is overcome, which is the main
advantageous feature of TS.

5. Closing Remarks

In this work we have presented a successful
implementation of a short-term tabu search
heurigtic for solving the steady-state fuel cost
minimization problem on cyclic topologies. The
main contribution of this work is precisely on
providing a method for handling cyclic
topologies, outperforming existing approaches
such as GRG, and smple non-sequential DP. To
the best of our knowledge, this is the first
application of TSto this type of problem.

There are ill, though, many areas for
further research. The proposed procedure is a
basic short-ter'm  memory tabu  search.
Intensification and diversification components
within the tabu search framework have not been
explored.  In addition, one of the great
chdlenges is on addressing time-dependent
systems.
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