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Abstract:  The problem of minimizing fuel consumption on natural gas pipeline networks is 
addressed. A mixed-integer nonlinear programming model for a special case of this problem will be 
presented and discussed. In addition, our computational experience on evaluating an outer 
approximation with equality relaxation and augmented penalty method is shown. The results, using 
different networks topologies over different type of compressor units, show how this model can be 
solved effectively. 
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1. Introduction 

 
Natural gas is transported by pressure throughout a pipeline system. This transmission produces 
energy loss caused by the existing friction between the gas and the pipeline's inner wall, and for the 
heat transfer between the gas and the environment. Compressor stations installed in the network 
compensate for this energy loss by increasing the pressure to keep the gas moving. Typically, the 
compressor stations consume in fuel about 3 to 5 % of the total gas flown through the network (Wu, 
1998). This becomes significant as about thousand of millions of cubit feet of gas are transported 
every day. Hence the importance of finding a better way to operate these compressor stations through 
a pipeline system. 
 
There are several variations of this problem depending on the modeling assumptions and the decisions 
to be made. One of the modeling assumptions made in most of the previous works is that the number 
of compressor units to be working within each compressor station is fixed. In our work, we consider 
this as a decision variable hence the model becomes a mixed-integer nonlinear problem (MINLP).  
 
The problem is typically modeled as a non-linear network flow problem where decision variables are 
mass flow rate at each arc and pressure drop at each node. Examples of this representation are shown 
in Figures 3, 4, and 5, where the arcs represent either compressor stations or pipelines and the nodes 
represent supply, transshipment or demand points. 
 
In this work we present a MINLP model for the problem of minimizing the fuel consumption in a 
pipeline network. Our decision variables are the pressure at each node of our network, the mass flow 
trough the pipeline, and the number of compressor units that have to be on within each station.  We 
present a computational experience by evaluating an outer approximation with equality relaxation and 
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augmented penalty method, which solves two kinds of problem: one called the master problem for 
solving the non-linear constrains and the sub-problem, which considers the mixed-integer part. This 
methodology can handle the fact that the objective function or the feasible domain can be non-convex. 
See Floudas (1995). 
 
In our preliminary findings, we have seen that it is possible to solve small problems for certain kind of 
compressor units optimally, specially when applying a pre-processing phase (scaling the equations), 
but it is quite complicated finding a feasible solution for the others. 
 
 
2. Problem Description 

 
These are the modeling assumptions. 

• We assume that the problem is in steady state. This is, our model will provide solution for 
systems that have been operating for a relative large amount of time. Transient analysis would 
require increasing the number of variables and the complexity of this problem.  

• The network is balanced. This means that the sum of all the net flows in each node of the 
network is equal to zero. In other words, the total supply flow is driven completely to the total 
demand flow, without loss. We know that compressor stations are feed with some of the fuel 
driven trough the pipelines, and for sustaining this assumption we consider the cost of this 
consumption as an extra cost in our model named opportunity cost that represents the amount 
we should spend if we bought the fuel from third parties. 

• Each arc in the network has a pre-specified direction. 

• There are a pre-specified number of identical centrifugal compressors connected in parallel in 
each compressor stations.  

 
2.1 Model 
 
In this work, parameters and data are represented with upper case letters, while variables are 
represented in lower case. 
 
Parameters: 

Vs: Set of supply nodes 
Vd: Set of demand nodes 
V: Set of all nodes in the network 
Ap: Set of pipelines arcs 
Ac: Set of compressor station arcs 
A: Set of all arcs in the network; A = Ap ∪ Ac 
Uij: Arc capacity of pipeline (i,j); (i,j) ∈ Ap 
Rij: Resistance of pipeline (i,j); (i,j) ∈ Ap 
Nij: Upper bound on the number of compressor units station (i,j); (i,j) ∈ Ac 

:, U
i

L
i PP  

Pressure limits at each node; L = lower bound, U= upper bound; i ∈ V 

:ib  Net mass flow rate at each node; bi > 0 if i ∈ Vs, bi < 0 if i ∈ Vd, bi = 0 otherwise  
 
Variables: 

xij: Mass flow rate in arc (i,j); (i,j) ∈ A 
pi: Pressure at node i; i ∈ V 
nij:  Number of compressor units working at station (i,j); (i,j) ∈ Ac 



Memorias del XI Congreso Latino Iberoamericano de Investigación de Operaciones (CLAIO) 
27 – 31 de Octubre de 2002 Concepción, Chile 

 
 
 
Formulation: 
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bBalance flow equation in each node, where       

 
It is important to mention that a compressor station is composed of several identical centrifugal 
compressors, connected in parallel that might be turned on or turned off, see Figure 1. 
 
 

 

Compressor 
Station 

Compressor 1 

Compressor 2 

. . . 

Compressor Nij 
 

Figure 1. Representation of a compressors station 

 
For a single centrifugal compressor unit (i,j), its domain is determined by the variables xij (flow 
through the arc ij), pi (inlet pressure) and pj (outlet pressure). 
 
Now, when considering Nij units within the station, the flow xij through the station can be equally split 
into the number of compressor stations working. The flow trough each unit becomes xij/nij so 
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must satisfy Dij from equation (2). A more detailed description can be found in Wu 

(1998). 
 
So it has been found (Wu et. al, 2000) that the domain Dij of a centrifugal compressor (i,j) is defined 
by: 
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From previous work (Wu et al., 2000) constraint (2) can be expressed as: 
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where the followings parameters are assumed known with certainty: 

AH, BH, CH, DH 
Constants, which depend on the type of compressor (typically estimated by 
least square method). 

Ts Gas temperature 
Z Gas compressibility factor 
R Gas constant 
m = (k-1)/k, where k is the specific ratio 
RL Surge (lower limit of  qij/sij) 
RU Stonewall (uper limit of  qij/sij) 

 
and the following auxiliary variables are introduced: 

qij Inlet volumetric flow rate in compressor (i,j); (i,j) є Ac 
hij Adiabatic head of compressor (i,j); (i,j) є Ac 

sij Compressor speed that should between , where speed Smaxmin SSS ≤≤
min = 

minumun speed and Smax = maximum speed are known. 
  
Variables hij, qij and sij are directly known to the operator; however, given the mapping from (hij, qij, 
sij) to (xij, pi, pj), it is preferable to work on the latter space from the network optimization perspective. 
Figure 2 illustrates this domain in the (xij, pi,  pj) space for xij fixed. 
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Figure 2. Domain of a compressor unit, with xij fixed in 6000 lbm/min 

 
As we can appreciate of the domain for a centrifugal compressor is non-convexity. 
 
It is know from previous work (Villalobos-Morales and Ríos-Mercado, 2002) that a good 
approximation to the real cost function is given by: 
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where A6, … , F6 are known constants. 
 
It is well know that the behavior of each compressor is non-linear. Furthermore, the feasible domain in 
(2) is a non-convex set. In addition, the objective function is also non-convex. These features make 
this problem particularly nasty. 
 
Now, some MINLP solvers will allow binary variables only. In that case, the model would have to be 
modified in the following way. A binary variable nijk, which is equal to one if the k-th compressor of 
station compressor (i,j) is working, and 0 otherwise. Then we add the equation 

; and allow n∑ ∈∀=
k

ijijk Acjinx ),(   ij to become a real variable. 

 
 
3. Previous Work 

 
3.1 Fixed Number of Compressor Units 

 
We now highlight the most relevant contributions addressing the special case where the number of 
units is fixed and therefore not a variable in the model. From the optimization perspective, most of the 
approaches have been based on dynamic programming techniques. 
 
The main advantages of DP are that a global optimum is guaranteed and that no linearity can be easily 
handled. Disadvantages of DP are that its application is practically limited to networks with simple 
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structures, such as linear or tree-like topologies (see Figures 3 and 4), and that computation increases 
exponentially in the dimension of the problem, usually refered as the curse of dimensionality. In 
topologies with no cycles, it has been showed that the flow variables can be uniquely determined and 
thus eliminated from the problem. DP then focuses on finding an optimal set of pressures.  Among the 
most relevant work we can cite Wong and Larson (1968), Lall and Percell (1990), and Carter (1998), 
who worked on a nonsequential DP algorithm to handle cyclic networks when the mass flow rate 
variables are fixed.  For a more detailed description of DP applied to gas networks, the reader is 
refered to Ríos-Mercado (2002). 
 
Gradient search techniques, such as the generalized reduced gradient method are also a choice. 
Advantages of the GRG method are that it avoids the dimensionality issue and that it could be applied 
to networks with cycles. However, since the GRG method is based on a gradient search method, there 
is no guarantee to find a global optimum, especially in the presence of discrete decision variables, so it 
may stall at local minima.  The most significant work in this respect is due to Percell and Ryan (1987). 
 
Other related work include Osiadacz (1987), who worked on numerical simulations of gas pipeline 
networks with no optimization involved; Osiadacz and Swierczewski (1994) and Osiadacz (1995), 
who used hierarchical optimization techniques; Wu, Boyd and Scott (1996), who used a mathematical 
model for the fuel cost minimization over a single unit compressor station; Kim, Ríos-Mercado, and 
Boyd (2000), who proposed an approximation algorithm that iteratively adjusts the flow variables in a 
heuristic way and then finds an optimal set of pressures; and Ríos-Mercado et al. (2002), who develop 
a technique to reduce the size of the network at pre-processing. 
 
3.2 Number of Units Not Fixed 

 
To the best of our knowledge, the only work dealing with the number of units as a variable is that of 
Wu et al. (2000). However their model is not quite a MINLP. They first determinate, at first level, the 
amount of flow through the compressor station, and then, at a second level, figure out the optimal 
number of units for that particular flow. That approach of course limits the search for a global 
optimum. Since our idea is treat all variables, at the same level, this is what motivates the choice of 
handling this problem as a MINLP, which becomes the main purpose of this work. 
 
 
4. Proposed Solution Procedure 

 
As we have seen in the previous section, some researchers have considered as decision variables the 
pressure drop at each node of the network and the mass flow transported in the pipeline. The variation 
we are trying to handle is to consider simultaneously that in each compressor station there is a number 
of compressors connected in parallel and in dependence of the flow, we will decide how many 
compressor to turn on for transporting the fuel. This means adding another decision variable of the 
integer type.  We will try to solve this kind of problem considering simultaneously both variables 
types (continuous and integer), which makes this problem a MINLP. 
  
Among the most popular methodologies for solving MINLP models we find: 

1. Generalized Benders Decomposition (GBD) 
2. Branch and Bound (BB) 
3. Outer Approximation (OA)  
4. Feasibility Approach (FA) 
5. Outer Approximation with Equality Relaxation (OA/ER) 
6. Outer Approximation with Equality Relaxation and Augmented Penalty (OA/ER/AP) 
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These approaches are better described in Floudas (1995). 
 
We have chosen the outer approximation with equality relaxation and penalty augmented method 
because this can handle the non-convexity in the objective function, the domain or both. We know 
however, given the non-convexity of our model, global optimums are not necessarily guaranteed 
(Floudas, 1995). 
 
The OA/ER/AP method, due to Grossmann et. al (2001) at the Engineering Design Research Center 
(EDRC) at Carnegie Mellon University, is implemented in a software called DICOPT. DICOPT 
(Grossman et al., 2001) is a solver available in GAMS (Brooke, Kendrick, and Meeraus, 1992) for 
solving MINLPs. The algorithm solves iteratively a series of NLP and MIP sub-problems. In the full 
version of the paper we will include a detailed discussion of the algorithm, and highlight the 
algorithmic parameters that were evaluated. 
 
 
5. Computational Work 

 
The purpose of this work is twofold. First, we would like to be able to solve a large number of 
instances of this problem and to show better solutions can be reached than those obtained by 
approaches that consider a fixed number of units within each compressor. Then, we evaluate the 
performance of algorithmic parameters to asses the effectiveness of the method on this type of 
problems. This will include finding the best parameters that yield high quality solutions.  
In order to do that, we have implemented the model in GAMS. First, we consider a simple topology 
(see Figure 3), which consists of 6 nodes (one demand, one supply), 5 arcs (2 compressors and 3 
pipelines). For this topology, 9 different types of compressors, with data taken from real-world units, 
were tested. The model was run on a Sun Ultra 10 under Solaris 7 OS. 
 

 

E E4 3 2 5 6 1 

 
Figure 3.  Linear topology. 

 
We first ran the problem setting net flow values of 400 MMCFD (1 MMCFD = 106 cubic feet per day) 
and found numerical difficulties. Only two of nine compressors were solved. In other instances, we 
found that some Jacobean elements were too large, so that the algorithm was unable to find a solution.  
 
So we increased the flow to 950 MMCFD and applied a pre-processing phase, which consisted of 
scaling some of the constraints. The results are shown in Table 1. As can be seen the algorithm found 
optimal or feasible solutions in 5 of the 9 instances. This illustrates the importance of an appropriate 
scaling in the preprocessing phase, but it also shows further work is necessary at pre-processing to 
derive models with no numerical difficulties. For the problems solved, we can also observed that most 
of the time was spent on solving the MINLP sub-problem. 
 
The compressor’s name is allocated in the first column in Table 1. The model status column indicates 
the stopping criteria used by DICOPT, where “Intermediate non integer” means that the solver failed 
in the NLP sub-problem, “Integer solution” means that the solver was able to find feasible solution, 
and “Locally optimal” means that a local optimal solution was found. The third column shows the 
numerical value of the objective function that represents the consumption cost. The fifth column 
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shows how long the solver takes to find the solution, and the lasts two columns show the total time and 
percentage taken by each sub-problem.   
 
Compressor 

type 
Model status Objective 

function 
Number 

of 
iteration  

Duration CPLEX 
(time,  %) 

CONOPT 
(time,  %) 

Cdbnk1 Intermediate 
non integer 

4255115.4 1007 2.616 2.26 
86.24 

0.36 
13.76 

Cdbnk3 Integer 
solution  

9817343.8 2547 1.37 1.32 
96.35 

0.05 
3.65 

Cdbyk2 Intermediate 
non integer 

5353535.7 1117 3.741 3.48 
93.05 

0.26 
6.95 

Cdryk1 Intermediate 
non integer 

3781068.3 49 0.079 - - 

Cdsnk1 Locally 
optimal 

4277220.1 56  0.102  0.10 
100 

0 
0 

Cdbnk2 Intermediate 
non integer 

4255115.4 1007 2.501 2.18 
87.21 

0.32 
12.79 

Cdbyk1 Integer 
solution 

4265334.1 1334 14.676 14.63 
99.66 

0.05 
0.34 

Cdhrk1 Integer 
Solution 

4157115.7 441 3.443 3.41 
99.13 

0.03 
0.87 

Cdryk2 Integer 
solution 

4429228.1 275 0.805 0.77 
96.27 

0.03 
3.73 

Table 1.  Results of experimentation. 

 
In those instances where the algorithm failed to find a solution, it has been observed that the maximum 
iteration number is reached, and the solution is infeasible. 
 
That happens when an NLP sub-problem cannot be solved to optimality. Some NLP solvers terminate 
with a status other than optimal if not all of the termination criteria are met. For instance, the change in 
the objective function is negligible (indicating convergence) but the reduced gradients are not within 
the required tolerance. Such a solution may or may not be close to the (local) optimum. Another 
explanation is that the NLP sub-problem fails resulting in a non-optimal but feasible solutions. 
Sometimes an NLP solver cannot make further progress towards meeting all optimality conditions, 
although the current solution is feasible. Further work is under way now to attempt to exploit the 
current problem structure so we can deal with these difficulties successfully. 
 
This is an ongoing research. We are still working on pre-processing to address the numerical 
difficulties obtained when applying the algorithm. It is expected that the full version at the paper will 
contain results for all instances. In addition, the full version of the paper will contain optimal results 
(not shown here) for other type of topologies (illustrated in Figures 4 and 5) and a comparison to the 
approach, which uses a fixed number of compressors. 
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Figure 4. Example of a tree topology. 
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Figure 5. Example of a topology with cycles. 
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