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Abstract

We address the problem of minimizing the fuel consumption incurred by compressor stations in
steady-state natural gas transmission networks. In the real world, these type of instances are very
large both in terms of the number of decision variables and the number of constraints, and very com-
plex due to the presence of non-linearity and non-convexity in both the set of feasible solutions and

the objective function. In this paper we present a study of the properties of gas pipeline networks,
and exploit them to develop a technique that can be used to significantly reduce the size of the in-
stances, without disrupting problem structure, making it more attractive for solution methodologies

from the optimization stand point.
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Extended Abstract

In this paper we consider the problem of minimizing the fuel cost consumption incurred by compressor

stations through natural gas transmission networks.
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This problem is represented by a network, where arcs correspond to pipelines and compressor sta-
tions, and nodes correspond to their physical interconnection points. The decision variables are the mass
flow rates through every arc, and the gas pressure level at every node. At each compressor station, there
is a a cost function that depends on the inlet (suction) pressure, the outlet (discharge) pressure and the
mass flow rate through the compressor. This cost function is typically non-convex and nonlinear. In
addition the set of feasible solutions is typically non-convex as well.

In general, a problem with these characteristics is very difficult to solve. This can be claerly seen in
many of the approaches that have been taken in past to deal with this problem such as those of Wong
and Larson [9, 10], Tsal et al. [8], Percell and Ryan [6], Lall and Percell [4], Mallinson et al. [5], to
name a few. The main contribution of our work is to provide a way to significantly reduce the size of
the problem instances at pre-processing without disrupting problem structure. In fact, our approach has
been successfully incorporated in recent work such as Wu et al. [12], Kim [2], and Kas;N®ércado,
and Boyd [3]

For a more complete review on algorithms for pipeline optimization the reader is referred to the
work of Carter [1] and Rs-Mercado [7].

We now present a description of the problem and the mathematical formulation.

The objective function of the problem is the sum of the fuel costs over all the compressor stations in
the network. This problem involves the following constraints:

(i) mass flow balance equation at each node;
(i) gas flow equation through each pipe;
(iii) pressure limit constraints at each node;

(iv) operation limits in each compressor station.

The first two are also called steady-state network flow equations. We emphasize that while the
mass flow balance equations (i) are linear, the pipe flow equations (ii) are nonlinear; this has been well
documented in [11, 12]. For medium and high pressure flows, when taking into account the fact that

a change of the flow direction of the gas stream may take place in the network, the pipe flow equation
takes the following form:

p; —pj = cijulul®, 1)

wherep; andp; are pressures at the end nodes of gipg), v is the mass flow rate through the pipe,
is a constantq ~ 1), and the pipe resistaneg; is a positive quantity depending on the pipe physical
attributes.

The steady-state network flow equations can be stated in a very concise form by using incidence
matrices. Let us consider a network withnodes,! pipes, andn compressor stations. Each pipe is



assigned a direction which may or may not coincide with the direction of the gas flow through the pipe.
Let A; be then x [ matrix whose elements are given by

1, if pipe j comes out of nodée
a; = —1, if pipe j goes into node;
0, otherwise

Ay is called the node-pipe incidence matrix. Similarly, g} be then x m matrix whose elements are
given by

1, if nodei is the discharge node of statién
A —1, ifnodes is the suction node of statidn
0, otherwise

A,, is called the node-station incidence matrix. The matrix formed by appentintp the right hand
side of 4; will be denoted asi, i.e., A = (A; A,,,), which is amn x (I + m) matrix.
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Figure 1: An example of a simple network

Figure 1 shows a simple network example with= 10 nodes,] = 6 pipes, andn = 3 stations.
Directions assigned to the pipes have been indicated. Note that all nodes, pipes, and stations have been



labeled separately. The matricasandA,,, for this network are given by

o o0 o 0 o0 0 1 0 0
r1r 0o 0 0 0 0 -1 0
-1 0 0 0 0 0 0 1 1
o 1 0 0 0 0 0 -1 0
A= 0 -1 1 1 0 0 A, = 0 0 0
o 0 -1 0 0 0 0 0 O
0o 0 o0 -1 0 O 0 0 0
0o 0o o0 o0 1 0 0 0 -1
0 0 O -1 1 0 0 O
0 0 0 0 0 -1 0 0

where thei-th row in each matrix corresponds to nogéhe columns in4; correspond to pipes (2,3),
(4,5), (5,6), (6,7), (8,9), and (9,10), respectively, and k& column inA,, to compressor statioh
(CSk) in the network. Note that in each matrix every column contains exactly two nonzero eleinents,
and—1, which correspond to the two end nodes of the pipe or compressor.

Letu = (ug,...,u)" andv = (vy,...,v,)" be the mass flow rate through the pipes and stations,
respectively. Letw = (u?,vT)T. A componentu; or v is positive if the flow direction coincides
with the assigned pipe or station direction, negative, otherwisep,Lle¢ the pressure at nodep =
(p1,...,pn)T, ands = (s1,...,s,)" be the source vector, where the sousgeat nodei is positive
(negative) if the node is a supply (delivery) node. A node that is neither a supply or delivery node is
called a transition node and hgsequal to zero. We assume, without loss of generality, the sum of the
sources to be zero:

S s = 0. @
=1

The network flow equations can now be stated as the following:

Aw =s
Al p? = ¢(u)
wherep® = (p7,...,p3)", d(u) = (1 (w1), ..., di(w))", with ¢;(u;) = cjuj|u;|* being the pipe
flow equation at pipg.
Now suppose the source vectois given satisfying the zero sum condition (2), and the boysids

pY of pressures at every node have been specified. The problem is to determine the pressupe vector
and the flow vectow so that the total fuel consumption is minimized, that is,

Minimize F(w,p) = ng(vkapin(k)apout(k)) ®3)
k=1

subject to Aw = s 4)



AFp?* = ¢(u) ()
p € [p"p"] (6)

(vkapin(k:)’pout(k)) € Dg k=1,2,...,m (7)

Wherev, pin(x), @ndp,.«(r) are the mass flow rate, suction pressure, and discharge pressure atstation
th, g is its corresponding cost function, atg, is the feasible domain in which the triple variables
(Vks Pin(k)» Pout(k)) May vary, See [11, 12] for an in-depth study of the structure and propertiBg of
andg. Note that

1. The feasible domainB;, are typically non-convex.
2. The fuel minimization functions,. are nonlinear, non-convex and sometimes discontinuous.

3. The pipe flow equations (5) define a non-convex set.

In general, a problem with these characteristics is very difficult to solve. What we do in this paper is
to propose a technique that significantly reduces the size of any instance to this problem, making it more
tractable. This technique uses concepts from graph theory applied to natural gas pipeline networks.

In the full version of this paper we present two entire sections devoted to the most relevant results on
graph theory and pipeline network flow equations related to our work, and a section where we develop
the main theoretical results about uniqueness and existence of solutions.

Based on these developments, we end the full paper with a detailed description of the proposed
network reduction method and show how to apply it in the two basic cases of network topologies, which
are the most representative of real-world instances, and that represent the main contribution of our work.
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