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Abstract

We address the problem of minimizing the fuel consumption incurred by compressor stations in

steady-state natural gas transmission networks. In the real world, these type of instances are very

large both in terms of the number of decision variables and the number of constraints, and very com-

plex due to the presence of non-linearity and non-convexity in both the set of feasible solutions and

the objective function. In this paper we present a study of the properties of gas pipeline networks,

and exploit them to develop a technique that can be used to significantly reduce the size of the in-

stances, without disrupting problem structure, making it more attractive for solution methodologies

from the optimization stand point.
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Extended Abstract

In this paper we consider the problem of minimizing the fuel cost consumption incurred by compressor

stations through natural gas transmission networks.
�Corresponding author
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This problem is represented by a network, where arcs correspond to pipelines and compressor sta-

tions, and nodes correspond to their physical interconnection points. The decision variables are the mass

flow rates through every arc, and the gas pressure level at every node. At each compressor station, there

is a a cost function that depends on the inlet (suction) pressure, the outlet (discharge) pressure and the

mass flow rate through the compressor. This cost function is typically non-convex and nonlinear. In

addition the set of feasible solutions is typically non-convex as well.

In general, a problem with these characteristics is very difficult to solve. This can be claerly seen in

many of the approaches that have been taken in past to deal with this problem such as those of Wong

and Larson [9, 10], Tsal et al. [8], Percell and Ryan [6], Lall and Percell [4], Mallinson et al. [5], to

name a few. The main contribution of our work is to provide a way to significantly reduce the size of

the problem instances at pre-processing without disrupting problem structure. In fact, our approach has

been successfully incorporated in recent work such as Wu et al. [12], Kim [2], and Kim, R´ıos-Mercado,

and Boyd [3]

For a more complete review on algorithms for pipeline optimization the reader is referred to the

work of Carter [1] and R´ıos-Mercado [7].

We now present a description of the problem and the mathematical formulation.

The objective function of the problem is the sum of the fuel costs over all the compressor stations in

the network. This problem involves the following constraints:

(i) mass flow balance equation at each node;

(ii) gas flow equation through each pipe;

(iii) pressure limit constraints at each node;

(iv) operation limits in each compressor station.

The first two are also called steady-state network flow equations. We emphasize that while the

mass flow balance equations (i) are linear, the pipe flow equations (ii) are nonlinear; this has been well

documented in [11, 12]. For medium and high pressure flows, when taking into account the fact that

a change of the flow direction of the gas stream may take place in the network, the pipe flow equation

takes the following form:

p2i � p2j = cijujuj
�; (1)

wherepi andpj are pressures at the end nodes of pipe(i; j), u is the mass flow rate through the pipe,�

is a constant (� � 1), and the pipe resistancecij is a positive quantity depending on the pipe physical

attributes.

The steady-state network flow equations can be stated in a very concise form by using incidence

matrices. Let us consider a network withn nodes,l pipes, andm compressor stations. Each pipe is
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assigned a direction which may or may not coincide with the direction of the gas flow through the pipe.

LetAl be then� l matrix whose elements are given by

alij =

8>>><
>>>:

1; if pipe j comes out of nodei;

�1; if pipe j goes into nodei;

0; otherwise:

Al is called the node-pipe incidence matrix. Similarly, letAm be then�m matrix whose elements are

given by

amik =

8>>><
>>>:

1; if nodei is the discharge node of stationk;

�1; if nodei is the suction node of stationk;

0; otherwise:

Am is called the node-station incidence matrix. The matrix formed by appendingAm to the right hand

side ofAl will be denoted asA, i.e.,A = (Al Am), which is ann� (l +m) matrix.
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Figure 1: An example of a simple network

Figure 1 shows a simple network example withn = 10 nodes,l = 6 pipes, andm = 3 stations.

Directions assigned to the pipes have been indicated. Note that all nodes, pipes, and stations have been
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labeled separately. The matricesAl andAm for this network are given by

Al =

0
BBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0

1 0 0 0 0 0

�1 0 0 0 0 0

0 1 0 0 0 0

0 �1 1 1 0 0

0 0 �1 0 0 0

0 0 0 �1 0 0

0 0 0 0 1 0

0 0 0 0 �1 1

0 0 0 0 0 �1

1
CCCCCCCCCCCCCCCCCCCCCCCA

Am =

0
BBBBBBBBBBBBBBBBBBBBBBB@

1 0 0

�1 0 0

0 1 1

0 �1 0

0 0 0

0 0 0

0 0 0

0 0 �1

0 0 0

0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCA

where thei-th row in each matrix corresponds to nodei, the columns inAl correspond to pipes (2,3),

(4,5), (5,6), (6,7), (8,9), and (9,10), respectively, and thek-th column inAm to compressor stationk

(CSk) in the network. Note that in each matrix every column contains exactly two nonzero elements,1

and�1, which correspond to the two end nodes of the pipe or compressor.

Letu = (u1; : : : ; ul)
T andv = (v1; : : : ; vm)T be the mass flow rate through the pipes and stations,

respectively. Letw = (uT ;vT )T : A componentuj or vk is positive if the flow direction coincides

with the assigned pipe or station direction, negative, otherwise. Letpi be the pressure at nodei, p =

(p1; : : : ; pn)
T , ands = (s1; : : : ; sn)

T be the source vector, where the sourcesi at nodei is positive

(negative) if the node is a supply (delivery) node. A node that is neither a supply or delivery node is

called a transition node and hassi equal to zero. We assume, without loss of generality, the sum of the

sources to be zero:
nX
i=1

si = 0: (2)

The network flow equations can now be stated as the following:
8<
:

Aw = s

AT
l p

2 = �(u)

wherep2 = (p21; : : : ; p
2
n)

T , �(u) = (�1(u1); : : : ; �l(ul))
T , with �j(uj) = cjujjuj j

� being the pipe

flow equation at pipej.

Now suppose the source vectors is given satisfying the zero sum condition (2), and the boundsp
L,

p
U of pressures at every node have been specified. The problem is to determine the pressure vectorp

and the flow vectorw so that the total fuel consumption is minimized, that is,

Minimize F (w;p) =
mX
k=1

gk(vk; pin(k); pout(k)) (3)

subject to Aw = s (4)
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AT
l p

2 = �(u) (5)

p 2 [pL;pU ] (6)

(vk; pin(k); pout(k)) 2 Dk k = 1; 2; : : : ;m (7)

wherevk, pin(k), andpout(k) are the mass flow rate, suction pressure, and discharge pressure at stationk-

th, gk is its corresponding cost function, andDk is the feasible domain in which the triple variables

(vk; pin(k); pout(k)) may vary, See [11, 12] for an in-depth study of the structure and properties ofDk

andgk. Note that

1. The feasible domainsDk are typically non-convex.

2. The fuel minimization functionsgk are nonlinear, non-convex and sometimes discontinuous.

3. The pipe flow equations (5) define a non-convex set.

In general, a problem with these characteristics is very difficult to solve. What we do in this paper is

to propose a technique that significantly reduces the size of any instance to this problem, making it more

tractable. This technique uses concepts from graph theory applied to natural gas pipeline networks.

In the full version of this paper we present two entire sections devoted to the most relevant results on

graph theory and pipeline network flow equations related to our work, and a section where we develop

the main theoretical results about uniqueness and existence of solutions.

Based on these developments, we end the full paper with a detailed description of the proposed

network reduction method and show how to apply it in the two basic cases of network topologies, which

are the most representative of real-world instances, and that represent the main contribution of our work.
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