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ABSTRACT

This paper addresses an emergency vehicle covering and planning problem that

arises from a real-world application. A limited number of two heterogeneous types

of ambulances must be located at different city points and dispatched to emergency

scenes, considering the uncertainty of the emergency. One of the main challenges is

to determine whether an emergency can be fully covered on time, partially covered

but with longer response times than ideal, partially covered with delays, or not cov-

ered at all. To this end, we use a gradual decay function to represent the partial

coverage, within a two-stage integer stochastic program. To find solutions of good

quality, we propose a location-allocation methodology that relies on the solution of

an auxiliary surrogate model, which is faster to solve. Several aspects were evaluated

in our empirical work. First, the benefit of introducing a partial coverage function

is assessed, finding 84% fewer uncovered emergencies, which directly translates into

saved lives. We also found that the proposed solution methodology produces solu-

tions of very good quality significantly faster than the ones obtained when solving

the original model.
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1. Introduction

Emergency Medical Service (EMS) systems provide prehospital care to people who

suffer a medical incident and transport patients to hospitals [5, 7, 40] for complete

care. Given the presence of uncertainties in ambulance demand, often due to accident

locations, degree of prehospital care needed, or calls’ arrival times, emergency vehicle

planning can be very challenging.

The problem addressed in this work is motivated by a real-world application in a

developing country. EMS systems in developing countries, as is the case in Mexico, lack

around 30-60%1 the number of ambulances suggested by the World Health Organiza-

tion (WHO), which should be at least four ambulances per 100,000 people [13]. For

the Red Cross, an EMS operating with this small number of ambulances is considered

similar to a war situation1 or after a disaster incident [24]. Thus, the aim is to use the

scarce ambulances in the best possible way.

Typically, in an EMS system, there are two types of decisions involved: ambulance

location decisions (strategic) and ambulance dispatching decisions (operational). In

the real world, these decisions must be made under uncertainty. We propose a two-

stage integer stochastic programming model with recourse to maximize a weighted

combination of total and partial coverage. In the first stage, ambulance locations must

be determined, and in the second stage, when accident occurrence scenarios become

known, ambulances are dispatched to the accident points.

Our model incorporates two novel features. First, we consider two different types of

vehicles. The two most commonly used types of ambulances in EMS systems: Basic

Life Support (BLS) units, typically staffed with two emergency medical technicians,

and Advanced Life Support (ALS) units, which may include an emergency medical

technician, an advanced emergency medical technician, and one or more paramedics.

When a BLS ambulance is dispatched to an emergency that requires an ALS, it can

reduce the patient’s survival. Thus, we consider that ALS ambulances can be used

as BLS units, but the contrary is not allowed [6]. Although most of the literature

assumes a single type of ambulance, there are a few works that also consider two types

1Anonymous interviews done by the authors.
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of ambulances [25, 34, 56].

A second feature incorporated in our model is the consideration of allowing partial

covering. This is achieved by considering a gradual coverage decay function that have

been used in the context of facility location [9], deterministic ambulance location [18],

and fire service facility location [51], but have not been used in stochastic ambulance

location problems, to the best of our knowledge. In our particular real-world setting,

the number of available ambulances is very scarce, which implies that when ambulances

are needed, accidents may not be fully covered. Therefore, it makes sense to consider

the benefits of partial coverage to help customers get urgent care. In the ambulance

location literature, a total coverage function is typically used. Naturally, dealing with

a decay function is more computationally challenging [10, 59]; thus, it is not surprising

that most of the work on stochastic ambulance location sorts to full coverage objective

functions.

The proposed two-stage integer stochastic program primarily aims to determine am-

bulance tactical location decisions. We refer to our problem as the Emergency Vehicle

Covering and Planning (EVCP) problem. As is the case with two-stage stochastic

programming models, the second-stage decisions (ambulance deployment in this case)

are informative to first-stage decisions because the value of the location decisions can

be evaluated through the second-stage objective function values. Each ambulance has

an average period-dependent response time to travel from its potential location to the

demand point where the patient will be cared for [43, 53]. The location of the ambu-

lance is crucial, as every minute of delay in treatment in a cardiac patient reduces the

probability of survival by 24% [4, 38].

Similarly to Yoon et al. [56], to build the parameters for the second stage, we gener-

ate call-arrival scenarios by sampling emergency call logs to use in the second stage of

our stochastic model. In this way, we address the volume of calls during a short period,

such as on Friday nights [28]. Thus, time is not explicitly measured, and it is assumed

that a vehicle can be assigned only once during this high-demand period for ambu-

lances [61]. According to Yoon et al. [56], an important reason why sampling call logs

is beneficial is the following. Sampling from the call logs does not make assumptions

about the probability distributions. Queueing models used to describe EMS-system
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performance often need assumptions about the distributions of accident occurrence,

such as exponentially distributed interarrival times or service times. However, in many

cases, these assumptions can be inconsistent with real-world observations.

To solve the model, we propose a novel location-allocation approach that relies

on the solution of an auxiliary surrogate model that is faster to solve. Essentially, a

location-allocation method is a two-step process in which location decisions are first

determined. Then, the allocation variables are found by solving the problem with the

location variables fixed. Location-allocation techniques have been used in other con-

texts [42, 50], but not in stochastic ambulance location to the best of our knowledge.

An interesting feature of our proposed approach is that it can be implemented with

relative ease by using off-the-shelf general-purpose solvers, without resorting to sophis-

ticated decomposition algorithms. We name this approach a surrogate-based feedback

method because the location of the ambulances obtained by this surrogate model is

used as input to the original model. With this method, we obtain high-quality solutions

in a reasonable time.

Summary of research contributions:

• We present a maximum expected coverage model considering partial coverage.

To this end, we use a decay function to handle partial coverage. Although de-

cay functions have been used in facility location problems, to the best of our

knowledge, this is the first time they have been used in a stochastic ambulance

location problem.

• We develop a surrogate model that is faster to solve, facilitating the solution of

the problem.

• We propose a location-allocation method based on intelligent exploitation of the

surrogate model solution.

• We present empirical evidence that shows: (i) the benefit of considering gradual

coverage, (ii) the value of the stochastic solution, and (iii) the effectiveness of

the proposed solution method.

The remainder of this paper is organized as follows. In Section 2, we review and

discuss the literature related to our problem. Section 3 formally describes the EVCP
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problem, explaining in detail the concept of gradual coverage and discussing the model-

ing assumptions. This includes introducing a two-stage integer stochastic programming

model for the EVCP problem. The surrogate-based feedback method for the EVCP

problem is described in Section 4. Experimental results on generated instances based

on real-world cases that show the efficiency of our approach are given in Section 5.

Final remarks and conclusions are drawn in Section 6.

2. Literature Review

There are excellent surveys and review papers discussing models and algorithms for

ambulance location problems, such as the ones by Aringhieri et al. [5], Bélanger et al.

[7], Brotcorne et al. [14]. Khelfa and Khennak [31] emphasize the need to develop

methodological approaches that improve the deployment of ambulances. This involves

optimizing decisions related to their placement, relocation, and dispatch to ensure

the continued effectiveness and quality of EMS systems. Although early works dealt

more with deterministic models, including backup coverage models [19, 27] and double

standard models [17, 20, 22], given the inherent uncertainty of incident occurrence,

stochastic approaches have gained more attention over the past 15-20 years. Some of

these stochastic approaches are based on queueing systems and/or hypercube models

[3, 25, 36, 49, 57], simulation studies [2, 26], sampling approaches [37], or dynamic

systems [2, 4, 47, 48, 52].

In our work, we consider a two-stage stochastic programming model with recourse

based on scenario generation. These types of models are useful for locating the ambu-

lances in the first stage and then dispatching the vehicles to the accident points in the

second stage. Yavari et al. [55] consider an ambulance dispatching and relocation prob-

lem taking into account overcrowding of emergency departments. Beraldi and Bruni

[8] present a stochastic programming model for determining the optimal location of

ambulances in congested emergency systems. Nickel et al. [37] present a stochastic

programming model for minimizing the total cost for installing (and maintaining)

ambulance location facilities but assuring a minimum coverage level. They develop a

sampling approach in which they draw several samples of scenarios and solve the re-
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stricted model associated with each of them. Gago-Carro et al. [21] present a two-stage

stochastic programming model for ambulance relocation/allocation that balances the

response time between densely populated and isolated areas. Sung and Lee [46] propose

a scenario-based ambulance location model that explicitly computes the availability of

ambulances with stochastic call arrivals under a dispatching policy. The model utilizes

two-stage stochastic programming to represent the temporal variations in call arrivals

as a set of call arrival sequences. Khosgehbari and Mirzapour Al-e Hashem [32] present

a mixed-integer two-stage stochastic programming model that consider uncertainty on

parameters such as emergency calls, travel times, and pathways, simultaneously. Other

innovations of their model include considering a heterogeneous fleet of ambulances to

provide specialized out-of-hospital services and considering different types of patients

in terms of the need to be transferred to the hospital. To tackle this problem, they

proposed a new decomposition-based heuristic method called the Progressive Estimat-

ing Algorithm (PEA). PEA is a modified version of the classic Progressive Hedging

Algorithm. PEA attempts to deal with PHA drawbacks such as the possibility of being

placed in a loop or prolonging the solution time by changing the method of calculating

the first stage variables in each iteration. Therefore, by considering a large number of

scenarios, PEA can reach feasible near-optimal solutions more efficiently.

An interesting feature and advantage of our surrogate-based feedback approach is

that it can be implemented with relative ease by using off-the-shelf general-purpose

solvers, without resorting to sophisticated decomposition algorithms as the ones dis-

cussed above. With our method, we obtain high-quality solutions in reasonable com-

puting effort.

There are also studies based on robust optimization models. For instance, Ong et al.

[39] present a robust optimization model to minimize the worst-case scenario of the

location and dispatching problem. Yuan et al. [58] propose a distributionally robust

chance-constrained programming model for an emergency medical system location

problem with uncertain demands that minimizes the total expected cost by finding the

location of emergency medical stations, the allocation of the ambulances and demand

assignments. In the context of post-disaster relief logistics, Sun et al. [44, 45] propose

a bi-objective robust optimization model for strategic and operational response to
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decide the facility location, emergency resource allocation, and casualty transportation

plans. Akıncılar and Akıncılar [1] address an ambulance location model considering

uncertainty in vehicle speed under a robust optimization framework.

There are only a few works that we know of that deal with two or more different

types of ambulances. For instance, McLay [34] address the problem of how to optimally

locate and use two types of vehicles to improve patient survivability and coordinate

multiple medical units with a hypercube queueing model. In Yoon et al. [56], two

types of vehicles are considered, but one of them is a rapid vehicle that cannot offer

the first care services of an ambulance. The authors present a two-stage stochastic-

programming model that determines how to locate two types of ambulances in the

first stage and dispatch them to prioritized emergency patients in the second stage

after call-arrival scenarios are disclosed. In their model, they consider probabilistic

travel times. They solved their model by means of a Benders-based algorithm. More

recently, Nadar et al. [36] consider a joint ambulance location and dispatch problem for

a multi-tier ambulance system. The proposed problem addresses three key decisions:

the location of ambulance stations, the allocation of ambulances to these stations,

and the preference order of stations for dispatching ambulances. Boujemaa et al. [12]

present a robust stochastic programming location-allocation model to simultaneously

determine the location of ambulance stations, the number and the type of ambulances

to be deployed, and the demand areas served by each station in a two-tiered EMS

system while accounting for the inherent uncertainty of the demand. In none of these

works on multi-tier stochastic ambulance location, gradual partial coverage of the

incidents is considered. This is a fundamental difference from our work.

To the best of our knowledge, no previous studies have comprehensively analyzed

EMS systems that consider both multiple types of ambulances and partial coverage as

we do in our work. This novel approach offers valuable insights for improving emer-

gency medical services and response strategies in real-world scenarios.
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3. The Emergency Vehicle Covering and Planning problem

Let us formally describe the EVCP problem. Let I be the set of possible demand

points for patients who need medical attention in a city or region. This set can be very

large, so we consider all the demand points observed in the historical data. In our case

study, |I| can be as large as 1500 demand points. Let L be the set of potential sites or

ambulance stations where ambulances could be located, such as hospitals, firehouses,

malls, or similar places where ambulances and paramedics can wait for emergency

calls. We consider instances with up to 30 potential sites for the experimental results.

Let K be the set of types of ambulances available in the system: the BLS (labeled with

index k = 1) and the ALS ambulances (labeled with index k = 2), which are limited

by a known parameter ηk for each type k ∈ K. These ambulances must be allocated

to a potential site l ∈ L and dispatched toward a demand point i ∈ I if there is an

emergency situation.

The travel time of any type of ambulance from a potential site l ∈ L to a demand

point i ∈ I is given by rli. While it is true that these travel times may be affected

by many factors such as traffic conditions, within a specific time period where the

model is applied, vehicle speed is more or less constant. Thus, we assume that these

parameters are known following common practice in the literature. Ideally, ambulances

should arrive in less than τ minutes in a life-threatening emergency. Usually, τ is a

fixed value in the [8, 15] minute range. This work also considers that the emergency is

not covered if an ambulance takes more than a maximum time τmax to arrive. In this

case, unfortunately, the accident has likely been handled by other means.

3.1. Description of partial coverage

One special feature incorporated in our model is the consideration of allowing partial

covering. This is achieved by considering a gradual coverage decay function that have

not been used in stochastic ambulance location problems, to the best of our knowledge.

In our particular real-world setting, the number of available ambulances is very scarce,

which implies that when ambulances are needed, accidents may not be fully covered.

Therefore, it makes sense to consider the benefits of partial coverage to help customers
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get urgent care. In the ambulance location literature, a total coverage function is

typically used.

Since the EVCP problem aims to reduce the response time of the patient’s first

medical aid, even if it is in a partial or late way, we define a benefit decay function,

based on the defined by Berman et al. [9], that only depends on the response time of

a location l ∈ L to any demand point i ∈ I:

cli =


1 if rli ≤ τ,

1− rli−τ
τmax−τ if τ < rli < τmax,

0 if rli ≥ τmax.

Thus, cli=1 is the normal coverage definition if the ambulance can arrive in less than τ

minutes. However, if the ambulance i in location l can arrive at the emergency in more

than τ minutes but in less than τmax, then it takes a decreasing value with respect

to the number of minutes. That is, the farther the ambulance, the smaller the value

of cli. If an ambulance takes more than τmax minutes, then it is too far and is not

considered to able to arrive to emergency i from location l.

3.2. Information related to the scenarios

The operational level is represented by a set of scenarios Ω with a bundle list of arriving

calls. Each scenario ω ∈ Ω represents a set of emergencies in the demand points. Thus,

a scenario is defined by the number and type of ambulances needed at each demand

point. Recall that an ALS ambulance can be sent instead of a BLS ambulance, but

not vice versa. Thus, each scenario s ∈ S indicates if there is an accident at a demand

point i ∈ I and provides the value aki related to the number of ambulances required

of type k ∈ K.

For each scenario ω ∈ Ω, let I(ω) ⊆ I contain only the demand points i ∈ I where

ambulances are needed, that is, where aki(ω) ̸= 0 for any k ∈ K. We define five

different types of ambulance coverage related to the response times for each demand

point i ∈ I(ω):

• Total: the aki(ω) required ambulances of each type k are dispatched to i, and all
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arrive in less than τ time.

• Total-late: the aki(ω) required ambulances of each type k are dispatched, but at

least one arrives between (τ, τmax) time.

• Partial: at least one of the aki(ω) required ambulances is not dispatched, for

k ∈ K, but all the dispatched ones arrive in less than τ time.

• Partial-late: at least one of the aki(ω) required ambulances is not dispatched, for

k ∈ K, but at least one of the dispatched arrives between (τ, τmax) time.

• Null: none of the aki(ω) required ambulances arrives in less than τmax time, for

k ∈ K.

Example of a scenario: Suppose for instance, that we have five demand points, i.e.,

I = {1, 2, . . . , 5}. A scenario is determined by the realization of the random matrix

a = (aki), which indicates whether an accident occurred and, if it did, the number of

each type of ambulance required at the demand points. For instance

a =

0 1 0 2 0

0 0 0 1 0


indicates that there is no accident in demand points 1, 3, and 5, there is an accident

in point 2, requiring 1 type 1 ambulance and none type 2 ambulances, and there is an

accident in point 4 requiring 2 type 1 ambulances and 1 type 2 ambulances.

3.3. Illustrative example

Figure 1 illustrates a solution to the EVCP problem considered in this work. Five

emergencies (red triangles) occur in the city during a rush hour period. There are

three ALS ambulances (blue) and four BLS ambulances (dark blue) located in the

city, which are dispatched to emergency situations. Emergency 1 has total coverage

as it needs one ALS and one BLS that arrive within the ideal response time (green

circle). Emergency 2 needs two BLS and one ALS. It has a total-late coverage since

one ALS and one BLS arrive after the ideal response time (orange circles), while

a BLS arrives within the ideal time. Emergency 3 needs one ALS and one BLS. It

has a partial coverage since only the BLS can respond to the emergency within the

10



Figure 1. Five emergencies (red triangles), three ALS (blue) ambulances, and four BLS ones (dark blue).

Emergency 1 has a total coverage; Emergency 2 has a total-late coverage; Emergency 3 has a partial coverage;
Emergency 4 has a partial-late coverage; Emergency 5 has a null coverage.

ideal response time. Emergency 4 requires two BLS. It has a partial-late coverage

because only one ALS (replacing a BLS) arrives, but with a longer response time than

ideal. Unfortunately, Emergency 5 has a null coverage since the BLS ambulance that is

required does not arrive within the maximum tolerated response time. Considering the

number of ambulances available, their type and requirements, the coverage obtained

by solving the EVCP problem is the best. Note that every emergency is treated as a

whole event, and the solution tries to cover most of them, if not fully, at least partially,

which in reality translates into saving lives.

3.4. Stochastic integer programming formulation for the EVCP problem

In this subsection, we present the Maximum Expected Coverage (MEC) formulation

as a two-stage integer stochastic programming model.

The first-stage integer variables xlk correspond to the number of ambulances of

type k ∈ K located at l ∈ L. The second-stage variables correspond to the ambulance

11



dispatch decisions at each demand point for each scenario ω ∈ Ω as follows:

ylki(ω) =


1 if an ambulance of type k ∈ K in location l ∈ L is dispatched

to demand point i ∈ I(ω), for scenario ω ∈ Ω,

0 otherwise.

We define the following binary variables related to the total and total-late coverages

related to the response times of the ambulances to the demand point i ∈ I(ω), ω ∈ Ω:

fi(ω) =

 1 if demand point i ∈ I(ω) has a total coverage,

0 otherwise,

gi(ω) =

 1 if demand point i ∈ I(ω) has a total-late coverage,

0 otherwise.

The following sets of binary variables are for the partial and partial-late coverages of

the ambulances to the emergencies:

hi(ω) =

 1 if demand point i ∈ I(ω) has a partial coverage,

0 otherwise,

wi(ω) =

 1 if demand point i ∈ I(ω) has a partial-late coverage,

0 otherwise.

Finally, to indicate a null coverage of a demand point, we define:

zi(ω) =

 1 if active demand point i ∈ I(ω) has a null coverage,

0 otherwise.

Let Q(x, a) denote the maximum coverage given decision x and random parameter

array a. Given the notation introduced above, a(ω) = (aki(ω)), represents a vector of

realizations of parameter array aki(ω) under scenario ω ∈ Ω. Thus, we aim to find x

that maximizes the expected coverage. For simplicity, let Q(q, ω) denote the maximum

coverage under the specific realization of scenario ω and let π(ω) the probability of
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occurrence of scenario ω. In our work, we assume scenarios are equally likely, so π(ω) =

1/|Ω| for all ω ∈ Ω.

The MEC formulation is as follows.

max
x

E[Q(x, a)] (1)

where E[Q(x, a)] =
∑
ω∈Ω

π(ω)Q(x, ω) and

Q(x, ω) = max
(y,f,g,h,w,z)

∑
i∈I(ω)

(α1fi(ω) + α2gi(ω) + α3hi(ω) + α4wi(ω)− ϕzi(ω))

s.t.
∑
l∈L

xlk ≤ ηk k ∈ K (2)

∑
i∈I(ω)

ylki(ω) ≤ xlk l ∈ L, k ∈ K,ω ∈ Ω (3)

∑
l∈L

ylki(ω) ≤ aki i ∈ I(w), k ∈ K,ω ∈ Ω (4)

fi(ω)
∑
k∈K

aki(ω) ≤
∑
l∈L

∑
k∈K

cliylki(ω) i ∈ I(ω), ω ∈ Ω (5)

a2i(ω)fi(ω) ≤
∑
l∈L

cliyl2i(ω) i ∈ I(ω), ω ∈ Ω (6)

gi(ω)
∑
k∈K

aki(ω) ≤
∑
l∈L

∑
k∈K

ylki(ω) i ∈ I(ω), ω ∈ Ω (7)

a2i(ω)gi(ω) ≤
∑
l∈L

yl2i(ω) i ∈ I(ω), ω ∈ Ω (8)

gi(ω) ≤M

(∑
l∈L

(1− cli)
∑
k∈K

ylki(ω)

)
i ∈ I(ω), ω ∈ Ω (9)

hi(ω) ≤
∑
k∈K

aki(ω)−
∑
l∈L

∑
k∈K

ylki(ω) i ∈ I(ω), ω ∈ Ω (10)

hi(ω) ≤ a2i(ω)−
∑
l∈L

yl2i(ω) i ∈ I(ω), ω ∈ Ω (11)

∑
l∈L

(hi(ω)− cli)
∑
k∈K

ylki(ω) ≤ 0 i ∈ I(ω), ω ∈ Ω (12)

wi(ω) ≤
∑
k∈K

aki(ω)−
∑
l∈L

∑
k∈K

ylki(ω) i ∈ I(ω), ω ∈ Ω (13)

wi(ω) ≤ a2i(ω)−
∑
l∈L

yl2i(ω) i ∈ I(ω), ω ∈ Ω (14)

wi(ω) ≤M

(∑
l∈L

(1− cli)
∑
k∈K

ylki(ω)

)
i ∈ I(ω), ω ∈ Ω (15)
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∑
l∈L

∑
k∈K

ylki(ω) + zi(ω) ≥ 1 i ∈ I(ω), ω ∈ Ω (16)

fi(ω) + gi(ω) + hi(ω) + wi(ω) + zi(ω) = 1 i ∈ I(ω), ω ∈ Ω (17)

xlk ∈ Z+, ylki(ω) ∈ {0, 1} l ∈ L, k ∈ K, i ∈ I(ω), ω ∈ Ω

(18)

fi(ω), gi(ω), hi(ω), wi(ω), zi(ω) ∈ {0, 1} i ∈ I(ω), ω ∈ Ω (19)

The objective function (1) maximizes the expected value of the weighted coverage

of emergencies. The parameters α1, α2, α3 and α4 are normalized weights that ponder

the coverage type, and ϕ is a penalty for null coverage. We assume that every scenario

is equally probable since each ω ∈ Ω represents a sample of the high-demand period in

which we are interested. Constraints (2) establish the number of ambulances available

per type. Constraints (3) establish the relationship between the first and second-stage

variables, which means that no ambulances can be dispatched from a potential site

if no ambulances are located there. Constraints (4) bound the number of dispatched

ambulances with the number of required ones for each emergency location.

The total coverage of an emergency is defined by constraints (5)–(6). We have in the

first constraint that, if fi(ω) = 1 and is multiplied by the total number of ambulances

of the same type needed at a demand point, then cli is equal to 1. However, if at least

one ambulance is late, i.e., if cli < 1 for one or more ambulances, then fi(ω) = 0. In the

second constraint, we guarantee that ALS ambulances can only cover demand points

that need ALS ambulances. If fi(ω) = 1, then the number of ambulances dispatched of

type 2 is not late, that is, cli = 1. Otherwise, if the number of dispatched ambulances of

this type with cli = 1 is not sufficient to cover at least the ALS needed, then fi(ω) = 0.

The total-late coverage is defined by constraints (7)–(9). Constraints (7)–(8) allow

the total-late coverage variables gi(ω) to be one when the dispatch variables are active.

In (7), gi(ω) = 1 multiplied by the total number of ambulances of both types needed,

implying that all must be dispatched, but not necessarily in a time less than τ . Note

that cli could be less than 1, allowing for late coverage. If not all needed ambulances

are dispatched, then gi(ω) = 0. Constraints (9) indicate that at least all needed ALS

ambulances must be dispatched.
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Meanwhile, constraints (9) track the demand points where the response time is

between (τ, τmax) when the difference on the right-hand side of the equation is positive,

that is, when there is a value cli < 1 associated to a dispatched ambulance, for l ∈

L, i ∈ I(ω), ω ∈ Ω. Note that, when cli = 1 for all ambulances dispatched, then

gi(ω) = 0 because that case implies a total coverage. Otherwise, the term multiplying

M is a positive fractional number. The value of M introduced has to be large enough

to make the constraint redundant in this case. In our testing, we observed that a value

of M = 1000 suffices.

The partial coverage is defined by constraints (10)–(12). Recall that in this case

not all needed ambulances are dispatched to the emergency, but the ones dispatched

have an ideal response time. Thus, constraints (10)–(11) activate variables hi(ω) if

the number of ambulances dispatched is less than the required. In the first equation,

hi(ω) = 1 implies that the difference between the needed and the dispatched ambu-

lances is one or more. If the difference is zero, then hi(ω) must be zero. For the second

equation, we guarantee that the ambulances type 2 needed are covered only for ALS

ambulances although not all must be dispatched. Quadratic constraints (12) ensure

that ambulances dispatched arrive within the ideal response time, that is, their cor-

responding value cli = 1, for l ∈ L, i ∈ I(ω), ω ∈ Ω. If hi(ω) = 1 and the ambulances

arrive at an ideal time, the difference between hi(ω) and cli is zero and guarantees that

all ambulances must be dispatched at a time less than τ . If at least one ambulance is

late, the difference would be positive and the constraint is infeasible because that case

is a partial-late coverage.

Constraints (13)–(15) define the partial-late coverage. Note that the case of the ALS

ambulances (k = 2) replacing a BLS one is also considered. Constraints (13)–(14) acti-

vate the variables wi(ω) when the number of ambulances required exceeds the number

of ambulances dispatched. Similarly to the total-late coverage, the constraints (15)

track ambulances with a response time larger than the ideal and must be multiplied

by a M since there could be cases with a sum that is less than 1. Here we also deal

with the ALS ambulances that may replace the BLS.

The null coverage is activated by constraints (16). All coverage restrictions are re-

lated to the constraint (17) which ensures only one type of coverage for each emergency.
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Finally, (18) and (19) establish the nature of the decision variables.

The novelty of the MEC model is the stochastic total/partial coverage per emer-

gency by two types of ambulances. However, the related number of variables and

constraints is usually large; moreover, the constraints (12) are quadratic. An inte-

ger linear stochastic model could easily be formulated with a classical linearization

method. Still, previous experiments showed similar times between the linearized and

the quadratically constrained models when solved with integer programming solvers,

so we kept the quadratic one for the surrogate-based feedback methodology presented

in the next section.

4. Surrogate-based feedback method for the EVCP problem

The EVCP problem is NP-hard since the classical NP-hard facility location prob-

lem [35] could be polynomially reduced to it. The MEC model is experimentally chal-

lenging to solve, even for medium-sized instances, as shown in Section 5. We pro-

pose a surrogate-based feedback method (SBFM) to obtain approximate solutions

to the EVCP problem based on an auxiliary disaggregated model, named Surrogate

Ambulance-Based Coverage (SABC) model, which is faster to solve. The main motiva-

tion for using this approach instead of traditional methods is its ease of implementa-

tion. Our approach can be implemented using any off-the-shelf general-purpose solver

without the need to code complex decomposition-based techniques. This adds great

value from a practical perspective.

In the original model, we are looking at maximizing the partial coverage. In the

surrogate model, the objective function maximizes the expected value of the on-time

and late dispatched ambulances minus a penalty for the required ambulances that

could not be dispatched in less than the maximum response time.

Procedure 1 SBFM( )

Input: An instance to the problem
Output: x∗, a solution to the MEC problem
1: x∗SABC ← solve( SABC )

2: x∗ ← solve( MEC(x∗SABC) )
3: return x∗
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The surrogate-based feedback method is depicted in Algorithm 1. Under the SBFM,

the SABC stochastic model is solved first. From its optimal solution, we obtain the

location of the ambulances of the first stage corresponding to the value of xlk variables,

for l ∈ L, k ∈ K. Let the solution vector of these values be called x∗SABC. Then, in

the allocation stage, we solve MEC taking x∗
SABC as input. We call this feedback

model MEC(SABC), implying that it is the solution of the MEC model with the

location variables fixed with the solution of the surrogate model SABC. Since the first

stage variables are fixed, the MEC(SABC) model becomes easier to solve and yields

high-quality solutions. We could implement a local search neighborhood based on

the location variables xlj to diversify the solution yield by variables xSABC. However,

experimental results show that the quality of the SBFM solutions is exceptionally high

with a single feedback.

Let us present the SABC surrogate model. In addition to the location variables xli,

the SABC model requires the following ambulance dispatching binary variables for

k ∈ K, l ∈ L, i ∈ I(s), ω ∈ Ω:

ulki(ω) =


1 if ambulance of type k is dispatched from site l to point i

with response time less than τ ,

0 otherwise,

vlki(ω) =


1 if ambulance of type k is dispatched from site l to i

with response time in (τ, τmax),

0 otherwise.

Variables ulki(ω) indicate the ambulances with an ideal response time dispatched from

the location sites corresponding to a decay function value cli = 1. While variables

vlki(ω) indicate the ones with a larger than τ response time, which have a value

cli < 1. The number of required ambulances k in an emergency demand point i that

are not dispatched are counted by integer variables ζki(ω), for k ∈ K, i ∈ I(ω), ω ∈ Ω.

Let G(x, a) denote the maximum expected value of the on-time and late dispatched

ambulances minus a penalty for the required ambulances that could not be dispatched

on time, given given decision x and random parameter array a. For simplicity, let
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G(x, ω) denote the maximum coverage under the specific realization of scenario ω and

let π(ω) the probability of occurrence of scenario ω. In our work, we assume scenarios

are equally likely, so π(ω) = 1/|Ω| for all ω ∈ Ω. Then SABC can be expressed as:

max
x

E[G(x, a)] (20)

where E[G(x, a)] =
∑
ω∈Ω

π(ω)G(x, ω) and

G(x, ω) = max
u,v,ζ

∑
l∈L

∑
k∈K

∑
i∈I(ω)

(β1ulki(ω) + β2vlki(ω))−
∑
k∈K

∑
i∈I(ω)

ϕζki(ω)



s.t.
∑
l∈L

xlk ≤ ηk k ∈ K (21)

∑
i∈I(ω)

(ulki(ω) + vlki(ω)) ≤ xlk l ∈ L, k ∈ K,ω ∈ Ω (22)

ulki(ω) ≤ cli l ∈ L, i ∈ I(s), k ∈ K,ω ∈ Ω (23)

ulki(ω) + vlki(ω) ≤ 1 l ∈ L, i ∈ I(s), k ∈ K,ω ∈ Ω (24)

a1i(ω) + a2i(ω) =∑
l∈L

∑
k∈K

(ulki(ω) + vlki(ω) + ζki(ω)) i ∈ I(ω), ω ∈ Ω (25)

a2i(ω) ≤
∑
l∈L

(ul2i(ω) + vl2i(ω) + ζ2i(ω)) i ∈ I(ω), ω ∈ Ω (26)

xlk, ζki(ω) ∈ Z+, ulki(ω), vlki(ω) ∈ {0, 1} l ∈ L, k ∈ K, i ∈ I(ω), ω ∈ Ω (27)

The objective function (20) maximizes the expected value of the on-time and late

dispatched ambulances minus a penalty ϕ for the required ambulances that could not

be dispatched in less than τmax time response. The weights β1 and β2 are normalized

parameters that prioritize the ambulances dispatched with a response time less than τ .

As in the previous model, no more than the available ambulances can be located on

the sites, corresponding to constraints (21). The number of ambulances dispatched on

time or late is less than the number of ambulances located, as indicated by constraints

(22). Constraints (23) define the ambulances dispatched with an ideal response time of

less than τ . Thus, if cli = 1, then the ambulance will have an ideal response time, while
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constraints (24) activate the late variables for which their response time is between

(τ, τmax). With constraints (25) and (26), the non-covered emergencies, ζki(ω) variables

are defined for i ∈ I(ω), ω ∈ Ω. Recall that advanced ambulances can be dispatched

instead of basic ones. Finally, the nature of the variables is stated.

The SABC model’s essential characteristic is that its objective function does not

rely on emergency coverage, as in the MEC model; it only counts the number of

ambulances sent on time, late, or null to emergency demand points. Moreover, its

resolution time is extremely fast since it requires fewer variables and constraints than

the MEC model. However, disaggregating an emergency situation into the number of

ambulances needed does not capture emergency coverage, which is crucial for an EMS

system. Thus, the main idea is to infer high-quality locations for the ambulances with

the SABC model, to fix these locations in the MEC model and to compute (allocate)

the dispatching variables for the partial coverage by emergency.

5. Experimental Evaluation

This section presents an empirical assessment of models and the solution method-

ology previously described to solve the EVCP problem. We used Gurobi Optimizer

10.0.2 with Python 3.10 to solve the integer programming models MEC, SABC, and

MEC(SABC). The experiments were carried out on an Intel Core i7 at 3.1 GHz with

16 GB of RAM under the macOS Catalina 10.15.7 operating system. Each execution

of the integer linear programming solvers had a CPU time limit of 10800 seconds.

5.1. Instance generation

The value ranges of our instance generator are based on real-world data taken from

Monterrey, NL, Mexico. In the literature, there are no suitable benchmarks for our

problem. The databases for the Monterrey case study showed a larger number of

possible demand points, |I| ∈ {168, 270, 500, 900, 1500} compared to the one from the

literature with |I| ≤ 270 [56]. The number of possible locations for ambulances in Mon-

terrey is |L| ∈ {16, 50, 100}, which is also larger than the one from the literature (≤30)

since not only hospitals and fire stations can be considered. We consider the whole city
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of Monterrey, so the number of ambulances (η1, η2) = (35, 20) is also greater than the

ones from the literature cases (6 ambulances per type [56]). This approximate infor-

mation was provided by the Centro Regulador de Urgencias Médicas (CRUM, Medical

Emergency Regulatory Center). Recently, Monterrey acquired 30 new ambulances, in-

creasing from 5 ambulances under the control of CRUM to 47 units. [16]. The value

cli is determined by a deterministic response time rli, determined by CRUM, between

the potential sites and the demand point, as we can see in literature [56]. The number

of scenarios is set to be as large as that in the literature |Ω| ∈ {10, 50, 100, 150, 200}.

Thus, our benchmark has 15 instances for which five different scenario settings were

built.

For each instance, we simulated a two-hour high-demand period. Each scenario

ω ∈ Ω consists of a set of demand values per ambulance type and per demand point

{aki(ω)}k∈K,i∈I,ω∈Ω. Fewer demand points imply a larger city grid and a larger propor-

tion of emergencies per demand point. Therefore, when |I| = 168, around 30% of the

demand points may have a value different from 0. In contrast, when |I| = 1500, only

1% of the demand points will require ambulances. This setting reflects the number of

emergencies per hour observed in the case study. Instances are built such that most

emergencies require a single ambulance, but as observed in real cases, some of them

may require up to three ambulances.

The ideal ambulance response time is τ = 10 minutes, while the maximum response

time is τmax = 30 minutes. These parameters are not based on WHO guidelines, which

suggest an ideal emergency response time of 8 minutes [15, 41]. We established those

parameters based on CRUM information, which mentioned 9 minutes was their ideal

response time before COVID-19, and 15 minutes in this pandemic. Also, the response

time that CRUM considers appropriate for a patient who is not in immediate danger

is approximately 25 minutes. With this information, we decided to establish those τ

parameters. For the MEC formulation, we use the following weights in the objective

function (1): α1 = 0.65, α2 = 0.2, α3 = 0.1, and α4 = 0.05. In this manner, the total

coverage is the most sought-after, while the partial-late coverage has less benefit. The

M value of the MEC model is only used to allow decimal values between [0,1] to trigger

the activation of a binary variable. Thus, a simple value M = 1000 is set.
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For the SABC objective function (20) we use β1 = 0.7 and β2 = 0.3. These values

reflect the goal of sending the necessary ambulances primarily with an ideal response

time. The penalty for null coverage in the MEC model or when a required ambulance

cannot be dispatched to the emergency in less than τmax time in the SABC model is

set to ϕ = 1/|Ω|+ 0.0005.

All instances with related scenarios and detailed solutions are available at https:

//doi.org/10.6084/m9.figshare.25928401.

5.2. Assessment of benefit of partial coverage

In this experiment, we aim to assess the benefit of the proposed partial coverage model.

To this end, we solve our MEC model with partial coverage (α1 = 0.65, α2 = 0.2, α3 =

0.1, and α4 = 0.05), and then we solve the Total-MEC model, which corresponds to

the MEC model but with α2 = α3 = α4 = 0 in the objective function. The Total-MEC

is equivalent to eliminating the partial covering terms from the MEC model. Thus, the

objective function does not consider partial coverages, only the full and null coverage

terms.

Table 1 displays the results. In the first column, the size of the instance is indicated

in terms of the number of potential location sites, the number of demand points, and

the number of scenarios. The second, third, and fourth columns show the objective

function value, the running time (CPU seconds), and the value of the null coverage

term in the objective function, for the MEC model (under partial coverage). The

remaining columns show the same indicators for the Total-MEC model.

From Table 1, the most interesting result is the comparison of the null coverage term

between both models. As can be seen, the Null coverage values obtained by the MEC

model are considerably lower than those obtained by the Total-MEC model. This

means that when ignoring the partial coverage terms, more people are left without

coverage at all, which is, of course, not desirable. Moreover, we can also see that

there were even some cases in which the null coverage term was zero under the MEC

model, indicating the clear benefit of the partial coverage consideration. Overall, the

MEC model improves by 84% on average the null coverage, which means more lives

can be saved because at least an ambulance arrives at the emergency. In terms of
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the location of the ambulances, when contrasting the MEC and Total-MEC solutions,

there was more than 15% difference on average. The solution time was almost the

same for both models, with the observation that for three instances, the MEC ran a

lot faster. In summary, the most significant result is that the MEC model has a smaller

average null coverage compared to the Total-MEC, indicating the substantial benefit

of incorporating partial coverage terms into the objective function.

MEC model Total-MEC

|L|, |I|, |Ω|
Obj. fn.

value

Time

(CPU sec.)

Null

coverage

Obj. fn.

value

Time

(CPU sec.)

Null

coverage

16, 168, 10 4.9 94.8 0.00 7.0 2342.9 13.80

16, 168, 100 4.9 10804.2 0.07 7.6 10801.9 12.04

16, 168, 200 4.8 10808.7 0.14 7.5 10804.0 12.68

16, 500, 10 7.5 64.8 0.00 9.3 919.4 13.80

16, 500, 100 7.4 10809.8 1.69 10.6 10804.0 18.80

16, 500, 200 8.1 10810.9 1.93 11.3 10806.6 19.12

16, 1500, 10 9.9 48.1 5.90 11.6 10801.6 27.8

16, 1500, 100 10.6 10808.2 11.82 14.0 10806.2 26.67

16, 1500, 200 11.0 10838.3 13.56 14.4 10810.2 27.95

100, 168, 10 7.8 10802.6 0.00 7.2 10801.3 10.70

100, 168, 100 1.8 10817.4 0.00 7.5 10809.4 11.63

100, 168, 200 1.9 10843.4 0.24 7.2 10818.3 12.88

100, 500, 10 10.6 10804.2 1.70 9.8 10802.2 18.50

100, 500, 100 2.9 10831.0 1.83 10.7 10815.2 19.60

100, 500, 200 2.7 10905.8 4.36 9.7 10829.8 20.85

100, 1500, 10 13.2 10809.1 4.80 13.1 10803.6 19.60

100, 1500, 100 8.8 10849.6 13.18 14.6 10824.6 28.42

100, 1500, 200 4.2 10910.0 9.70 10.9 10848.9 34.43

Table 1.: Comparison between the MEC and Total-MEC

models.
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5.3. Sensitivity analysis

In this experiment, we conducted a sensitivity analysis of some model parameters

that affect the objective values of the MEC model. We aim to investigate the model’s

sensitivity to the number of scenarios for various configurations of demand points and

potential location sites, in terms of solution quality and solution time. We also want

to determine the size of tractable instances when solving the MEC model, without the

SBFM methodology.

To this end, we solved the MECmodel directly by branch-and-bound based solver for

the different configuration sizes discussed above. The results are presented in Figure 2,

which consists of six plots. The three plots in the left-hand side column vary the number

of demand points (x-axis), comparing each one to the value of the objective function

when different scenarios are tested. The three plots on the right-hand side column

vary the number of scenarios and show the variation in the solution value for each

number of demand points. The upper, middle, and lower plots correspond to |L| = 16,

|L| = 50, and |L| = 100, respectively. Straight lines correspond to the best objective

values, and dotted lines are the best dual (upper) bounds found.

As can be seen from Figure 2, the difference between the best objective and the

best bound (and thus, the relative optimality gaps) is negligible for small instances

with 16 potential location sites. However, the relative optimality gaps become larger

for instances with 50 and 100 potential sites. The number of demand points where

emergencies may occur and the number of scenarios considered make instances harder

to solve within the time limit. Thus, solving the MEC model directly with an integer

programming solver allows to handle small instances with a few scenarios, demand

points, and potential ambulance location sites. Note that the larger the number of

scenarios in the plots on the left-hand side, the better the objective function. This

implies that a more comprehensive sampling of emergency demand points improves

the quality of the solution related to ambulance response times. The plots on the

right-hand side show that the larger the number of demand points, the harder it is to

solve the instance.
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Figure 2. Best objective and the best upper bound of the objective function obtained by the MEC model as

a function of |I|, |L|, and |Ω|.

5.4. Assessment of the surrogate-based feedback method

Naturally, one of the most important aspects to investigate is the value and benefit

that the proposed solution method brings to the table. Thus, in this set of experiments,

we solved all instances for the different configurations previously discussed under two

different methods. We solved the MEC model by directly applying the branch-and-

bound method from the solver and compared it with the proposed SBFM.

In Figure 3, the legends indicate the different parameters tested. The only differ-

ence from the previous graphs is that the solid and dotted lines indicate the solutions

obtained by MEC and SBFM, respectively. As can be seen, while the number of sce-

narios, demand points, and potential sites slightly affects the performance of SBFM, it
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Figure 3. Comparison between MEC and SBFM.

obtains better objective function values than those obtained by the MEC for the larger

instances that reported positive gaps. Indeed, the relative optimality gaps found by

the SBFM are always equal to 0 within the allotted time limit. In addition, the SBFM

tends to be less dependent on the number of scenarios. Thus, although we cannot

guarantee optimality with the SBFM, it obtains faster and higher-quality solutions

than those obtained by the MEC.

We now compare the running times of the MEC and SBFM. Recall that SBFM

attempts to exploit that the surrogate model SABC is very tractable and can be

solved relatively quickly. To this end, we used MEC to solve instances with |L| = 16

and SBFM to solve instances with |L| = 16 (harder instances). Figure 4 shows the
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Figure 4. CPU time comparison between MEC and SBFM.

running times between these two methods. The x-axis of the plots corresponds to the

number of scenarios and the y-axis corresponds to the running time (in CPU seconds).

Recall that when we solved MEC with MEC for |L| = {50, 100}, it stops by the time

limit even for ten scenarios and a few demand points.

As can be seen, the main disadvantage of the MEC is its computational time, which

increases significantly with the number of demand points, potential sites, and scenarios,

even for small instances with 16 potential location sites for ambulances. The SBFM is

extremely fast, even for large instances, and yields an initial solution to the assignment

of ambulance location in a short time. The SBFM location-allocation strategy inherits

not only its fast computational time from solving the SABC model, but also yields

coverage per emergency situation, which is the main objective for the EVCP problem.

The SBFM is an approximate method, but it gives solutions that are as good as the

MEC model and even better when the MEC instances do not reach optimality and

its relative optimality gaps are large. The SBFM solved most of the instances in less

than a minute.

An interesting advantage of the SBFM is that only one iteration is needed. In fact,

once the location of the ambulances has been retrieved from the SABC model and fed

back to the MEC model, we could perturb the ambulance location either randomly

or with systematic local search, then re-locate the ambulances, and iterate again. We

attempted to improve the solution by generating a neighborhood around a location
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solution, to no avail. In other words, it was observed that, under the SBFM approach,

local optima were often reached with the first feedback under the neighborhoods tested.

An interesting follow-up could be to design more complex or diverse neighborhood

structures to try to escape local optima.

We now proceed to compare the methods with respect to another important aspect.

One of the most critical objectives of the EVCP problem is to cover the largest number

of demand points within a fixed response time. Thus, it becomes relevant to assess the

quality of the coverage in terms of its individual components.

Figure 5 displays the proportions of emergency coverage for all instances when solved

by both methods. The left-hand (right-hand) side plots correspond to the solutions

obtained by the MEC model and the right-hand one to the SBFM. Each plot shows

the type of ambulance percentage coverage obtained: T stands for Total coverage

(all required ambulances on time), TL stands for Total-late coverage (all required

ambulances, but at least one arrives late), P stands for Partial coverage (at least one

required ambulance is not dispatched, but the dispatched ones all arrive in time), PL

stands for Partial-late coverage (at least one required ambulance is not dispatched,

at least one of the dispatched arrives late), and N stands for Null (no ambulances

assigned to the demand point). The upper, middle, lower plots are for |L| = 16, 50,

and 100 potential sites, respectively.

Figure 5a, shows that the MEC tends to leave very few demand points with null

coverage, which is the primary concern of the emergency services in our case study. As

the number of potential sites |L| increases, the coverage tends to be partial-late for the

MEC. This behavior is probably related to the large relative optimality gaps obtained

by MEC for large instances, but the number of null coverage is still remarkably low.

Column b) shows that the SBFM is robust in terms of the number of scenarios. That

is, the demand point coverage is independent of the number of scenarios. In this way,

100 scenarios are sufficient to handle a high-quality coverage solution. Moreover, the

SBFM inherits the characteristic of having very few null demand point coverage from

the MEC model. Interestingly, partial coverage tends to be larger than partial late

coverage for the SBFM, which is mainly desired in real life because it can be translated

into first-aid medical care on time, increasing the probability of saving lives.
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Figure 5. Comparison of MEC and SBFM in terms of disaggregated coverage.

All the previous experiments were carried out with the number of ambulances equal

to (η1, η2) = (35, 20). A central feature of the EVCP problem is that an ALS ambulance

can be sent instead of a BLS one, which provides a more flexible setting but may

introduce difficulty when solving the models. Now, we wish to investigate the effect of

the number of available ambulances in the objective function value and the running

time. To this end, we solved all the instances with 900 emergency demand points, 100

scenarios, and 50 ambulance location sites. For this experiment, we vary the number

of ambulances. Figure 6 shows two columns of two plots each. The objective value

(upper plots) and the running time (lower plots) are on the y-axis, while the x-axis
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Figure 6. Comparison between MEC and SBFM in terms of number of available ambulances.

varies the number of ambulances: (η1, η2) ∈ {(10, 6), (20, 11), (35, 20)}. The left-hand

side plots correspond to the MEC model, while the ones on the right-hand side are for

the model solved by the SBFM.

In Figure 6a, we observe that the difference between the best objective and the best

bound for the MEC model (left-hand side plots) increases slightly with the number

of ambulances. Thus, the larger the number of ambulances, the harder the instances

for the MEC model. Furthermore, the time limit is reached for every tested instance

of the MEC model. For the SBFM, the relative optimality gaps are equal to 0 for all

instances. In addition, the objective values are comparable to the MEC model for all

different ambulance settings, which is a prominent characteristic. Furthermore, in the

SBFM, all instances are resolved in less than one minute, and this time is not affected

by the number of ambulances.

5.5. Measures of the value of information and modeling

In this experiment, we compute the Expected Value of Perfect Information (EVPI) and

the Value of the Stochastic Solution (VSS), which are two concepts used in stochastic

programming to assess the accuracy of the model [11]. The EVPI measures the max-
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imum amount a decision maker would be ready to pay in return for complete (and

accurate) information about the future. For a maximization problem, this is com-

puted as EVPI = WS − RP, where RP is the value of the Recourse Program (our

MEC model) and WS is the wait-and-see solution. In our case, we have an infinite

number of scenarios for which the MEC model gives optimal solutions; thus, it is diffi-

cult to compute an exact expression. However, for instances with 900 demand points,

16 possible location points, and only 10 scenarios, we obtain small but positive EVPI

values of 0.03 on average, confirming the value of the MEC model, especially as the

number of scenarios will increase.

The Value of the Stochastic Solution (VSS) measures how good or, more frequently,

how bad a decision based on solving the deterministic case for the average scenario

with respect to the RP solution is. The VSS is computed as RP− EVV, where EVV

is the expected result of using the EV solution in the MEC model. Table 2 shows in

the first column the size of the instances for which we could obtain optimal solutions

with the MEC model (demand points, location points, scenarios). The second column

displays the RP value, followed by the EVV and then the VSS.

|I|, |L|, |S| RP value EVV VSS

168, 16, 5 5.36 5.27 0.09

270, 16, 5 5.32 5.14 0.18

500, 16, 5 7.00 6.68 0.32

900, 16, 5 8.87 8.37 0.50

1500, 16, 5 9.29 8.44 0.85

168, 16, 10 5.00 4.64 0.36

270, 16, 10 5.58 5.2 0.38

500, 16, 10 7.53 7.13 0.39

900, 16, 10 8.47 7.87 0.59

1500, 16, 10 9.99 8.75 1.24

Table 2.: The value of the stochastic solution for the MEC

model.

30



Table 2 shows that as the size of the instance increases, the VSS also increases.

Note that the small number of scenarios for which we could obtain optimal solutions

is relatively small. However, the behavior of the VSS shows the benefit of considering

a stochastic setting even for instances with few scenarios.

6. Conclusions

EMS systems in developing countries such as Mexico suffer from a shortage of am-

bulances. Thus, one of the main goals addressed in this work was to investigate and

develop tools that allow us to decide whether an emergency can be totally or partially

covered.

The EVCP problem consists of locating a limited number of two heterogeneous

types of ambulances in different city locations and dispatching them to the emergency

points to maximize the coverage with short medical first aid response time. In the

EVCP problem, these two interrelated decisions are simultaneously considered in a

novel two-stage stochastic program. The EVCP stochastic model allows for partial

coverage of the accidents by the ambulances based on a decay function.

We propose a two-stage stochastic program for the EVCP problem that can be

solved by branch-and-bound for small instances with a restricted number of scenarios.

We also propose a surrogate-based feedback method, which is essentially a location-

allocation procedure that relies on the solution of an auxiliary surrogate model. This

method is faster to solve and allows us to obtain high-quality solutions significantly

faster than the previous model. The SBFM was tested on a broad set of randomly

generated instances based on real-world data from a local system. An essential feature

of the proposed approach is that it can be implemented by calling any off-the-shelf

general-purpose integer solver without employing complex decomposition techniques.

Naturally, several lines of work can be further investigated. For example, we ob-

served that some private EMS services also dispatch vehicles to accident sites. Some

of these are not regulated or coordinated by the state. In some cases, this provokes a

conflict as too many ambulances arrive at the site, leaving other points unattended.

This situation could, of course, benefit from coordinated decision-making tools as those
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developed here. For instance, Gernert et al. [23] examine two business models that at-

tempt to address this issue with a game-theoretic approach. However, further research

is needed. Another line of work lies in investigating more sophisticated solution tech-

niques. Although our method is indeed relatively easy to implement, there are other

techniques, such as decomposition-based algorithms [54, 60], sample average approxi-

mation [33, 52], or heuristics/metaheuristics [30], that have been successfully applied

to integer stochastic programs, that are worthwhile exploring.

An interesting question arises when two or more periods are considered. Although

our single-period methodology can be applied to each consecutive period (several times

within a single day, assuming buffer times), the relocation of ambulances for the next

period, along with deadheading/setup times could also be studied from a multi-period

perspective [29, 47]. In this regard, some of the ideas developed in this work could

prove useful.

Due to uncertainty in response times, we could consider using an API to obtain

real-time vehicle transfer times or a simulation to see the system’s operation. Since we

address partial emergency coverage, a crucial aspect is the preference between these

coverages, which will directly influence the ambulance response time in the solution.

Thus, it would also be interesting to consider also robust optimization modeling ap-

proaches [1, 39, 58].
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Brasileira, 33:1110–1121, 2018.

[16] Estado de Nuevo León. Fortalece estado cobertura pre-

hospitalaria con 30 nuevas ambulancias. Government

news release. URL: https://www.nl.gob.mx/es/boletines/

fortalece-estado-cobertura-prehospitalaria-con-30-nuevas-ambulancias#:

~:text=en%20la%20entidad.-,En%20la%20administraci%C3%B3n%20del%

20Gobierno%20del%20nuevo%20Nuevo%20Le%C3%B3n%20la,de%205%20a%2047%

20unidades., 18/12/2024. Accessed: 11-March-2025. In Spanish.

[17] J. C. Dibene, Y. Maldonado, C. Vera, M. de Oliveira, L. Trujillo, and O. Schütze.

Optimizing the location of ambulances in Tijuana, Mexico. Computers in Biology

and Medicine, 80:107–115, 2017.

[18] E. Erkut, A. Ingolfsson, and G. Erdoğan. Ambulance location for maximum
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Appendix A. Abbreviations

Table A1 contains the abbreviations used throughout the paper.

ALS Advanced life Support

BLS Basic life support

CRUM Medical Emergency Regulatory Center

EMS Emergency medical service

EVCP Emergency vehicle covering and planning

EVPI Expected value of perfect information

MEC Maximum expected coverage

SABC Surrogate ambulance-based coverage

SBFM Surrogate-based feedback method

VSS Value of the stochastic solution

WHO World Health Organization
Table A1. List of abbreviations.
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