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Abstract

In this work, the problem of maximizing the volume of wood harvested in a single species stand

over a period of time is addressed. To this end, a solution that combines dynamic programming

and a single-tree forest growth simulator is developed. In this method, the decision variable of the

amount of wood to be harvested at each period is discretized. This ensures that the method finds

a global optimal solution within the given discretization. In the past, there have been approaches

that use exact methods that solve this problem, but these approaches consider the stand growth

as a whole and require the simulator to meet certain conditions. In our work, a single-tree growth

simulator is used. With these tools, different alternatives for the parameters of thinning percentage

in each period, duration of the planning horizon, and the selection of the trees to be harvested,

among others, are explored and assessed. The results showed that the proposed method is useful

not only as a tool to optimize the harvesting of the timber of a single-species stand, but to explore

different alternatives to the usual practices, that continue to change constantly.

Keywords: Forest management; dynamic programming; forest growth simulation; stand-level opti-

mization; thinning regime.



1 Introduction

One of the decisions in forest management and planning is to determine the frequency and intensity

of the treatments applied to a stand during a series of periods, in order to maximize the benefits

obtained at the end of a planning horizon, whose duration can span several decades. This problem

is known in the literature as the stand-level optimization problem [13]. As the trees in the stand

grow continually during the timespan of the planning horizon, it is necessary to take this factor into

consideration to deliver a solution that is as close as possible to a real case scenario. Additionally, to

prevent the overexploitation of the stand and to promote the regeneration of the forest , the partial

harvesting or treatment applied during each period must be subject to regulations that guarantee

the preservation of the stand. Tahvonen and Rämö [20] make a comparison between clear-cut and

continuous cover regimes, favoring the latter not only in wood extraction, but also in aesthetic and

environmental conservation aspects.

The stand-level optimization problem has been a subject of research since the decade of the

1960s, with the work of Chappelle and Nelson [9] as one of the pioneers on this field. Since then,

different approaches to solve it have been proposed. Those works have been classified in the literature

in three broad categories: Non-linear programming, heuristics and dynamic programming [5, 22].

Dynamic programming is still one of the most popular approaches to solving stand level opti-

mization problems. According to a recent study by Yoshimoto et al. [22] who evaluated different

solution methods, they found that the nonlinear program approaches struggle to finding global op-

timal solution due to the non convexity of the problem. In the case of heuristic methods, they also

fail in finding optimal solutions.

Dynamic programming is an optimization method, proposed by Bellman [4], that has found

application in different fields, including forest management, with the work of Amidon and Akin [1]

as one of the first that use this approach to solve the stand-level optimization problem. In general

terms, this method consists of recursively dividing a complex problem into smaller subproblems

that, when solved, can contribute to the solution of the other problems in the recursion chain.

Until the decade of the 1980s, it was not practical to use dynamic programming to solve the

stand-level optimization problem, given the technological limitations of the time, in terms of com-

putational processing power and storage, and the characteristics of the problem that grows expo-

nentially when the number of decisions and periods increases. This motivated the development

of solutions based on dynamic programming that could achieve the optimality of the solution by

reducing the dimensionality of the search space, provided that certain conditions of non-concavity

of the solution space, dependent of the growth simulator, were met. There are certainly many works

based on dynamic programming. For a survey on those methods, the reader is referred to the work

by Yoshimoto et al. [22]. Table 1 summarizes some of the most relevant works that use dynamic

programming to solve variations of the stand-level optimization problem.
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Table 1: Most relevant dynamic programming approaches to the stand-level optimization problem.
Column “Reference” cites the author or author and year of the different dynamic programming
models proposed. Column “Simulator Characteristics” indicates if the simulator is a single-tree
growth simulator or not (whole-stand growth simulator), and if it is distance dependent, that is, if
it includes spatial indices for competition [21]. Column “Stand Age” if the age of the trees in the
stand is even or not.

References Simulator Characteristics Stand Age

Single tree Distance dependent

Amidon and Akin [1] No No Even
Brodie et al. [6] No No Even
Brodie and Kao [7] No No Even
Kao and Brodie [15] No No Even
Chen et al. [10] No No Even
Haight et al. [14] Yes No Even
Paredes V. and Brodie [18] No No Even
Arthaud and Klemperer [2] No No Even
Yoshimoto et al. [23] Yes No Even
Brukas and Brodie [8] No No Even
Bettinger et al. [5] Yes No Even
Diaz-Balteiro and Rodriguez [11] Yes No Even
Graetz et al. [12] Yes No Even
Yoshimoto and Marušák [24] No No Even
Asante et al. [3] No No Even
Ribeiro et al. [19] Yes Yes Even

This work Yes Yes Even

2



Paredes V. and Brodie [18] use this approach to solve the problem of dimensionality with their

Projection Alternative TecHnique (PATH), derived either from a network formulation based on the

Dijkstra’s shortest path algorithm or from generalized Lagrange multiplier theory. Yoshimoto et al.

[25], developed an improvement on PATH, called Multi-Stage PATH (MSPATH). They detected

that some scenarios in the original PATH were just looking to the next immediate stage and this

was insufficient to guarantee optimality. Thus, their proposed algorithm made all possible look-

ahead paths to further stages, reducing some of the efficiency of the algorithm, but gaining more

robustness in the finding of the optimal solution. This approach also requires the same conditions

as the original PATH.

In this article, the problem of determining the percentage of the basal area of a stand that is

harvested during a number of periods is addressed. The aim is to maximize the volume of wood

collected at the end of the planning horizon, while following the regulations during all the partial

thinnings. For this problem, the use of a dynamic programming (DP) model in synergy with a

forest growth simulation software, to maximize the volume of wood harvested from a stand during

a planning horizon is proposed.

The stand used for the simulation is not static, as it considers the growth and mortality of the

trees as well as the competition among them. It is proposed in this work to embed the forestry

simulator software BWIN Pro Forest Growth Simulator (https://www.nw-fva.de)[17] during the

optimization stage, to maximize the amount of wood harvested at the end of the planning horizon.

The module of this free software library is capable of simulating a stand at the level of a single tree,

while considering the competition among trees, based on the distance in a realistic way. This level

of detail allowed us to test different strategies, such as the selection criteria to choose the trees to be

harvested on each period, the number of periods per planning horizon, the duration of the planning

horizon itself, and the number of cutting options available on each period. The exploration of these

strategies allowed us to determine which configurations maximized the volume of timber harvested

or reduced the computational time of the simulation. Although the methodology can be applied to

any single stand, for our purposes, we apply it to two case studies with Pinus cooperi and Pinus

sylvestris.

The main contribution of our proposed method resides not only on optimizing the volume of

wood harvested at the end of a planning horizon but also as a tool to explore different scenarios

that the usual practices. This was possible thanks to the inclusion of a forest growth simulation

software module that is able to calculate the growth of a stand at the individual tree level and to

easily reconfigure the parameters of the proposed solution based on dynamic programming. A first

step was discretizing the cutting options into a finite space. This discretization can be very fine to

better represent reality. As it explodes exponentially, only a subset of solutions is used. In Section

4, it is demonstrated that this discretization process does not compromise the optimality of the

solution. This approach guarantees to find the optimal solution, regardless of the characteristics of
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the simulator or the stand, as it explores the entire discretized search space, this is, the set of all

feasible solutions for an instance of the problem. This provides an advantage with other methods

in the literature that consider only a subset of solutions. Existing methods also require that the

growth simulator meet very specific properties that are not always achieved.

The organization of this paper is as follows. Section 2 presents the problem description, the

mathematical programming model of the problem, and the DP approach for optimizing the har-

vesting of the stand given during a given planning horizon. Section 4 describes the conditions of the

experiments, the computational experiments performed to evaluate the performance of the solution

method and the analysis of the results obtained. Finally, Section 5 presents the conclusions reached

during this study and suggests some areas that could be interesting to address in future work.

2 Mathematical Framework

2.1 An Optimization Model

From the previous description of the problem we could infer the parameters that are needed for the

construction of a model that optimizes the harvesting of a stand, such as the number of periods,

the planning horizon in years, the initial state of the stand, and the minimum requirements for a

stand to be considered feasible.

The decision to be taken at the start of each period is to determine the percentage of the basal

area of the stand to be thinned, and according to that decision we can determine the new state

of the stand, the volume of timber harvested, and the growth of the stand at the beginning of the

next period. With this information, it is possible to build a mathematical model to determine the

sequence of decisions of cutting percentages that maximizes the volume of timber harvested at the

end of the planning horizon.

Parameters:

N : Number of periods.

i = 1, 2, . . . , N : Time period index.

x0 : A three-dimensional vector representing the initial state of the stand.

α : A three-dimensional vector that contains the minimum required values of the number of trees,

dominant height, and basal area.

Decision variables:

wi : A continuous variable that represents the cutting percentage value at the start of period i. For

instance, if a decision of harvesting 15% of the stand is taken at period i, then wi = 0.15.
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Dependent variables:

xi : State of the stand after the thinning in period i. This is a three-dimensional vector whose

components describe the stand in terms of (1) the number of trees per hectare, (2) dominant

height, and (3) basal area.

Gi : Three-dimensional vector describing the growth of the stand in each of its components (xi)

during period i. Similarly to the case of vector xi, all the attributes of the stand simulator

are used.

Vi(wi(xi−1 +Gi)) : Volume harvested at the start of period i. Clearly, Vi(·) is a function of the

state of the system at the end of period i−1, given by xi−1, its growth during the past period

Gi, and the cutting value percentage wi.

Mathematical model:

maximize
N∑
i=1

Vi(wi(xi−1 +Gi)) (1)

subject to

xi = (1− wi)xi−1 +Gi i ∈ N \ {1} (2)

xi ≥ α i ∈ N (3)

0 ≤ wi ≤ 1 i ∈ N (4)

The objective (1) of this problem is to maximize the volume of harvested wood at the end

of the planning horizon considering the natural growth of the trees in the stand. Constraints (2)

establish the relationship between the state of the system at the start of period i as a function of

the state in the previous state (xi−1), the stand growth (Gi) and the harvested percentage in period

i (wi). Constraints (3) ensure that a minimum stock, usually stablished by government regulations,

is met. Finally, Constraints (4) describe the nature of variables wi. In the model, the value of Gi

is dependent on the value of xi−1, or the state of the stand after the thinning at the start of the

period i− 1.

2.2 Dynamic Programming Formulation

Given the sequential structure of the decision process, a popular solution technique is DP. Several

DP modelling frameworks have been proposed in the past, one of them is the DP framework on

which this work is based [16]. To this end, rather than working with continuous harvesting decisions

(wi) we discretize this variable and use a finite number of cutting options (stored in set Y ). This
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makes the problem more tractable and, if the discretization is fine enough, the optimal solution is

very accurate.

Parameters:

Y : Discrete set of cutting options.

The parameters N , i, x0 and α, are as defined before in Section 2.1.

Decision variable:

yi : A discrete variable that represents the cutting option at the start of period i, yi ∈ Y .

Dependent variables:

The dependent variables xi and Gi, are as defined in the previous model.

Vi(yi) : Volume harvested in period i under cutting option yi.

fi(xi) : Maximum volume of wood harvested from the state x1 of the first period to the period i

when the current state is xi.

DP recurrence relation:

fi(xi) = max
0≤yi≤1

{Vi(yi) + fi−1(xi−1)} (5)

where

xi = (1− yi)xi−1 +Gi i ∈ N \ {1} (6)

xi ≥ α i ∈ N (7)

The objective of this problem is to maximize the volume of harvested wood at the end of the

planning horizon, that is, the optimal solution is given by fN (xN ). During each period, the state

of the forest must maintain a level equal or superior on the attributes: number of trees, dominant

height and basal area, represented by vector α. Note that (6) corresponds to the discretized version

of (2) and (7) is the same as (3) and just included here for completeness sake.

Figure 1 shows the representations of vector x and its components: number of trees, basal

area and dominant height. Where the red area represents the minimum stock value required by

Constraint 7. Figure 1 (a) shows the conditions that a stand requires to be considered a feasible

solution, where all three components of the vector x must be higher or equal than the values on

vector α. Failing to meet any of the three requirements, renders the stand unfeasible.
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In this work, it is assumed that a stand is equal to another, just when the three components of

the vector x are the same on both of them. For example, Figure 1 (b) shows two stands that have

the same number of trees, but that differ in the basal area and dominant height values, thus, the

two stands are considered as different.

Figure 1: Graphic representation of the DP model. The top wedge represents the number of trees

in the stand, the left one its basal area, and the right one, the dominant height of the stand. The

green region represents the amount that can be feasibly harvested, and the red area the minumum

stock of the stand. If the green area is less than the red area, for any of its wedges, the solution is

unfeasible (a). A solution is considered equal to another only if its three values are equal. If any

value is different, the solutions are also different, as in the case of (b) where two stands have the

same number of trees, but their basal area and dominant height are different.

The graphical representation of the DP model used in this work is shown in Figure 2, where all

the variables are depicted here. Gi is the growth of the stand from the state xi−1 to the start of

the period i, just before the thinning. At i = 0, the values of the elements of G = 0 are equal to 0

and the initial stand is x−1 (recall, from Section 2.1 that Gi and xi are three-dimensional vectors).

The value of Gi is dependent on the value of xi−1, or the state of the stand after the thinning at

the start of the period i − 1. The variable yi+1 is the cutting option selected in this period. The

cutting option is the percentage of the basal area of the stand to be harvested and in this model is

selected from a finite set of cutting options. For example, if y2 = 0.3, then, during the third period,

the basal area of the stand will be thinned by 30%. Vi(yi) represents the volume of wood harvested

from cutting the percentage yi of the basal area of the stand xi−1 +Gi.
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Figure 2: Graphic representation of the DP model. Gi is the growth of the stand from the state

xi−1 to the start of the period i. xi−1 is the state of the stand after the thinning at the start of the

period i − 1. The variable yi+1 is the cutting option selected in this period (the percentage of the

basal area of the stand to be harvested) from a finite set of cutting options. Vi(yi) represents the

volume of wood harvested from cutting the percentage yi of the basal area of the stand xi−1 +Gi

It is clear by looking at constraints (3) and (7), that not all possible harvesting decisions (yi)

lead to feasible solutions. In this regard, two different cases can occur depending on the harvesting

decision. The first one, as shown in Subfigure 3 (a), is a feasible selection of a cutting option. In

this case, it can be observed that after thinning the stand, the minimum requirements are met, and

the growth at the end of the period and the volume harvested are modest but sustainable.

The second case scenario, shown in Figure 3 (b), shows an unfeasible selection of a cutting

option. With an intensive thinning of the stand, the volume of wood harvested is higher than in the

previous case; however, the remaining trees on the stand are not enough to regenerate it, causing

the loss of the stand at the end of the period.

A special case of the first scenario, shown in Figure 3 (c), depicts the option of not harvesting

the stand in the current period. In this scenario, there is no volume of wood harvested. However,

the growth of the stand is higher in most cases than in the other feasible scenarios. This case could

be useful after an intensive, but feasible, thinning of the stand or in conjunction with other methods

of harvesting.

Given that the nature of the wi variable is continuous, and in consequence its search space is

infinite, it is common practice to discretize the variable range and allow the cutting options to be

taken from a finite (approximate) set in the [0,1] interval. This is achieved by dividing the [0,1]

range into subintervals of equal size. Clearly, there is a trade-off in this discretization step. The

finer the discretization, the more accurate the solution is. However, the computational cost becomes

higher. This issue is investigated in our experimental work.

The previous cases show a given selection of cutting options for a planning horizon. However,

to optimize the harvesting of the stand it is necessary to consider all the cutting options on each

period to determine the configuration that yields the highest volume of wood harvested, within the

current regulations.
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Figure 3: Harvesting options for each period. The green area represents the percentage of the

forest that can be harvested. The red circle represents the α vector, or the minimum stock value,

and the brown square, the volume of wood harvested using the selected cutting option. Subfigure

(a) represents a cutting decision that generates a feasible solution. Subfigure (b) shows a cutting

decision that leads to an unfeasible solution. Subfigure (c) represents a cutting decision of not

cutting in that period.

3 Implementation of Solution Algorithm

3.1 Dynamic Programming Algorithm

For the implementation of the solution method proposed, the libraries of the freely-available forest

growth simulator software BWIN Pro were adaptaed. This was used both to generate the instances

of the problem by creating random distributions of trees on a stand of 1 ha, and to simulate the

growth of the stand during the periods of the planning horizon.

The pseudocode of the main implementation is shown in Algorithm 1. The algorithm requires

an initial stand root, the number of periods on which the planning horizon is divided, and the length
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of each period in years lengthPeriod. Note that each search “node” (e.g., root, parent, child) in the

algorithm corresponds to a specific stage i and state vector xi in the DP formulation. Given that

the DP formulation is based on a forward recurrence relation, optimal decisions up tp stage i must

be known for computing optimal decisions on stage i+ 1.

Algorithm 1: BFS_DP

input : An initial state root, a list of cut options Y , number of periods periods, length of

period lengthPeriod

output: A final state best with the list of cut options that yields the highest volume of

wood

1 stack.push(root)

2 while stack 6= ∅ do

3 parent = stack.pop()

4 for y ∈ Y do

5 child = clone(parent)

6 timber = cut(childStand, y)

7 child.addVolWood(timber)

8 child.grow(lengthPeriod)

9 if child.followsRegulations() then

10 if child.level() < periods then

11 stack.add(child)

12 end

13 else if child.getVolWood() > best.getVolWood() then

14 best = child

15 end

16 end

17 end

18 end

19 return best

The algorithm starts by adding the root, corresponding to the initial state x0 in stage 0, into a

queue structure called stack (line [1]). A breath first search (BFS) is iteratively done on until the

stack is empty (line [2]). At it each iteration a node is retrieved from the top of the queue, and it

is called parent, see line [3]). This node corresponds to a specific stage i and state xi of the DP

formulation. It is important to remark that each element stores the whole history of the past cut

decisions that got from the root state to its current state. From this parent node, several child

nodes are generated as follows. Each possible harvesting decision that can be taken at parent in
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stage i, represented by decision yi in the DP model, leads to a different state in the following stage

i+ 1. This new stage and state is associated to a child node obtain from this parent. In detail, all

possible harvesting choices are explored from the state of the parent that lead to feasible solutions

that can be reached from it (line [4]). The algorithm creates a child node, that is a clone of the

parent (line [5]), harvest the y percent of the basal area of the childStand (line [6]) and add the cut

option y to its history, and grows the child for a lengthPeriod (line [8]). If the child is associated

with a feasible solution, this is, it satisfies (7), (line [9]), then the algorithm verifies if child is not

a leaf node (line [10]). If it is not, it is added to the stack structure and continues with the search.

If it is a leaf node, then it verifies if the volume harvested at the end of the planning period is

higher that the obtained in the current best solution (line [13]). If it is better, best is replaced with

child. Once the whole stack is explored, this is, when the stack is empty (line [2]), the algorithm

returns the best solution found during the exploration (line [19]) and the process stops returning

the optimal solution.

An example of the resulting best solution for a stand with a size of 1 ha is shown in Figures 4

and 5, where the left size of the figures represent the cutting stages, and the right size the growth of

the stand after 8 years, each row represents a period. The individual circles represent trees of the

Pinus cooperi species. An empty square on the side of the cutting stage, symbolizes that a tree was

harvested. The data used for this example considers the regeneration of new individuals. Figure 6

shows on the left, the initial stage of the stand, while the stand on the right shows the final state

at the end of the planning horizon, following the process shown in Figures 4 and 5.
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Figure 4: Example of a best solution (Periods 1, 2 and 3).
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Figure 5: Example of a best solution (Periods 4, 5 and 6).
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Figure 6: Initial stand and final state of Best.

3.2 Forest Growth Simulator

To calculate the growth of the stand during the cut periods in the planning horizon, the TreeGrOSS

package (Tree Growth Open Source Software) is used. this package was developed and included

in the BWINPro Forest Simulator by Nagel and Schmidt [17]. This package uses a growth model

based on single tree information to simulate the evolution of a stand.

As an open-source project, it is possible to audit and modify the source code of the package

to adapt it to the particular characteristics of the stand. An example of this is the inclusion of a

database containing information of the stand and the species of Las Bayas, in Mexico.

A real stand can be simulated by defining its polygon, and by using the statistical data taken

from samples that include information such as the mean basal area of the stand, species, age,

dominant height, among others. It is also possible to replicate a stand exactly by defining the

coordinates and attributes of each tree that include, but are not limited to, species, age, DBH,

height, crown base and width, site index, competition index, etc.

For a random instance, the trees can be distributed in three ways: by random coordinates, as

used in this paper, that places the trees in positions were the crowns do not overlap; in raster

coordinates, that places them in rows and columns; and in clusters, that generates groups of trees

in the stand. Other attributes that are dependent on the region and species being simulated are

the inclusion of a regeneration layer, the mortality, and the competition index.

Finally, the documentation recommends not exceeding a planning horizon length of more than

40 years in order to obtain accurate predictions for the growth of the stand.

4 Empirical Work

To assess the performance of our proposed BFSDP solution method with the simulation of a stand

at high detail, with the libraries of the open source software ForestSimulator, a series of experiments
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to be described next are carried out.

The region considered for this example was from the database from the North West of Germany,

a stand with the species Pinus sylvestris that includes reincorporation values, and from the region

of El Salto, in Mexico, with the species Pinus cooperi, that does not include reincorporation values.

As the libraries of the forest simulator are implemented on the Java programming language, the

implementation of the DP method was also made in this language, using the JDK 1.8.0. The

experiments were carried out in an Intel i7 CPU at 4.0 GHz. with 32 GB of RAM, under the

GNU/Linux Ubuntu 14.4 operating system.

4.1 Determining the range of the cutting options

The first issue to be investigated is whether it is necessary to evaluate the entire range of cutting

choices. It is clear that a finer discretization mesh leads to more cutting choices; however, given

the additional constraints of minimum cutting patterns, it is not so clear before hand if all possible

choices turned out to be feasible. Therefore, some tests to take a closer look of what actual cutting

choices turn out to be feasible are carried out.

To this end, a stand with the information of the region of El Salto, in the state of Durango,

Mexico, is generated. This stand does not include reincorporation values, such that the range of

cutting values is more conservative than if it included them. The regeneration values allow the

software to consider the natural appearance of new trees in the stand, in addition to the ones that

are already present. As the simulation considers mortality, without reincorporation, the duration

of the planning horizon is limited by the lifespan of the trees in the stand. This is because, at some

point, the number of trees in the stand does not meet the minimum stock constraint, even when

the percentage of harvesting is 0%.

A stand of 1 ha with 500 trees of the Pinus cooperi species, with four periods of five years is

tested. Four different scenarios are tested as depicted in Table 2.

Table 2: Discretization scenarios for determining the number of cutting options.
Scenario ∆Y (%) |Y |

1 25 5
2 10 11
3 5 21
4 2 51

The different amount of granularity obeyed to two reasons, the first one to determine more

precisely the limits of the range of the cutting options, and the second to observe the increase of

running time of the proposed DP algorithm.

Figure 7 shows the results of this experiment, for four periods of five years each, which gives

a planning horizon of twenty years. As the number of periods progress, the value of the cutting
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options decreases, and the range of options that are evaluated also narrows dramatically, as observed

in the box plots.

Figure 7: Determining the range of the cutting options for a planning horizon of 20 years, divided

in N = 4 periods. Each individual subplot shows the results for each scenario. In each subplot, the

horizontal axis represents the cutting period, and the vertical axis represents the cutting options

considered by the search process during each period. The lower line across the four subsets, repre-

sents the lower cutting option selected during the search process, and the top line, represents the

higher cutting option selected during the exploration. The box plot on each period shows the range

and distribution of the most common cutting options considered.

An important conclusion from this experiment is that, regardless of the discretization size, there

is no need to consider cutting choices higher than 50%, therefore in the remaining experiments we

only consider the [0-50%] range.
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4.2 Determining the number of cutting options

The next issue to investigate is the discretization size of the domain for cutting choices. Recall,

that the continuous range for cutting choices is discretized such that the possible cutting choices

taken at each stage must belong to a discrete set. The trade-off is evident. That is, the finer the

discretization, the more choices we have and the more accurate the optimal solution is. However,

the search tree grows with the size of Y thus it is important to assess the trade-off between solution

quality and computational effort. As concluded from the previous experiment, we only consider

cutting choices in the [0%,50%] range.

In this experiment five scenarios, as depicted in Table 3 (b), are considered. Each scenario

considers a cutting selection strategy of trees by age, that is, the trees of the stand are ordered

by age in descending order. Then, the algorithm calculates the goal basal area that is equal to

(1 − yi) of the current basal area. After determining this value, and sorting the trees in the stand

in descending order, the trees are harvested one at a time until the basal area of the stand is less

or equal to the objective basal area.

Table 3: Discretization scenarios for determining the number of cutting options.
Scenario ∆Y (%) |Y |

1 25 3
2 10 6
3 5 11
4 2 26
5 1 51

Figure 8 shows the result of this experiment. The horizontal axis represents the volume of wood

harvested (in cubic meters) at the end of the planning horizon.

As can be observed, the volume obtained by dividing the range of cutting options by 1% or by

2% is the same, but the difference in time is higher by one order of magnitud if we divide the range

of cutting options in intervals of 1%. Also, it can be observed that dividing by intervals of 5% can

be useful for the exploration of other solution techniques with a fair degree of accuracy and a lower

time consumption.
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Figure 8: Determining the number of cutting options or ∆Y for a planning horizon of 20 years. The

horizontal axis represents the volume of wood in cubic meters harvested at the end of the planning

horizon. The vertical axis, the time consumed in seconds to find the optimal solution. Each dot

represents the size of each interval between 0% and 50%, where a smaller number means a larger

number of cutting options. The graph at the left is shown in normal scale, while the graph in the

right is in log10 scale. The red dotted line at the right shows the highest volume obtained under

these conditions.

4.3 Evaluating alternatives for the selection of trees to be harvested

In the two previous experiments, the selection of the trees to be harvested is made in regard to their

age, where the older trees are extracted first. For the third experiment, two additional thinning

selection strategies are evaluated. The selection of trees is done by their diameter and by their

height. The conditions of the stand are the same as in the other experiments, using the range of

cutting choices that was determined in the second experiment. The intervals of the cutting options

for these experiments are set at 5 and 2 percent.

Figure 9 shows the result of this experiment. As it can observed, the best selection criteria

for the selection of the trees harvested during each cutting stage is choosing those who are taller

first. As the consumption of time is the same that using the other two criteria, the height selection

criteria in the remaining experiments will be used.
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Figure 9: Evaluating alternatives for the selection of trees to be harvested for a planning horizon

of 20 years. The horizontal axis represents the three selection criteria considered: age, diameter and

height. The subsets represent the size of the intervals of the cutting range used in this experiment.

The vertical axis indicates the volume of wood harvested, in cubic meters, at the end of the planning

horizon.

It can also be observed, that using a finer discretization ∆Y (2 in this case) yields higher volumes

of timber for the optimal solutions. This is consistent with the results of the second experiment

and it stems from the fact that under the 2% size, there are more choices to be considered in each

subproblem through the execution of the DP algorithm. For this experiment we can conclude that

the best configuration is to sort the trees by height in descending order, and to use a ∆Y = 2 as

the interval between cutting options.

4.4 Evaluating the length of the periods in the planning horizon

In the previous experiments the time span of each harvesting period was fixed at five years, as this is

an interval value often used in yield tables in practice. Because this is somehow an arbitrary decision,

it is interesting to investigate the effect of having harvesting periods of different length. To this end,

in this last experiment different planning horizons and time periods are assessed. Particularly, three

planning horizons of 12, 24, and 48 years, each one divided into 2, 3, 4, and 6 harvesting periods

through the planning horizon, are considered.
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For this experiment, the data from a simulated forest in the West Forest in Germany is used.

This includes the incorporation of new trees during the simulation. Also, in this experiment the

discretization size of ∆Y = 5 is considered. It is important to highlight that this kind of experiment

cannot be done with the forest stands from El Salto because instances with periods longer than 25

years cannot be simulated with the available data.

Table 4 depicts the results of this experiment for the different scenarios. For instance, in the

first row, we show the results for a planning horizon of 12 years, where there are six harvesting

periods of length of 2 years each.

Table 4: Best cut options for each planning horizon with different cut periods and total volume of
wood harvested. Column “Planning” shows the length of the planning horizon. Column “Periods”
shows the number of time periods considered for each planning horizon. Column “Years” indicates
the lenght of each harvesting period. Finaly, columns “Cut Options” and “Wood Volume” show the
optimal solution (cutting pattern) and its corresponding optimal solution value, respectively, found
by the BFS_DP algorithm.

Planning Periods Years Cut Options Wood Volume

12

6 2 0, 0, 10, 15, 30, 30 1192.8273
4 3 0, 0, 25, 35 522.1944
3 4 0, 15, 40 333.0745
2 6 5, 45 185.9485

24

6 4 5, 0, 5, 15, 25, 25 2136.5076
4 6 0, 0, 25, 35 1077.2481
3 8 0, 15, 40 677.3736
2 12 0, 50 374.4359

48

6 8 0, 0, 15, 15, 20, 20 5329.3579
4 12 0, 5, 30, 30 2910.9219
3 16 0, 20, 40 1836.3285
2 24 0, 50 971.6463

In this table, it can be observed that for all planning horizons, when the number of cutting

periods is larger, the volume collected at the end is also higher with conservative cutting options.

On the other hand, when the number of cutting phases is shorter, the volume harvested is lower

and the cutting options are more intensive.

Figure 10 summarizes these results, where it can be visually seen that increasing the number

of periods for each planning horizon improves the volume of wood collected without violating the

minimum stock constraint.
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Figure 10: Evaluating the length of the periods for three different planning horizons of 12, 24 and

48 years, each one divided in N = {2, 3, 4, 6} periods. The vertical axis indicates the volume of

wood harvested, in cubic meters, at the end of the planning horizon.

Table 5 shows the time in seconds at which the algorithm found the best solution and the time

in seconds that the algorithm took to finish the exploration of the search tree. The times obtained

increase rapidly when the number of cutting phases is larger. While increasing the duration of the

planning horizon does not seem to grow as fast.

Figure 11 shows in square-root scale, the time consumed by each number of periods per planning

horizon. As we can observe, the duration of the planning horizon had less impact in the time

consumption than the number of periods on which it is divided.
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Table 5: Time on which the best solution was found. Column “Planning” shows the length of the
planning horizon. Column “Periods” shows the number of time periods considered for each planning
horizon. Column “Time Found (sec.)” shows the time in seconds and in hours at which the algorithm
found the best solution. Finally, column “Total Time (sec.)” shows the time in seconds that the
algorithm took to finish the exploration of the search tree.

Planning Periods Time Found (sec.) Total Time (sec.)

12

6 10892.82 35388.46
4 285.84 848.79
3 44.19 139.87
2 6.90 15.83

24

6 24564.94 53501.67
4 421.07 1449.32
3 54.73 192.13
2 5.90 17.48

48

6 23811.58 65707.41
4 753.66 2433.13
3 92.35 318.14
2 7.30 26.83

Figure 11: Evaluating the length of the periods for three different planning horizons of 12, 24 and

48 years, each one divided in N = {2, 3, 4, 6} periods. The vertical axis indicates the total time

consumed by the algorithm to find the optimal solution in seconds in square-root scale.
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5 Conclusions

The synergy of both, the DP model and the forest growth simulator software, gave us the capability

of exploring alternatives to the current policies for treatments, such as the intensity of thinning and

the time span between periods to maximize the volume of wood, while avoiding the overexploitation

of the stand.

For the experiment where it was sought to determine the minimum range of cutting options to

consider, in order to reduce the amount of computational time consumed, it was found that the

range was strongly dependent on the current minimum stock constraint, thus, different instances

require a previous analysis to determine this value. In return, at least for the instance solved during

the experimentation, it is possible to reduce this range by 50%.

When analyzing the ∆Y or size of the interval that yielded the highest volume of wood in the

instance problem , it was found that the best configuration was ∆Y = 2, as it obtained the same

volume of timber as with a configuration of ∆Y = 1, with a lower consumption in time by an order

of magnitude. ∆Y = 5 offers a good compromise between computational time and volume of wood

harvested, which could be useful for larger instances or as a tool for exploratory analysis of future

strategies.

For the third experiment, where we wanted to determine the best criteria to select the trees to

be harvested during each thinning period, the results showed that the best selection strategy of the

three that we tested, was the selection by Height, with no impact on the computational time, but

with a gain in volume harvested at the end of the planning horizon of up to 65%.

When the best number of periods in the planning horizon and their duration were analyzed,

the results of the experiment showed that periods of shorter duration yielded the highest volume of

wood, up to six times compared with the lower number of periods considered in the experiment. But,

as in the case of the values for ∆Y , shorter periods require a higher consumption of computational

time, as the planning horizon is divided in a larger number of them.

This method also serves as a tool to explore alternative strategies to those previously established

by tradition or by alternative methods, with the confidence that the results obtained are reasonably

close to reality, thanks to the forest growth simulator module.

Future works following the path of this project will include the inclusion of additional species,

for a heterogeneous stand. Another line of research is to consider multiple stands with adjacency

constraints. Another area of opportunity is the study of models that take into account the costs of

the infrastructure deployed during each partial thinning.
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A Notation

Table 6 contains the notation and description of the abbreviations of the optimization methods

mentioned in this paper.

Table 6: Description of the notation regarding solution methods used in this work. Column "Ab-
breviature" is the abbreviature of the optimization method and column "Description" the meaning
of the abbreviature.

Abbreviature Description

DP Dynamic Programming
Stoch. DP Stochastic Dynamic Programming
BFS Breadth-first Search
MILP Mixed-Integer Linear Programming
Heur. Heuristic
GA Genetic algorithm
TS Tabu Search
PSO Particle Swarm Optimization
DE Differential Evolution
EA Evolutionary Algorithm
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