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Abstract

In this work, the problem of maximizing the volume of wood harvested in a single species stand
over a period of time is addressed. To this end, a solution that combines dynamic programming
and a single-tree forest growth simulator is developed. In this method, the decision variable of the
amount of wood to be harvested at each period is discretized. This ensures that the method finds
a global optimal solution within the given discretization. In the past, there have been approaches
that use exact methods that solve this problem, but these approaches consider the stand growth
as a whole and require the simulator to meet certain conditions. In our work, a single-tree growth
simulator is used. With these tools, different alternatives for the parameters of thinning percentage
in each period, duration of the planning horizon, and the selection of the trees to be harvested,
among others, are explored and assessed. The results showed that the proposed method is useful
not only as a tool to optimize the harvesting of the timber of a single-species stand, but to explore

different alternatives to the usual practices, that continue to change constantly.

Keywords: Forest management; dynamic programming; forest growth simulation; stand-level opti-

mization; thinning regime.



1 Introduction

One of the decisions in forest management and planning is to determine the frequency and intensity
of the treatments applied to a stand during a series of periods, in order to maximize the benefits
obtained at the end of a planning horizon, whose duration can span several decades. This problem
is known in the literature as the stand-level optimization problem [13|. As the trees in the stand
grow continually during the timespan of the planning horizon, it is necessary to take this factor into
consideration to deliver a solution that is as close as possible to a real case scenario. Additionally, to
prevent the overexploitation of the stand and to promote the regeneration of the forest , the partial
harvesting or treatment applied during each period must be subject to regulations that guarantee
the preservation of the stand. Tahvonen and Ra4mo [20] make a comparison between clear-cut and
continuous cover regimes, favoring the latter not only in wood extraction, but also in aesthetic and
environmental conservation aspects.

The stand-level optimization problem has been a subject of research since the decade of the
1960s, with the work of Chappelle and Nelson [9] as one of the pioneers on this field. Since then,
different approaches to solve it have been proposed. Those works have been classified in the literature
in three broad categories: Non-linear programming, heuristics and dynamic programming |5} 22].

Dynamic programming is still one of the most popular approaches to solving stand level opti-
mization problems. According to a recent study by Yoshimoto et al. [22] who evaluated different
solution methods, they found that the nonlinear program approaches struggle to finding global op-
timal solution due to the non convexity of the problem. In the case of heuristic methods, they also
fail in finding optimal solutions.

Dynamic programming is an optimization method, proposed by Bellman [4], that has found
application in different fields, including forest management, with the work of Amidon and Akin |1]
as one of the first that use this approach to solve the stand-level optimization problem. In general
terms, this method consists of recursively dividing a complex problem into smaller subproblems
that, when solved, can contribute to the solution of the other problems in the recursion chain.

Until the decade of the 1980s, it was not practical to use dynamic programming to solve the
stand-level optimization problem, given the technological limitations of the time, in terms of com-
putational processing power and storage, and the characteristics of the problem that grows expo-
nentially when the number of decisions and periods increases. This motivated the development
of solutions based on dynamic programming that could achieve the optimality of the solution by
reducing the dimensionality of the search space, provided that certain conditions of non-concavity
of the solution space, dependent of the growth simulator, were met. There are certainly many works
based on dynamic programming. For a survey on those methods, the reader is referred to the work
by Yoshimoto et al. [22]. Table [1| summarizes some of the most relevant works that use dynamic

programming to solve variations of the stand-level optimization problem.



Table 1: Most relevant dynamic programming approaches to the stand-level optimization problem.
Column “Reference” cites the author or author and year of the different dynamic programming
models proposed. Column “Simulator Characteristics” indicates if the simulator is a single-tree
growth simulator or not (whole-stand growth simulator), and if it is distance dependent, that is, if
it includes spatial indices for competition |21]. Column “Stand Age” if the age of the trees in the

stand is even or not.

References Simulator Characteristics Stand Age
Single tree  Distance dependent
Amidon and Akin [1] No No Even
Brodie et al. |6] No No Even
Brodie and Kao |7] No No Even
Kao and Brodie [15] No No Even
Chen et al. |10] No No Even
Haight et al. [14] Yes No Even
Paredes V. and Brodie |18| No No Even
Arthaud and Klemperer |2] No No Even
Yoshimoto et al. |23] Yes No Even
Brukas and Brodie [8] No No Even
Bettinger et al. [5] Yes No Even
Diaz-Balteiro and Rodriguez |11| Yes No Even
Graetz et al. [12] Yes No Even
Yoshimoto and Marusak [24] No No Even
Asante et al. [3| No No Even
Ribeiro et al. [19] Yes Yes Even
This work Yes Yes Even




Paredes V. and Brodie |18| use this approach to solve the problem of dimensionality with their
Projection Alternative TecHnique (PATH), derived either from a network formulation based on the
Dijkstra’s shortest path algorithm or from generalized Lagrange multiplier theory. Yoshimoto et al.
[25], developed an improvement on PATH, called Multi-Stage PATH (MSPATH). They detected
that some scenarios in the original PATH were just looking to the next immediate stage and this
was insufficient to guarantee optimality. Thus, their proposed algorithm made all possible look-
ahead paths to further stages, reducing some of the efficiency of the algorithm, but gaining more
robustness in the finding of the optimal solution. This approach also requires the same conditions
as the original PATH.

In this article, the problem of determining the percentage of the basal area of a stand that is
harvested during a number of periods is addressed. The aim is to maximize the volume of wood
collected at the end of the planning horizon, while following the regulations during all the partial
thinnings. For this problem, the use of a dynamic programming (DP) model in synergy with a
forest growth simulation software, to maximize the volume of wood harvested from a stand during
a planning horizon is proposed.

The stand used for the simulation is not static, as it considers the growth and mortality of the
trees as well as the competition among them. It is proposed in this work to embed the forestry
simulator software BWIN Pro Forest Growth Simulator (https://www.nw-fva.de)|17] during the
optimization stage, to maximize the amount of wood harvested at the end of the planning horizon.
The module of this free software library is capable of simulating a stand at the level of a single tree,
while considering the competition among trees, based on the distance in a realistic way. This level
of detail allowed us to test different strategies, such as the selection criteria to choose the trees to be
harvested on each period, the number of periods per planning horizon, the duration of the planning
horizon itself, and the number of cutting options available on each period. The exploration of these
strategies allowed us to determine which configurations maximized the volume of timber harvested
or reduced the computational time of the simulation. Although the methodology can be applied to
any single stand, for our purposes, we apply it to two case studies with Pinus cooperi and Pinus
sylvestris.

The main contribution of our proposed method resides not only on optimizing the volume of
wood harvested at the end of a planning horizon but also as a tool to explore different scenarios
that the usual practices. This was possible thanks to the inclusion of a forest growth simulation
software module that is able to calculate the growth of a stand at the individual tree level and to
easily reconfigure the parameters of the proposed solution based on dynamic programming. A first
step was discretizing the cutting options into a finite space. This discretization can be very fine to
better represent reality. As it explodes exponentially, only a subset of solutions is used. In Section
[, it is demonstrated that this discretization process does not compromise the optimality of the

solution. This approach guarantees to find the optimal solution, regardless of the characteristics of
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the simulator or the stand, as it explores the entire discretized search space, this is, the set of all
feasible solutions for an instance of the problem. This provides an advantage with other methods
in the literature that consider only a subset of solutions. Existing methods also require that the
growth simulator meet very specific properties that are not always achieved.

The organization of this paper is as follows. Section [2| presents the problem description, the
mathematical programming model of the problem, and the DP approach for optimizing the har-
vesting of the stand given during a given planning horizon. Section [4] describes the conditions of the
experiments, the computational experiments performed to evaluate the performance of the solution
method and the analysis of the results obtained. Finally, Section [f] presents the conclusions reached

during this study and suggests some areas that could be interesting to address in future work.

2 Mathematical Framework

2.1 An Optimization Model

From the previous description of the problem we could infer the parameters that are needed for the
construction of a model that optimizes the harvesting of a stand, such as the number of periods,
the planning horizon in years, the initial state of the stand, and the minimum requirements for a
stand to be considered feasible.

The decision to be taken at the start of each period is to determine the percentage of the basal
area of the stand to be thinned, and according to that decision we can determine the new state
of the stand, the volume of timber harvested, and the growth of the stand at the beginning of the
next period. With this information, it is possible to build a mathematical model to determine the
sequence of decisions of cutting percentages that maximizes the volume of timber harvested at the

end of the planning horizon.

Parameters:

N : Number of periods.

i1=1,2,...,N : Time period index.

xo : A three-dimensional vector representing the initial state of the stand.

« : A three-dimensional vector that contains the minimum required values of the number of trees,
dominant height, and basal area.

Decision variables:

w; : A continuous variable that represents the cutting percentage value at the start of period i. For

instance, if a decision of harvesting 15% of the stand is taken at period i, then w; = 0.15.



Dependent variables:

x; : State of the stand after the thinning in period . This is a three-dimensional vector whose
components describe the stand in terms of (1) the number of trees per hectare, (2) dominant
height, and (3) basal area.

G; : Three-dimensional vector describing the growth of the stand in each of its components (z;)
during period i. Similarly to the case of vector x;, all the attributes of the stand simulator

are used.

Vi(w;(zi—1 + G;)) : Volume harvested at the start of period i. Clearly, V;(-) is a function of the
state of the system at the end of period i — 1, given by x;_1, its growth during the past period

G, and the cutting value percentage w;.

Mathematical model:

N
maximize Z Vi(wi(zi—1 + Gy)) (1)
=1
subject to
ri=(1—w)ri1+ G i€ N\{l} (2)
T >« 1€ N (3)
0<w <1 ieN (4)

The objective of this problem is to maximize the volume of harvested wood at the end
of the planning horizon considering the natural growth of the trees in the stand. Constraints ([2)
establish the relationship between the state of the system at the start of period 7 as a function of
the state in the previous state (x;_1), the stand growth (G;) and the harvested percentage in period
i (w;). Constraints (3) ensure that a minimum stock, usually stablished by government regulations,
is met. Finally, Constraints describe the nature of variables w;. In the model, the value of G;
is dependent on the value of x;_1, or the state of the stand after the thinning at the start of the

period ¢ — 1.

2.2 Dynamic Programming Formulation

Given the sequential structure of the decision process, a popular solution technique is DP. Several
DP modelling frameworks have been proposed in the past, one of them is the DP framework on
which this work is based [16]. To this end, rather than working with continuous harvesting decisions

(w;) we discretize this variable and use a finite number of cutting options (stored in set Y'). This



makes the problem more tractable and, if the discretization is fine enough, the optimal solution is

very accurate.

Parameters:
Y : Discrete set of cutting options.
The parameters N, i, ¢ and «, are as defined before in Section

Decision variable:

y; : A discrete variable that represents the cutting option at the start of period ¢, y; € Y.

Dependent variables:

The dependent variables x; and G;, are as defined in the previous model.

Vi(yi) : Volume harvested in period i under cutting option ;.

fi(x;) : Maximum volume of wood harvested from the state x1 of the first period to the period i

when the current state is z;.

DP recurrence relation:

filwi) = max {Vi(y:) + fia (@ia)} (5)
where

2= (1= y)ais + Gy e N\ {1} (6)

T >« 1eN (7)

The objective of this problem is to maximize the volume of harvested wood at the end of the
planning horizon, that is, the optimal solution is given by fy(zxy). During each period, the state
of the forest must maintain a level equal or superior on the attributes: number of trees, dominant
height and basal area, represented by vector a. Note that @ corresponds to the discretized version
of and is the same as and just included here for completeness sake.

Figure [I| shows the representations of vector z and its components: number of trees, basal
area and dominant height. Where the red area represents the minimum stock value required by
Constraint 7} Figure (1| (a) shows the conditions that a stand requires to be considered a feasible
solution, where all three components of the vector x must be higher or equal than the values on

vector «.. Failing to meet any of the three requirements, renders the stand unfeasible.



In this work, it is assumed that a stand is equal to another, just when the three components of
the vector = are the same on both of them. For example, Figure [1| (b) shows two stands that have
the same number of trees, but that differ in the basal area and dominant height values, thus, the

two stands are considered as different.

a) b)

ye K

Unfeasible stand

vv K 4

Feasible stand
Same number of trees

Figure 1: Graphic representation of the DP model. The top wedge represents the number of trees
in the stand, the left one its basal area, and the right one, the dominant height of the stand. The
green region represents the amount that can be feasibly harvested, and the red area the minumum
stock of the stand. If the green area is less than the red area, for any of its wedges, the solution is
unfeasible (a). A solution is considered equal to another only if its three values are equal. If any
value is different, the solutions are also different, as in the case of (b) where two stands have the

same number of trees, but their basal area and dominant height are different.

The graphical representation of the DP model used in this work is shown in Figure 2] where all
the variables are depicted here. G; is the growth of the stand from the state x;_1 to the start of
the period 4, just before the thinning. At ¢ = 0, the values of the elements of G = 0 are equal to 0
and the initial stand is z_; (recall, from Section that G; and z; are three-dimensional vectors).
The value of GG; is dependent on the value of x;_1, or the state of the stand after the thinning at
the start of the period 7 — 1. The variable y;+1 is the cutting option selected in this period. The
cutting option is the percentage of the basal area of the stand to be harvested and in this model is
selected from a finite set of cutting options. For example, if yo = 0.3, then, during the third period,
the basal area of the stand will be thinned by 30%. V;(y;) represents the volume of wood harvested
from cutting the percentage y; of the basal area of the stand z;_1 + G;.
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Figure 2: Graphic representation of the DP model. Gj is the growth of the stand from the state
x;—1 to the start of the period i. x;_1 is the state of the stand after the thinning at the start of the
period ¢ — 1. The variable y;1 is the cutting option selected in this period (the percentage of the
basal area of the stand to be harvested) from a finite set of cutting options. V;(y;) represents the

volume of wood harvested from cutting the percentage y; of the basal area of the stand z;_1 + G;

It is clear by looking at constraints and , that not all possible harvesting decisions (y;)
lead to feasible solutions. In this regard, two different cases can occur depending on the harvesting
decision. The first one, as shown in Subfigure [3| (a), is a feasible selection of a cutting option. In
this case, it can be observed that after thinning the stand, the minimum requirements are met, and
the growth at the end of the period and the volume harvested are modest but sustainable.

The second case scenario, shown in Figure 3| (b), shows an unfeasible selection of a cutting
option. With an intensive thinning of the stand, the volume of wood harvested is higher than in the
previous case; however, the remaining trees on the stand are not enough to regenerate it, causing
the loss of the stand at the end of the period.

A special case of the first scenario, shown in Figure [3| (¢), depicts the option of not harvesting
the stand in the current period. In this scenario, there is no volume of wood harvested. However,
the growth of the stand is higher in most cases than in the other feasible scenarios. This case could
be useful after an intensive, but feasible, thinning of the stand or in conjunction with other methods
of harvesting.

Given that the nature of the w; variable is continuous, and in consequence its search space is
infinite, it is common practice to discretize the variable range and allow the cutting options to be
taken from a finite (approximate) set in the [0,1] interval. This is achieved by dividing the [0,1]
range into subintervals of equal size. Clearly, there is a trade-off in this discretization step. The
finer the discretization, the more accurate the solution is. However, the computational cost becomes
higher. This issue is investigated in our experimental work.

The previous cases show a given selection of cutting options for a planning horizon. However,
to optimize the harvesting of the stand it is necessary to consider all the cutting options on each
period to determine the configuration that yields the highest volume of wood harvested, within the

current regulations.
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Figure 3: Harvesting options for each period. The green area represents the percentage of the
forest that can be harvested. The red circle represents the « vector, or the minimum stock value,
and the brown square, the volume of wood harvested using the selected cutting option. Subfigure
(a) represents a cutting decision that generates a feasible solution. Subfigure (b) shows a cutting

decision that leads to an unfeasible solution. Subfigure (c) represents a cutting decision of not

cutting in that period.

3 Implementation of Solution Algorithm

3.1 Dynamic Programming Algorithm

For the implementation of the solution method proposed, the libraries of the freely-available forest
growth simulator software BWIN Pro were adaptaed. This was used both to generate the instances
of the problem by creating random distributions of trees on a stand of 1 ha, and to simulate the
growth of the stand during the periods of the planning horizon.

The pseudocode of the main implementation is shown in Algorithm [I The algorithm requires

an initial stand root, the number of periods on which the planning horizon is divided, and the length



of each period in years lengthPeriod. Note that each search “node” (e.g., root, parent, child) in the
algorithm corresponds to a specific stage ¢ and state vector z; in the DP formulation. Given that
the DP formulation is based on a forward recurrence relation, optimal decisions up tp stage ¢ must

be known for computing optimal decisions on stage 7 + 1.

Algorithm 1: BFS DP

input : An initial state root, a list of cut options Y, number of periods periods, length of
period lengthPeriod
output: A final state best with the list of cut options that yields the highest volume of

wood

1 stack.push(root)
2 while stack # () do

3 parent = stack.pop()

4 for y €Y do
5 child = clone(parent)

6 timber = cut(childStand, y)

7 child.addVolWood(timber)

8 child.grow(lengthPeriod)

9 if child. followsRegulations() then
10 if child.level() < periods then
11 ‘ stack.add(child)

12 end
13 else if child.getVolWood() > best.getVolWood() then

14 | best = child
15 end
16 end
17 end
18 end

19 return best

The algorithm starts by adding the root, corresponding to the initial state xg in stage 0, into a
queue structure called stack (line [1]). A breath first search (BFS) is iteratively done on until the
stack is empty (line ) At it each iteration a node is retrieved from the top of the queue, and it
is called parent, see line [3]). This node corresponds to a specific stage ¢ and state x; of the DP
formulation. It is important to remark that each element stores the whole history of the past cut
decisions that got from the root state to its current state. From this parent node, several child

nodes are generated as follows. Each possible harvesting decision that can be taken at parent in

10



stage i, represented by decision y; in the DP model, leads to a different state in the following stage
i+ 1. This new stage and state is associated to a child node obtain from this parent. In detail, all
possible harvesting choices are explored from the state of the parent that lead to feasible solutions
that can be reached from it (line [4]). The algorithm creates a child node, that is a clone of the
parent (line ), harvest the y percent of the basal area of the childStand (line @) and add the cut
option y to its history, and grows the child for a lengthPeriod (line [8]). If the child is associated
with a feasible solution, this is, it satisfies , (line |]§||), then the algorithm verifies if child is not
a leaf node (line [10]). If it is not, it is added to the stack structure and continues with the search.
If it is a leaf node, then it verifies if the volume harvested at the end of the planning period is
higher that the obtained in the current best solution (line [13]). If it is better, best is replaced with
child. Once the whole stack is explored, this is, when the stack is empty (line ), the algorithm
returns the best solution found during the exploration (line [19]) and the process stops returning
the optimal solution.

An example of the resulting best solution for a stand with a size of 1 ha is shown in Figures
and [5], where the left size of the figures represent the cutting stages, and the right size the growth of
the stand after 8 years, each row represents a period. The individual circles represent trees of the
Pinus cooperi species. An empty square on the side of the cutting stage, symbolizes that a tree was
harvested. The data used for this example considers the regeneration of new individuals. Figure [6]
shows on the left, the initial stage of the stand, while the stand on the right shows the final state
at the end of the planning horizon, following the process shown in Figures [4] and

11



y; = 15%

Periods 1, 2 and 3).

(

Figure 4: Example of a best solution
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8 years

Figure 5: Example of a best solution (Periods 4, 5 and 6).
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Initial Stand Final Stand

Figure 6: Initial stand and final state of Best.

3.2 Forest Growth Simulator

To calculate the growth of the stand during the cut periods in the planning horizon, the TreeGrOSS
package (Tree Growth Open Source Software) is used. this package was developed and included
in the BWINPro Forest Simulator by Nagel and Schmidt [17]. This package uses a growth model
based on single tree information to simulate the evolution of a stand.

As an open-source project, it is possible to audit and modify the source code of the package
to adapt it to the particular characteristics of the stand. An example of this is the inclusion of a
database containing information of the stand and the species of Las Bayas, in Mexico.

A real stand can be simulated by defining its polygon, and by using the statistical data taken
from samples that include information such as the mean basal area of the stand, species, age,
dominant height, among others. It is also possible to replicate a stand exactly by defining the
coordinates and attributes of each tree that include, but are not limited to, species, age, DBH,
height, crown base and width, site index, competition index, etc.

For a random instance, the trees can be distributed in three ways: by random coordinates, as
used in this paper, that places the trees in positions were the crowns do not overlap; in raster
coordinates, that places them in rows and columns; and in clusters, that generates groups of trees
in the stand. Other attributes that are dependent on the region and species being simulated are
the inclusion of a regeneration layer, the mortality, and the competition index.

Finally, the documentation recommends not exceeding a planning horizon length of more than

40 years in order to obtain accurate predictions for the growth of the stand.

4 Empirical Work

To assess the performance of our proposed BFSpp solution method with the simulation of a stand

at high detail, with the libraries of the open source software ForestSimulator, a series of experiments

14



to be described next are carried out.

The region considered for this example was from the database from the North West of Germany,
a stand with the species Pinus sylvestris that includes reincorporation values, and from the region
of El Salto, in Mexico, with the species Pinus cooperi, that does not include reincorporation values.
As the libraries of the forest simulator are implemented on the Java programming language, the
implementation of the DP method was also made in this language, using the JDK 1.8.0. The
experiments were carried out in an Intel i7 CPU at 4.0 GHz. with 32 GB of RAM, under the
GNU /Linux Ubuntu 14.4 operating system.

4.1 Determining the range of the cutting options

The first issue to be investigated is whether it is necessary to evaluate the entire range of cutting
choices. It is clear that a finer discretization mesh leads to more cutting choices; however, given
the additional constraints of minimum cutting patterns, it is not so clear before hand if all possible
choices turned out to be feasible. Therefore, some tests to take a closer look of what actual cutting
choices turn out to be feasible are carried out.

To this end, a stand with the information of the region of El Salto, in the state of Durango,
Mexico, is generated. This stand does not include reincorporation values, such that the range of
cutting values is more conservative than if it included them. The regeneration values allow the
software to consider the natural appearance of new trees in the stand, in addition to the ones that
are already present. As the simulation considers mortality, without reincorporation, the duration
of the planning horizon is limited by the lifespan of the trees in the stand. This is because, at some
point, the number of trees in the stand does not meet the minimum stock constraint, even when
the percentage of harvesting is 0%.

A stand of 1 ha with 500 trees of the Pinus cooperi species, with four periods of five years is

tested. Four different scenarios are tested as depicted in Table

Table 2: Discretization scenarios for determining the number of cutting options.
Scenario  AY (%) |Y|

1 25 5
2 10 11
3 5 21
4 2 51

The different amount of granularity obeyed to two reasons, the first one to determine more
precisely the limits of the range of the cutting options, and the second to observe the increase of
running time of the proposed DP algorithm.

Figure [7] shows the results of this experiment, for four periods of five years each, which gives

a planning horizon of twenty years. As the number of periods progress, the value of the cutting

15



options decreases, and the range of options that are evaluated also narrows dramatically, as observed

in the box plots.

AY =2 AY=5 AY =10 AY =25
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Figure 7: Determining the range of the cutting options for a planning horizon of 20 years, divided
in N = 4 periods. Each individual subplot shows the results for each scenario. In each subplot, the
horizontal axis represents the cutting period, and the vertical axis represents the cutting options
considered by the search process during each period. The lower line across the four subsets, repre-
sents the lower cutting option selected during the search process, and the top line, represents the
higher cutting option selected during the exploration. The box plot on each period shows the range

and distribution of the most common cutting options considered.

An important conclusion from this experiment is that, regardless of the discretization size, there
is no need to consider cutting choices higher than 50%, therefore in the remaining experiments we

only consider the [0-50%]| range.
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4.2 Determining the number of cutting options

The next issue to investigate is the discretization size of the domain for cutting choices. Recall,
that the continuous range for cutting choices is discretized such that the possible cutting choices
taken at each stage must belong to a discrete set. The trade-off is evident. That is, the finer the
discretization, the more choices we have and the more accurate the optimal solution is. However,
the search tree grows with the size of Y thus it is important to assess the trade-off between solution
quality and computational effort. As concluded from the previous experiment, we only consider
cutting choices in the [0%,50%)] range.

In this experiment five scenarios, as depicted in Table [3| (b), are considered. Each scenario
considers a cutting selection strategy of trees by age, that is, the trees of the stand are ordered
by age in descending order. Then, the algorithm calculates the goal basal area that is equal to
(1 — y;) of the current basal area. After determining this value, and sorting the trees in the stand
in descending order, the trees are harvested one at a time until the basal area of the stand is less

or equal to the objective basal area.

Table 3: Discretization scenarios for determining the number of cutting options.
Scenario  AY (%) |Y]

1 25 3
2 10 6
3 5 11
4 2 26
) 1 51

Figure |8 shows the result of this experiment. The horizontal axis represents the volume of wood
harvested (in cubic meters) at the end of the planning horizon.

As can be observed, the volume obtained by dividing the range of cutting options by 1% or by
2% is the same, but the difference in time is higher by one order of magnitud if we divide the range
of cutting options in intervals of 1%. Also, it can be observed that dividing by intervals of 5% can
be useful for the exploration of other solution techniques with a fair degree of accuracy and a lower

time consumption.
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Figure 8: Determining the number of cutting options or AY for a planning horizon of 20 years. The
horizontal axis represents the volume of wood in cubic meters harvested at the end of the planning
horizon. The vertical axis, the time consumed in seconds to find the optimal solution. Each dot
represents the size of each interval between 0% and 50%, where a smaller number means a larger
number of cutting options. The graph at the left is shown in normal scale, while the graph in the
right is in log;y scale. The red dotted line at the right shows the highest volume obtained under

these conditions.

4.3 Evaluating alternatives for the selection of trees to be harvested

In the two previous experiments, the selection of the trees to be harvested is made in regard to their
age, where the older trees are extracted first. For the third experiment, two additional thinning
selection strategies are evaluated. The selection of trees is done by their diameter and by their
height. The conditions of the stand are the same as in the other experiments, using the range of
cutting choices that was determined in the second experiment. The intervals of the cutting options
for these experiments are set at 5 and 2 percent.

Figure [9] shows the result of this experiment. As it can observed, the best selection criteria
for the selection of the trees harvested during each cutting stage is choosing those who are taller
first. As the consumption of time is the same that using the other two criteria, the height selection

criteria in the remaining experiments will be used.
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Figure 9: Evaluating alternatives for the selection of trees to be harvested for a planning horizon
of 20 years. The horizontal axis represents the three selection criteria considered: age, diameter and
height. The subsets represent the size of the intervals of the cutting range used in this experiment.
The vertical axis indicates the volume of wood harvested, in cubic meters, at the end of the planning

horizon.

It can also be observed, that using a finer discretization AY (2 in this case) yields higher volumes
of timber for the optimal solutions. This is consistent with the results of the second experiment
and it stems from the fact that under the 2% size, there are more choices to be considered in each
subproblem through the execution of the DP algorithm. For this experiment we can conclude that
the best configuration is to sort the trees by height in descending order, and to use a AY = 2 as

the interval between cutting options.

4.4 Evaluating the length of the periods in the planning horizon

In the previous experiments the time span of each harvesting period was fixed at five years, as this is
an interval value often used in yield tables in practice. Because this is somehow an arbitrary decision,
it is interesting to investigate the effect of having harvesting periods of different length. To this end,
in this last experiment different planning horizons and time periods are assessed. Particularly, three
planning horizons of 12, 24, and 48 years, each one divided into 2, 3, 4, and 6 harvesting periods

through the planning horizon, are considered.
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For this experiment, the data from a simulated forest in the West Forest in Germany is used.
This includes the incorporation of new trees during the simulation. Also, in this experiment the
discretization size of AY = 5 is considered. It is important to highlight that this kind of experiment
cannot be done with the forest stands from El Salto because instances with periods longer than 25
years cannot be simulated with the available data.

Table [] depicts the results of this experiment for the different scenarios. For instance, in the
first row, we show the results for a planning horizon of 12 years, where there are six harvesting

periods of length of 2 years each.

Table 4: Best cut options for each planning horizon with different cut periods and total volume of
wood harvested. Column “Planning” shows the length of the planning horizon. Column ‘“Periods”
shows the number of time periods considered for each planning horizon. Column “Years” indicates
the lenght of each harvesting period. Finaly, columns “Cut Options” and “Wood Volume” show the
optimal solution (cutting pattern) and its corresponding optimal solution value, respectively, found
by the BFS DP algorithm.

Planning Periods Years Cut Options Wood Volume
6 2 0,0, 10, 15, 30, 30 1192.8273
12 4 3 0,0,25,35 522.1944
3 4 0, 15,40 333.0745
2 6 5,45 185.9485
6 4 5,0,5,15,25,25 2136.5076
94 4 6 0,0, 25,35 1077.2481
3 8 0, 15,40 677.3736
2 12 0, 50 374.4359
6 8 0,0, 15, 15, 20, 20 5329.3579
48 4 120, 5, 30, 30 2910.9219
3 16 0, 20, 40 1836.3285
2 24 0,50 971.6463

In this table, it can be observed that for all planning horizons, when the number of cutting
periods is larger, the volume collected at the end is also higher with conservative cutting options.
On the other hand, when the number of cutting phases is shorter, the volume harvested is lower
and the cutting options are more intensive.

Figure |10 summarizes these results, where it can be visually seen that increasing the number
of periods for each planning horizon improves the volume of wood collected without violating the

minimum stock constraint.
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Figure 10: Evaluating the length of the periods for three different planning horizons of 12, 24 and
48 years, each one divided in N = {2,3,4,6} periods. The vertical axis indicates the volume of

wood harvested, in cubic meters, at the end of the planning horizon.

Table [5] shows the time in seconds at which the algorithm found the best solution and the time
in seconds that the algorithm took to finish the exploration of the search tree. The times obtained
increase rapidly when the number of cutting phases is larger. While increasing the duration of the
planning horizon does not seem to grow as fast.

Figure [I1] shows in square-root scale, the time consumed by each number of periods per planning
horizon. As we can observe, the duration of the planning horizon had less impact in the time

consumption than the number of periods on which it is divided.
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Table 5:  Time on which the best solution was found. Column “Planning” shows the length of the
planning horizon. Column “Periods” shows the number of time periods considered for each planning
horizon. Column “Time Found (sec.)” shows the time in seconds and in hours at which the algorithm
found the best solution. Finally, column “Total Time (sec.)” shows the time in seconds that the
algorithm took to finish the exploration of the search tree.

Planning Periods Time Found (sec.) Total Time (sec.)

6 10892.82 35388.46

12 4 285.84 848.79

3 44.19 139.87

2 6.90 15.83

6 24564.94 53501.67

924 4 421.07 1449.32

3 54.73 192.13

2 5.90 17.48

6 23811.58 65707.41

48 4 753.66 2433.13

3 92.35 318.14

2 7.30 26.83
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Figure 11: Evaluating the length of the periods for three different planning horizons of 12, 24 and

48 years, each one divided in N = {2,3,4,6} periods. The vertical axis indicates the total time

consumed by the algorithm to find the optimal solution in seconds in square-root scale.
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5 Conclusions

The synergy of both, the DP model and the forest growth simulator software, gave us the capability
of exploring alternatives to the current policies for treatments, such as the intensity of thinning and
the time span between periods to maximize the volume of wood, while avoiding the overexploitation
of the stand.

For the experiment where it was sought to determine the minimum range of cutting options to
consider, in order to reduce the amount of computational time consumed, it was found that the
range was strongly dependent on the current minimum stock constraint, thus, different instances
require a previous analysis to determine this value. In return, at least for the instance solved during
the experimentation, it is possible to reduce this range by 50%.

When analyzing the AY or size of the interval that yielded the highest volume of wood in the
instance problem , it was found that the best configuration was AY = 2, as it obtained the same
volume of timber as with a configuration of AY = 1, with a lower consumption in time by an order
of magnitude. AY = 5 offers a good compromise between computational time and volume of wood
harvested, which could be useful for larger instances or as a tool for exploratory analysis of future
strategies.

For the third experiment, where we wanted to determine the best criteria to select the trees to
be harvested during each thinning period, the results showed that the best selection strategy of the
three that we tested, was the selection by Height, with no impact on the computational time, but
with a gain in volume harvested at the end of the planning horizon of up to 65%.

When the best number of periods in the planning horizon and their duration were analyzed,
the results of the experiment showed that periods of shorter duration yielded the highest volume of
wood, up to six times compared with the lower number of periods considered in the experiment. But,
as in the case of the values for AY', shorter periods require a higher consumption of computational
time, as the planning horizon is divided in a larger number of them.

This method also serves as a tool to explore alternative strategies to those previously established
by tradition or by alternative methods, with the confidence that the results obtained are reasonably
close to reality, thanks to the forest growth simulator module.

Future works following the path of this project will include the inclusion of additional species,
for a heterogeneous stand. Another line of research is to consider multiple stands with adjacency
constraints. Another area of opportunity is the study of models that take into account the costs of

the infrastructure deployed during each partial thinning.
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A Notation

Table [6] contains the notation and description of the abbreviations of the optimization methods

mentioned in this paper.

Table 6: Description of the notation regarding solution methods used in this work. Column "Ab-
breviature" is the abbreviature of the optimization method and column "Description" the meaning
of the abbreviature.

Abbreviature Description

DP Dynamic Programming

Stoch. DP Stochastic Dynamic Programming
BFS Breadth-first Search

MILP Mixed-Integer Linear Programming
Heur. Heuristic

GA Genetic algorithm

TS Tabu Search

PSO Particle Swarm Optimization

DE Differential Evolution

EA Evolutionary Algorithm
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