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Abstract

To update a public transportation origin-destination (OD) matrix, the link choice
probabilities by which a user transits along the transit network are usually cal-
culated beforehand. In this work, we reformulate the problem of updating OD
matrices and simultaneously update the link proportions as an integer linear pro-
gramming model based on partial knowledge of the transit segment flow along
the network. We propose measuring the difference between the reference and the
estimated OD matrices with linear demand deficits and excesses and simultane-
ously having slight deviations from the link probabilities to adjust to the observed
flows in the network. In this manner, our integer linear programming model is
more efficient in solving problems and is more accurate than quadratic or bilevel
programming models. To validate our approach, we build an instance generator
based on graphs that exhibit a property known as a ”small-world phenomenon”
and mimic real transit networks. We experimentally show the efficiency of our
model by comparing it with an augmented Lagrangian approach solved by a dual
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ascent and multipliers method. Additionally, we compared our methodology with
other instances in the literature.

Keywords: origin-destination matrix, integer linear programming, transit counts,
transit assignment problem

1 Introduction

The dynamics of the city in terms of population and mobility are among the most

critical challenges we face nowadays (Cascetta, 2009). Public transport systems often

fail to offer a high-quality service, which may imply long travel times (Ceder, 2015).

These failures are often due to the lack of information about the daily trips at each

period of the day, the specific trip purpose (work, school, hospital, entertainment),

and how people move in the public transportation system. These movements can be

represented in a two-dimensional array known as the Origin-Destination matrix (OD

matrix).

OD matrices are relevant at each stage of the transit network planning process,

usually divided into two main stages (Ibarra-Rojas et al, 2015). The first stage is

tactical planning, where accurate OD matrices are needed for the transit line design

and the generation of useful timetables (departure times of the trips). This stage

focuses on offering high-quality service to the customers, including line frequency,

waiting times, and short transfers (Ibarra-Rojas et al, 2014). The second stage is

operational planning, where the vehicle and crew scheduling problems seek to minimize

the transport system operating costs (Ge et al, 2022). Updated OD matrices guide

decision-makers in establishing service frequencies or designing new transit lines to

match trip demand.

Another example is when a driver does not show up or when there are accidents or

any other contingency case. The more information about the OD matrices, the faster

the network can be restored (Boyer et al, 2018). Forecast OD matrices allow us to test
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the current system under more demanding scenarios and adapt the infrastructure for

future demand.

OD matrices are usually obtained from home-based surveys every ten years (Bera

and Rao, 2011). They are expensive and time-consuming to process (six months to

one year in Mexico). Thus, once the new OD matrix is available after processing the

surveys, it may already be obsolete. Therefore, we propose a methodology to rapidly

update OD matrices in public transportation.

Lately, technology has allowed us to obtain more information about the trips made

by users, and that information could be used efficiently to update OD matrices. In this

work, we use flow observations made at some transit segments obtained by fare-box,

automated fare collection systems, automatic passenger counter systems, geographical

positioning on cellular phones, or even surveillance videos to update an obsolete OD

matrix. In this sense, the link probabilities correspond to the likelihood that a trav-

eler uses a particular transit segment of the network, such as a specific bus route or

subway line. The traveler’s preferences, the available routes to make the trip, and the

costs influence these probabilities. They are often estimated using path choice mod-

els describing how passengers choose their travel route. Moreover, while we estimate

public transit OD matrices, we also consider that small perturbations of the link prob-

abilities could have arisen to verify our punctual flow observations of the network. We

name the inverse problem of updating an OD matrix and its link probabilities the

ODA problem.

Let us illustrate and exhibit the importance of the ODA problem. Figure 1 shows an

example of an (obsolete) OD matrix and its corresponding transit network presented

in Wu and Lam (2006). Notice that the diagonal entries of the OD matrix are 0

and that it is not symmetric (in the morning, people go downtown and few to the

peripheries). Entry (1,2) of the OD matrix means that 250 users enter the network at

zone 1 and exit it at node 2 during a certain period of the day. The transit network
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has five lines (blue, green, red, black, and yellow), four-zone centroids (where trips

originate and end), eight transit stops, and eight walking links that connect centroids

to transit stops.

Fig. 1 Reference (obsolete) OD matrix (left-hand side) of the transit network (right-hand side) with
five lines and eight transit stops.

Table 1 specifies the headway of each line: the difference in minutes between two

different vehicles at the depot, and it also indicates the travel time in minutes for each

line-node-node transit segment (l, i, j).

Table 1 The network’s five lines (blue, green, red,
black, and yellow) are on the right side of Figure 1,
with each segment’s headway and travel time.

lines headway transit segment travel time
(min) (l, i, j) min.

1-blue 12 (1,5,6) 25
2-green (2,7,8) 10

6 (2,8,9) 10
3-red 6 (3,8,9) 10

(3,9,10) 10
4-black 6 (4,9,10) 10
5-yellow 12 (5,11,12) 25

Figure 2 shows only the links a user may take from origin 1 to destination 4.

Suppose the limits of the capacity of the vehicle and the network are not considered. In

that case, users may not consider taking the transit segment (3,8,9) because, though

the travel time by using line 3 or line 2 is the same, the waiting time is only determined

by the frequency of service of line 3 in contrast with the case where the user change
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Fig. 2 Transit segments a user may take to go from origin 1 to destination 4 and the flow volume
at each segment.

from line 2 to line 3 or line 4 at node 9 where the waiting time can be reduced by

the combined frequencies of lines 3 and 4, it can be validated with data from Table 1.

Values on the segments of Figure 2 are the number of passengers traveling from 1 to

4 according to the obsolete OD matrix and the link proportions in the third column

of Table 2. Node value -150 means that node 4 attracts 150 trips from node 1. With

the obsolete link proportions, all passengers use the walking link to go from node 1

to node 7 and then board the green line from node 7 to node 9; next, half of the

passengers use the black line (4,9,10), and the other half use the red line (3,9,10) to

arrive at node 10. None use the (3,8,9) segment. Finally, at node 10, all passengers

take the walking link to arrive at node 4.

The first and second columns of Table 2 indicate the lines and segments of the net-

work depicted in Figure 2. The third column is the link proportions that mimic how

a user moves in a network based on a linear transit assignment procedure described

by Spiess and Florian (1989). In this work, we consider that the obsolete link propor-

tions may be updated to represent some slight changes in the behavior of the users

(for instance, users may prefer to board line 3 at node 8 because if they wait to board

at node 9 there may be more users waiting and not all of them might board the vehi-

cle that arrives first to the node due to vehicles’ capacity), as shown in the fourth

column of the table. It is worth mentioning that although in this work, the Spiess and

Florian assignment model is being considered, the methodology proposed in our work

can be used considering other assignment models, such as the stochastic user equilib-

rium assignment used by Wu and Lam (2006) or even a shortest path model such as

the one used by Cervantes-Sanmiguel et al (2023). The methodology we propose is to
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slightly modify the link proportions obtained from any assignment model to better

represent the actual observed flows in the network.

Table 2 Transit segment probabilities associated to
Figure 2.

Lines Transit Obsolete Updated
segments probabilities probabilities

2 green (2,7,8) 1.0 1.0
(2,8,9) 1.0 1.0

3 red (3,8,9) 0.0 0.0
(3,9,10) 0.5 0.6

4 black (4,9,10) 0.5 0.4

Fig. 3 The segment flows are generated with the obsolete probabilities for an updated amount of
200 users from 1 to 4.

Let us suppose that the number of trips originated at node 1 whose destination is

node 4, is no longer 150 but increased to 200, and the infrastructure of the network has

not changed. Using the obsolete probabilities of Table 2, we obtain Figure 3 with the

updated segment flows. Nevertheless, this distribution of passengers along the network

may not match the observed flow at some segments. For instance, let us suppose that

80 users have been observed at segment (4,9,10) and 120 users at segment (3,9,10).

Thus, the link proportions and the number of users of the OD matrix must also be

updated. Notice that the updated link proportions, presented in the fourth column of

Table 2, must be close to the reference (obsolete) ones, and the new OD matrix must

be similar to the reference one to preserve the dynamics of the city (Cascetta, 1984).

Therefore, the ODA problem aims to update all the OD matrix entries simulta-

neously and the new transit segment proportions by matching the observed flow at

some transit segments of the network. We formulate a mixed-integer linear program
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(MILP) to solve the ODA problem to avoid a quadratic objective function or a bilevel

programming model, as most of the literature does (Wu and Lam, 2006; Mahmoodjan-

lou et al, 2019). Moreover, by estimating the OD matrix and the variation of the link

proportions, we are dealing with some congestion effects without explicit them in our

methodology. In addition to being one of the few linear models in the related literature,

our model optimally solves instances larger than those reported with bilevel program-

ming methods. Indeed, our MILP is enhanced by a family of valid inequalities and

establishes bounds on the variables to provide a tighter integer linear programming

formulation. Moreover, continuous variables count the number of users in all other

approaches. Thus, the solutions obtained are not integer numbers, and it is necessary

to round the number of users in the OD matrix entries to implement them in practice.

In discrete combinatorial optimization, relaxed solutions often lead to large differences

from the optimal integer ones (Schrijver, 1998; Wolsey, 1998). This work considers

integer variables, even if the ODA problem becomes more challenging to solve, to stay

closer to a realistic scenario and to have more practical and implementable solutions.

This paper is organized as follows. We first present the literature review in

Section 2. The ODA problem is formally defined in Section 3. Then, its MILP model

is presented in Section 4. To test our methodology, we propose a random instance

generator to obtain close to real public transportation networks. Experimental results

validate our methodology. In Section 5, we present a comparison of our method with

a penalty-based quadratic model from the literature, showing the benefits of our

approach in terms of accuracy and time. Moreover, we compare our approach with

the instance presented by Wu and Lam (2006), which was solved with a bilevel pro-

gramming approach. Then, Finally, in Section 6, we present the conclusions of this

work.
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2 Literature review

The OD matrix estimation approaches usually combine two stages of the four-stage

sequential procedure. For instance, Fisk and Boyce (1983) propose a model that com-

bines trip distribution and traffic assignment, while Fisk (1989) combines the entropy

maximization method with traffic assignment. Also, Yang et al (1992) extended these

results to congested networks where the link proportions are not constant. Most mod-

els in the literature update OD matrices in road networks (Cascetta, 1984), but only

a few, including us, update OD matrices for public transportation networks.

Some approaches have used bilevel programming models to address the OD matrix

estimation problem from segment counts. The upper level represents the OD estima-

tion process, and the lower level represents a network equilibrium assignment (Yang

et al, 1992; Florian and Chen, 1995; Wu and Lam, 2006; Frederix et al, 2013). In Liu

and Fricker (1996), the authors propose a two-stage iterative method to estimate an

OD matrix and the variation in link choices among trip makers. Still, inconsistencies

arise when congestion effects are considered. In our work, we can slightly modify the

link proportions to adapt to these effects.

Wu and Lam (2006) formulate a bilevel program with a stochastic user equilibrium

assignment for congested transit networks; they simultaneously determine transit line

frequencies and the network flow pattern in congested transit networks using a heuris-

tic solution algorithm adapted for solving the OD estimation problem. In Yang et al

(2001), the authors use the link flows obtained from the stochastic user equilibrium

traffic assignment and estimated OD flows in the cost function. They use a sum of the

squares of errors as the objective function and propose a successive quadratic algo-

rithm to solve the model. Our work avoids a quadratic objective function, making the

solution method based on branch and bound more efficient.

Based on the user equilibrium principle, some models succeeded in incorporating

congestion effects into the estimation process, but the perception of travel costs does
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not vary among travelers (Garćıa-Ródenas and Verastegui-Rayo, 2013). A more real-

istic approach allows for the difference in cost perceptions and different link choice

behaviors among travelers using a stochastic user equilibrium assignment (Lo and

Chan, 2003; Mahmoodjanlou et al, 2019).

In Chávez-Hernández et al (2019), the authors consider a penalized quadratic

model to update OD matrices from observed transit flow volumes. They present an

augmented Lagrangian model that aims to minimize the difference between a refer-

ence matrix and the estimated one and between the observed segment flows and those

obtained after a linear transit assignment of the estimated OD matrix. To solve the

problem, the Karush-Kuhn-Tucker optimality conditions were formulated and solved

with a dual ascent technique. In Section 5, we compare our numerical results with

theirs. However, quadratic models are constructed to deal with large-scale networks.

To overcome the difficulty of dealing with large networks with explicit management

of route choice probabilities, Walpen et al (2020) have used heuristic methods where

those probabilities are not used explicitly to solve the problem, such that the bilevel

program is iteratively solved.

The growing interest in using big data from mobile phones in transport research

has been important (Landmark et al, 2021; Cantelmo and Viti, 2020; Caceres et al,

2020); however, they have the limitation of having population biases in addition to

their difficult identifiability (Liao et al, 2022). In He et al (2023), the authors use a

deep learning approach with a multi-fused residual network. In contrast, López-Ospina

et al (2022) use a maximum entropy optimization model to forecast travel demand,

but they do not consider the assignment probabilities. In our research, the type of

information used is the passenger flow in some transit network segments; according

to Castillo et al (2013), this information can be sufficient to obtain a unique solution

under reasonably strong assumptions on the assignment process.
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Ge et al (2022) integrated vehicle and crew scheduling by revisiting an earlier

formulation incorporating days-off patterns delay propagation. Zúñiga et al (2021) use

available historical data and combine it with online information regarding the entry

and exit of each particular user to make predictions and updates for the OD matrices.

Most of the mentioned approaches formulate the problem as a quadratic optimiza-

tion problem. They include observed data, such as the flow of people at some segments

of the transit network, and a reference matrix obtained from surveys or projections

based on economic growth. There are relatively few authors who propose a linear

model. For example, Ashok and Ben-Akiva (2002) formulate a model to estimate a

dynamic OD matrix by defining a state vector regarding the departure rates from

each origin to each destination. Pitombeira-Neto et al (2018) propose a linear model

to estimate a dynamic OD matrix to represent the stochastic evolution of OD flows

over time. They propose a Markov chain Monte Carlo algorithm to approximate the

mean OD flows and the link choice model parameters.

3 The ODA problem

In this section, we formally present the ODA problem. We are considering updating

an obsolete OD matrix at a specific period of the day. Our methodology is based on an

optimization network flow model that avoids the most often used quadratic models for

this problem (Chávez-Hernández et al, 2019). Instead, we count the excess or deficit

of trips at each OD pair, as shown in Section 4.

Let us consider a public transit network with a set of lines L. The public transit

system is represented by a directed multigraph G = (N ,A), where N is the set of

nodes (bus or subway stops), and A is the multiset of transit segments (directed links)

of the lines in L.

Segment or link a ∈ A is a triplet (l, i, j) indicating the line l ∈ L and the nodes

i and j linked by line l, with both nodes in N . Notice that in link (l, i, j), line l first
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passes through i and then through j. All the nodes (or centroids) in N are origins and

destinations, thus PQ = {(p, q) ∈ N ×N and p ̸= q}.

The reference OD matrix, denoted by ĝ = {ĝpq}, corresponds to the obsolete

number of users entering the transportation network at node p, whose final destination

is node q, for all (p, q) ∈ PQ. The objective of the ODA problem is to determine the

estimated OD matrix denoted by g = {gpq}, which is close to matrix ĝ and verifies

measured observation of the flow volumes at some transit segments of the network, for

(p, q) ∈ PQ. While the updated OD matrix g = {gpq} corresponds to the variables in

our methodology, the reference matrix ĝ = {ĝpq} values are data known beforehand,

for (p, q) ∈ PQ.

When traveling on public transportation, the route passengers follow is determined

by the transit lines they board. Sometimes, when traveling along a particular section

of their route, passengers can choose from a set of transit lines with equivalent travel

times. If, for instance, passengers board the first available transit line, their waiting

time can be reduced, which will ultimately improve their total travel time. As a result,

people waiting at a transportation hub to board a line from a set of available lines

will be distributed based on the frequency of service. From now on, we will refer

to the transit line segments that passengers can use for their entire journey as a

“strategy”. Following the first principle of Wardrop (1952), users do not consider a

transit segment if the total travel time increases. Let Spq ⊆ A be the subset of transit

segments (strategy) travelers may take from p to q, with (p, q) ∈ PQ. Thus, for each

pair of nodes, there could be several routes that the user may take. After solving a

transit assignment problem (see Figure 4), we can determine the proportion of trips

traveling by each transit segment a = (l, i, j) ∈ Spq, πa
pq, from p to q, (p, q) ∈ PQ. This

proportion is πa′

pq = 0 for segment a′ /∈ Spq. The obsolete link proportions are used

as references and considered parameters in this study, but we allow a slight deviation

from them.
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Fig. 4 Transit assignment diagram.

We rely on observed flow volumes ϕa of travelers at some transit segments a ∈ Φ

to update the OD matrix. Note that Φ ⊂ A. The ODA problem can now be formally

stated: find the OD matrix g that minimizes the difference between this matrix and

the reference OD matrix ĝ such that the flow volumes ϕa′
in the observed links a′ ∈ Φ

are verified, with a maximal deviation of ε from the link probabilities πa
pq for all a ∈ A,

(p, q) ∈ PQ.

4 Mixed-integer linear programming model for the

ODA problem

To formulate a mixed-integer linear programming model for the ODA problem, we

must determine the OD matrix variable g = {gpq} with (p, q) ∈ PQ. These variables

are the estimated values of the OD matrix: the estimated users from the origins to the

destinations.

In this work, we use the minimization of the absolute distance between g and

the reference OD matrix ĝ to allow the new demand to reproduce the observed flow

volumes at specific transit segments in Φ as an objective function. We use two sets of

variables to control the difference between the reference OD matrix and the estimated

one to obtain a linear objective function. The excess integer variables Epq with (p, q) ∈

PQ indicate more users from p to q. Thus, ĝpq < gpq and in this manner, this excess is

defined as Epq = max{gpq − ĝpq, 0}. Similarly, we introduce deficit variables Dpq with

(p, q) ∈ PQ for the case where there are fewer users from p to q, that is, ĝpq ≥ gpq.
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Therefore, Dpq = max{ĝpq − gpq, 0}. Note that when Dpq > 0 then Epq = 0, and vice

versa.

The objective function of the MILP for the ODA problem is to obtain an estimated

OD matrix g as close as possible to the reference one ĝ by minimizing the total sum

of the excess and the deficits of the estimated OD matrix g:

min
∑

(p,q)∈PQ
αDpq + βEpq. (1)

where linear parameters α and β allow the decision maker to prefer the user’s excess

or deficits. For example, for a city whose population has been growing over the years,

we may expect that there will be more users in most of the OD matrix entries, thus

β < α. Similarly, a rural zone may be experiencing a population decrease, thus β > α.

To linearly express the deficits and the excess of the estimated OD matrix, we need

the following equations for each (p, q) ∈ PQ:

Dpq ≥ ĝpq − gpq, (2)

Epq ≥ gpq − ĝpq. (3)

The ODA problem updates the OD matrix and determines the volume of people

traveling throughout each link a ∈ Spq ⊂ A that connects p with q, (p, q) ∈ PQ.

Hence, we introduce integer variables vapq to indicate the actual number of people going

from p to q using segment a = (l, i, j) ∈ Spq. As mentioned before, there are some

transit segments a′ ∈ Φ ⊂ A where the flow of passengers ϕa is observed and counted.

These observations are our most important tool for updating the OD matrix. We do

not know the passengers’ origin or destination using this segment. We only have that
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the sum of all volumes should be equal to the observations:

ϕa′
=

∑
(p,q)∈PQ|a′∈Spq

va
′

pq, for a′ ∈ Φ. (4)

After solving a transit assignment problem (Spiess and Florian, 1989), the pro-

portion of users that take each transit segment for each origin-destination pair

πa
pq = vapq/gpq is computed. The passenger flow traveling from p to q that uses link

a ∈ A is obtained by multiplying the total number of trips gpq by the proportion πa
pq,

that is, πa
pqgpq = vapq. Nevertheless, by using this equation, the actual passenger flow, in

some cases, might yield inconsistencies with the assignment probabilities. That implies

that the link proportions may have suffered a small deviation. Indeed, the assignment

problem may establish a proportion of 0.6 for some transit segments, but in reality,

it may be 0.59. This difference may be due to aspects the modeler does not consider,

such as a more realistic user behavior or changes in the network’s operative factors

like service frequencies or delays. Thus, these proportions need slight adjustments to

reflect the actual volumes. Therefore, we compute them as follows for a ∈ Spq and

every (p, q) ∈ PQ:

⌊max{(πa
pq − ε), 0} gpq⌋ ≤ vapq, (5)

⌈min{(πa
pq + ε), 1} gpq⌉ ≥ vapq, (6)

with ε ≥ 0. Interval [max{(πa
pq − ε), 0},min{(πa

pq + ε), 1}] represents the allowed

deviation from the obsolete link proportions. The ⌊·⌋ denotes the floor function in

constraints (5) and ⌈·⌉ the ceiling function in constraints (6). Also, notice that we are

not enforcing equality since we have the floor operator and positive values of ε. After

solving our ODA MILP model, we obtain the updated OD matrix and the updated

link proportions that fit the observed flow in the network.
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Then, we must handle the network flow constraints. The sum of the flow volumes

at origin p in the set of origin nodes P must equal the number of users entering the

transport network at this node, as constraints (7) state. Similarly, with constraints (8),

all flow volumes arriving at destination q in the set of destination nodes Q equal the

total number of users ending their journey at q. Flow conservation at every node is

guaranteed by constraints (9): the flow entering node k ∈ N \ {p, q} must be equal to

the flow leaving it.

∑
l∈L

∑
{i|(l,p,i)∈Spq}

v(l,p,i)pq = gpq, (p, q) ∈ PQ, (7)

∑
l∈L

∑
{i|(l,i,q)∈Spq}

v(l,i,q)pq = gpq, (p, q) ∈ PQ, (8)

∑
l∈L

∑
{i|(l,i,k)∈Spq}

v(l,i,k)pq =
∑
l∈L

∑
{j|(l,k,j)∈Spq}

v(l,k,j)pq , k ∈ N \ {p, q}, (p, q) ∈ PQ.

(9)

Valid inequalities strengthen a MILP formulation since they do not cut any feasible

integer solution but make the solution space polyhedron closer to the integer solution

convex hull (Wolsey, 1998; Schrijver, 1998). Thus, we introduce valid inequalities (10)

to our MILP to decrease the computational running time of the branch-and-bound

algorithms without compromising the optimality of the solution since it bounds the

volume of each arc by the total number of persons going from p to q:

vapq ≤ gpq, a ∈ Spq, (p, q) ∈ PQ. (10)

Inequalities (10) are valid by definition; preliminary results show a slight advantage

of using them in terms of the difference between the real and estimated OD-matrix.

Notice that by imposing a positive integer value on the volumes, we also ensure the

integrality of the estimated OD values of the matrix and the excess and deficits. Thus,
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Dpq and Epq may be defined as real variables, but they will take integer values. This

is formally stated by (11)-(13).

vapq ∈ Z+, (p, q) ∈ PQ, a ∈ A, (11)

δ1ĝpq ≤ gpq ≤ δ2ĝpq ∈ R+, (p, q) ∈ PQ. (12)

Dpq, Epq ∈ R+, (p, q) ∈ PQ, (13)

where δ1 and δ2 are constants known by the user to bound g and remain close to ĝ.

For example, a census or some statistical information may estimate that a particular

population has grown no more than 10%.

To summarize, we denote as the ODA-MILP(ε) the MILP model of the ODA

problem with a parameter ε such that it minimizes objective function (1) subject

to constraints (2)-(13). Our methodology consists of starting with ε = 0 and then

increasing it by 0.02 units until a feasible solution for the ODA-MILP(ε) is reached.

In this manner, we obtain an estimated OD matrix and the actual flow volumes or

the actual link proportions.

5 Experimental results

In this section, we generate a set of random instances that mimic real transport net-

works to validate our methodology, the ODA-MILP(ε) model. Section 5.1 describes

these randomly generated matrices ḡ and how we perturb them to obtain the refer-

ence ones. Section 5.2 compares the ODA-MILP(ε) with the augmented Lagrangian

method introduced in Chávez-Hernández et al (2019). Finally, in Section 5.3, we com-

pare our methodology with the bilevel programming approach presented in Wu and

Lam (2006) for the example transit network shown in Figure 1, and finally, we apply

our proposed methodology to the benchmark instance based on the Swiss network
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with 15 nodes and 21 edges and the network design proposed by Cervantes-Sanmiguel

et al (2023).

The general scheme of the comparison process we use in this study to validate the

ODA-MILP(ε) model is depicted in Figure 5. We start with the real matrix ḡ; Section

5.1 explains how to generate it. This matrix is usually unknown, but we consider that

we are in an ideal case where we know it to validate our approach. Then, we perturb

the real matrix to obtain the reference or obsolete matrix ĝ. Finally, we obtain g using

the ODA-MILP(ε), which estimates the real matrix. Two questions must be validated.

First, we must assess how close the reference OD matrix ĝ is to the estimated one

g. That would verify the mathematical model’s correctness and ensure the previous

knowledge of the population dynamics. Second, we must assess how close the real OD

matrix ḡ is to the estimated one g. This is the most challenging question.

Fig. 5 Comparison process to validate the ODA-MILP(ε) model.

For the ODA-MILP(ε), the excess and deficit parameters of the objective func-

tion (1) are set to α = 1 and β = 1 for all instances. Thus, no previous knowledge

about the dynamics of centroids is known in advance. The parameters in equations

(12) that bound the estimated OD matrix values are set to δ1 = 0.9 and δ2 = 1.1.
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The ODA-MILP(ε) was coded in Python 3.7 and solved with a branch-and-bound

implementation by the linear solver Gurobi 8.1 with the default algorithmic param-

eters. All experiments were executed in a computer with an Intel(R) Core(TM) i7

processor and 12 GB RAM.

5.1 Randomly generated instances

The generation of public transportation instances that mimic real networks is an active

research area. Public transportation networks have special properties, such as growing

evolutionarily, being embedded into two-dimensional space, having small-world proper-

ties, and having hierarchical organization. Based on von Ferber et al (2007); Chatterjee

et al (2016); Sienkiewicz and Ho lyst (2005), we generate a set of random instances

containing the matrices corresponding to the real OD matrices ḡ. All our instances

and results can be found online at: https://doi.org/10.6084/m9.figshare.13838819.

Each instance representing a public transit system is composed of the real OD

matrix ḡ, the reference OD matrix ĝ, its associated directed multigraph G = (N ,A),

where N is the set of nodes, A is the multiset of directed links between the lines in

L, and the link proportions per segment in A. The following methodology to generate

the set of instances is used in this study.

1. The exact OD matrices ḡ are random integers between [0, 500|N |] for each pair

(p, q) ∈ PQ. The diagonal entries are all zeros.

2. A Newman-Watts-Strogatz small-world graph (Newman and Watts, 1999) is gener-

ated (with the Python package NetworkX (Hagberg et al, 2008), which can be used

as a generator for small-world graphs and calculating shortest paths) by creating

a ring over |N | nodes. Each node in the ring is connected with its k = ⌈0.3|N |⌉

nearest neighbors (or k − 1 neighbors if k is odd), and the probability of adding

new arcs is set to 0.3. The resulting Newman-Watts-Strogatz small-world graph

has undirected edges, as the two graphs with 15 and 20 nodes shown in Figure 6.
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3. Now that we have a graph that resembles a public transportation network, we form

the transit lines (corresponding to buses, underground, or any other transit mode)

|L|. For each OD pair of nodes (p, q) ∈ PQ, we compute all the non-intersecting

routes between them and select the |L| ones with the shortest number of segments.

If there are fewer than |L| non-intersecting routes, we choose them all. In this

manner, each route is associated with a line l and an edge (i, j) belonging to the

non-intersecting shortest routes between (p, q). Notice that the lines may visit all

the nodes.

4. We establish the same frequency for all the lines. The link proportions πa
pq for each

a ∈ Spq are then computed along the (p, q) OD pair routes by solving the standard

transit assignment problem of Spiess and Florian.

5. To generate the reference matrices ĝ, 15% of the OD pairs of the exact OD matrix

ḡ are randomly selected and uniformly perturbed by ±10%. The OD pairs not

selected have the same value in the real matrix ḡ and the reference one ĝ. These

instances are named Instances-ED.

6. We compute the segment flows vapq, a ∈ A, (p, q) ∈ PQ using the link probabilities,

for each matrix ḡ and ĝ . All the segment flows in set Instances-ED have been

observed. Set Instances-ED1/2 comprises the same instances, but only half of the

transit segments are observed this time.

7. Another set of instances is generated to test that the link probabilities are modified.

This time, the real matrix and the reference one are equal, so the reference demand

entries are not perturbed. Nevertheless, 15% of the segment flows at the network

segments are perturbed by ±10%, but all are still observed. The resulting instances,

named Instances-ε, aim to show that the assignment probabilities may differ from

the initial ones and must be modified with the demand OD matrix.

In this manner, we have generated 201 instances with the number of nodes in

the transit network between [4,20] and transit lines between [1,5]: 67 instances in the
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Fig. 6 Newman-Watts-Strogatz small-world graphs with 15 and 20 nodes.

Instances-ED set, 67 instances in the Instances-ED1/2 set, and 67 instances in the

Instances-ε one. Although our instances might seem oversimplified, it is important to

notice that their use is to evaluate the size of the instances that our model can solve

with an exact method.

5.2 Experimental results for the ODA problem

We compare the ODA-MILP(ε) performance with the augmented Lagrangian method-

ology of Chávez-Hernández et al (2019), which is based on an iterative dual ascent

technique and the Lagrangian multipliers method. Their approach yields solutions

with low CPU time when applied to large-scale networks.

To evaluate the performance of our model, we use the root mean square error,

RMSE, to interpret deviations in the same scale as the variables. For instance, the

RMSE between the exact matrix ḡ and the one obtained by our model g is calculated

as follows:

RMSE(ḡ,g) =

√√√√ 1

n

∑
(p,q)∈PQ

(ḡpq − gpq)2,

where n is the number of OD pairs.

Table 3 shows the comparison results of the ODA-MILP(ε) methodology and the

Augmented Lagrangian algorithm of Chávez-Hernández et al (2019) for the Instances-

ED set. The ODA-MILP(ε) is parameterized with ε = 0, sufficient for these instances
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to find a feasible and optimal solution. Later, this parameter will be flexible for the

set Instances-ε. The first and second columns of Table 3 correspond to the number of

nodes |N | and lines |L| in the transit system. The root mean squared error between the

reference matrix ḡ and the estimated one g is in the columns “RMSE(ḡ,g)”. Columns

with “RMSE(ĝ,g)” are the root mean squared error between the exact demand ĝ

and the estimated one g. The columns labeled “RMSE(v̄, v)” correspond to the root

mean squared error between the observed and the estimated segment flow volumes.

Finally, column “time” is the CPU time in seconds to solve the instance with each

methodology. Each line in this table averages all the instances with the same nodes

and lines. For example, the first line represents the average of the instances with four

to nine nodes and with a single line. The last line is the average of all instances.

Table 3 ODA-MILP(ε) methodology with ε = 0 and Augmented Lagrangian algorithm of Chávez-Hernández et al
(2019) for the Instances-ED set.

ODA-MILP(ε) Augmented Lagrangian algorithm
|N | |L| RMSE(ĝ,g) RMSE(ḡ,g) RMSE(v̄, v) time RMSE(ĝ,g) RMSE(ḡ,g) RMSE(v̄, v) time

1 182.36 134.66 0.00 0.01 3327.32 3325.85 2782.14 0.01
4-9 2 418.32 318.34 0.00 0.01 7053.29 7042.63 1073.07 0.00

3 408.50 303.20 0.00 0.01 11904.13 11895.27 2789.14 0.05
1 972.13 706.25 0.00 0.02 23758.67 23754.84 9960.47 0.11

10-15 2 1731.19 1223.90 0.00 0.02 38827.60 38769.26 10119.73 0.37
3 2437.99 1404.72 0.00 0.03 55952.64 56148.93 8939.14 0.75
4 3674.35 2510.42 0.00 0.04 104932.99 104909.87 7688.41 2.34
1 1399.07 746.53 0.00 0.03 33624.09 33592.08 19351.70 1.73
2 2697.02 1919.76 0.00 0.05 74077.07 74214.09 11373.41 4.18

16-20 3 3939.14 2303.91 0.00 0.06 109488.89 109556.34 14999.98 4.35
4 5203.55 3212.61 0.00 0.08 129385.39 129667.00 18705.03 5.14
5 6816.88 5045.99 0.00 0.08 181655.45 181777.15 15671.14 9.67

Av. 2490.04 1652.52 0.00 0.04 64498.96 64554.44 10287.78 2.39

As we can observe from Table 3, the best results are for the ODA-MILP(ε) method

in terms of root mean square error and time. Indeed, contrary to the augmented

Lagrangian, the estimated matrices obtained with the ODA-MILP(ε) method are

closer to the real ones than the reference ones are. The difference of the flow volumes

equals zero for the ODA-MILP(ε) method since the model tries to reproduce exactly
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this behavior with equations (4). Notice that the augmented Lagrangian method

does not reproduce closely the observed segment flows. The larger the instances, the

larger the root square mean errors for both methods. Remarkably, the execution

time for the ODA-MILP(ε) method is better than the augmented Lagrangian algo-

rithm, which is intended for large instances. Although the resolution time for the

ODA-MILP(ε) is less than one second, the model construction is time-consuming.

Indeed, the number of variables is O(|N |3 + 3|N |2) while the number of restrictions

is O(3|N |3 + |L||N |2 + 5|N |2). A research line is then about the data structures, pre-

processing algorithms, and dominant solution properties to increase the size of the

instances. In terms of percentages, considering the largest RMSE obtained in the net-

works with 16-20 and 5 lines, we improved the quality of the estimated average number

of trips by 97% (we compared the ODA-MILP(ε) and the Augmented Lagrangian

corresponding RMSE(ḡ,g).)

Figure 7 compares the ODA-MILP(ε) methodology with the Augmented

Lagrangian algorithm of Chávez-Hernández et al (2019). Figures 7(a) and 7(b) show

the scatter plots of the segment flows. In contrast, Figures 7(c) and 7(d) show the

scatter plots for the estimated trip OD demand matrix concerning the real one, for an

instance with 20 nodes and five lines of the Instances-ED set.

Figure 7 shows that the ODA-MILP(ε) recovers almost entirely both the real

OD matrices and the observed segment flow volumes. This is not the case for the

Augmented Lagrangian method, where there is a relatively small scattering in the

transit segment flows but a large one in demand OD matrices.

Most of the time, not all the flows of every transit segment can be observed. Thus,

we compare the ODA-MILP(ε) performance when only half of the transit network links

have been observed. The results of the Instances-ED1/2 set are displayed in Table 4.

It has the same structure as Table 3.
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(d) Augmented Lagrangian.

Fig. 7 The ODA-MILP(ε) compared to the Augmented Lagrangian algorithm of Chávez-Hernández
et al (2019) presented with scatter plots of the segment flows, (a) and (b), and of the OD matrices,
(c) and (d), for an instance with 20 nodes and five lines of the Instances-ED set.

Table 4 shows that the ODA-MILP(ε) cannot exactly reproduce the observed seg-

ment flows since the RMSE(v̄, v) are no longer zero as for the Instances-ED set. By

comparing the largest RMSE with the ODA-MILP(ε) and the Augmented Lagrangian,

we are improving the average error in the estimated trips by 95.5%. The differences

between the estimated OD matrix and the real or the reference ones are larger. This

behavior is expected since it has less information about the network structure and more

degrees of freedom. Although the computational time is still short, it takes slightly

longer than considering observations at all the segments. In the case of the augmented

Lagrangian, we can see that the RMSE(v̄, v), the RMSE(ḡ,g), and the computational

23



Table 4 ODA-MILP(ε) methodology and the Augmented Lagrangian algorithm of Chávez-Hernández et al (2019) for the

Instances-ED1/2 set.

ODA-MILP(ε) Augmented Lagrangian algorithm
|N | |L| RMSE(ĝ,g) RMSE(ḡ,g) RMSE(v̄, v) time RMSE(ĝ,g) RMSE(ḡ,g) RMSE(v̄, v) time

1 518.72 546.77 417.96 0.05 3626.40 3626.40 498.12 0.00
4-9 2 404.27 483.43 252.36 0.15 6543.11 6543.11 1054.17 0.00

3 336.24 464.14 191.27 0.15 11968.09 11968.09 1285.14 0.00
1 3086.89 3393.05 1941.77 0.84 17620.94 17620.94 1082.77 0.01

10-15 2 2131.2 2533.54 1411.99 2.57 32150.13 32150.13 11373.13 0.00
3 3318.08 3552.34 1101.28 4.19 56788.61 56788.61 6179.43 0.02
4 4381.59 4979.35 1287.87 4.72 94491.07 94491.07 7521.56 0.15
1 3570.02 3771.38 1498.87 3.11 22171.57 22171.57 10761.14 0.02

16-20 2 3225.94 3462.36 1738.42 6.78 70228.30 70228.30 10263.14 0.26
3 4538.72 4807.14 1631.43 11.67 121422.94 121422.94 8709.94 0.63
4 5421.6 6399.04 1688.64 13.9 4 133037.24 133037.24 17501.44 0.54
5 6959.75 8255.14 1713.79 20.94 185924.72 185924.72 17467.71 1.27

Av. 3157.75 3553.97 1239.64 5.76 62997.76 62997.76 7808.14 0.24

time decrease concerning the values obtained with the Instances-ED set. The differ-

ence in the performance of both methodologies can be explained due to the different

hypotheses made for each model. For example, for the augmented Lagrangian method,

the variables are assumed to be continuous, and the observed flows can differ from

those calculated with the new demand matrix. Furthermore, it is assumed that the

segment flows are obtained by solving a linear assignment problem (the proportions

of the arcs do not change regardless of the demand matrix). In the case of the model

proposed in this work, it is assumed that the variables are discrete, and it is forced to

reproduce precisely the flows observed in the segments from the new matrix obtained

and the adjustment in the arc proportions. The dual ascent and Lagrange multipliers

methods are accurate and efficient, especially in large-scale problems with continuous

variables. These assumptions are no longer valid in small networks with integer values,

and gradient-based iterative algorithms are no longer a good option. The feasible solu-

tion regions (convex hulls) of the discrete and continuous cases for the same instance

have a discrepancy. Thus, the discrete optimum is underestimated or overestimated

by the computational solution.
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Furthermore, in the augmented Lagrangian and multiplier methodology, it is con-

sidered that the link flows can be obtained from the product of a matrix (containing

the proportions of trips in each link for each OD pair without considering the capac-

ity limits of the vehicles) times a vector (containing the travel demand between each

OD pair) and the Karush-Kunh-Tucker optimality conditions are formulated assum-

ing that the entries of the proportion matrix are constant. In cases where vehicle

capacity limits play an essential role in the distribution of trips across the network,

the link proportions are expected to change with the demand. This can be seen when

a passenger adds more segments to the strategy (considers more options) due to the

congestion that some transit lines present, so segments that previously had no flow

now carry a small proportion. Thus, assuming that the arc proportions obey an assign-

ment problem without capacity limits would lead us to maintain the same structure

of the probability matrix, which may not represent the reality of the problem. The

inconsistency between link probabilities and the assignment model is more significant

for the quadratic continuous model. In this case, a total variation diminishing model

and non-smooth regularization might be better for dealing with high gradients that

may arise in the number of users.

Figure 8 is similar to Figure 7 but for one instance of the Instances-ED1/2 set with

20 nodes and 2 lines. The scatter plots for the segment flows are depicted in Figures

8(a) and 8(b), while Figures 8(c) and 8(e) show the scatter plots of the estimated

demand. The differences are slight, although we do not obtain a perfect fit between

the observed volumes and those calculated with the ODA-MILP(ε). The adjustment

in both segment flows and demand of the ODA-MILP is imperfect. Still, the dispersion

between the reference values and the estimates is smaller than that obtained with

the Augmented Lagrangian. Furthermore, for the augmented Lagrangian, we can see

that although the estimated volumes remain relatively close to the observed ones, in

general, the estimated demand is far from the exact solution.
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Fig. 8 Scatter plots of the volumes, (a) and (b), and of the OD matrices, (c) and (d), for an instance
with 20 nodes and two lines of the Instances-ED1/2 set.

Our previous experimental results yield an ε = 0, meaning that the link probabili-

ties have not changed. Frequently, users may follow different routes because of network

changes due to variations in transit line service frequencies or longer travel times due

to street congestion. An example of the network of Figure 1 is presented in Table 2.

In our model, this phenomenon is modeled by constraints (5) and (6), where the new

proportion of trips traveling on each transit segment a ∈ A may slightly change con-

cerning the proportion πa
pq traveling from p to q, (p, q) ∈ PQ obtained previously from

a transit assignment, which can be the transit assignment of Spiess and Florian, the

all or nothing assignment or any other.
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Therefore, we now test the Instances-ε set where we parametrically change the

values of ε until the problem is feasible. These results are presented in Table 5. As

for the previous tables, the first and second columns correspond to the number of

nodes |N | and the number of lines |L| in the transit system. The third column is the

ε parameter value needed to obtain a feasible estimated OD matrix. In the ODA-

MILP(ε) method, we start with ε = 0 and then iteratively increase it by 0.02 until we

obtain a feasible solution. The last column shows the time in seconds needed by the

ODA-MILP(ε) method. The values shown at each line of this table represent averages.

Notice that we do not report the RMSE values since our instances were constructed to

force the link proportions to change, such that the real and the reference matrix are

close. Moreover, the augmented Lagrangian method cannot deal with these instances

since it does not modify the link probabilities. Indeed, it does not converge to any

solution. For example, suppose that the probability of a segment a ∈ A from the OD

pair (p, q) is πa
pq = 0.5. Suppose the ODA-MILP(ε) yields a ε = 0.05. In that case, the

updated probability is now in the interval [0.475,0.525], and it can be computed once

we have the estimated OD matrix and the corresponding segment flows.

Table 5 Values of ε to
obtain a feasible solution and
time in seconds for the
ODA-MILP(ε) methodology
for the Instance-ε set.

|N | |L| ε time

1 0.13 0.00
4-9 2 0.04 0.00

3 0.09 0.00
1 0.05 0.01

10-15 2 0.04 0.01
3 0.04 0.02
4 0.03 0.03
1 0.08 0.01
2 0.03 0.03

16-20 3 0.02 0.10
4 0.03 0.06
5 0.08 0.15

Av. 0.05 0.04
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Table 5 shows that the ODA-MILP(ε) methodology can adjust the ε parameter to

consider that the trip distribution over the transit network is made differently than

before. With this consideration, we can obtain an OD matrix that coincides with the

real one. Moreover, the computational time does not increase, and the link probability

variation is slight.

5.3 Instances from the literature

This section compares our methodology with the bilevel programming approach

presented in Wu and Lam (2006). Also, we present some experiments on the tran-

sit network designed by Cervantes-Sanmiguel et al (2023) based on Mandl’s Swiss

network.

5.3.1 Network of Wu and Lam (2006)

Let us consider again the example transit network shown in Figure 1. We applied

the linear transit assignment of Spiess and Florian (1989) with constant travel times

to distribute a demand of 200 trips for each of the OD pairs (1,2), (1,4), (3,2), and

(3,4). This yields the flow pattern shown in Figure 9, from which we compute the link

proportions that we will refer to as obsolete proportions. They may differ from the

observed ones in a more realistic scenario.

Fig. 9 Segment flow resulting from a linear transit assignment.
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In the instance considered in Wu and Lam (2006), after performing a stochastic

user equilibrium assignment, they get the flow over some route sections, which they

consider as the observed flows. We deduced the flows for some transit network segments

using the route sections they defined. Figure 10 shows the flows we computed by

rounding off the mentioned results to obtain integer observed flows.

Fig. 10 Observed link flow resulting from a stochastic user equilibrium transit assignment.

By using the above information, we can compute some link proportions. Let us

note that the number of users from node 1 to node 2 is 200; however, only 149 users

are observed in the link (1, 5, 6); this means that the other 51 users left node 1 using

line 2, therefore π
(1,5,6)
1,2 = 149/200 and π

(2,7,8)
1,2 = 51/200. Similarly, it can be deduced

that π
(5,11,12)
3,4 = 149/200 and π

(2,7,8)
3,4 = 51/200. Also, for the OD pairs (1,4) and

(3,2), we have that the only option to leave the origin node is by boarding line 2,

therefore π
(2,7,8)
1,4 = π

(2,7,8)
3,2 = 1.0. These results were considered as observed link

proportions and are compared with those from solving the ODA-MILP problem with

ε = 0.3 (estimated proportions) and shown in Table 6. In this case, the value of ε was

computed iteratively, starting with 0.0 and increasing by 0.1, until our MILP model

found a feasible solution. As we can see, the new proportions changed by around 25%

concerning the ones obtained from the linear assignment and are less than 5% close

to the real ones.
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Table 6 ODA-MILP(ε) methodology with ε = 0.3 for the instance in Wu and Lam.

(p, q) (l, i, j) Obsolete proportion Observed proportion Estimated proportion

(1,2) (1,5,6) 1.000 0.745 0.703
(1,2) (2,7,8) 0.000 0.255 0.297
(1,4) (2,7,8) 1.000 1.000 1.000
(3,2) (2,7,8) 1.000 1.000 1.000
(3,4) (2,7,8) 0.000 0.255 0.297
(3,4) (5,11,12) 1.000 0.745 0.703

Table 7 Resulting estimated demand.

(p, q) Obsolete Exact Estimated Resulting demand in
demand demand demand Wu and Lam

(1,2) 250 200 212 209.5
(1,4) 150 200 225 191.1
(3,2) 150 200 151 191.1
(3,4) 200 200 212 209.5

Table 8 RMSE for both methodologies comparing the
deviation between the OD demand matrices and the deviation
of the observed flows.

Model RMSE(ĝ,g) RMSE(ḡ,g) RMSE(v̄, v)

Wu and Lam 40.80 9.21 9.76
ODA-MILP(ε) 46.14 28.78 0.00

In this way, our model exactly reproduces the observed link flows of Figure 10.

Regarding the estimated demand, the results are shown in Table 7.

With this information, the deviation of the estimated OD matrix with both

methodologies against the obsolete and exact matrix can be computed. Table 8 shows

the root mean square error of the estimated demand concerning the obsolete demand

(RMSE(ĝ,g)) and the exact demand (RMSE(ḡ,g)), and the deviation of the esti-

mated segment/route-section flow concerning the observed ones. Recall that in Wu

and Lam (2006), they consider the flow over route sections as observations, while in

this work, we consider the flow in some transit segments; however, in our results, the

observed flows are reproduced exactly, so the deviation is null.

Although with our model, both deviations in demand are more significant than

those obtained in Wu and Lam (2006), our model is competitive because it exactly
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reproduces the observed segment flows; this is because, in our model, we are forced

to reproduce precisely the observed data so their accuracy strongly influences our

estimates.

5.3.2 Transit network of Cervantes-Sanmiguel et al (2023)

Mandl’s network is a well-known benchmark Swiss network (Mandl, 1980) from which

Cervantes-Sanmiguel et al (2023) designed a transit network that minimizes the trade-

off travel times and monetary costs for passengers. This transit network consists of 15

nodes and 5 transit lines that yield 64 transit segments, as shown in Figure 11 with

the respective travel times and headways in minutes.

Fig. 11 Cervantes-Sanmiguel et al (2023) transit network.

For this set of experiments, we computed the shortest path between each OD pair.

In those cases where the shortest path is not unique, we distributed the proportion

of trips equally. For instance, let us observe that to go from node 6 to node 3, a user

may board line 1, alight at node 5, and then continue the trip by boarding either line

1 or line 4; in this case, we set π
(1,6,14)
6,3 = π

(1,14,5)
6,3 = 1 and π

(0,5,3)
6,3 = π

(4,5,3)
6,3 = 0.5.
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Table 9 Deviation results for the Cervantes-Sanmiguel et al
transit network.

Transit segments (%) RMSE(ĝ,g) RMSE(ḡ,g) time

80 1.35 1.58 0.018
70 0.95 1.31 0.020
60 0.94 1.34 0.032
50 1.06 1.53 0.056
40 0.87 1.42 0.027
30 1.12 1.51 0.037
20 0.63 1.59 0.047
10 0.53 1.56 0.056

As for the exact demand, we used the one reported in Cervantes-Sanmiguel et al

(2023). Then, we generated the observed segment flows and the reference OD matrix

as described in Section 5.1.

First, we experimented assuming that observations in all transit segments were

available and tested different parameter ε values in our model as before; however,

no feasible solution was found. Then, we considered only 90% of the segments with

observations and repeated the procedure; again, no solution was found. We continued

reducing the percentage of segments with observations by ten until we reached 10%

of the segments with observations. In all cases, the optimal solution is obtained for

ε = 0.5. Table 9 reports the RMSE between the reference matrix and the estimated

matrix (column 2), the RMSE between the exact matrix and the estimated matrix

(column 3), and the CPU time in seconds (column 4). Observe that the CPU time

increases as the number of segments with observations decreases; this behavior of the

model can also be observed in Tables 3 and 4. There is no clear tendency for the

deviation measures between the reference, exact, and estimated demand. But we can

observe that while the shortest/largest deviation (0.53/1.35) between the reference

demand and the estimated one is obtained with 10%/80% of the transit segments with

observations, the shortest/largest deviation (1.31/1.59) between the exact demand and

the estimated one is obtained with 70%/20% of the transit segments with observations.
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6 Conclusions

We solve the inverse problem of estimating the actual OD matrix based on a reference

one and some flow observations at the transit segments. Indeed, OD matrices are

relevant for different purposes; for instance, they are relevant for bus line design and

the generation of useful timetables for adding new trips when drivers do not show up

or when there are accidents, and the network should be rapidly restored. Moreover,

updating OD matrices allows us to test the current system under more demanding

scenarios and adapt it to future demand infrastructure.

An integer linear programming model was presented to estimate the OD matrix,

simultaneously fitting the segment probabilities from a reference OD matrix and

observed transit segment flows. We compare the performance of the proposed model

with the augmented Lagrangian model previously introduced by Chávez-Hernández

et al (2019). The results have shown that the ODA-MILP(ε) offers high-quality solu-

tions for all the tested instances. Compared to the methodologies in the literature, the

scatter plots of the demand and the segment flows are considerably lower than those

obtained with other approaches. Moreover, the execution times are shorter with the

ODA-MILP(ε). Also, we programmed one of the few instance generators that mimic

transit networks to test the methodology presented in this paper.

Although our model considers only slight changes in the demand matrix and the

link proportions, most authors only consider a change in the demand. During the

COVID-19 pandemic, in most cities, there was a mobility reduction that can be seen

as a decrease in the number of trips represented on an OD matrix; also, to avoid

contracting the disease, people try to reduce their contact time with others, and the

transit services modify the frequency of service, these changes have a direct impact

in the segment proportions. The ODA-MILP(ε) can model the phenomenon, and

more experiments should be carried out in scenarios where both the demand and the
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probabilities change. Therefore, it is an issue to handle scenarios with more substan-

tial changes. Besides, our approach could be improved by indicating the assignment

probability difference for each OD pair and each transit segment.

Our results for relatively small networks take a computational cost of less than

one minute. Nevertheless, reading data and building the model before starting the

branch-and-bound solver is the most time-consuming task. Therefore, this suggests

the following areas of opportunity for further research. First, designing and developing

specific data structures such as arrays or linked lists to improve RAM use in reading

the instances. Second, an adequate preprocessing procedure must be developed to

improve the CPU time to construct the model for the Gurobi solver. Third, developing

dominant solution properties to improve the efficiency and scalability of handling large

instances. This work considers integer variables for the OD matrix estimation, but a

challenging area is handling the underlying data errors without rounding the values

of the variables.

Finally, these results were obtained from instances generated as described in

Section 5.1. This generator can be modified so that the link proportions represent an

equilibrium assignment (Spiess and Florian, 1989) for cases without congestion and

consider heuristic models to represent cases with congestion and capacity limits in

transport vehicles.
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