GRASP Strategies for a Bi-objective Commercial Territory Design
Problem

M. Angélica Salazar-Aguilar
Graduate Program in Systems Engineering
Universidad Auténoma de Nuevo Ledén, Mexico

e.mail: angy@yalma.fime.uanl.mx

Roger Z. Rios-Mercado
Graduate Program in Systems Engineering
Universidad Auténoma de Nuevo Ledn, Mexico

e.mail: roger@yalma.fime.uanl.mx

José Luis Gonzalez-Velarde
Center for Quality and Manufacturing
Tecnolégico de Monterrey, Mexico

e.mail: gonzalez.velarde@itesm.mx

January 2010



Abstract

In this work a problem motivated by a real-world case from a beverage distribution firm in Mexico is
addressed. Different planning criteria are taken into account in order to create acceptable territory
designs. Namely, each territory needs to be compact, connected and balanced according to two
attributes (number of costumers and product demand). Two GRASP based heuristics (BGRASP
and TGRASP) are proposed for this NP-hard combinatorial optimization problem. For each of
them two variants are studied: i) keeping connectivity as a hard constraint during construction
and post-processing phases and, ii) ignoring connectivity during the construction phase and adding
this as a minimizing objective function during the post-processing phase . The main difference
between BGRASP and TGRASP is the way they consider the planning criteria during the con-
struction phase. In BGRASP, the construction attempts to find high quality solutions based on
the optimization of two criteria: compactness and balancing according to the number of customers,
that is, demand is treated as a constraint. The construction phase in TGRASP considers three
objectives to be optimized: compactness and balancing with respect to the two attributes (number
of customers and demand). That is, the demand balancing constraints are relaxed and treated
as part of the objective function. The proposed procedures are evaluated on a variety of problem
instances, with 500 and 1000 basic units. We carried out an analysis of these procedures using
different performance measures such as number of non-dominated points, k-distance, size of the
space cover (SSC), coverage of two sets measure, and time. We observed that, SSC, coverage of
two sets measure and time, present significant variation depending on the GRASP procedure used.
The number of points and k-distance measures did not present significant variation over all evalu-
ated procedures. BGRASP-I provides good frontiers in shortest time and BGRASP-II has the best

coverage of the efficient points given by the others procedures.
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1 Introduction

The problem addressed in this paper arises from a beverage distribution firm in Mexico. Single
objective versions of this problem have been studied by Rios-Mercado and Fernandez [9] and Segura-
Ramiro et al. [11]. The introduction of new bi-objective models and an exact solution procedure
to this problem was proposed recently [10]. In general, commercial territory design belongs to the
family of districting problems that have a broad range of applications like political districting [1],
school districting [5, 3], and sales and service territory design [6, 16]. In most of these applications a
single objective problem is considered, however in the real world it is very common to pursue more
than one criterion. In fact, looking at the literature on territory design (TD), few works address
these problems as multi-objective problems [13, 8, 10]. Territory design (TD) is very common in
every enterprise dedicated to product sales and product distribution, specifically when the firm
needs to divide the market into smallest regions to delegate responsibilities to facilitate the sales
and distribution of goods. These decisions need to be constantly evaluated due to the frequent
market changes such as the introduction of new products or changes in the workload, which are
factors that affect the territory design. Additionally, the multiple planning requirements that the
firm wants to satisfy and the large amount of customers that need to be grouped makes this difficult
task even more critical. An efficient tool with capacity to provide good solutions to large problems
is needed. In [10], we proposed an exact solution procedure for the problem addressed in this work.
They reported efficient solutions for instances with up to 150 BUs and 6 territories were reported.
In the real world, it is very common to deal with instances of 500 to 2000 BUs. This motivates
the heuristics proposed in our work. In this work we propose some heuristic procedures based on
GRASP strategies (BGRASP and TGRASP) aiming at finding a good approximation of the Pareto
frontier. Each of these strategies consists of two main phases: construction and post-processing. In
the construction phase a simultaneous territory creation is carried out and in the post-processing
phase the neighborhood is explored in a similar way to that of the MOAMP procedure applied by
Molina, Marti, and Caballero [7]. We tested the proposed procedures on a set of instances based
on real-world cases. The tests indicate that BGRASP has better performance than TGRASP. The
paper is organized as follows. In Section 2 the problem is described and a bi-objective optimization
model is presented. Section 3 shows details about the proposed solution procedures and Section 4

includes the experimental work. Finally we wrap up with the conclusions in Section 5.

2 Multi-objective Commercial Territory Design

2.1 Problem Description

In particular, the problem consists of finding a partition of the entire set of city blocks or basic units
(BUs) into a fixed number (p) of territories, considering several planning territory requirements such
as compactness, balance and connectivity. Compactness means customers within a territory should
be relatively close to each other. Balance implies territories with similar size with respect to two

attributes (number of customers and sales volume). Connectivity means BUs in the same territory



can reach each other without leaving the territory. In addition, exclusive assignment from BUs to
territories is needed. The problem is modeled by an undirected graph G = (V, E), where V is the
set of nodes (BUs) and E is the set of edges representing adjacency between blocks (BUs). That
is, a block or BU j is associated with a node, and an edge connecting nodes ¢ and j exists if ¢ and
j are adjacent. For each node j € V there are some associated parameters such as geographical
coordinates (cg,¢y), and two measurable attributes (number of customers and sales volume) are
defined. The number of territories is given by parameter p. It is required that each node is assigned
to only one territory (exclusive assignment). The company wants balanced territories with respect
to each of the attribute measures. Let us define the size of territory V), with respect to attribute
a as: w® (V) = Yiev, (wl(a)), where a € {1,2} and wga) is the value associated to attribute a in
node i € V. Another characteristic is that all of the BUs assigned to each territory are connected
by a path contained enterely within the territory. In addition, the BUs in each territory must be
relatively close to each other (compactness). One way to achieve this requirement is to minimize a
dispersion measure. We use a dispersion measure based in the objective of the p-median problem (p-
MP). All parameters are assumed to be known with certainty. We used a bi-objective optimization
model introduced in [10]. In this model the compactness and the maximum deviation with respect
to the number of customers are considered as objectives and the remaining requirements are treated
as constraints. Let N' = {j € V : (i,j) € EV (j,i) € E} be the set of adjacent nodes to node
i;49 € V. The Euclidean distance between j and i is denoted by dj;, 7,7 € V. The average (target)
value of attribute a can be computed as p(® = w(® (V) /p, a € A.

Due to the discrete structure of the problem and to the unique assignment constraint, it is
practically impossible to have perfectly balanced territories with respect to each attribute. Let 7(2)
be the specific tolerance allowed by the company to measure the relative deviation from average

territory size with respect to sales volume.

2.2 Bi-objective Optimization Model

Decision variables

{ 1 if a basic unit j is assigned to territory with center in ¢; 7,5 € V'
:L'ji =

0 otherwise

In that sense x; = 1 implies ¢ is a territory center.
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Objective (1) represents a dispersion measure based on a p-MP objective. In this sense, min-
imizing dispersion is equivalent to maximizing compactness. The second objective (2) represents
the maximum deviation with respect to the target size related to the number of customers. So,
balanced territories should have small deviation with respect to the average number of customers.
Constraint (3) guarantees the creation of exactly p territories. Constraints (4) guarantee that
each node j is assigned to only one territory. Constraints (5)-(6) represent the territory balance
with respect to the sales volume as it establishes that the size of each territory must lie within a
range (measured by tolerance parameter 7(4)) around its average size. Constraints (7) guarantee
the connectivity of the territories. Note that, as usual, there is an exponential number of such

constraints.

3 Proposed GRASP Procedures

In general, GRASP is a metaheuristic that contains good features of both pure greedy algorithms
and random construction procedures. It has been widely used for successfully solving many com-
binatorial optimization problems. GRASP is an iterative process in which each major iteration
consists typically of two phases: construction and post-processing. The construction phase at-
tempts to build a feasible solution and the post-processing phase attempts to improve it. The
motivation for GRASP in this application is due to the fact that during the construction phase
it is always possible to keep the hard connectivity constraints (7), the multiple objectives can be
easily evaluated in a merit function and it is relatively simple to sweep the efficient frontier by using
different weights to the multiple objectives for generating diverse solutions.

In this paper, we are introducing different GRASP schemes called BGRASP and TGRASP,
each one of them has two variants. For instance, BGRASP-I is a GRASP procedure that uses a
merit function based on two components: dispersion and maximum deviation with respect to the
target value in the number of customers. This method maintains connectivity as a hard constraint
during the construction and post-processing phases. The BGRASP-I post-processing phase consists
of optimizing three objective functions: dispersion, maximun deviation with respect to the number
of customers and total infeasibility in constraints (5) and (6). In contrast, BGRASP-II does not
consider connectivity during the construction phase, its merit function is the same used in BGRASP-

I, but during post-processing phase, BGRASP-II adds connectivity as an objective function. So,



the goal in its post-processing phase is to minimize four objective functions: dispersion, maximum
deviation, total infeasibility and total number of unconnected BUs. TGRASP-I and TGRASP-II are
described in a very similar way to BGRASP-I and BGRASP-II, respectively. The only diference is
that the merit function in TGRASP-I and TGRASP-II has three components: dispersion, maximum
deviation with respect to the number of customers and maximum infeasibility with respect to
constraints (6). We described the GRASP strategies in a single scheme, see Procedure 1.
Procedure 1 shows the general scheme for the proposed GRASP procedures. An instance of
the commercial territory design problem, the maximum number of iterations (iter,q.), the quality
parameter («), the minimum node degree (f) so that a node i € V' can be selected as initial seed,
the maximum number of allowed movements (MmaZmeves) and the GRASP strategy (BGRASP-I,
BGRASP-II, TGRASP-I or TGRASP-II) constitute the input. In order to explore the objective
space in a best way. For each GRASP iteration a set of weights A is selected in such way that
A€ A:Xe|0,1]. The two phases are applied for each A € A. So, for each iteration and each weight
A € A a construction phase and a local search phase is applied. The construction and the local
search applied depends on the strategy chosen. Observe that, the merit function in BGRASP-I and
BGRASP-II uses a weighted combination of the two original objectives. In contrast, in TGRASP-I
and TGRASP-II the balancing constraints (5)-(6) are relaxed and added to the merit function.
Under strategies BGRASP-I and TGRASP-I, after the construction phase stops, the obtained
solution may be infeasible with respect to the sales volume. Then, in order to obtain feasible
solutions, during the post-processing phase infeasibility is treated as the objective to be minimized.
In these strategies, this phase consists of systematically applying the local search sequentially to
each of the three objectives individually. That is, first local search is applied using z; as the merit
function in a single objective manner. After a local optimum is found, the local search is continued
with zo as merit function, and then z3. Finally, the initial objective z; is used after the local
optimum is obtained for the last objective. During the search, the set of non-dominated solutions
is updated at every solution. It is also clear that the order of this single objective local search
strategy implies different search trajectories, that is, optimizing in the order (z1, 22, 23) generates a
trajectory different from (z9, 23, 21), for instance. In BGRASP-IT and TGRASP-II strategies, after
the construction phase stops, the obtained solution may be infeasible not only with respect to sales
volume balance, but with respect to the connectivity constraints as well. At the end of our GRASP

strategies, an approximation of the Pareto front is reported.

3.1 BGRASP Description

This strategy follows the generic scheme of GRASP (Procedure 1). A greedy function (9) during
construction phase is a convex combination of two components weighted by A which are related
with the original objectives: dispersion measure (1) and maximum deviation (2). Post-processing
phase consists of the successive application of single-objective local search procedures (taking one
objective at a time). These main BGRASP components illustrated in Procedure 1 are detailed as

follows.



Procedure 1 General scheme for BGRASP and TGRASP («, itermaz, f, MaZmoves, Strategy)
INPUT: (o, itermag, f, MaZmoves, strategy)

a:= GRASP RCL quality parameter

itermaz:= GRASP iterations limit

f:= Minimum node degree required to create a subgraph which is used to select initial seeds in
the ConstructSolution method

MATmoves:= Maximum number of movements in the post-processing phase
strategy:= BGRASP-I, BGRASP-II, TGRASP-I or TGRASP-I1
OUTPUT: D7 set of efficients solutions

A: set of weights for greedy function selected in the range [0, 1]

A « generate (r); A = {1, Xa, ..., A} DEFS )

Drot(S) « (): set of potential efficients solutions

FOR(l =1,...,itermaz)

FOR EACH() € A)

IF (strategy is BGRASP-I) OR (strategy is TGRASP-I)

Obj = 3 { Number of objectives to be optimized}

ELSE

Obj = 4

END IF

IF (strategy == BGRASP —I) OR (strategqy == BGRASP — II)

S« ConstructSolutionBGRASP («, f, A,strategy)
ELSE

S« ConstructSolutionTGRASP (a, f, A,strategy)
END IF

FOR(g =1, ...,0bj)

DPot(S) «PostProcessing(S, mazmoves,strategy, g, Obj)
UpdateEfficientSolutions( D¢/, DP°t(S))

END FOR
END FOR

END FOR
RETURN D¢ff




3.1.1 BGRASP Construction Phase

In general, the construction phase consists of the assignment of BUs to territories keeping balanced
territories with respect to the demand while seeking good objective values. Before the assignment
process takes place p initial points are selected to open p territories, these points are the base for
the assignment process. Previous work showed us that this method is very sensitive to the initial
seed selection. For instance, when some seeds are relatively close to each other the growth of the
territory stops way before reaching balancing. This implies some territories end up relatively small.
So a better spread of the seeds is needed. In order to obtain best initial seeds we select p disperse
initial points that have high connectivity degree. Then, the construction phase starts by creating
a subgraph G’ = (V/, E(V’)) where ¢ € V' if and only if the degree of i, d(i) > f, where f is a
user-given parameter. The seed selection is made by solving a p-dispersion problem [4] on G’. The
p nodes are used as seeds to open p territories. Let {i1,2,...i,} be this set of disperse nodes. Then
from this set, we start a partial solution S = (V1, Vs, ..., V})) by setting V; = {i;}Vt € {1,2.,...p}.
Then, at a given BGRASP construction iteration (see Procedure 2) we consider p partial ter-
ritories and attempt to allocate an unassigned node keeping balanced territories with respect to
the demand. To do that, this method attempts to make assignments to the smallest territory
(considering the demand). If BGRASP-I is the strategy selected by the user, the set of possible
assignments is given only for those nodes that permit to preserve the connectivity. On the other
hand, if the user selected BGRASP-II, the possible assignments are all those nodes that have not
been assigned yet. Let Vi~ be the territory with smallest demand, ¢(t*) is center of Vi~ and N (Vi)
is the set of currently unassigned nodes that can be assigned to Vi«. If N(V;«) is empty we take the
next smallest territory and proceed iteratively. The cost of assigning a node j to territory Vi« is

given by the greedy function (9), this function weights the change produced in the objective values.

¢(]7t*) :)‘f(izsp(]at*)+(17>‘)fdev(jat*)7 (9)
where
- 1
fdisp(]vt ) = Ao Z dic(t*) (10)
iV | JU}
- 1 . )
faen(G#%) = yma {w® (Vi ) =00 = (vie i) § (1)
and the normalization parameter
dmam = M max dij (12)
P i,jEV

Following the GRASP mechanism we build a Restricted Candidate List (RCL) with the most attractive
assignments which are determined by a quality parameter « € [0, 1] (specified by user). The RCL is computed

as follows:

(bmin = ]EI%I(Itl*) ¢(j7 C(t*)) (13)



Procedure 2 ConstructSolutionBGRASP(«, f, A, strategy)

INPUT: («, f, \, strategy)
a:= GRASP RCL quality parameter
f:= Minimum node degree which is required to consider a node as an initial seed to open a new

territory

A:= weight used in the greedy function

strategy:= BGRASP-I or BGRASP-II

OUTPUT: S = (V1,..., V}): Solution, p-partition of V

T ={1,...p},t € T: Territory index; c(t): Center of V;
Flag(t): 1if a territory ¢ is open, 0 otherwise
B—V;Vi—10

H « {i € V :|N?| > f: Subgraph of G used to select the initial seeds
FOR ALL t € T DO Flag(t) < 1

Compute p disperse points {i1,...,4,}, 3 € H

FOR ALL t € T DO c(t) — iy; V; — V; U{is}; B — B\ {ir}
WHILE(B # )

l . w® (V)
«— arg min
teT:Flag(t)=1 M(2)

IF (strategy is BGRASP-I)

N(l) « | J{j € N" and j € B} {only connected nodes}

i€V
ELSE

N(l) — B
END IF

IF (N (1) #0)

ComputeGreedyFunction ¢(j,¢(l)) FOR ALL j € N(I)

Pmin ]Ien]\lfl(ll) ¢(]a C(l))a Pmax — 3?135) ¢(]’ C(l))

RCL —{j € N(I) : ¢(j, c(l)) € [dmin, *(Pmax — Pmin)]}
Random selection of k € RCL
Vi = ViU{k}; B — B\ {k}
c(l) «— arg min Z d;i { Update center}
1€V
ELSE
flag(t) < 0{Close territory}
END IF

END WHILE
RETURN S = (1, ..., V)




d)rnax = ]EHJI\/?E}t(*) ¢(]7 C(t*)) (14)

RCL = {.] € N(t*) : ¢(]a C(t*)) € [¢min; ¢min + a(¢max - ¢min)]} (15)

Then, a node 7 is randomly chosen from the RCL. We update the territory Vi = Vi [J{i} and the center
c(t*) is recomputed. This is the adaptive part of GRASP. We proceed iteratively until all nodes are assigned.
At the end of the process we obtain a p-partition S = (Vi, V5, ..., V},) that may be infeasible with respect to
the balance of sales volume. In a few words, the proposed construction procedure tries to build territories
similar in size with respect to the demand attribute. The next component of BGRASP is the post-processing

or improvement phase.

3.1.2 BGRASP Post-processing Phase

The main idea of this local search is to successively apply a single-objective local search scheme (one objective
function at a time). The motivation of this is that the search trajectories are well directed and it avoid the
oscillation yielded by a multi-objective search. In addition, this local search has been applied successfully in
SSPMO [7]. This process starts with the final solution obtained when the construction phase stops. Then, we
start with a solution S (p-partition of V') such that S = {V4,...,V,}. Additionally, VV; € S a center c(t) € V;
is associated and Vi € V; a territory index ¢(¢) = t is known. .S may be infeasible with respect to the balancing
constraints (5) and (6), so in this phase BGRASP attempts to obtain feasible solutions and simultaneously
it searches for solutions that represent the best compromise between the objective functions. In order to
obtain feasible solutions during this phase, balancing constraints (5) and (6) are dropped and are considered
as an additional objective function instead. In the case of BGRASP-I, there are three objectives that are
minimized: (i) dispersion measure,(ii) maximum deviation with respect to the number of customers, and (iii)
infeasibility related to the balancing of sales volume. In contrast, the post-processing phase in BGRASP-II
adds another minimizing objective to those three objectives used in BGRASP-I. It is given by (19) and it

computes the total number of unconnected nodes.

28 = Y. diew (16)

JEV,tET
22(8) = 5y ma {mae (D (V) = n )~ (1)} (1)
2(9) = = 3 mas {w®(3) = 4+ @)@, (1 = 7@)u® — (1), 0} (1)
24(8) = In()l, (19)
where
n(S)=|J{ieVi:Vj#i,jeVi,(i,j) ¢ E} (20)

teT
The Post-processing phase attempts to find potential efficient solutions in the neighborhood of S. For
doing that, we define a neighborhood N(S) which is the solutions set obtained by all possible moves such
that a basic unit i € V;; is reassigned to any adjacent territory V), q(j) # ¢(é) into the p-partition defined
by S. Note that, Procedure 4 works for any GRASP strategy proposed in this work. Observe that, when



the current solution is connected, a movement is allowed only if the resulting solution keeps the connectivity
requirement. It means that, when BGRASP-I is used, only connected moves are allowed and when BGRASP-
IT is used, this condition is activated once a connected solution has been found. Each possible movement
move(, j) deletes 4 from territory (i) and inserts it into territory q(j), (i,7) € E,q(i) # q(j). For example,
suppose we have a partition S with the structure S = (..., Vy@iy..., Vo), ---), if we select the move(i, j), the
neighbor solution S is given by S = (..., Vi) \ {i}, ..., Vo) U{é}, .-.). The move(i, j) is accepted only if this
improves the value of the objective function that is being optimized in that moment (see Procedure 4).

Procedure 3 PostProcessing(Sp, itermaz, g, Obj)

INPUT (Sy, itermaq, g, Obj)

S = Sp:= {Initial solution}

h = g:= objective index for starting the linked local search, g € {1,2,...,00bj5}
Obj:= Number of objective functions to be optimized

OUTPUT D nondominated solutions set

DO

D «— 0; count «+ 0

N(S): {Set of neighbors. In this case set of possible moves}

A move (i, 7) is represented by an arc (i,j) € E such that ¢(i) # t(j),
ie. N(S)={(i,7) € E such that ¢(i) # t(j) under the partition S}
WHILE(N(S) # 0) AND (count < itermaz)

(i,7) < select_move(N(S))

N(8) — N(S)\ {(i.))}

acceptable «— evaluate_move(S, (7,7), z¢)

IF (acceptable)

Sey = Sy \ {4}
Siiy < Suy ULi}
count «— count + 1
update(N(S5))

IF (IsFeasible(S) =
update_ZNDS(D, 5)
END IF

= YES)

END IF
END WHILE
IF(h < Oby)
h=h+1
ELSE
h=h-1
END IF

WHILE(h # g)
RETURN D

The neighborhood exploration consists of linking single-objective local search evaluations. This is very
similar to the local search proposed in MOAMP [2] and used by Molina, Mart{, and Caballero [7]. The linking
of single-objective local search schemes is made considering different ordering of the objective functions being



Procedure 4 evaluate_move(S, (¢, 7), g)

INPUT: (S5, (4,7),9)

S:= Current solution

(i,7):= Intended move

g:= Objective function index that should be optimized

OUTPUT: TRUE if (i, j) is acceptable FALSE otherwise

S — 5 : Sy \ {i}, Seiy U{i} {new solution from S after move (i, j) is done}
Nzg = 2¢4(8) — z4(S){ change in the objective value after move (i,j) from S}
IF (24(S) == 0) {S is a connected solution}

IF(zg # 24)

IF(Az, > 0) AND (z(S) == 0) RETURN TRUE
ELSE RETURN FALSE
END IF

ELSE

IF(Az||Azo||Azs) AND (24(S) == 0) RETURN TRUE
ELSE RETURN FALSE
END IF

END IF
ELSE

IF(Az, > 0) RETURN TRUE
ELSE RETURN FALSE
END IF

END IF

10



pursued. Suppose we select the optimization order as (21(5), 22(5), 23(5)), then the local search path is as
follows: The first local search starts with S a final solution after the construction phase and attempts to find
the optimal solutions to the problem with the single objective z1(S) (16). Let S* be the best point visited at
the end of this search. Then a local search is applied again to find the best solution to the problem with the
single objective z5(S) (17) using S as initial solution. After that, a local search is applied to find the best
solution to the problem considering the single objective z3(S) (18) and the initial solution S? obtained in the
previous optimization. At this point, we solve again the problem with the first objective z1(S) starting from
53, This phase yields at least 3 points that approximate the best solutions to the single objective problems
that result from ignoring all except one objective function. During this phase only feasible solutions are
kept and a potential set of nondominated solutions are kept (see Procedure 5), too. Additionally, efficient
solutions may be found because all potential nondominated solutions are checked for inclusion in the efficient
set E (see Procedure 6). This efficient set E is updated according to Pareto efficiency, this check is made over
the original objectives: dispersion (16) and maximum deviation with respect to the number of customers
(18) (see Algorithms 5 and 6).

Procedure 5 update_NDS(D, S)
INPUT: (D,S)
OUTPUT: D set of nondominated solutions

eff « 1 := 1 if the solution S is efficient, 0 in otherwise
FOR ALL S’ € D

IF((21(S5) = 21(5")) AND (22(5) > 22(5")))

eff —0
END IF

END FOR,
IF(eff)

FOR ALL S’ € D DO

IF((21(5) < 21(5")) AND (25(5) < 22(5)))
D — D\ {5}
END IF

END FOR
D — DU{S}

END IF
RETURN D

Procedure 6 UpdateEfficientSlutions(Dff, DPot)
INPUT: (D¢//, Dpot)

D¢ff:= Set of current efficient solutions

DPot:= Set of potential nondominated solutions
OUTPUT: D¢/f Efficient set

FOR ALL S € DP° DO update NDS(D/f, S)
RETURN D¢/f

11



Pareto efficiency. A solution z* € X is efficient if there is no other solution z € X such that f(z) is
preferred to f(x*) according to Pareto order. That is, 2* € X is efficient if there is no solution € X such
that f;(z) < fi(z*)Vi =1, ..., g and at least one j € {1, ..., g} such that f;(z) < f;(z*). So, in our case g = 2.

We can repeat linking process local searches using a different ordering of the objectives. In this
work, we explored different trajectories depending on the number of objectives to be optimized. For in-
stance, in BGRASP we used the following trajectories that start in the same initial solution: (z1, 22, 23, 21),
(22, 23, 21, 22) and (23, 21, 22, 23). Each local search stops when the limit of iterations is reached or when the

set of possible moves is empty. At the end the output is an approximated Pareto front.

3.2 TGRASP Description

These procedures TGRASP-I and TGRASP-II are very similar to the BGRASP-I and BGRASP-II, respec-
tively. The main difference is in the construction phase (see Procedure 7). During this phase the greedy
function (21) is a convex combination (23) of three components: dispersion measure (10), maximum de-
viation (11) and maximum infeasibility with respect to the upper bound of sales volume balancing (22).
The procedure starts with p disperse points (obtained as in BGRASP construction phase) and the cost of
assigning a node i to territory ¢ with center ¢(t) is measured by a greedy function (21).

7(]’7 t) = Alfdisp(ja t) + >\2fdev(j7 t) =+ /\3finfeas(j7 t) (21)
Where 1
) SN 2,2 _,,(2) ;
fingeas (3,1) = ~ymax {1+ 7 —w® (Vi Jij1) 0 (22)
AMtAt+A3=1 (23)

Note that (22) penalize only those assignments that make infeasible the balancing constraint given by
(6). The post-processing phase of TGRASP procedures is the same as in BGRASP strategies (see Procedure
3). Note that, in the TGRASP-I and TGRASP-II, during the local search, four objectives are minimized:
(i) dispersion measure (16), (ii) maximum deviation with respect to the number of customers (17), (iii)
infeasibility related with balancing of sales volume (18), and (iv) total number of unconnected nodes (19).

The updating of efficient solutions is made considering only feasible solutions.

4 Experimental Results

An evaluation of the diverse strategies proposed in this work is carried out. We generate two instance
sets with (n,p) € {(1000,50), (500,20)}. We randomly generated 10 instances based on real-world data
provided by the industrial partner for each set. We used 7(2) = 0.05 and the input parameters for the
GRASP procedures were f = 2, = 0.04, A = {0,0.01,0.02,...1.0}, the total number of GRASP iterations
were 2020 and 2000 was the maximum number of movements during the post-processing phase. During our
experimental work, we observed that the largest computational effort is during the post-processing phase.
The multiple trajectories and the linked local search on each trajectory increase the computational time
dramatically. In order to find a good balance between construction and post-processing time, we made
a filtering of solutions in order to apply the post-processing phase only over a set of the best solutions
which were evaluated according to the merit function given by (24). We tested other merit functions that
empirically showed poor behavior. That motivated the use of this function for filtering solutions. Note that,

each component is normalized.
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Procedure 7 ConstructSolutionTGRASP (a, f, A, strategy)

INPUT: («, f, A\, strategy)
a:= GRASP RCL quality parameter
f:= Minimum node degree which is required to consider a node as an initial seed to open a new

territory

A:= weight used in the greedy function

strategy:= TGRASP-I or TGRASP-II

OUTPUT: S = (W, ..., V}): Solution, p-partition of V

T ={1,..p},t € T Territory index; c(t): Center of V;
Flag(t): 1 if a territory ¢ is open, 0 otherwise
B—V;V,+10

H « {i € V :|N| > f: Subgraph of G used to select the initial seeds
Compute p disperse points {i1,...,4,},% € H

FOR ALL t € T DO c(t) — iy; V; — V; U{is}; B — B\ {ir}
WHILE(B # ()

[ — arg rtrélqr} e

IF (strategy is TGRASP-I)

N(l) « U {j € N*and j € B} {only connected nodes}
ievi
ELSE
N(l) « U{] € B} {any node can be assigned}

END IF
IF (N (1) #0)
ComputeGreedyFunction v(j,¢(l)) FOR ALL j € N(I)
min i /, l y TYmax /, l
Frmin jglj\lfr(ll)v(J c(1)); Ymaz < jglj%v(J c(l))
RCL — {] € N(l) : ’7(]1 C(Z)) S ['Ymina a(Vma:p - 'szn)]}
Random selection of kK € RCL
Vi = ViU{k}; B < B\ {k}
¢(l) « argmin Z dji { Update center}
i€V iy

ELSE
flag(t) < 0{Close territory}
END IF

END WHILE
RETURN S = (W, ..., V},)

13



_ 2fdisp(s) fi(rt;eas
M) = W= pdare T .

Where,
Jaisp(8) =D djewy 5 €V (25)
teT
1
Finfeas = D {mmax {0 = 70D 0@ (1), (14 7)) - w® (1) ,o}} (26)
ter (M
dyraz = max d;; (27)

We selected 100 (out of 2020) solutions in such a way that these solutions have the smallest values in
the merit function given by (24). The post-processing phase (described in Procedure 3) was applied over the
set of these filtered solutions.

We carried out an experimental work based on a factorial design with two factors (called strategy and
type, respectively). We considered two levels for each of them, strategy € {BGRASP,TGRASP} and
type € {I,II} and for each combination of factors we tested 10 replicates. Figures 1 and 2 show the efficient
frontiers obtained by all GRASP procedures tested over one instance on each size tested ((500,20) and
(1000, 50), respectively). Observe that, TGRASP-II gives the best and the worst frontier in Figure 1 and
Figure 2, respectively. So, for each set, an important issue to investigate is to determine the combination
of factors that provides best non-dominated fronts over all instances tested and for different performance
measures. The main goal in the first part of our experimental work was to analyze the effects produced
by each factor over a set of standard performance measures used in multi-objective optimization. The

performance measures that we employed are the following;:

1. Number of points: It is an important measure because efficient frontiers that provide more alternatives

to the decision maker are preferred than those frontiers with few efficient points.

2. k-distance: This density-estimation technique used by Zitzler, Laumanns, and Thiele [14] in connection
with the computational testing of SPEA2 is based on the kth-nearest neighbor method of Silverman
[12]. This metric is simply the distance to the kth-nearest efficient point. We use k=4 and calculate
both the mean and the max of kth-nearest distance values. So, the smaller the k-distance the better

in terms of the frontier density.

3. Size of space covered (SSC): This metric suggested by Zitzler and Thiele [15]. This measure compute
the volume of the dominated points. Hence, larger the value of SSC the better.

4. C(A,B): Tt is known as the coverage of two sets measure [15]. This measure represents the proportion

of points in the estimated efficient B that are dominated by the efficient points in the estimated frontier
A.

Tables 1 and 2 contain a summary of different performance measures for instances from (500,20) and
(1000, 50), respectively. We carried out an ANOVA for each performance measure, these analyses were based
on a general linear model with interaction of factors. In those results where the ANOVA showed variability
from individual factors or from the interaction of these, a residual analysis was carried out to verify the model
adequacy. Table 3 contains a summary of P related to estimated effects over different performance measures.
Suppose that we consider a significance level e = 0.05 during the significance testing, P-values for instances

set (1000, 50) show the SSC measure is very sensitive to any change in the individual factors and in any
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interaction between these. In contrast, when the performance measures are the k-distance(mean) or number
of points, we observed there is not any significant effect produced by individual factors or by interaction
of them. Thus, any strategy BGRASP-I, BGRASP-II, TGRASP-I and TGRASP-II is a good alternative
according to this performance measure. In the case of k-distance(maz) measure, only the factor type is
statistically significant. It is, the way to consider the connectivity requirement affects this performance
measure. Remember that, type = I means that the connectivity is treated as a hard constraint during
construction and post-processing phases, and type = II means that during the construction phase the
connectivity is not taken into account and it is added as objective function in the post-processing phase.
In a similar way, for instances of (500,20), the SSC measure is affected only by the factor type, the rest
of the performance measures did not present variations by any change in the individual factors and by its
interaction. So, in the ANOVA analyses SSC is the only performance measure that presents significant

variation generated from the factor levels.

GRASP k-distance(mean,) k-distance(maz) SSC N. of points
procedures Min Ave Max | Min Ave Max | Min Ave  Max | Min Ave Max
BGRASP-T | 0.169 0.367 0.729 | 0.528 0.760 0.995 | 0.642 0.745 0.883 | 6.000 11.200 17.000
BGRASP-II | 0.145 0.314 0.851 | 0.307 0.635 0.996 | 0.786 0.845 0.899 | 5.000 11.500 16.000
TGRASP-I | 0.179 0.308 0.594 | 0.301 0.586 1.019 | 0.703 0.757 0.853 | 6.000 11.300 16.000
TGRASP-II | 0.178 0.307 0.485 | 0.322 0.581 0.900 | 0.638 0.851 0.944 | 6.000 9.800 16.000

Table 1: Summary of metrics used during ANOVA, instances (500,20)

GRASP k — distance(mean) k — distance(max) SSC N. of points
procedures Min Ave  Max | Min Ave  Max | Min Ave  Max | Min Ave Max
BGRASP-I | 0.173 0.352 0.926 | 0.457 0.689 1.093 | 0.542 0.762 0.867 | 5.000 12.100 18.000
BGRASP-II | 0.172 0.290 0.437 | 0.385 0.552 0.727 | 0.622 0.801 0.954 | 5.000 10.700 18.000
TGRASP-I | 0.156 0.281 0.410 | 0.376 0.643 0.873 | 0.612 0.737 0.867 | 4.000 11.300 17.000
TGRASP-II | 0.086 0.262 0.409 | 0.398 0.526 0.708 | 0.127 0.302 0.548 | 7.000 11.700 25.000

Table 2: Summary of metrics used during ANOVA, instances (1000,50)

Instance (1000, 50)
strategy 0.287 0.493 0.941 0.000
type 0.379 0.018 0.710 0.000
strategy * type 0.640 0.843 0.504 0.000
Instances set (500,20)

strategy 0.516 0.069 0.466 0.662
type 0.605 0.292 0.584 | 0.000
strategy * type 0.606 0.331 0.412 0.891
Term k-distance(mean) | k-distance(maz) | N. of points | SCC

Table 3: Summary of P-values associated to estimated effects from

factors to performance measures

Figures 3 and 4 show the mean values of factors interaction for SSC measure. Remember that, hight
values of SSC are better than small values, so, for instances from (500, 20) (see Figure 3) TGRASP-I and
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Figure 3: Interaction plot for SSC measure, instances (500, 20)

TGRASP-IT are lightly better than BGRASP-I and BGRASP-II, respectively. In contrast, for instances
from (1000, 50) (see Figure 4) TGRASP-II obtained the worst SSC mean value and it is so far from the SSC
mean values given by both BGRASP procedures.

A summary for the coverage of two sets measure is shown in Tables 4 and 5. Each column on these

tables contains the mean proportion of points that are dominated by the procedure indicated by the row
label. In Table 4, for instance, the values of the third row (BGRASP-II) means that the non-dominated
points generated by BGRASP-II dominate 74.1% of those non-dominated points obtained by BGRASP-I
and 77.1% of those non-dominated points generated by TGRASP-I. In addition, Table 5 shows that for
instances from (1000, 50) the non-dominated solutions obtained by BGRASP-II tends to dominate 99.1%
of those non-dominated points generated by TGRASP-II. In all instances tested, BGRASP-II procedure

obtained the best mean values for this performance measure.

Dominance | BGRASP-I BGRASP-II TGRASP-I TGRASP-II
BGRASP-I 0.000 0.130 0.415 0.366
BGRASP-II 0.741 0.000 0.771 0.486
TGRASP-I 0.486 0.155 0.000 0.303
TGRASP-II 0.651 0.442 0.707 0.000

Table 4: Mean value of coverage of two sets measure for instances
from (500, 20)

Dominance | BGRASP-I BGRASP-II TGRASP-I TGRASP-II
BGRASP-I 0.000 0.328 0.569 0.991
BGRASP-II 0.545 0.000 0.610 0.991
TGRASP-I 0.337 0.304 0.000 0.991
TGRASP-II 0.000 0.000 0.000 0.000

Table 5: Mean value of coverage of two sets measure for instances
from (1000, 50)
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The last important feature to be evaluated is the optimization time required for each GRASP procedure.

For instances from (500, 20) (see Figure 6), the best time is for those procedures that keep the connectivity



Procedure BGRASP-I BGRAP-II TGRASP-I TGRASP-II

Min 5345.23 11908.13 16013.41 13098.64
Average 5516.08 12283.92 18610.36 16833.98
Max 5875.26 12736.50 21209.83 18402.87

Table 7: Time (seconds) for instances from (1000, 50)
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Figure 4: Interaction plot for SSC measure, instances (1000, 50)

5 Conclusions

In this paper we have presented two GRASP procedures called BGRASP and TGRASP for a bi-objective
territory design problem with connectivity and balancing constraints. The problem arises from a real-
world situation in a beverage distribution company in Monterrey, Mexico. Two variations of each GRASP
procedure are evaluated.

We carried out an evaluation of these procedures based on well-known performance measures used in
multi-objective optimization. These measures are: number of points, size of the space cover (SSC), k-
distance, coverage of two sets measure, and optimization time. The procedures were applied to two different
instance sets of (n,p) € {(500,20), (1000,50)}. For each of these sets, 10 instances were randomly generated
based on real-world data provided by the industrial partner.

An ANOVA was carried out for each of the following performance measures: number of points, k-distance
(mean), k-distance (max), and SSC. We observed that only the SSC measure presents significant variation
yielded by the applied GRASP procedure, the worst behavior was for TGRASP-II. In contrast, the number
of points and k-distance did not have significant changes independently to the used GRASP procedure.

According to the coverage of two sets measure, the best GRASP strategy is BGRASP-II, this procedure
dominates the highest proportion of efficient points given by BGRASP-I, TGRASP-I and TGRASP-II. In
contrast, when the time is the most important performance measure, BGRASP-I showed the best behavior.

In summary, we presented four solution procedures for a bi-objective territory design problem, these are
good alternatives to the decision maker, the choice of one of them depends on the performance measure that
is important to the decision maker. In this work we analyzed the standard measures used in multi-objective

optimization.
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