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Tecnológico de Monterrey, Campus Toluca

Department of Industrial Engineering

E-mail: rodolfomendoza@itesm.mx
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Abstract

In this paper, a problem arising in the planning of specialized diagnostic services in a segmented

public healthcare system is addressed. The problem consists of deciding which hospitals will provide

the service and their capacity levels, the allocation of demand in each institution, and the reallo-

cation of uncovered demand to other institutions or private providers, while minimizing the total

equivalent annual cost of investment and operating cost required to satisfy all the demand. An as-

sociated mixed-integer linear programming model can be solved by conventional branch and bound

for relatively small instances; however, for larger instances the problem becomes intractable. To

effectively address larger instances, a hybrid metaheuristic framework combining iterated greedy

and variable neighborhood descent components for this problem is proposed. Two greedy con-

struction heuristics are developed, one starting with an infeasible solution and iteratively adding

capacity and the other starting with a feasible, but expensive, solution and iteratively decrease

capacity. The iterated greedy algorithm includes destruction and reconstruction procedures. Four

different neighborhood structures are designed and tested within a VND procedure. In addition,

the computation of local search components benefit from an intelligent exploitation of problem

structure since, when the first-level location variables (hospital location and capacity) are fixed,

the remaining subproblem can be solved efficiently as it is very close to a transshipment problem.

All components and different strategies were empirically assessed both individually and within the

IGA-VND framework. The resulting metaheuristic is able to obtain near optimal solutions, within

3% of optimality, when tested over a data base of 60- to 300-hospital instances.

Keywords: Healthcare planning; integer programming; hybrid metaheuristics; iterated greedy al-

gorithm; variable neighborhood descent.



1 Introduction

One of the important problems arising in the planning of healthcare service across a network of

providers is how to efficiently locate and assign to patients specialized equipment from healthcare

units. The problem arises in some developing countries where the healthcare system is composed

by several public institutions, each in turn composed of a network of healthcare units with its

own infrastructure. The objective is to minimize the planning and operative cost for providing

a specialized diagnostic service covering all system demand in a one-year planning horizon. The

capacity of the service is estimated according to the amount of medical equipment and their different

levels of capacity. The service is segmented into levels of patient acuity in order to identify the degree

of illness severity. Demand is allocated on a monthly basis. Some examples of specialized equipment

required in these type of services are: magnetic resonance imaging, computed tomography, positron

emission tomography, and digital mammography.

The problem was introduced by Mendoza-Gómez et al. (2016). In that work, the authors

introduced some mixed-integer programming formulations, and studied the behavior of the system

under different settings. Although some previous works successfully applied optimization techniques

for related healthcare-planning problems (Ayvaz and Huh, 2010; Coté et al., 2007; Mahar et al.,

2011; McLafferty and Broe, 1990; Mestre et al., 2015; Ruth, 1981; Stummer et al., 2004; Syam and

Coté, 2010, 2012), this proposed model is unique because it considers incorporating in one model

a segmented network of healthcare units, levels of patient acuity, different levels of capacity, and

multi-period demand evaluation, something not previously done before to the best of our knowledge.

For a detailed discussion of those works, the reader is referred to the work of Mendoza-Gómez et al.

(2016).

One of the main conclusions observed by Mendoza-Gómez et al. (2016) was the difficulty of

handling medium- to large-scale instances of the problem. The results indicated that conventional

branch-and-bound methods (B&B) were able to successfully handle instances of up to 60 healthcare

units. However, the results with larger instances (120 to 300 healthcare units) were poor. The need

of a heuristic approach for handling large-scale instances was more than evident. For a specific

diagnostic service, a realistic estimate of the number of hospitals that might be involved in the

decision process, ranges from 50 to 300, depending on the type of service. Thus, in this work we

focus on instances with sizes of 60 to 300 healthcare units. From now on, we will refer to healthcare

units just as “hospitals” for the sake of convenience because most of these types of services are

provided in hospitals, although other types of healthcare units could also fit in.

This paper proposes a hybrid metaheuristic composed of iterative greedy and variable neigh-

borhood descent mechanisms for obtaining good-quality solutions to the planning-related problem

of specialized diagnostic services in a segmented healthcare system. Both methods are well-known

heuristics that have been successfully applied to many combinatorial optimization problems. Our
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proposed method also benefits from an intelligent exploitation of the mathematical structure of the

problem. Specifically, the model has a location-allocation structure that can be seen as a two-level

decomposition. In the first level, we have binary decision variables deciding where to locate equip-

ment and its corresponding capacity. Once these variables are fixed, the second-level subproblem

can be seen as a transshipment problem and thus can be solved very efficiently. As a consequence

of this, we develop search strategies that focus on the first-level location variables. The proposed

hybrid metaheuristic integrates all these components in a clever way.

The remainder of the paper is organized as follows. A discussion of related literature is given in

Section 2. Section 3 describes the problem and presents the discrete optimization model. Particular

attention is paid to the definition of the first- and second-level variables that are used in the problem

decomposition. This section ends by presenting and describing the decomposition subproblem that

is used within the metaheuristic. The proposed hybrid metaheuristic is presented in Section 4. This

includes the details of the constructive and local search components and its corresponding empirical

assessment. Finally, concluding remarks and future research directions are given in Section 5.

2 Literature Review

In this section, we discuss the papers that are more relevant to our research. One of the first models

applied to location of hospital services was due to Ruth (1981), who proposed a quantitative model

to aid the planning of hospital inpatient services in a regional hospital network, particularly the

allocation of beds to the population at risk. An evaluation of critical-care services based on two

attributes, namely the geographical accessibility of services and the number of patients served by

each facility was presented by McLafferty and Broe (1990). Stummer et al. (2004) propose a multi-

objective combinatorial problem to determine the location of medical departments within a hospital

network. Ayvaz and Huh (2010) introduce a model for the planning of hospital capacity, taking

different types of patients into account.

Tlahig et al. (2013) present a mixed-integer linear program to find the optimal location and

capacity in a multi-period problem. This model is aimed at assessing a centralized versus distributed

sterilization service within a hospital network. The authors were able to optimally solve moderate-

size instances. Mahar et al. (2011) present a non-linear programming model to locate specialized

healthcare services in a hospital network. The aim of that work was to prove how hospital networks

with multiple locations can leverage pooling benefits while deciding where to locate specialized

services. This model takes into account not only financial considerations but also patient service

levels. Based on their model, the authors can determine the number

and identification of hospitals in a network that should have the specialized capacity, the levels

of capacity required, and the guidelines for locations that should serve the demand in the network.

Coté et al. (2007) introduce a location-allocation model for specialized treatment of traumatic
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brain injury. The model is applied in case study in the US Department of Veterans Affairs (VA).

The best location for treatment units between the VA medical centers and to allocate admissions

to these units while minimizing admission treatment cost, admission travel cost, and the penalty

cost associated with foregone treatment revenue and excess capacity utilization is determined by

this model. In a follow-up work, Syam and Coté (2010) model the same problem from the point

of view of a non-profit service organization. In a follow-up paper, Syam and Coté (2012) propose

an extension of the model that minimizes the total cost borne by the health system as well as its

patients and incorporates admission acuity levels, service proportion requirements, and admission

retention rates. Their empirical results indicate that a decentralized system is costlier than a

centralized one but also serves a higher proportion of admissions. In recent years, we have seen

also some stochastic models such as the work by Mestre et al. (2015) and Zarrinpoor et al. (2017)

who studied stochastic location-allocation models in the strategic planning of hospital networks.

There are also a number of survey papers reviewing location, location-allocation, and capacity-

planning problems in the healthcare sector. See, for instance, the recent surveys by Daskin and

Dean (2004), Rais and Viana (2011), Chauhan and Singh (2016), and Ahmadi-Javid et al. (2017).

Just to lay down our contribution into perspective. In our model, we integrated some features

from previous works, such as the levels of demand, the assurance of coverage, the service capacity,

investment and operative-cost considerations, and the evaluation of various periods. In addition,

we considered some new characteristics such as the evaluation of capacity with different types of

equipment units, transfer of patients between hospitals, and incorporation of outsourcing providers.

In particular, the most important incorporation is the segmentation of the system by institutions,

each with its own demand and infrastructure, but with the ability to request services from other

institutions or private providers if necessary. This new problem can be used, in particular, to solve

related service planning problems for healthcare systems that present multiple public institutions

and in general to solve location-allocation problems with regard to independent systems that share

capacity. Therefore, we can see that the proposed model has unique features that have not been

previously studied.

3 Problem Description

This section presents the problem for a specialized medical technology service across a segmented

hospital network with a one-year planning horizon. The aim is to minimize the total annual cost

required to guarantee the service coverage for a given demand. The hospital network is integrated

by public institutions that can share capacity among themselves or request the service of a specific

network of providers each month when they reach full capacity. The decisions are to determine the

location, the capacity of the service in each institution, and the allocation of demand according to

the previous decisions.
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Allocated demand is associated with the number of services to be provided each period internally

by an institution, or externally by other institutions or private providers. The demand must be

allocated within the hospitals of each institution, or, if there is not enough capacity, reallocated to

other institutions’ hospitals with idle capacity or outsourced to private providers. An example of

this allocation scheme is shown in Figure 1. Different types of allocation are shown with different

connector arrow types. Hospitals with setup service are highlighted. For example, Hospital B1

covers demand from Hospital B2, B3, and its own demand. However, part of this demand is

reallocated to Hospital A3 and to Private Services 1 and 2.

The demand is classified into levels of patient acuity, which is a measure of nursing intensity

required by a patient and the degree of illness severity. The monthly evaluation of demand across

the one-year planning horizon is considered, different levels of patient acuity are served by the same

equipment, and different levels of equipment capacity are evaluated.

Hospital A1

Hospital A2

Hospital A3

Hospital B1

Hospital B2

Hospital B3

Hospital C1

Hospital C2

Hospital C3

Hospital C4

Private 

Service 1

Private 

Service 2

Private 

Service 3

Institution A Institution B Institution C

Private Services Re-allocation to other 

institutions

Outsourced services

Internal allocation

Figure 1: Example of the allocation problem.

3.1 The Integer Programming Formulation

The model studied in this paper corresponds to Model A from Mendoza-Gómez et al. (2016). For

the sake of completeness and for a better understanding of the ensuing subproblem, we reproduce

the formulation here.

The notation, parameters, and variables used in the problem formulation are as follows:

Indices and sets:

k ∈ K Set of institutions.

u ∈ U Set of levels of patient acuity.

l ∈ L Set of types of equipment.
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n ∈ N Set of time periods (months).

i, j ∈ I Set of hospitals in the network.

G ⊂ I Set of public hospitals.

Gk ⊂ G Set of public hospitals of institution k.

Gi ⊂ G Set of public hospitals of the institution to which hospital i belongs.

P ⊂ I Set of private service providers.

kj ∈ K Institution to which hospital j belongs.

Parameters:

FCj Fixed annual service setup cost in hospital j; j ∈ G.

V Cl Variable annual setup cost for equipment of type l; l ∈ L.

OCu Operational cost for providing a service with patient acuity level u; u ∈ U .

TCu
ij Transfer cost for sending a patient with acuity level u from hospital i to hospital j;

i ∈ G, j ∈ I, u ∈ U .

ACu
k Additional charge that institution k requests of other institutions to provide a service

for a patient acuity level u ; u ∈ U , k ∈ K.

PCu
j Cost of provider j for a service for a patient acuity level u; j ∈ P , u ∈ U .

Du
in Demand (number of patients) with acuity level u in hospital i in period n; i ∈ G,

n ∈ N , u ∈ U .

ECl Maximum capacity (number of services) of equipment type l in each period; l ∈ L.

CPjn Maximum capacity (number of services) of provider j in period n; j ∈ P , n ∈ N .

Hjl Minimum number of required equipment type l in hospital j; j ∈ G, l ∈ L.

δk Minimum percentage of annual demand to be internally covered by institution k;

k ∈ K.

σk Maximum demand in proportion to the capacity that each hospital of institution k

can allocate; k ∈ K.

ωk Maximum percentage of annual demand that institution k is allowed to allocate to

outsourcing; k ∈ K.

M A very large positive value.

Decision variables:

xuijn Number of patients with acuity level u from hospital i allocated to hospital j in

period n; i ∈ G, j ∈ I, u ∈ U, n ∈ N .

αu
jn Number of patients with acuity level u allocated to hospital j in period n unserved

by any hospital of its institution; j ∈ G, u ∈ U, n ∈ N .

βjn Capacity available in hospital j in period n unused by any hospital of its institution;

j ∈ G, n ∈ N .
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sujn Service level for patient acuity level u in hospital j in period n; j ∈ G, u ∈ U, n ∈ N .

tjl Number of equipment units of type l that are allocated to hospital j; j ∈ G, l ∈ L.

yj Binary variable equal to 1 if any service is set up in hospital j, and 0 otherwise;

j ∈ G.

(Model A) Minimize
∑
j∈G

FCj · yj +
∑
j∈G

∑
l∈L

V Cl · tjl +
∑
j∈G

∑
u∈U

∑
n∈N

OCu · sujn

+
∑
k∈K

∑
u∈U

ACu
k ·
∑
n∈N

∑
i∈G\Gk

∑
j∈Gk

xuijn +
∑
i∈G

∑
j∈P

∑
u∈U

∑
n∈N

PCu
j · xuijn

+
∑
i∈G

∑
j∈I

∑
u∈U

∑
n∈N

TCu
ij · xuijn (1)

subject to:
∑
j∈Gi

xuijn = Du
in i ∈ G, u ∈ U, n ∈ N (2)

∑
i∈Gj

∑
u∈U

xuijn −
∑
u∈U

αu
jn + βjn =

∑
l∈L

ECl · tjl j ∈ G, n ∈ N (3)

∑
i∈G

∑
u∈U

xuijn ≤M · yj j ∈ G, n ∈ N (4)

αu
jn ≤

∑
i∈Gj

xuijn j ∈ G, u ∈ U, n ∈ N (5)

βjn ≤
∑
l∈L

ECl · tjl j ∈ G, n ∈ N (6)

∑
j∈Gk

∑
l∈L
|N | · ECl · tjl ≥ δk ·

∑
i∈Gk

∑
u∈U

∑
n∈N

Du
in k ∈ K (7)

∑
i∈G

∑
u∈U

xuijn ≤ σkj ·
∑
l∈L

ECl · tjl j ∈ G, n ∈ N (8)

∑
i∈Gk

∑
j∈P

∑
u∈U

∑
n∈N

xuijn ≤ ωk ·
∑
i∈Gk

∑
u∈U

∑
n∈N

Du
in k ∈ K (9)

∑
j∈I\Gi

xuijn = αu
in i ∈ G, u ∈ U, n ∈ N (10)

∑
i∈G\Gj

∑
u∈U

xuijn ≤ βjn j ∈ G, n ∈ N (11)

∑
i∈G

xuijn − αu
jn = sujn j ∈ G, u ∈ U, n ∈ N (12)

∑
i∈G

∑
u∈U

xuijn ≤ CPjn j ∈ P, n ∈ N (13)

tjl ≤M · yj j ∈ G, l ∈ L (14)
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yj ≤
∑
l∈L

tjl j ∈ G (15)

tjl ≥ Hjl j ∈ G, l ∈ L (16)

xuijn ∈ N ∪ {0} i ∈ G, j ∈ I, u ∈ U, n ∈ N (17)

αu
jn, s

u
jn ∈ N ∪ {0} j ∈ G, u ∈ U, n ∈ N (18)

βjn ∈ N ∪ {0} j ∈ G, n ∈ N (19)

tjl ∈ N ∪ {0} j ∈ G, l ∈ L (20)

yj ∈ {0, 1} j ∈ G (21)

The objective function (1) minimizes the total equivalent annual cost to provide the service for

all the demand of the public hospitals in the network. The first and second terms represent fixed

and variable annual investment costs, respectively. The third term represents the total operational

costs of all services provided, and the fourth term represents the inter-institutional fee for all services

received from other institutions. The fifth term corresponds to the total outsourcing costs, and the

last term represents the total transportation cost for all types of patient acuity levels.

Constraints (2) ensure that all demand for each hospital is allocated within its own institution

in each period. Constraints (3) determine the demand from the same institution allocated to a

hospital according to its capacity in each period, and the idle capacity or the unallocated demand

in each hospital with set-up capacity according to the case. Constraints (4) prevent allocating

demand to a hospital if the service is not set up. Constraints (5) ensure that the variables for a

hospital’s uncovered demand only take values equal to or lower than total demand allocated to that

hospital in the same period. Constraints (6) ensure that for each period, each idle capacity variable

is lower than or equal to the capacity of the hospital which it belongs to. Constraints (7) ensure a

minimum percentage of annual capacity according to the total annual demand of each institution,

defined by 0 ≤ δk ≤ 1. Constraints (8) establish an upper bound for demand that can be allocated

to a hospital in each period. This limit must not exceed the percentage of its capacity defined by

each institution (σk ≥ 1).

Constraints (9) set the maximum percentage of an institution’s total annual demand to be

reallocated to the private providers by each institution (0 ≤ ωk ≤ 1). Constraints (10) ensure

that a hospital’s uncovered demand inside its institution will be reallocated to another hospital of

a different institution with idle capacity or to private providers in each period. Constraints (11)

allow allocating uncovered demand of other institutions to a hospital without exceeding its idle

capacity in each period. Constraints (12) are used to determine the service level of each hospital

for each patient acuity level in each period. Constraints (13) limit the demand reallocated to each

private provider according to its capacity in each period. Constraints (14) -(15) relate the integer
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variables yj and tjl. Constraints (16) enforce setting up the service with a predetermined number

of equipment units of each type in a hospital that already has the service or it is mandatory to set

up. Finally, the nature of the decision variables is given by (17)-(21).

3.2 Problem Decomposition

As stated before, we attempt to take advantage of the location-allocation structure of the model.

For this purpose, we consider the subproblem obtained when the location decision variables yj and

tjl are fixed. In fact, even for the first-level variables, we only need to know the tjl variables since

the yj variables depend on the value of the tjl variables.

Let t̄jl and ȳj represent the fixed and known values of the location first-level variables tjl and

yj , respectively. First, as previously mentioned, knowing t̄jl allows us to compute ȳj as follows:

ȳj =


1 if

∑
l∈L

t̄jl > 1

0 otherwise

(22)

In addition, let Wj(t̄jl), or simply Wj when understood from the context, represent the remaining

hospital capacity for the lower-level subproblem as a function of t̄jl, which is given by:

Wj(t̄jl) =
∑
l∈L

ECl · t̄jl (23)

The subproblem is referred to Model S(ȳj , t̄jl) to emphasize the dependency on the first-level

variables, or simply as Model S(t̄jl) (due to the dependency of the ȳj on the t̄jl given above). The

additional notation, parameters, and variables used in the subproblem formulation are as follows:

Sets

i, j ∈ O Set of hospitals with set-up service in the current solution (O ⊆ G).

Oj ⊂ O Set of hospitals with set-up service of institution to which hospital j also belongs.

Ok ⊂ O Set of hospitals with set-up service of institution k.

Parameters

Wj Capacity of hospital j; j ∈ O.

DC Penalty cost for unmet demand.

Variables

vuin Unserved demand for patient acuity level u in hospital i in period n; i ∈ O, u ∈ U, n ∈ N .
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Model S(t̄jl) Min
∑
j∈O

∑
u∈U

∑
n∈N

OCu · sujn +
∑
i∈O

∑
j∈P

∑
u∈U

∑
n∈N

PCu
j · xuijn +

∑
i∈O

∑
u∈U

∑
n∈N

DC · vuin

+
∑
i∈G

∑
j∈O∪P

∑
u∈U

∑
n∈N

TCu
ij · xuijn +

∑
k∈K

∑
u∈U

∑
n∈N

ACu
k

∑
i∈O\Gk

∑
j∈Ok

xuijn (24)

subject to:
∑
j∈Oi

xuijn = Du
in i ∈ G, u ∈ U, n ∈ N (25)

∑
i∈Gj

∑
u∈U

xuijn + βjn −
∑
u∈U

αu
jn = Wj(t̄jl) j ∈ O, n ∈ N (26)

αu
jn ≤

∑
i∈Gj

xuijn j ∈ O, u ∈ U, n ∈ N (27)

βjn ≤Wj(t̄jl) j ∈ O, n ∈ N (28)∑
i∈Ok

∑
j∈P

∑
u∈U

∑
n∈N

xuijn ≤ ωk

∑
i∈Gk

∑
u∈U

∑
n∈N

Du
in k ∈ K (29)

∑
j∈O\Gi

xuijn + vuin = αu
in i ∈ O, u ∈ U, n ∈ N (30)

∑
i∈O\Gj

xuijn ≤ βjn j ∈ O, n ∈ N (31)

∑
i∈G

∑
u∈U

xuijn ≤ σkj ·Wj(t̄jl) j ∈ O, n ∈ N (32)

∑
i∈Gj

xuijn +
∑

i∈O\Gj

xuijn − αu
jn = sujn j ∈ O, u ∈ U, n ∈ N (33)

∑
i∈O

∑
u∈U

xuijn ≤ CPjn j ∈ P, n ∈ N (34)

xuijn ∈ N ∪ {0} i ∈ G, j ∈ O ∪ P , u ∈ U, n ∈ N (35)

βjn ∈ N ∪ {0} j ∈ O, n ∈ N (36)

αu
jn, v

u
jn, s

u
jn ∈ N ∪ {0} j ∈ O, u ∈ U, n ∈ N (37)

To ensure subproblem feasibility, the variables vuin are used to allocate unmet demand when

there is not enough capacity in the system to allocate all demand across hospitals. A penalty cost

(DC) is added in the objective function when there is unmet demand, and this cost must be large

enough so that all capacity in the system will be used first. Note that constraints (7) from Model

A were not included in Model S. The resulting relaxed Model S is easier to solve this way. The

heuristics described in the following section ensure these constraints are eventually met.

Thus, in essence, for given fixed values t̄jl, a corresponding subproblem solution is obtained by
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first computing y and W given by Equations (22) and (23), and then solving subproblem S(t̄jl)

for these fixed values. The output of the subproblem is denoted by solution (x̄, s̄, ᾱ, v̄, β̄), and

therefore, a complete solution is given by: (t̄, ȳ, x̄, s̄, ᾱ, v̄, β̄).

Model S is a MILP that can be solved relatively quickly by branch and bound given its similarity

with a transshipment problem. In fact, in preliminary work (Mendoza-Gómez et al., 2016), it was

observed that solving the LP relaxations by the dual simplex algorithm instead of the primal

simplex method renders the solution even faster, and it takes advantage of the warm-start feature

of branch and bound, since changing hospital capacity between subproblem solution calls does not

affect dual feasibility.

3.3 Parameter Description

This subsection shows the computation and update operation of some parameters that are used in

the proposed heuristics.

Let us assume that an incumbent solution to the problem is given by (t̄, ȳ, x̄, s̄, ᾱ, v̄, β̄). The

cost-benefit ratio of each equipment of type l, l ∈ L, is given by:

CBl = V Cl/ECl (38)

The total uncovered demand in a solution is given by:

UD =
∑
i∈O

∑
u∈U

∑
n∈N

v̄uin (39)

The total cost of service in hospital j, j ∈ G, is given by:

TSj =
∑
u∈U

∑
n∈N

OCu · s̄ujn +
∑

k∈K\kj

ACu
k

∑
i∈O\Gk

x̄ujin +
∑
i∈P

PCu
i · x̄ujin +

∑
i∈O∪P

TCu
ji · x̄ujin


+ FCj · ȳj +

∑
l∈L

V Cl · t̄jl (40)

The unit cost for service in hospital j, j ∈ G, is given by:

UCj =


TSj∑

u∈U

∑
i∈G

x̄uijn
if ȳj = 1

0 otherwise

(41)
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The transportation cost for hospital i with no set-up service, i ∈ G, is given by:

ITCi =


∑
j∈Gi

∑
u∈U

∑
n∈N

TCu
ij · x̄uijn if ȳj 6= 1

0 otherwise

(42)

The overall cost of hospital i to provide the service internally or externally, i ∈ G, is given by:

OV Ci =
∑
u∈U

∑
j∈G

∑
n∈N

x̄uijn · UCj + ITCi (43)

The following binary parameters are used within the heuristic to evaluate possible feasible

movements or requirements.

Candidate institutions that require additional capacity: Let CIk be equal to 1 if institution

k ∈ K necessarily requires additional capacity to satisfy constraints (7) and (8) of model A, and 0

otherwise.

CIk =


1 if max

n∈N

∑
u∈U

∑
i∈Gk

Du
in >

∑
i∈Gk

Wi · σk and
∑
u∈U

∑
i∈Gk

∑
n∈N

Du
in · δk >

∑
i∈Gk

Wi · |N |

0 otherwise

(44)

Candidate equipment to be added in a hospital: Let CEil be equal to 1 if an equipment of type l

is feasible to be set up in hospital i without violating constraints (8) of model A, and 0 otherwise;

i ∈ G and l ∈ L.

CEil =


1 if max

n∈N

∑
u∈U

Du
in 6 (Wi + ECl) · σki

0 otherwise

(45)

Candidate equipment to be removed from an institution: Let EQIkl be equal to 1 if an equipment

of type l in institution k is a candidate for elimination without violating any constraint, and 0

otherwise; k ∈ K and l ∈ L.

EQIkl =



1 if max
n∈N

∑
u∈U

∑
i∈Gk

Du
in 6 σk

∑
i∈Gk

Wi − ECl


and

∑
u∈U

∑
i∈Gk

∑
n∈N

Du
in · δk 6 |N |

∑
i∈Gk

Wi − ECl


0 otherwise

(46)

Candidate equipment to be removed from a hospital: Let EQHjl be equal to 1 if an equipment of
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type l in hospital j is a candidate for elimination without violating any constraint, and 0 otherwise;

j ∈ G and l ∈ L.

EQHjl =


1 if t̄jl −Hjl > 0 and EQIkj l > 0 and max

n∈N

∑
u∈U

Du
jn 6 (Wj − ECl) · σkj

0 otherwise

(47)

The idle capacity in hospital j ∈ G, is given by:

ICj =


∑
n∈N

(
Wj −

∑
u∈U

suin

)
if ȳj = 1

0 otherwise

(48)

4 Proposed Hybrid Metaheuristic

In this section, we describe a metaheuristic framework that integrates iterated greedy algorithms

(IGA) and variable neighborhood descent (VND).

The IGA, also referred to as iterated local search (ILS) (Lourenço et al., 2003), is a stochastic

local search method (Hoos and Stützle, 2004) that generates a sequence of solutions by iterating over

a greedy construction heuristic using destruction and reconstruction phases. The first works were

proposed by Ruiz and Stützle (2006) for the permutation flow-shop scheduling problem and by Ruiz

and Stützle (2008) for the sequence-dependent set-up time flow-shop problem with makespan and

weighted tardiness objectives. In Quevedo-Orozco and Ŕıos-Mercado (2015), the authors present

an iterated greedy local search with VND to solve the capacitated vertex p-center problem. Some

important applications of IGA have been also proposed by Ruiz and Stützle (2008), Yuan et al.

(2008), Ribas et al. (2011), and more recently by Pan and Ruiz (2014).

Variable neighborhood search (VNS) is a metaheuristic proposed by Mladenović and Hansen

(1997) based on the simple principle of systematically changing the structure of neighborhoods

inside the search. Variable neighborhood descent is a special case of VNS when the choice of

neighborhood is made in a deterministic way. VNS/VND have been successfully applied to many

discrete location problems (Crainic et al., 2004; Garćıa-López et al., 2002; Hansen and Mladenović,

1997, 2001; Ljubić, 2007; Mladenović and Hansen, 2003; Quevedo-Orozco and Ŕıos-Mercado, 2015).

Some VNS approaches have been developed for location problems. For instance, Hansen and

Mladenović (1997) proposed a VNS for the p-median problem. Later, Hansen and Mladenović

(2001) applied the reduced VNS and variable neighborhood decomposition search (VNDS) to solve

larger instances of the problem. Two parallel VNS versions were proposed to solve this problem

by Crainic et al. (2004) and Garćıa-López et al. (2002). The p-center problem, which consists
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in locating p facilities and assigning clients to them in order to minimize the maximum distance

between a client and the facility to which it is allocated, was addressed by Mladenović and Hansen

(2003), who proposed a basic VNS and Tabu search. For simple plant location problems, a VNDS

was developed by Hansen and Mladenović (2001). A double VNS heuristic was proposed by Diakova

and Kochetov (2012) for the facility location problem and pricing problem in which the facilities

can charge different prices; the objective is to maximize the overall revenue. A hybrid VNS for

the connected facility location problem was presented by Ljubić (2007). In particular, VNS/VND

methods have also been applied in healthcare problems. An application of VNS in healthcare

facility location was presented by Marić et al. (2013), who developed a hybrid metaheuristic based on

combining the evolutionary approach with modified VNS for determining the location for long-term

healthcare facilities. Rego and de Sousa (2009) presented a hybrid Tabu search/VNS metaheuristic

for the design of alternative configurations in a hospital supply chain.

In the remainder of this section we provide the building blocks for the proposed metaheuristic.

We first describe two constructive heuristics. These are integrated later in an IGA, which is fully

described. Then, the VND is described in detail. The last section presents the overall IGA-VND

framework. Each component is empirically assessed in each subsection.

4.1 Constructive Heuristics

Two heuristic strategies are proposed in this section. The first one constructs a solution from

scratch, adding capacity at each iteration, and the second one is a two-phase heuristic that first

constructs a solution with excess of capacity and then refines and decreases this excess capacity in

a second phase.

Both heuristics require an initial presolution, that is, finding initial values for parameter t̄. The

requirement is to fix at least one equipment unit in a hospital for each institution. To construct

this presolution, parameters Hjl are first copied to t̄jl, since these are the mandatory equipment

units required for each hospital. Then, if an institution does not have any equipment units set up

at a hospital, it is required to set one up. In this case, it is suggested to select the hospital with the

highest demand and the equipment type with the lowest cost-benefit ratio according to Equation

(38).

Constructive Method 1

The core of this constructive method (CM1) is to add capacity to the system in each iteration

until feasibility is achieved. An equipment unit is added to the current solution in each iteration

to increase the capacity of the system. A greedy function is used to select the hospital that will

have its capacity increased.

Then, the current solution is updated, the subproblem (Model S) is solved, and the procedure
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is repeated until all constraints of Model A are satisfied. The procedure is shown in Pseudocode 1.

Pseudocode 1 Constructive Method 1

1: procedure Constructive Method 1(t)
2: Solve Subproblem( t̄ ) (relaxing (32)) ;
3: Compute CIk and uncovered demand UD according to (44) and (39) ;
4: while (

∑
k∈K

CIk > 0 OR UD > 0 ) do

5: if (
∑
k∈K

CIk = 0 ) then

6: CL← {G};
7: else
8: for ( any k ∈ K|CIk > 0 ) do
9: CL← CL ∪ {Gk};

10: end for
11: end if
12: Update CEil and OV Ci in each hospital according to (45) and (43);
13: i∗ ← arg maxi∈CL{OV Ci |

∑
l∈L

CEil > 0};

14: l∗ ← arg minl∈L{CBl | CEi∗l > 0};
15: t̄i∗l∗ ← t̄i∗l∗ + 1;
16: Solve Subproblem( t̄ ) (relaxing (32));
17: Update CIk and uncovered demand UD according to (44) and (39) ;
18: end while
19: Solve Subproblem( t̄ ) ;
20: return (t̄, ȳ, x̄, s̄, ᾱ, β̄)
21: end procedure

At first, in Step 2, we solve the subproblem (Model S) but relax the constraints (32), since they

could generate an infeasible solution. At the end of the procedure, these constraints are no longer

relaxed (Step 19).

The initial solution may be infeasible for Model A because the constraints (7) and (8) were

relaxed. The feasibility is evaluated with Equations (44) and (39). If any of these values is strictly

positive (i.e., it is infeasible), then it is required to add an additional equipment unit to the system

to increase its capacity. A candidate list of hospitals (CL) is created to select the hospital to which

an equipment unit will be added. If all CIk are equal to zero, the candidate list is formed by

all sets of public hospitals (G), but if some k ∈ K, CIk = 1, only the hospitals that belong to

that institution (Gk) will be added to CL. A greedy function (OV Ci) is used to select a hospital

from CL, and this function evaluates the overall cost that each hospital requires to satisfy its

demand. To determine this value, the total cost of each hospital with installed service is divided

proportionally among all hospitals of its own institution that allocate demand to it. The equations

used to calculate these values are (40), (41), (42), and (43); these equations use the values of the

current solution of Model S. The hospital from CL with higher OV Ci and the type of equipment

with lower cost-benefit (evaluated with Equation (38) in Step 14) is selected. The chosen hospital

14



i∗, to which equipment of type l∗ will be added, must also guarantee feasibility of constraints (8) of

Model A; this is evaluated with Equation (45). Once t̄ is updated, it is required to resolve Model

S to update the new solution. The feasibility of the new solution is reevaluated, and the previous

steps are repeated until a complete feasible solution is found. Then, Model S is solved without

relaxing constraints (32) to get the final feasible solution of Model A.

Constructive Method 2

This is a two-phase heuristic (depicted in Pseudocode 2) with the following idea. In phase one, an

initial feasible solution that satisfies all constraints of Model A is obtained by a greedy constructive

procedure (Step 2). Then, the second phase (Step 3) attempts to improve the objective function

value without losing feasibility. Both procedures are described next.

Pseudocode 2 Constructive Method 2

1: procedure Constructive Method 2(t̄ )
2: t̄← Greedy Construction(t̄ );
3: (t̄, ȳ, x̄, s̄, ᾱ, β̄)← Improvement( t̄ );
4: return (t̄, ȳ, x̄, s̄, ᾱ, β̄)
5: end procedure

The idea behind the Greedy Construction(t̄) procedure, depicted in Pseudocode 3, is to solve

the location problem for each institution without considering the interaction among institutions or

the interaction with private providers. The rest of the process determines, for each institution, the

hospitals and the number of equipment units of each type that will be set up.

Initially, in Step 2, we determine the initial capacity and the hospital set-up capacity with

Equations (23) and (22), given the initial presolution. For each institution all demand must be

allocated at the end of the procedure. The demand parameters (D) are copied to D̄ to identify

unallocated demand. To identify unallocated capacity, W is copied to wn for each period. The

demand will be allocated to hospitals with idle capacity (wn > 0) in each period. If the capacity

is full but there is still unallocated demand, a new equipment unit must be added to the system.

The algorithm will stop when this requirement and constraints (7)-(8) of Model A, determined by

Equation (44), are satisfied.

The demand that belongs to the acuity level with the highest cost and cheapest transport cost

is allocated first. Then, the allocated demand is removed from D̄ and the available capacity is

updated from wn; this procedure is repeated until there is no available capacity.
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Pseudocode 3 Constructive Method 2 Phase 1

1: procedure Greedy Construction(t̄ )
2: Set W = (Wj(t̄)) and ȳ = (ȳj(t̄));
3: D̄ ← D ;
4: wn ←W,n ∈ N ;
5: Determine candidate institutions CI according to (44);
6: for ( k ∈ K ) do
7: while (

∑
u∈U

∑
i∈Gk

∑
n∈N

D
u
in > 0 or CIk > 0) do

8: for ( j ∈ Gk |
∑
n∈N

wjn > 0 ) do

9: for ( n ∈ N ) do
10: while (wjn > 0 and

∑
i∈Gk

∑
u∈U

D
u
in > 0) do

11: u∗ ← arg maxu∈U{OCu};
12: i∗ ← arg mini∈Gk{TCu∗

ij };
13: Adjust D

u∗

i∗n ← D
u∗

i∗n −min{Du∗

i∗n, wjn} ;

14: Adjust wjn ← wjn −min{Du∗

i∗n, wjn} ;
15: end while
16: end for
17: end for
18: if (

∑
u∈u

∑
i∈Gk

∑
n∈N

D
u
in > 0 or CIk > 0) then

19: Update candidate equipments CE according to (45) ;
20: λkjl ← FCj/(Wj + Cl) + (V Cl +

∑
i∈Gj

∑
u∈U

∑
n∈N

TCu
ij ·D

u
in)/Cl ∀j ∈ Gk, l ∈ L;

21: (j∗, l∗)← arg minj∈Gk,l∈L{λkjl| CEjl > 0};
22: tj∗l∗ ← tj∗l∗ + 1 ;
23: Update W and y;
24: wj∗n ← wj∗n + Cl∗ ∀n ∈ N ;
25: end if
26: end while
27: end for
28: return t
29: end procedure

When capacity is not available, capacity must be increased to cover the remaining unallocated

demand. To select the hospital that will increase its capacity and the type of equipment to set up,

a greedy function is used (Step 20). This function evaluates for each hospital the cost-benefit of

adding capacity. The function considers the initial fixed cost divided by the total potential capacity,

plus the variable initial cost of the potential new equipment units and the total transportation cost,

supposing that all unallocated demand is allocated to this hospital. This sum is divided by the

capacity of the new potential equipment.

We must ensure that the selection of this hospital and the type of equipment selected do not

violate constraints (8). This is evaluated with Equation (45). Then, the new available capacity is
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updated and unallocated demand is reallocated. This procedure is repeated until no unallocated

demand exists and constraints (7) and (8) are satisfied.

Pseudocode 4 Constructive Method 2 Phase 2

1: procedure Improvement( t̄ )
2: Solve Suproblem(t̄);
3: tbest ← t̄;
4: Compute EQH and UD according to (46) and (39);
5: Improve← 1;
6: while (

∑
j∈G

∑
l∈L

EQHjl > 0, UD = 0 and Improve = 1 ) do

7: Update IC according to (48);
8: j∗ ← arg maxj∈G{ICj |

∑
l∈L

EQHjl > 0};

9: l∗ ← arg maxl∈L{CBl| EQHj∗l > 0};
10: t̄j∗l∗ ← t̄j∗l∗ − 1 ;
11: Solve Subproblem(t̄);
12: if ( Z(t̄) < Z(tbest) ) then
13: tbest ← t̄ ;
14: Update UD and EQH according to (46) and (39);
15: else
16: Improve← 0;
17: end if
18: end while
19: return (t̄, ȳ, x̄, s̄, ᾱ, β̄)
20: end procedure

The objective of improvement procedure (shown in Pseudocode 4) is to reduce the number of

equipment units in the system (implying a reduction in costs). This can certainly be achieved due

to the integration of both inter-institutional allocation and private service. This procedure requires

solving Model S at each iteration. The algorithm stops when no improvement in the objective

function can be made or when infeasibility is found. Parameter tbest represents the best solution

found, and the initial value of t̄ is iteratively modified within the main loop. Let Z(t̄) denote the

corresponding objective function value associated with the complete solution obtained from t̄. To

evaluate the feasibility of Model A, Equations (46) and (39) are used. To determine from which

hospital some capacity is to be removed, Equation (48) is used. In this regard, the hospital with

the highest idle capacity such that feasibility is maintained is chosen to have its capacity reduced.

The type of equipment with the highest cost-benefit is selected. The selected hospital and type

of equipment removed must satisfy feasibility, this is evaluated with Equation (47). When an

equipment unit is removed from the system, the capacity is updated, and then Model S is solved

again. The new objective function value is evaluated, and if an improvement exists the best solution

is updated. The algorithm stops when no improvement is found or when no feasible reduction of

capacity can be made.
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Evaluation of the Constructive Heuristics

Computer specification and testing environment: All procedures were coded in C++ and compiled

with Visual Studio compiler 2012 and run on a PC operating system with 2.70 GHz Intel Core

i7-2620M processor and 16 GB 1067 MHz DDR3 of RAM. For the calls to the branch-and-bound

method, the CPLEX Studio 12.6.2 callable library from IBM was used.

To evaluate and compare the constructive heuristics, a database of instances taken from Mendoza-

Gómez et al. (2016) is used. The network size is given by the number of hospitals in the network

(i.e., |I| = ns). For each ns ∈ {60, 120, 180, 240, 360}, 30 instances were used. These were randomly

generated based on real-world data. For each instance, the number of patient acuity levels was ran-

domly selected from 1 to 3 to represent demand that requires emergency, ordinary, or outpatient

services. The number of periods was set to 12 to evaluate the monthly demand behavior. The

number of equipment types was also defined randomly with values from 1 to 3 for each instance.

To evaluate a wide variety of scenarios, the equipment capacity was randomly determined from

specific values that range from 90 to 720 services per period. This represents a service rate of 1

service per hour to 3 services per day in a 24-hour service scheme. All costs related to the service

were also randomly selected from a wide variety of possible values. To simulate demand behavior,

the MRI service was used as an example. The demand for each hospital in each period was ran-

domly generated according to a Weibull probability distribution obtained from Mexico National

Health Information System data for MRI services in public hospitals in 2012. For further details,

the reader can refer to Mendoza-Gómez et al. (2016).

To assess the quality of solutions found by either heuristic, the relative optimality gap is used.

For instances with no optimal solution found with B&B and a three-hour limit of computing time,

the best-known lower bound of all the remaining open nodes in the branch-and-node tree is used.

The results are presented in Table 1.

As can be seen from the table, there are significant improvements on the average relative gaps

and computing times observed by the heuristics when compared to B&B. Relative gaps were very

similar between the two constructive methods. The average relative gap for CM1 was 4.60%, and for

CM2 was 4.12%. Using a non-parametric test (Mood Median Test), no significant differences were

found. Nevertheless, significant differences were found for the computing time. A lower running

time was achieved with CM2 with an average time of 6.34 seconds against the 10.84 seconds observed

by CM1. Clearly, both heuristics are more efficient than B&B, especially for larger instances. For

example, for the 300-node instances, the average relative gap was 43.96% within three hours of

computing time for B&B, while CM1 and CM2 produced 5.49% and 5.22%, respectively. These

relative gaps were obtained with a significantly lower running time compared to B&B and with

average computing times of 27.2 and 16.0 seconds, respectively.
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Table 1: Comparison of constructive methods and B&B.

Method n
Average
gap (%)

Minimum
gap (%)

Maximum
gap (%)

Average
time (s)

Minimum
time (s)

Maximum
time (s)

B&B

60 0.32 0.00 2.31 6,755 18.5 10,800
120 2.24 0.00 10.62 10,566 3,568 10,800
180 6.98 0.81 23.91 10,654 8,244 10,800
240 20.94 3.11 59.43 10,693 7,557 10,800
300 43.96 6.45 76.65 10,762 9,367 10,800

CM1

60 2.11 0.26 7.91 0.7 0.2 1.7
120 3.06 0.66 16.87 3.2 0.9 8.1
180 3.58 1.09 8.86 8.4 2.1 24.7
240 4.59 0.98 12.12 14.7 3.7 36.3
300 5.49 1.75 10.52 27.2 5.8 59.0

CM2

60 2.04 0.0 6.67 0.5 0.2 1.1
120 2.46 0.81 6.50 1.8 0.7 3.2
180 3.38 0.56 10.07 5.0 1.3 10.9
240 3.36 0.70 9.43 8.5 2.6 18.5
300 5.22 1.08 10.03 16.0 4.7 38.9

4.2 Iterated Greedy Algorithm

The iterated greedy algorithm (IGA) is a simple stochastic local search method that generates

a sequence of solutions by iterating over a greedy construction heuristic using destruction and

reconstruction mechanisms. Pseudocode 5 shows our implementation of the IGA. The method

takes the maximum number of iterations (iteration limit) and the destruction parameter ρ as input.

The destruction phase (Step 7) removes some elements from the incumbent solution according to

ρ. In the reconstruction phase (Step 8), starting from a partial solution, a new candidate solution

is created by reconstructing a complete solution using a greedy constructive heuristic. Any of the

two construction methods outlined before can be applied here, starting the construction from a

partial solution. Once the candidate solution has been completed (Step 9), an acceptance criterion

is applied to decide whether the constructed solution should replace the incumbent solution (Step

11). The best-known solution is updated if necessary (Steps 12-14). The process iterates between

these two phases until a stopping criterion is met. In this case we use a limit on the number of

iterations.

The parameter ρ is used to indicate the percentage of elements in the solution to be destroyed. In

this problem, ρ indicates the percentage of the total number of equipment units in the system that

are “removed” or unassigned. The destruction method is displayed in Pseudocode 6. The number

of equipment units that are necessarily required (indicated by parameter H) are not considered

as candidate elements to be removed (Step 2). A candidate list of pairs (j, l), CL, with positive

removable capacity Fjl, is formed (Step 4). Then, each pair (j, l) is stored in CL such that every

possible equipment unit has equal chance of being removed. At each iteration an equipment unit

is removed randomly from the solution and the candidate list (CL) is updated.
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Pseudocode 5 Iterated Greedy Algorithm

1: procedure Iterated Greedy( iteration limit, ρ)
2: t0 ← Constructive Method( ) ;
3: Solve Subproblem( t0 );
4: tbest ← t0;
5: for ( i = 1, . . . , iteration limit ) do
6: t̄← t0;
7: t̄← Destruction Method( t̄, ρ );
8: t̄← Constructive Method( t̄ );
9: Solve Subproblem( t̄ );

10: if ( Z(t̄) < Z(t0) ) then
11: t0 ← t̄;
12: if ( Z(t̄) < Z(tbest) ) then
13: tbest ← t̄;
14: end if
15: end if
16: end for
17: return ( tbest )
18: end procedure

Pseudocode 6 Destruction method

1: procedure Destruction Method(t̄, ρ)
2: Fjl ← t̄jl −Hjl ;
3: η ← dρ ·

∑
j∈G

∑
l∈L Fjle;

4: CL ← all pairs (j, l) with Fjl > 0 ;
5: for ( i = 1, . . . , η ) do
6: Choose (j∗, l∗) randomly from CL;
7: t̄j∗l∗ ← t̄j∗l∗ − 1;
8: CL ← CL \ {(j∗, l∗)};
9: end for

10: return (t̄)
11: end procedure
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Calibration of IGA

The IGA requires two parameters, one to define a level of solution destruction (ρ) and the number

of main iterations. To identify an adequate value for each parameter, an experiment was conducted

with the same samples. Different values of ρ were tested in order to identify the best value that

generates the best improvement for the solutions. Since it is not yet known the best number of

iterations required, in this experiment 100 iterations were considered for all instances. To compare

both constructive methods, the same initial solution generated from CM1 was used. These initial

methods generated initial solutions with an average relative gap of 3.8% in 13.1 seconds.

Figure 2: Calibration of ρ in the IGA.

We name IGA1 and IGA2 the iterated greedy algorithm using CM1 and CM2, respectively. The

results are shown in Figure 2. In the left-hand-side plot, the average relative gaps are compared

for each value of ρ. The best relative gap was achieved with a ρ equal to 10% and using IGA2 with

an average relative gap of 2.33% in an average running time of 1,106 seconds. However, using a ρ

equal to 20% generated an increment of only 0.0067% in the average relative gap but increased the

average running time by 85 seconds. The best results using IGA1 were achieved with a ρ equal to

20% and with an average relative gap of 3.21% in an average of 1,036 seconds. We conclude that

IGA2 provides significantly better results than IGA1.

In addition, in the right-hand-side plot, we observe that increasing the value of ρ generates

an increased running time. IGA2 presented more stable computing times, while IGA1 reached its

highest peak with a ρ equal to 50%, and after that it decreased. If we compare the computing

time for the best results of each strategy, the average computing time of IGA1 is only 20 seconds
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lower than IGA2. With these experiments, we conclude that the best strategy is to use IGA2 with

a value of ρ between 0.10 and 0.20.

Figure 3: Interval plot with a confidence interval of 95% for the number of suggested iterations.

To identify the number of iterations required by the IGA2, all samples were solved using up to

200 iterations with ρ = 0.20. In a first analysis, the total number of iterations required to find the

best solution for each instance was recorded. In general, most of the instances (82%) required less

than 100 iteration to find the best solution. In an additional experiment, the appropriate number of

iterations required for each instance was intuitively identified, taking into account the improvement

achieved compared with the running time. An interval was identified for the number of iterations

required for each instance size (30 samples) with a confidence level of 95%. The interval plot is

presented in Figure 3. Considering both previous analyses, we considered that an adequate number

of iterations for instances up to 300 nodes could be around 100 iterations.

4.3 Variable Neighborhood Descent

VNS is a metaheuristic based on a systematic change of neighborhood within the search. The

VND method is obtained if the change of neighborhoods is performed in a deterministic way.

Basically, several different neighborhoods are explored in order, typically from the smallest and

fastest, to evaluate the slowest and largest one. The process iterates over each neighborhood

while improvements are found, doing local search until meeting local optima at each neighborhood.

Only strictly better solutions are accepted after each neighborhood search. Pseudocode 7 depicts

the VND, where t̄ again denotes the compact version of a complete feasible solution given by

(t̄, ȳ, x̄, s̄, ᾱ, v̄, β̄).
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Pseudocode 7 Variable Neighborhood Descent

1: procedure VND( t̄ )
2: tbest ← t̄; k ← 1;
3: while ( k ≤ kmax ) do
4: t̄← BestNeighbor( Nk(tbest) );
5: if ( Z(t̄) < Z(tbest) ) then
6: tbest ← t̄;
7: k ← 1;
8: else
9: k ← k + 1;

10: end if
11: end while
12: return ( t̄ )
13: end procedure

Proposed Neighborhoods

Four neighborhoods are proposed for this problem. These neighborhoods are defined by movements

of equipment units in the system. They are described below:

1. Equipment type swap: The move move1(i, l, l∗) is defined as replacing one equipment unit of

type l for another unit of different type l∗ in the same hospital i. Then N1(t̄) is the set of

neighbors reachable from t̄ by performing all possible moves move1(i, l, l∗). The following are

some important computational considerations:

• A hospital i ∈ G is a candidate for this move if

∑
l∈L

(t̄il −Hil) > 0. (49)

• An equipment type l in a given hospital i is feasible for this move if t̄il −Hil > 0.

• For a selected hospital i with an equipment of type l, equipment type l∗ is feasible for

this move if all of these conditions are met:

max
n∈N

∑
u∈U

Du
in 6 (Wi − ECl + ECl∗) · σki

max
n∈N

∑
u∈U

∑
j∈Gi

Du
jn 6

∑
j∈Gi

Wj − ECl + ECl∗

 · σki (50)

∑
u∈U

∑
j∈Gi

∑
n∈N

Du
jn · δk 6

∑
j∈Gi

Wj − ECl + ECl∗

 · |N | (51)
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• This move is meaningful only for instances with |L| > 1.

2. Inter-institutional hospital total capacity exchange: The move move2(i, j) consists of trans-

ferring all current allocation from hospital i to another hospital j of the same institution with

nonzero allocation. Then N2(t̄) is the set of neighbors reachable from t̄ by performing all

possible moves move2(i, j). The following are some important computational considerations:

• A hospital i ∈ G is a “donor” candidate for this move if ȳi = 1 and
∑

l∈LHil = 0.

• A hospital j ∈ Gi is a “recipient” candidate for this move if ȳj = 1.

3. Inter-institutional hospital unit capacity balancing :

The move move3(i, j, l) consists of transferring one unit of capacity of equipment type l

from hospital i to another hospital j of the same institution with a lower number of units

assigned. Then N3(t̄) is the set of neighbors reachable from t̄ by performing all possible

moves move3(i, j, l). This move is not considered when all hospitals have the same number

of equipment units. The following are some important computational considerations:

• For any k ∈ K, a hospital i ∈ G is a donor candidate for this move if Wi = maxj∈Gk {Wj}
and constraints (49) are met.

• For a given donor hospital i, a hospital j ∈ Gi is a valid recipient’ candidate for this

move if ȳj = 1.

• For chosen donor and recipient hospitals i and j, an equipment of type l ∈ L is a

candidate for this move if (50), (51), and the following conditions are met:

max
n∈N

∑
u∈U

Du
in 6 (Wi − ECl) · σki if Wi − ECl > 0 (52)

4. Hospital capacity exchange: The move move4(i, j, l) consists of transferring one unit of ca-

pacity of equipment type l from a hospital i to a hospital j from a different institution. Then

N4(t̄) is the set of neighbors reachable from t̄ by performing all possible moves move4(i, j, l).

The following are some important computational considerations:

• For any k ∈ K, a hospital i ∈ Gk is a valid “donor” candidate for this move if (49) is

met.

• For a given donor hospital i, a hospital j is a valid recipient candidate if Gj 6= Gi and

ȳj = 1.

• For a chosen donor hospital i, an equipment of type l ∈ L is a valid candidate for this

24



move if (52) and the following two conditions are met:

max
n∈N

∑
u∈U

∑
j∈Gi

Du
jn 6

∑
j∈Gi

Wj − ECl

 · σki
∑
u∈U

∑
j∈Gi

∑
n∈N

Du
jn · δk 6

∑
j∈Gi

Wj − ECl

 · |N |
Neighborhood Assessment

The proposed neighborhoods are empirically assessed by individually running each of them within

a hill-climbing local search (LS) strategy. The 150 instances previously tested are used in this

experiment. The CM1 method was used to get initial solutions.

The results are presented in Table 2, where the first column LSi represents neighborhood Ni.

The final (after LS) average relative gaps are presented in column 2. The third column displays the

average of the relative improvements of all instances (IMP) for each local search procedure. The

fourth and fifth columns indicate the average and maximum running time, respectively. The final

average relative gap for each network size is presented in the last five columns.

Table 2: Individual neighborhood evaluation, initial relative gap = 3.77%.

LS
Final IMP Ave. Max. Average final gap (%)

gap (%) (%) time (s) time (s) 60 120 180 240 300
LS1 3.30 12.28 0.9 15.0 1.93 2.62 3.12 3.92 4.93
LS2 3.61 4.17 0.4 6.0 1.70 2.96 3.49 4.48 5.42
LS3 2.85 24.40 18.1 198.0 1.61 2.32 2.69 3.43 4.18
LS4 2.47 34.29 184.1 1,578.4 1.43 1.99 2.40 2.88 3.66

As can be seen from Table 2, LS4 presented the best average improvement but also the highest

running time. LS3 produced the second best average improvement but with a lower running time

compared to LS4. LS1 and LS2 generated moderate improvements but had the lowest running

times. In general, large instances required more computing time in all local search schemes and

were more difficult to solve.

Assessment of VND

The next step is to integrate a sequence of these neighborhoods in the VND method. This aims to

intensify the search of solutions in a specific local region obtained from the IGA knowing that a good

solution is found in this region. Some experiments were performed to select the neighborhoods to

be integrated in the VND. The results of five different strategies are shown in Table 3. The second

column shows the neighborhood ordered sequence in the VND. For instance for VND1, the three

neighborhoods used were N1, N2, and N3. The remaining columns are similar to those in Table 2.

Since the LS4 presented the highest running times, VND2 and VND4 are the ones with the
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Table 3: VND evaluation, initial relative gap = 3.77%.

VND N Order
Final IMP Ave. Max. Average final gap (%)

gap (%) (%) time (s) time (s) 60 120 180 240 300
VND1 (1, 2, 3) 2.30 38.90 21.8 218.8 1.04 1.86 2.23 2.71 3.68
VND2 (1, 2, 3, 4) 2.04 48.87 263.5 2,660.5 0.91 1.62 1.89 2.44 3.34
VND3 (2, 1, 3) 2.31 38.74 53.1 420.5 1.05 1.88 2.21 2.72 3.68
VND4 (2, 1, 3, 4) 2.05 45.70 257.4 2,139.6 0.91 1.60 1.88 2.45 3.39
VND5 (2, 3) 2.45 35.07 17.1 178.8 1.45 1.97 2.29 2.81 3.73

highest running times. However, they are the ones with the highest improvements. The objective is

to implement a VND at each iteration of the IGA. Therefore, strategies VND1 and VND5 are good

candidates because they offer a good compromise between quality and running time, but VND1 was

selected for implementation in the IGA-VND metaheuristics because it has a better improvement

than VND5 and a slight increase in running time.

4.4 Iterated Greedy Algorithm with Variable Neighborhood Descent

Pseudocode 8 displays the proposed IGA-VND metaheuristic. It is essentialy the IGA method

enhanced with a VND local search phase everytime a new solution is found after the destruction

and reconstruction procedures. The IGA component may be viewed as a diversification mechanism,

and the VND component as an intensification method. As an additional strategy of improvement,

a LS4 is applied when the best solution is improved (Step 15).

Table 4 presents some experiments of the metaheuristic with different parameter values and

components. The first column represents the name of the experiment. The second column describes

the completed method. For instance, for E3 the CM1 is used as the initial solution for IGA2; at

each iteration of IGA2 a VND1 is applied, and at each improvement a LS4 is performed. The third

column corresponds to the deconstruction parameter. The fourth column shows the number of

iterations for the IGA. The following six columns show the average relative gaps for each network

size and the global average. In the last column the average running time is shown.

We can observe in Table 2 that LS4 produced the best improvement with respect to all other

neighborhoods but had the longest running time. The inclusion of LS4 in the VND significantly

increases the computing time of the IGA, according to Table 3. However, if this strategy is used

only when the best solution is updated, the computing time is not be considerably affected. This is

shown in the experiments E1 and E2 of Table 4; in average, better relative gaps are achieved with

E2, with an increase in the average running time of only 3 seconds.

An additional improvement in the IGA is to provide an alternative initial solution method. The

use of CM1 to generate an initial solution provides better improvements when IGA2 is performed,

as shown in experiments E2 vs. E3 of Table 4. A decrease of 0.29% in the average relative gap

and a decrease of 164 seconds in the average running time are achieved. In experiment E3 vs. E4,

it is observed that only 50 iterations are required for a significant improvement, and from 50 to
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Pseudocode 8 Iterated Greedy Algorithm with VND

1: procedure Iterated Greedy VND( iteration limit, ρ)
2: t0 ← Constructive Metod( ) ;
3: t0 ← VND( t0 ) ;
4: Solve Subproblem( t0 );
5: tbest ← t0;
6: for ( i = 1, . . . , iteration limit ) do
7: t̄← t0;
8: t̄← Destruction Method( t̄, ρ );
9: t̄← Constructive Method( t̄ );

10: t̄← VND( t̄ );
11: Solve Subproblem( t̄ );
12: if ( Z(t̄) < Z(t0) ) then
13: t0 ← t̄;
14: if ( Z(t̄) < Z(tbest) ) then
15: t̄← LS( t̄ );
16: t0 ← t̄;
17: tbest ← t̄;
18: end if
19: end if
20: end for
21: return ( tbest )
22: end procedure

Table 4: Overall assessment of IGA-VND strategies.

Exp. Method ρ Iter
Average relative gap for NS (%) Average

60 120 180 240 300 Global time (s)

E1 IGA2 VND1 0.20 50 0.87 1.44 1.64 2.26 3.63 1.97 1,902
E2 IGA2 VND1 LS4 0.20 50 0.83 1.38 1.67 2.21 3.61 1.94 1,907
E3 CM1 IGA2 VND1 LS4 0.20 50 0.68 0.97 1.49 2.03 3.06 1.65 1,743
E4 CM1 IGA2 VND1 LS4 0.20 100 0.67 0.97 1.45 2.02 3.06 1.64 2,495
E5 CM1 IGA2 VND1 LS4 0.10 50 0.67 1.05 1.58 2.04 3.11 1.69 1,550

100 iterations, only a 0.01% of relative decrease is made with an additional running time of 752

seconds. In Figure 2, it was observed that relative gaps for values of ρ between 0.10 and 0.20 were

similar. In the comparison E3 vs. E5, both values are tested, where the best results were achieved

with a ρ equal to 0.20.

With these experiments, we conclude that the best performance of the metaheuristic is achieved

with CM1 IGA2 VND1 LS4, with 50 iterations and a destruction parameter percentage of 20%.

In order to assess the contribution of each of the components of the IGA-VND metaheuristic,

we run the heuristic under different algorithmic conditions, that is, omitting one component at a

time. The results are shown in Table 5, where each “different heuristic” is shown in each row.

The second column displays the component being omitted. For instance, the first row is the full

metaheuristic, the second row represents the same heuristic but with the LS4 component omitted,
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and so on.

Table 5: Assessment of individual components.
Method Omitted Average relative gap for NS (%) Average time (s)

component 60 120 180 240 300 Global Shift Global Shift
CM1 IGA2 VND1 LS4 Neither 0.68 0.97 1.49 2.03 3.06 1.65 1,743

CM1 IGA2 VND1 LS4 0.73 1.06 1.54 2.08 3.12 1.71 +0.06 1,781 + 38
IGA2 VND1 LS4 CM1 0.83 1.38 1.67 2.21 3.61 1.94 +0.29 1,907 +164
CM1 IGA2 LS4 VND1 1.13 1.42 1.98 2.67 3.66 2.17 +0.52 603 −1,140
CM1 VND1 LS4 IGA2 0.96 1.72 2.10 2.62 3.54 2.19 +0.54 46 −1,697

The first thing to notice is that the best results are obtained when no component is removed;

that is, each component of the algorithm brings some benefit to the table. Now, to identify which

components are more critical, as can be seen from the table, the best contribution in the solution

quality is provided by the iterated greedy algorithm, which reduces the average relative gap by

0.54% but also requires an increase of 1,697 seconds in the average running time. The second

best improvement is achieved by the VND1 and with a decrease in the average relative gap of

0.52% with an increment of 1,140 seconds in the average running time. The use of CM1 as the

initial solution provides an improvement of 0.29% in the average relative gap and an increase of

164 seconds. Finally, the LS4 generated a moderate of 0.06% in the relative gap with an increase of

only 38 seconds in the running time. When the IGA component is omitted, the resulting algorithm

is essentially a VND heuristic. As seen and mention before, the solution quality may not be as

good as the complete metaheuristic; however, it is very fast compared to the other choices. As a

conclusion, this can be seen as a double contribution, that is, an IG-based metaheuristic delivering

the highest quality results, and an alternate VND-based heuristic delivering solutions very quickly.

Finally, Table 6 displayes the results of the metaheuristic compared with B&B with a time limit

of 3 hours. It is important to note that to the best of our knowledge, no other heuristic or exact

methods have been developed for this problem. The methods developed for similar problems are

not applicable at all for this problem given its very unique features. It is clearly observed that for

instances of 120 hospitals and more, the metaheuristic is significantly better with respect to both

solution quality and computing time, as expected. Furthermore, the proposed metaheuristic finds

near-optimal solutions, obtaining average relative optimality gaps of less than 3.06% for the largest

set and less than 2.03% for the rest.

Table 6: Comparison between IGA-VND and B&B.

Method
Average relative gap for NS (%) Average run-time for NS (s)
60 120 180 240 300 60 120 180 240 300

B&B 0.32 2.24 6.98 20.94 43.96 6,755 10,566 10,654 10,693 10,761
CM1 IGA2 VND1 LS4 0.68 0.97 1.49 2.03 3.06 105 562 1,720 3,529 6,542
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5 Conclusions

This paper proposes a hybrid IGA-VND algorithm to solve medium- to large-scale instances of

a location-allocation problem for specialized medical service across public hospital networks. The

method is based on an intelligent exploitation of problem structure as we showed how to decompose

this structure by fixing first-level location variables, leaving a transshipment-like problem in the

allocation of the second-level subproblem. This property was taken advantage of in the constructive

and local search components. The contribution of our work included the design and development of

specific components tailored-made for this specific application, such as greedy construction heuris-

tics, several local search schemes, a Variable Neighborhood Search, all cast into an Iterated Greedy

Algorithm metaheuristic.

Our computational study revealed the effectiveness of the proposed approach and each of its

components. When assessing each component individually, we found that the IGA and VND

methods provide the largest benefit to the overall methodology. Since no other heuristic methods

exist for this problem, and other methods developed for similar problems are not quite applicable

to this problem given its unique features, a comparison was made to a branch-and-bound method

(implemented in CPLEX). Except for the 60-node instances, the proposed metaheuristic clearly

found solutions of significantly better quality than those found by the exact method. In fact, using

the best lower bound found by branch and bound as a measure for computing relative optimality

gaps, our method was empirically shown to find near-optimal solutions, obtaining relative optimally

gaps of less than 3.06% for the largest instances.

Some additional opportunities for extending this research are to study new characteristics eval-

uated in recent studies, such as the uncertainty in demand or supply of services, the use of a hier-

archical hospital structure, multiple-services evaluation, and evaluation of lost demand or patient

dissatisfaction. Furthermore, the formulated problem focuses on helping decision makers be strate-

gic about infrastructure planning, but a second problem needing to be solved is associated with

the operative decisions. In this sense, it is worthwhile to investigate a methodology to evaluate the

best strategies for the programming of services that require a coordination between departments,

staff, and institutions. To this end, several of the ideas, such as the problem decomposition, or

components developed in this research, may prove useful to some of these problems.
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Hansen, P. and Mladenović, N. (2001). Variable neighborhood decomposition search. Journal of

Heuristics, 7(4):335–350.
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Ruiz, R. and Stützle, T. (2006). A simple and effective iterated greedy algorithm for the permutation

flowshop scheduling problem. European Journal of Operational Research, 177(3):2033–2049.
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Yuan, Z., Fügenschuh, A., Homfeld, H., Balaprakash, P., Stützle, T., and Schoch, M. (2008).
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