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Abstract

The day-ahead electricity market is crucial for improving energy generation and sales planning.
This paper evaluates a hydro-thermal network-constrained unit commitment model, and its solu-
tion method developed for the Mexican electricity market. The objective function maximizes the
economic surplus for market participants. The problem is formulated as a mixed-integer non-linear
programming problem, considering real-world constraints and a non-linear hydropower generator
function. A decomposition approach is employed to solve the problem. Additionally, a new com-
ponent has been introduced to handle the non-linear aspects of the hydropower generator function
using a first-order Taylor’s approximation. Empirical results are presented, including the solution
of a representative case from Mexico’s electricity market, illustrating its practical application. This
novel method can be valuable in markets with substantial hydropower resources, improving the

accuracy and timeliness of system operation scheduling.

Keywords: Unit commitment problem; Day-ahead electricity market; Short-term hydro scheduling;

Hydropower function; Mixed-integer linear programming.
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1 Introduction

In this paper, we address the Unit Commitment Problem (UCP) for the day-ahead market (DAM)
in Mexico that uses the sales offers and purchase bids of the participants (generators and loads) in
the market. Besides, it incorporates other constraints such as transmission losses, power flow limits
in tie-lines, five simultaneous reserves with different timing, and technical features of hydraulic
generators such as the Hydropower Function (HPF). Moreover, the objective function determines
the maximum economic surplus of the participants. A mixed-integer non-linear programming model
(MINLP) is proposed for solving this problem. A first contribution of this work is introducing a
highly detailed UCP model that includes hydrothermal coordination in an electricity market.

To solve the problem, some simplifications are made to the model to reduce it into a mixed-
integer linear program (MILP). A cut generation strategy embedded into a decomposition method
is used for solving this model; this strategy entails decomposing the problem into a master problem
(MP) and a series of non-linear sub-problems (SP). The non-linearity comes from the HPF. This
function calculates the generation depending on the head of the reservoir and the water flow in
the turbine. To handle this, we use a linear Taylor’s approximation. This decomposition solution
scheme is the main contribution of this work.

Although the Taylor’s polynomial approximation has been used for energy planning (

, ; , ; , ), it has yet to be employed to approximate
HPEFE’s non-linear features. One of the advantages of this proposed linearization is its ease of
implementation as compared with other traditional techniques. For instance, a common practice
is to model the relationship between water discharge, generated power, and the multi-head of the
reservoir of hydraulic generation as a piecewise linear function, as proposed by
( ). However, an issue observed with the traditional piecewise linear function is its precision
and sophisticated implementation. Another method is the McCormick Envelope convexification
technique ( , ; , ). This technique requires the introduction of additional
integer variables that make the model larger and more difficult to solve.

Several tests were conducted to show that the proposed model is consistent and applicable to
markets requiring hydrothermal coordination. First, a case study from the Mexican electricity
system is presented by Mexico’s Independent System Operator (ISO) public information. The
results indicate a consistent behavior between energy prices and demand, a suitable estimate of
losses, and a satisfactory hydraulic balance. Second, we report detailed results with 320 instances
built from Mexico’s ISO public information; the objective is to measure mainly profits and solution
times.

The remaining sections of this paper are organized as follows: Section 2 presents a survey of the
main works in UCP models focused on electricity markets and hydro-thermal coordination. Section

3 shows the non-linear constraints in the DAM’s mathematical model studied in this paper. The
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whole model can be found in the supplementary material part A. Section 4 details the solution
method proposed in this work. The application of the proposed methodology is put forward in

Section 5. Finally, in section 6, the conclusions and possible extensions are discussed.

2 Related work

The literature on unit commitment models can be roughly classified into deterministic and stochas-
tic models. Since our paper deals with a deterministic model, in this section, we focus our litera-

ture discussion in deterministic approaches. However, research on stochastic models has been very

active in the past few years, including works on modeling improvement ( , ),
decomposition methods ( , : ) : , ), scenario
reduction-based methods ( , ), and statistical methods ( ,

) for stochastic programming, multi-objective optimization ( , ), robust opti-
mization ( , ), and machine learning ( , ) approaches. The reader is
referred to the work by ( ), who provide an excellent survey on stochastic unit commit-

ment models prior to 2020.

With the rise of competitive electricity markets, UCP models have changed from minimizing
production costs to maximizing profits or social welfare ( , ); the new markets model
includes the previous UCP constraints but adds new variants to meet new economic regulations.

( ) present a market UCP model in high detail, although the paper focuses on
handling long-term bilateral contracts. However, it was tested on a small electrical system.

( ) present the optimization model for energy and ancillary service in New York ISO. This
model includes different types of reserves. ( ) present the network-constrained unit
commitment and dispatch model implemented for Midwest ISO’s DAM,; it optimizes both energy
and ancillary services. In these previous market models, hydrothermal coordination is not included.
Regulation is not included in these models either.

Hydrothermal coordination is essential because it impacts future costs, secure operation, and
security in reservoirs and rivers. ( ) introduce an uncoupled formu-
lation of hydrothermal coordination and solve it with a MILP solver. However, the model lacks
other significant operational constraints for effective real-life operation.

Unlike the previous model, ( ) include several operational and hydro constraints
such as losses, hydro production, water storage balance, water storage limits, water discharge limits,
the relationship between water head and water storage, and import/export limits. The model solves
the MIP-based hydrothermal coordination using off-the-shelf solvers. ( ) introduce
a MIP-based formulation that links hydropower production, water discharge, and water head.
This model enables self-scheduling for hydro-generating companies in the day-ahead power pool

electricity market, incorporating the hydro component. The authors employ discretized curves per
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unit to capture the nonlinear relationship between the reservoir head, hydro unit power output, and
water discharge, selecting a specific curve based on reservoir volume. However, the model overlooks
water travel time delays between upstream and downstream reservoirs, assuming one-hour delays.
It also lacks thermal unit commitment. For a study considering water travel time delays, refer
to ( ). ( ) addressed these issues by proposing a mixed-integer
quadratic programming model for scheduling pure cascaded hydro systems. While this model
does not account for water travel time delays, it offers several advantages. It incorporates head
dependency, prohibited operating zones (POZ), and discharging ramping constraints. Furthermore,
it integrates the effect of changes in the head into a single function for water discharge and storage,

eliminating the need for multiple curves for different heads, as previously seen in

( ). This simplification reduces the computational load for solving hydro generation scheduling.
( ) also provided test models, including examples with three and seven cascaded

reservoirs.
( ) present a comprehensive model for hydro and thermal generators within a

DAM. This model handles a multi-reservoir hydro system with hydraulic coupling, discharge limits,
spillage, and reservoir level constraints. It uses a piecewise linear function, approximating the
nonlinear power-discharge function. However, it overlooks water travel time delays and simplifies
the water head-to-volume relationship with a piecewise linear function, resulting in underestimating
hydropower production.

Various intricate factors are considered in Santos et al.’s real-world model with 162 cascaded
reservoirs ( ) ) for day-ahead generation scheduling in Brazil. These include reser-
voir limits, discharge and spilled outflows, competing water uses, evaporation, water delay times,
pumping stations, and re-pumping to other reservoirs. Hydro generation is represented by a concave
piecewise linear function with coefficients tied to reservoir storage, turbines, and spilled outflows.
While Santos does not delve into the specifics of the HPF model, it is based on a detailed model by

( ). Furthermore, Santos’ model meticulously incorporates thermal generation
constraints. This comprehensive model closely mirrors real-life scenarios. The authors devised an
iterative procedure utilizing an interior point method and branch and cut, employing the CPLEX
solver to solve it.

( ) researched electricity planning in Mexico, introducing a Mixed

Integer Quadratically Constrained Program (MICQP) for UCP with considerable detail focusing

on fuel management. In a follow-up paper, ( ) introduced a MILP for UCP,

including constraints for modeling regulation, spinning, and non-spinning reserves. Those works

are antecedents to many aspects of the proposed model that include hydro constraints in the new
open electricity market, thus making it more in line with the system’s current needs for Mexico.

( ), ( ), ( ) outline thermal UCP models in

some electricity markets in the United States that optimizes energy and reserves similar to the DAM
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in Mexico. However, those works do not include hydrothermal coordination. Specialized works on
hydro generation are due to ( ), ( ), ( ),
and ( ). They employ different methods to model the non-linear relationship
between the reservoir head, water discharge, and generation. ( ), and

( ) outline models that include the hydrothermal coordination component in a DAM.
However, their hydraulic modeling can be improved to attain results with more accuracy and less
computational work. ( ) elaborated a full-fledged model for day-ahead scheduling
in Brazil. However, the calculation of transmission losses is not explicit, and different types of
ancillary services are omitted. Furthermore, the POZ are not considered either. These aspects
are essential to obtain a better schedule. Table 1 highlights the research work that influences
our research the most. For more detailed reviews, we refer to the work of ( )
who present an overview on models and solution algorithms for the unit-based short-term hydro
scheduling problem, the work by ( ) who present an overview on
mathematical optimization approaches for the deterministic UCP in hydro valleys, and the work
by ( ) who presents a survey on models and methods for stochastic hydro-thermal
scheduling. Moreover, the short-term scheduling is not conducted by itself, it relies on water values
(or alternative costs) pricing hydro-resources. The overview of hydropower toolchains by

( ) provide relevant background for the readers.

Our work presents a highly detailed hydro-thermal MINLP model that considers the main
elements outlined in the cited articles. This model is a reduced version of the DAM model published
by Mexico ISO ( ) ), which schedules generators in the electricity market
by combining loss estimation, network constraint, and HPF non-linearity. However, that document
does not provide details about the solution method, making our work relevant as it presents a
concise approach to solving this DAM model. Additionally, while the document published by ISO
Mexico only models the energy limitation of power plants associated with a reservoir, our work
takes a more comprehensive approach by considering the volume balance per reservoir, coupling
between cascading reservoirs, water travel time, and spillage. Finally, we address the undocumented
aspect of how the HPF constraint is handled in the Mexico ISO document, which is an important
consideration. In summary, our paper presents a general method for incorporating non-linear HPF
constraints, transmission loss constraints that approximate linearity, and network flow constraints
into the scheduling of generators in the day-ahead market.

The main innovation of this work consists of applying Taylor’s polynomial approximation em-
bedded in a decomposition method to tackle the non-linear hydropower function and not a piecewise

function. The linear approximation is calculated while the method runs.
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Table 1: Research work comparison.

Methodology and Features

Advantages and Disadvantages

Developed a MILP solver for hydrothermal
coordination

Includes spinning reserves and network
constraints. Lacks some operational con-

( ) straints.
Presented a MIP-based hydrothermal co- Considers both operational and hydro con-
( ) ordination model straints. Oversimplified water travel time
delays.
Created an MIP-based hydropower pro- Considers hydro constraints and schedul-
( ) duction model for self-scheduling in a ing. Does not account for water travel time
DAM with hydro delays.
Developed an MIQP model for scheduling Includes head dependency and operating
( ) pure cascaded hydro units restricted zones.
Outlined thermal UCP models for energy = Optimized energy and reserves for thermal
( and reserves optimization units. No hydrothermal coordination.
Introduced MICQP and MILP for UCP Detailed UCP model with a fuel manage-
( with a focus on fuel management, includ- ment focus. Lack of hydro constraints, not
ing regulation, spinning, and non-spinning fully adapted to Mexico’s current electric-
reserves ity market needs.
Presented a real-world model for day- Comprehensive, real-life model that repro-
( ) ahead scheduling in Brazil, focusing on duces practical scenarios. Lack of ex-
hydro generation and thermal constraints. plicit details on transmission losses, ancil-
Use a piecewise function for HPF. lary services, and POZ.
Our work Highly detailed hydro and thermal MINLP A detailed approach covering HPF han-

model based on ISO Mexico’s DAM model,
addressing HPF constraints. Use a Taylor
series polynomial approximation for HPF.

dling, transmission loss constraints, ISO
Mexico DAM model, and a comprehensive
hydrothermal mode.

3 Mathematical formulation

The proposed integer programming model is fully described in Chapter 5 of the doctoral thesis

of ( ).

document. Both, the thesis and the document, are available at the following URL:
http://yalma.fime.uanl.mx/ roger/ftp/Submitted _JCAES.

In addition, we provide the reader with a supplementary accompanying

The supplementary material part A presents in detail the integer programming model used to
solve the DAM. The model focuses on minimizing all operation costs subject to power balance,
loads, reserve, generation limits, ramps, up/down times, variable start-ups, hydraulic, hydropower
function (HPF), network flow, transmission losses, and logical constraints. Due to space limita-
tions, in this paper we present the nonlinear HPF constraints, transmission loss constraints that

approximate linearity, and the power flow limit constraints.

3.1 Notation

Sets and indices
BR  Set of electric tie-lines; br € BR
E Set of reservoirs; e € £

GH'  Set of hydroelectric generators; g € GH!
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GTE  Set of thermal generators; g € GgTE

HZ. Set of hydro generators located in reservoir; e € £€; g € HZ,
HZ, Set of hydro generators that discharge water over a river

N Set for electric nodes in the system; n € N' v € V4, g € HT,
T  Set of periods in the planning horizon; t € T

VS Set of rivers converging to reservoir; e € £; v € V¢

V4 Set of rivers diverging from reservoir; e € £; v € V4

Parameters

aig,a2,4,0a3, Constant coefficients in the HPF (1) for g € GM: with units in MW, MW-s/m?, and
MW-s2/m5, respectively.

big,b24,b3, Linear coefficients associated with the water head h in the HPF (1) for g € GHI;
with units in MW /m, MW-s/m*, and MW-s?/m7, respectively.

Cl,9,C2,9,C3,9 Quadratic coefficients associated with the squared water head h? in the HPF (1) for
g € Gl with units in MW /m?, MW-s/m®, and MW-s? /m®, respectively.

ﬁbr,t?ﬁbr,t Maximum value for the power counterflow and flow on tie-line br € BR in period
t € T, respectively; in MW.

LSF,; Sensitivity transmission losses in node n € N with regard to changes in power
injections in node n € N in period t € T; dimensionless

PTDFy,.,;  power transfer distribution factors in br € BR at a node n € N.

Ry, Electric resistance of a tie-line br € BR; dimensionless

Decision variables

fort Power flow on br in period ¢t € T; in MW

Pt Net hydraulic head of a river v in period t € 7 ; in m

TNYn, ¢ Amount of power input at node n € N in period t € T, in MW

Losstsp Amount of exact transmission losses in period t € 7, in MW

LossMP  Amount of approximate transmission losses in period t € T, in MW

Dyt Amount of power a generator g € GT* U GH produces in period t € T, in MW
gt Water discharge of generator g in period ¢ € T in m3/s

Ug,t Equal to 1 if generator ¢ € GT¥ U GH! is online in period ¢t € T, and 0 otherwise
We ¢ Water volume in reservoir e in period ¢t € 7; in m3
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3.2 Hydraulic generation

Hydro generation power depends on the turbine water discharge rate and the reservoir head, both
quadratically. The function used here is known as Glimn-Kirchmayer (IKotharij and Dhillon, 2010).

It is given by;

Pyt :“gi((al,g + b1 ghut + Cl,gh?/,t) + (az,g + ba,ghut + CQ,ghz%,t)Qgi
+ (asg + b3 ghue + c3ghl a0 1), geEHT,, veVl ec& teT. (1)

This is known as the HPF, and its parameters {a1 4, ..., ¢3 4} depend on the reservoir design, turbine,
and generator features.

The nonlinear HPF constraints require an approximation method for smooth integration into
a MILP. In our work, we utilize the Taylor polynomial approximation method, which produces
an alternative constraint to replace (1). Although a second-order approximation of (1) would
undoubtedly offer improved accuracy, we deliberately employ a first-order linearization to ensure
compatibility with the MILP formulation. This choice strikes a practical balance between model
fidelity and tractability, as second-order terms introduce nonlinearities that MILP solvers cannot
directly handle. Moreover, given the iterative nature of the solution process, such a level of precision

is not required at this stage.

3.3 Power flow limits

The power flow in a transmission tie-line is modeled as follows:

fbr,t = Z PTDFbr,n,tinyn,tv br € BR) te T, (2)
neN

where fi,.+ represents the power flow in a transmission tie-line br which depends on parameters
PTDF,,: and the power injection iny,; for each bus n for each period ¢. The variable iny,,
is a key decision variable that represents the net injection at bus n and time ¢, computed as the
total generation minus the demand at that bus. A detailed description of the PTDF’s calculation
is explained by Hinojosa and Gutiérrez-Alcaraz (2017). Also, the following constraints fix the

maximum flow and counterflow power limits in tie-line br.

finb'r,t < fbr,t < Ebr,tv teT. (3)

Although constraints (2) and (3) capture the relationship between bus injections and line flows,
along with the operational limits of each tie-line, they are omitted from the initial formulation to

improve computational efficiency. They are instead added iteratively during the solution process
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when violations are detected, yielding a more compact and tractable problem.

3.4 Transmission losses

The losses in the system are calculated using the following constraints. The non-linear feature of
these constraints requires an approximation method to be successfully integrated into a MILP. The
method used in our work is tangent planes and provides a set of alternative constraints to replace

these constraints.

Loss; = Z Rbr(fb’/‘,t)27 teT. (4)

breBR
4 Solution method

The model posed in Section 3 has continuous and binary variables and some non-linear components
such as the HPF (1) and the transmission losses (4). It also incorporates power flow constraints
in the network. Those constraints keep the power flow within safe limits. In typical real-world
instances, with 70004 buses, 8000+ lines, and 400+ generators, simultaneously including all trans-
mission constraints can significantly increase solution times. Consequently, due to this complexity, a

common solution strategy involves initially relaxing constraints (4) and subsequently incorporating

them into the model as violations are detected ( , ).
Master problem | Approxma-
(MILP) —| tion HPF
* Streamlined hydraulic
parameters
Generators *Water level in reservoirs
schedule
Sub- * Transmission cuts
» Tangent planes of
problems
| losses
DC-Power flow
solution
Transmission Approximation
generating cuts losses
Figure 1: Iterative decomposition method, based on ( ).

The iterative approach depicted in Figure 1 involves solving a master problem (MP) that initially

disregards transmission constraints and loss estimation. The resulting generator schedule is used to
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identify overloaded transmission tie-lines and calculate losses in 24 power flow sub-problems. The
information obtained from these sub-problems is then used to generate new constraints, such as
transmission cuts and tangent planes of losses. The linearized HPF function is also updated. All
the new constraints are added to the master problem, which is then solved again. This process is
repeated until no further transmission violations occur and the criterion for losses is satisfied.

The MP is formed by the objective function (S1) and the set of constraints (S2)-(S39), (S41)-
(S42), (S44)-(S52), contained all in the supplementary material, part A. Note that the linear con-
straints (7) replace the HPF non-linear constraints (1) so this can be handled as a MILP. Similarly,
constraints (5) replace constraints (4). The MP is solved to determine the generators’ schedule,
i.e., the MP aims to determine the generators to be turned on/off and their corresponding power
production levels.

The status of generators is fixed and sent to the SP, which calculates the power flow in the
lines using the DC Power Flow method. With those results, a feasibility test can identify possible
violations of network constraints (3). These violations or cuts are added to the model and passed
to the MP. Moreover, constraints (2) that represent the power flow in the violated tie-lines are
added too. ( ) and ( ) provide some examples of
these approaches, including user cut adding iteratively.

Constraints (4) consider the losses in the system. However, they are non-linear and cannot
be added directly to a linear master problem. Therefore, the Tangential Approximation Method
developed by ( ) is used to tackle its non-linearity. Notably, its application in the
market in Mexico is widely documented by ( ). The constraints (tangential planes)

have the following mathematical structure:

Loss; — Z LSFf;linyn,t > LosstSP — Z LSFf;linyZ;l, teT. (5)
neN neN

The tangential plane method replaces the constraint of losses specified in (4) in the MILP model
by incorporating linear constraints with the same structure as in (5). The approximation can be
improved by iteratively adding more tangents (4). This method is an exact approach that can find a
globally optimal solution with a certain level of accuracy by creating a concave problem equivalent
to the original problem, provided that the nonlinear constraints being approximated complies with
convexity, compactness, and continuity assumptions, as proposed by ( ). The accuracy
of the solution can be measured by comparing the losses estimated by the MILP method with those

calculated using the DC power flow method for subproblems.
The variable LossyT determines the exact losses in the network obtained from substituting
the power flow in (4). However, unlike the variable Loss?”, Loss; is a variable in the MP that
approximates the total transmission loss in the system. The loss sensitivity factors parameters

LSF,';;1 represent the variation in losses in the system when modifying a power unit in each node.
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The parameters LSF;f;l are calculated at the end of each iteration k£ and are expressed in the

following equation:

0Loss; ‘
- ) g1
Qinyy, ¢ ' Ynt =Y.

LSFy' = neN,teT, k>1. (6)

Equation (6) is solved numerically, and parameters LSF,’f;l are used to build a new set of
constraints (5) ( , ).

A decomposition approach such as the one presented in this paper is widely used to plan the
operation of real-life power systems. However, this work has added a new component to deal
with HPF’s non-linear characteristics using the first-order Taylor polynomial approximation. The
method provides the following constraints that replace (1) in the MP. The procedure for obtaining
this constraint and its parameters QWy ¢+, Qg.et, Wy,et, involves a new application of the Glimn-

Kirchmayer model, which maps reservoir level to volume to fit available field data.
gg’t S Bg’tQWgyevt + Qgﬁ,tq%t + Wg,e,tw&h g S HI@’ €ec 87 t € T (7)

Finally, in each iteration k of the algorithm, the water levels in reservoirs are updated, and the

streamlining of constraint parameters (7) is also carried out.

Description of algorithm

The proposed method in this work is outlined in Algorithm 1. This algorithm begins by solving
the MP using CPLEX. In the first iteration, the MP does not include transmission losses (tangen-
tial planes) nor any transmission constraints (cuts). The solution is saved in X, which contains
the value of all the decision variables of the MP. An iterative process begins and runs until the
stopping criteria are met. There are two conditions for stopping. The first is when the relative
error in approximation losses (ErrLosses) is greater or equal to the given tolerance (tolerance).
The second one is the absence of violations of the safe transmission limits. Within the loop, the
method SolvingSP() that consists of solving a series of SPs using the DC Power Flow method is
run, one for each period t. Then, power flow in the lines (F') is calculated using the injection values
at each node and the network’s topology, based on the SP’s results. Then, GeneratingCuts()
identifies violations of safe operational limits in any branch. Whenever constraint (2) (the lin-
earized power flow equation) is violated, a cut is generated to enforce feasibility. These cuts also
incorporate constraint (3), which imposes upper and lower bounds on the flow for each branch
and time period. Only constraints that are found to be violated in the SPs are added to the MP.
The relevant decision variables involved in these cuts are the nodal power injections iny,, +, while
the PTDF coefficients PT'DFy,.,,; are fixed parameters that capture the network’s sensitivity to

nodal injections and are derived from the topology and impedance data. The cuts are added to

10
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the MP via the AddingCuts() procedure. Next, the exact losses are calculated using (4) and
are registered in Lossy”. Then AddingTangentPlanes() generates the tangent planes of losses
with the structure (5). Subsequently, the tangent planes are added to the MP. After this, MP is
solved again, considering losses and safe limits in the tie-lines. Then, the maximum relative error
in the estimated losses in all periods ¢ is calculated and registered in ErrLosses. The value of the
variable Loss;, obtained from the MP, is the sum of estimated losses by multiplying LSF,ff;l by
injections in yfftl at each node. Finally, the parameters LS Fﬁ,t are updated with (6) by using the
new transmission losses in the lines Lossgp and the new injections in the nodes iny’nit. When there
are no more violations in the safe limits of the transmission, and a user-defined loss tolerance is

reached, the algorithm stops.

Procedure 1 Iterative method employed

Input: P:=Instance of the problem, tolerance
Output: X*:=An optimal solution to the problem

1 k+1

2: Lossi®" < 0

3: LSF*1n i<+ 0

4: Errlosses < oo {Relative difference of the losses between approximated and exact losses}
5. Cuts < ¢ {Set of transmission cuts}

6: X < SolvingMP()

7. while (Errlosses > tolerance) or (Cuts # ¢) do

8  Cuts < ¢

9:  F < SolvingSP(X) {Power flow in lines}

10:  Cuts < GeneratingCuts(F)

11:  if Cuts # ¢ then

12: MP < AddingCuts(MP,Cuts)

13:  end if

14:  Loss®Pi + CalculatingLosses(F)

15:  MP < AddingTangentPlanes(MP, LSF*~1n, i, Loss?T)
16: X <« SolvingMP()

17:  Errlosses < max((Loss; — Loss?T)/Loss;),Vi € T

18:  LSF*n, i + updatingL.SF()

19: k< k+1
20: end while
21: return X*

Linearization of the hydro power function using Taylor Polynomial

The value of the effective hydraulic head h,; in constraints (1) is calculated with the height of
forebay water minus the tailwater level minus the head losses that occur due to friction in pipes as

follows:

ot =Y(wer1) —p | Y agr | = Y Clage), vEV, e teT, (8)

QGHV QGHU
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323 where 7y() represents a function with an input volume and an output forebay height and it is often
324 non-linear; u() represents a function with an input water discharge and an output tailwater level;
325 (() is a function with an input water discharge and an output the head losses. These functions
326 depend on each reservoir’s design; therefore, v(), (), and () are written generically.

327 The method to linearize the hydropower function begins by transforming (1) in a function that

228 depends on the flow ¢, and the volume w,; as follows:

9g,t :Bg,t((Al,g + Bigwe,t + Cl,ng,t) + (A2, + B gwet + C2,gw3,t)q9,t

s20  Then, parameters {A 4,...,C3 4} of (9) can be calculated from parameters {aj g, ...,c34} of (1). An

330 equivalent approximation between both constraints is shown in the following set of equations:

Aig = a;g, gEHI,, i=1,2,3 (10)
bi gh
B4~ 25*V7t7 ge’HIl,,yGVS,eGS,teT,Z‘:1,2,3 (11)
et
cig(h} 2
gmg(i';) geHI,, veViec& teT,i=1,23 (12)
7 (we,t)

s Parameter w;; is the water volume obtained by the master problem (MP) in each iteration. The
3% non-linear function (8) is used to obtain the effective head height A7 ;.

333 Now, by substituting (10)—(12) into (9), we obtain the following equation:

bi,ghy a1 g(h;t)Q 9 ba,ghy C2 g(h;t)Q 9
= a = . e, a S e tWe t + W
9g,t Bgvt(( Lg T W;,t et T (w;’t)z e,t) + ( 2,9+ w:,t etWet (w;,t)Q e,t)qut
b3 h* C3 (h* )2
+ (agg + ’g* V’tw&t %wit)q;t), geEHT,, veViecE teT (13)
we,t (we,t)
334 Subsequently, (13) is linearized using the first-order Taylor polynomial method for two variables

335 (wey and gg) around the current operating conditions, denoted as we; = w;t and qg; = q;’t. To
336 achieve this, we first need to compute partial derivatives of the function with respect to both

337 variables, h(wet, qq¢). These partial derivatives are essential for the linearization process.

338 The first-order Taylor polynomial approximation for two variables can be expressed as:
0 0
fla) = Flab) + 5 (@b~ a) + 5 @by b (14)

o where f(x,y) represents the function’s value at the point of interest, (a, b) is the point about which

a0 the function is linearized, and %(a, b) and %(a, b) denote the partial derivatives of the function

3

@

1 with respect to variables z and y evaluated at the same point. In our case, the function we want

b
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to approximate is (13), denoted as g4 . By applying the Taylor polynomial approximation method
to gg,¢, We can rewrite it as:
~ 699715 * agg,t * d
9g;t ~ Gg,t + 7("‘)6,15 - we,t) + 7((19715 - qg,t)7 geMNL,,veV,, ec EteT (15)
8we,t aQQ,t

where g+ is the value of the function at the operating point wg ; and ¢; ;. Linearization provides an
approximation of g, ;, simplifying modeling and aiding subsequent computations. After algebraic
manipulations, we have obtain (7), where parameters QW c ¢, Qg.et, and Wy ., are found with the

three equations below, respectively:

QWyer = (ggﬂg(qg,t, We,t) — Qg,etdgt — Wg@,twe,t) geEHI.,ec &, teT (16)
Qe = Aog + B gwey + Ca,g(wey)?
+2(Asg + B gwe + Csg(we,r)*) gt gEHI., e€& (17)
Wy.et = Big + Baggs + B g(dg)°
+2(C1g+ Cogqgt + C3.4((qg.0)*)we.r, geEHL.,ecé& (18)

The first time the MP is solved, the w, is the initial volume we and gy, is the value of the
flow in the turbine at maximum efficiency according to its design features.

Finally, the water levels w, and h;, are updated in each iteration k of the Algorithm described
in the paper. Furthermore, the streamlining of parameters from (10)—(12) is carried out in each
iteration too. It is worth mentioning that the accuracy of the Taylor’s approximation depends on

the number of iterations of the algorithm.

5 Experimental work

Two sets of experiments are conducted to evaluate the model’s performance and the method em-
ployed in this work.

The model and method were coded with Intel Fortran and C++4 languages using the Intel one
API DPC++/C++ version 2020. The solver employed was 64-bit CPLEX 12.10 with an optimality
gap of 0.0001, running on a 64-bit with 16GB of RAM and an Intel(R) Xeon(R) CPU E3-1240 v3 @
3.40GHz. Unlike the original method used for the ISO for planning MEM, this work omits several
infeasibilities, such as variables dealing with unbalances, load cuts, surplus, network, and hydraulic

violations.

5.1 Experiment 1: A case study

This section presents a case study that outlines the model. This instance is built from data pub-

lished by CENACE in Mexico using the limits and offers of generators found in https://www.
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cenace.gob.mx/Paginas/SIM/Reportes/0fertasMDA.aspx. The demand for the zones is also ex-
tracted from the same site. The operating limits of the generators used are as offered; however, the
generator‘s parameters were artificially created (ramps, min-up/down times). We use the trans-
mission network comprising 43 regions projected by ( ). The parameters
of reservoirs are created artificially, too. The data for this instance can be found in this repository:
https://github.com/urieliram/DAM.

The elements modeled in the Central Interconnected System (CIS) power system are: Intervals:
24; thermal units: 255; hydroelectric units: 63; river basins: 8; renewable: 64; buses: 45; lines:
64; tie-lines: 64; loads: 6152; reservoirs: 16. The model has around 331,358 variables (298,768 are
continuous and 32,590 are binary) and 240,080 constraints. The solution method scales really well
as it has ben capable of solving instances of up to 100 renewable units and over 340,000 variables
which are largest in the database.

Figure 2 shows the expected load demand of the instance and the energy price component or
dual variables of the power balance constraints. The load demand varies from 30,000 to 38,000 MW
while the prices vary from 1,000 $/MW to 1,900 $/MW. As shown in Figure 2, the prices follow
the expected demand trend, so the higher the demand goes, the higher the prices get. Additionally,
the renewable energy sources, represented by the cyan (wind) and yellow (solar) bars, correspond
to parameters from the mathematical model and are derived from forecasting methods. These
sources, encompassing approximately 14% of the total system demand, contribute significantly to
the overall system dynamics, emphasizing the critical interplay between renewable generation and
the prevailing load-demand conditions. As part of future work, we acknowledge the importance of
addressing the uncertainty associated with these sources and their potential impact on the economic

and security dynamics of the system.

38000 1 -
— D d ™\
eman \, - 1800 - 6000
Price R
§ 36000 | Wind L6002 [ 5000 §
= Solar § 4000 E
— < (9]
o s =)
é 34000 - - 1400 3 - 3000 S
o
9 Z
a = F2000 8
32000 - 1200 L 1000
».
T T T T T - 0
0 5 10 15 20
hours

Figure 2: Expected load demand and energy prices.

Figure 3 shows that MP estimation of transmission losses matches SP calculation accuracy
starting from the second iteration and improving with each subsequent one.

Figure 4 illustrates the representative reservoir’s net hydraulic head and corresponding water

14
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Figure 3: Transmission losses after the first iteration.
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Figure 4: Net hydraulic head and water discharged.

discharge. It reveals that a hydroelectric unit’s water requirement is inversely proportional to the

reservoir’s net hydraulic head, with higher heads requiring less water for energy production.

5.2 Experiment 2: Performance tests

This experiment aims to test the model’s performance in other real-world instances using the CIS
energy system of the electricity market in Mexico. The tests were carried out with four instance
groups called MEM1, MEM2, MEM3, and MEM4. Each group has 80 instances made from publicly
available information regarding the Wholesale Electricity Market (WEM) in Mexico. The original
instances were modified by randomly choosing a percentage (70%, 80%, 90%, 95%) of all thermal
generators, and the demand, reserve requirements and generator bids were modified. The number
of instances for each percentage is 20. The dimensions of each of the instances are shown in Table
2. MEM1 and MEM?2 represent typical summer days, whereas MEM3 and MEM4 represent typical

winter days. The load demand of each group is shown in Figure 5.
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Figure 5: Summer and winter demands.
Table 2: Instance size by data set.
MEM1 MEM2 MEM3 MEM4
summer summer winter winter
Intervals 24 24 24 24
Thermal units 255 255 253 253
Hydroelectric units 63 63 63 63
Renewable units 64 64 74 74
River basins 8 8 8 8
Tie-lines 89 8% 106 105
Reservoirs 16 16 16 16

The key variables to measure and analyze the performance of the model are: average CPU
time (f); worst CPU time (¢*); the number of iterations (k) between the MP-subproblem (SP)
until reaching the (tolerance); the number of cuts (nviol) added by the SP (one for each tie-line
violated); recorded loss error estimation (Errlosses). The instances were solved using a relative
optimality gap of 0.0001% and (tolerance) in the approximation losses tolerance of 0.005%. The
problems are solved until they reach the time limit of 3500 seconds for each iteration or until they
reach optimality. There is no time limit to solve the overall problem.

The results are outlined in Table 3. The column (instances) shows the names of each group
of instances. The column (%) indicates the percentage of thermal generators selected that can
be committed for each group of instances. The columns (¢) and (¢*) the CPU average time and
the CPU maximum time used to solve the instances are registered. The columns (k) and (k*)

display the median and a maximum number of iterations between the MP and its SP for the
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Table 3: Results for each instance.

instances t t* E  k* nviol nwviol* Errlosses profit

MEM1 70 8,593 24573 3 5 17 25 0.0031 $1,880,824,498
80 8,948 23,455 3 5 16 19 0.0030 $1,895,011,558
90 14,375 29,437 3 4 17 20 0.0024 $1,910,265,699
95 14,755 46,101 3 4 16 19 0.0026 $1,921,684,506

MEM2 70 4,829 20,534 3 4 9 12 0.0027 $2,141,180,824
80 6,494 19,403 3 5 10 12 0.0028 $2,148,492,402
90 6,362 19,112 3 3 10 12 0.0029 $2,167,144,875
95 7,484 20,734 3 5 9 11 0.0025 $2,169,740,024

MEM3 70 4,632 18493 5 7 14 19 0.0025 $20,044,116,952
80 6,234 12,001 6 6 16 21 0.0028 $20,064,006,287
90 9,779 22,156 6 8 13 19 0.0028 $20,091,123,339
95 11,075 20,344 6 8 12 15 0.0028 $20,099,986,114

MEM4 70 1,952 5,101 4 7 8 13 0.0026 $20,476,495,913
80 3,060 7,173 4 5 6 9 0.0024 $20,491,680,365
90 9,873 26,767 4 T 7 9 0.0026 $20,516,227,967
95 15,147 37,117 5 5 8 9 0.0023 $20,524,900,918

instances in each row. The column (nwviol) records the median number of tie-lines violated in the
SP that generated transmission cuts in the MP. The column (Errlosses) captures the average
approximation loss reached. The column (profit) marks the market’s average economic profits. All
instances reached the approximation losses tolerance required and the MILP gap by the MP’s.

It is worth noting that the rough number of iterations k is between two and seven, yet it is
assumed that this figure is related to a higher number of generators in the system. Likely, the
transmission losses wane and wax depending on the number of generators connected in the system.

The average error in estimating transmission losses in all instances is less than 0.005%; for
instance, it represents an error of 0.00268% in a setting with maximum losses of 105.36 MW.

To further analyze the impact of transmission losses on the power system, we present Figure 6
that displays and compares losses across summer and winter energy scenarios in Mexico. This figure
shows the distribution of losses along seasonal differences. As can be seen from the figure, during the
summer months, with peak demands reaching approximately 39,388 MW, average losses range from
713 MW to 994 MW, representing 1.8% to 2.8% of the maximum demand. In winter, when peak
demand is closer to 35,500 MW, losses vary between 518 MW and 909 MW, accounting for 1.4% to
2.5% of the maximum demand. While the relative percentages are modest, the absolute magnitudes

are substantial and must be considered when modeling operational costs and transmission efficiency.
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Figure 6: Hourly transmission losses in summer and winter scenarios.

An expected result is the increase of CPU time when the instances are solved due to a higher
percentage of generators. This rise is produced by the increased combinatorial complexity of the
UCP model. Another expected behavior is the decrease of profits with the rise in the generation
offer caused by a higher number of generators in the system. This increment emulates an increasing
competence in the market. With 95% of available generation, the economic profits nearly reach the
minimum value.

Figures 7, 8, 9, and 10 have been designed to analyze the behavior of economic profits, CPU
time, number of of iterations between MPs and SPs, and the number of family of transmission
cuts added to the MP. On one hand, in the profit subfigure of Figures 7, 8, 9, and 10 the vertical
axis represents the benefit of participant in millions of pesos. On the other hand, in the CPU
time subfigure, the vertical axis represents processing time. The horizontal axis represents the
percentage of thermal generators to be committed for all Figures. The boxes represent statistical
results of 20 randomly generated instances for each percent (70%, 80%, 90%, 95%) for each group
(MEM1, MEM2, MEM3, MEM4).

As it is observed in Table 2 and Figures 7, 8, 9, and 10, is shown a coherent behavior depicting
a reduction of economic profits related with a higher number of generations in the system. Also,
the results indicate that the more generators in the system, the more CPU time is required to
process the data. It is shown that the economic benefits increase gradually with the increment
of generators in the system since the instances resolved are closer to 100% of units. This pattern
matches normal expectations. Furthermore, CPU times gradually increase while more generators
are added to the system. This increase is an expected pattern since a more significant number of

generators working entails more units to commit and a more complex problem to solve.
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Figure 8: Results of MEM2 instances.
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Figure 10: Results of MEM4 instances.

6 Conclusions

This work demonstrates that the model and its proposed method help determine the generators’
production schedule in the day-ahead market. The model simultaneously optimizes energy and
reserves and sets the maximum economic profit of the participants in such a market. The model
consists of a large-scale mixed-integer non-linear programming (MINLP). To deal with its non-

linear feature, several approximation methods were adopted to reduce it into a mixed-integer linear
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program (MILP). For instance, the hydropower function’s non-linear feature was handled using
the Taylor series polynomial. This approach is a simple but innovative solution to the problem of
hydrothermal coordination.

Simulation results are presented on key representative instances of the wholesale electricity
market in Mexico to demonstrate that the model is consistent and applicable to other markets that
require hydrothermal coordination.

There are several lines for future research, including applying our linearization method for hydro
coordination with renewable energy sources and batteries in a stochastic framework. Additionally,
we aim to incorporate re-pumping in reservoir modeling. Its potential inclusion in reservoir opera-
tions could enhance our hydro modeling. In addition, while the unique features of this model make
other methods not directly applicable to solving this model, there are algorithmic frameworks that
have been used for similar models that may be worthwhile exploring. These, of course, have to be
adapted to handle the particular features and exploit the specific properties of the proposed model.
Finally, while in our work we used a linearization technique that is easy to implement, there are
other traditional linearization methods such as the fourth-dimensional HPF linearization (Diniz
and Maceira, 2008) and the McCormick’s envelope technique (Castro, 2015; Bynum et al., 2018)
that should be further analyzed. In this vein, it would be interesting to compare and analyize the
trade-offs among these methods in terms of solution accuracy, computational time, and solution
quality.
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