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Abstract1

The day-ahead electricity market is crucial for improving energy generation and sales planning.2

This paper evaluates a hydro-thermal network-constrained unit commitment model, and its solu-3

tion method developed for the Mexican electricity market. The objective function maximizes the4

economic surplus for market participants. The problem is formulated as a mixed-integer non-linear5

programming problem, considering real-world constraints and a non-linear hydropower generator6

function. A decomposition approach is employed to solve the problem. Additionally, a new com-7

ponent has been introduced to handle the non-linear aspects of the hydropower generator function8

using a first-order Taylor’s approximation. Empirical results are presented, including the solution9

of a representative case from Mexico’s electricity market, illustrating its practical application. This10

novel method can be valuable in markets with substantial hydropower resources, improving the11

accuracy and timeliness of system operation scheduling.12

Keywords: Unit commitment problem; Day-ahead electricity market; Short-term hydro scheduling;13

Hydropower function; Mixed-integer linear programming.14



1 Introduction15

In this paper, we address the Unit Commitment Problem (UCP) for the day-ahead market (DAM)16

in Mexico that uses the sales offers and purchase bids of the participants (generators and loads) in17

the market. Besides, it incorporates other constraints such as transmission losses, power flow limits18

in tie-lines, five simultaneous reserves with different timing, and technical features of hydraulic19

generators such as the Hydropower Function (HPF). Moreover, the objective function determines20

the maximum economic surplus of the participants. A mixed-integer non-linear programming model21

(MINLP) is proposed for solving this problem. A first contribution of this work is introducing a22

highly detailed UCP model that includes hydrothermal coordination in an electricity market.23

To solve the problem, some simplifications are made to the model to reduce it into a mixed-24

integer linear program (MILP). A cut generation strategy embedded into a decomposition method25

is used for solving this model; this strategy entails decomposing the problem into a master problem26

(MP) and a series of non-linear sub-problems (SP). The non-linearity comes from the HPF. This27

function calculates the generation depending on the head of the reservoir and the water flow in28

the turbine. To handle this, we use a linear Taylor’s approximation. This decomposition solution29

scheme is the main contribution of this work.30

Although the Taylor’s polynomial approximation has been used for energy planning (Castillo31

et al., 2016; Šepetanc and Pandžić, 2020; Pan et al., 2022), it has yet to be employed to approximate32

HPF’s non-linear features. One of the advantages of this proposed linearization is its ease of33

implementation as compared with other traditional techniques. For instance, a common practice34

is to model the relationship between water discharge, generated power, and the multi-head of the35

reservoir of hydraulic generation as a piecewise linear function, as proposed by Diniz and Maceira36

(2008). However, an issue observed with the traditional piecewise linear function is its precision37

and sophisticated implementation. Another method is the McCormick Envelope convexification38

technique (Castro, 2015; Bynum et al., 2018). This technique requires the introduction of additional39

integer variables that make the model larger and more difficult to solve.40

Several tests were conducted to show that the proposed model is consistent and applicable to41

markets requiring hydrothermal coordination. First, a case study from the Mexican electricity42

system is presented by Mexico’s Independent System Operator (ISO) public information. The43

results indicate a consistent behavior between energy prices and demand, a suitable estimate of44

losses, and a satisfactory hydraulic balance. Second, we report detailed results with 320 instances45

built from Mexico’s ISO public information; the objective is to measure mainly profits and solution46

times.47

The remaining sections of this paper are organized as follows: Section 2 presents a survey of the48

main works in UCP models focused on electricity markets and hydro-thermal coordination. Section49

3 shows the non-linear constraints in the DAM’s mathematical model studied in this paper. The50
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whole model can be found in the supplementary material part A. Section 4 details the solution51

method proposed in this work. The application of the proposed methodology is put forward in52

Section 5. Finally, in section 6, the conclusions and possible extensions are discussed.53

2 Related work54

The literature on unit commitment models can be roughly classified into deterministic and stochas-55

tic models. Since our paper deals with a deterministic model, in this section, we focus our litera-56

ture discussion in deterministic approaches. However, research on stochastic models has been very57

active in the past few years, including works on modeling improvement (Polimeni et al., 2023),58

decomposition methods (Colonetti and Finardi, 2020; Guo et al., 2024; Lima et al., 2024), scenario59

reduction-based methods (Kwon and Kim, 2020), and statistical methods (Olivos and Valenzuela,60

2025) for stochastic programming, multi-objective optimization (Mena et al., 2023), robust opti-61

mization (Shang et al., 2024), and machine learning (Liu et al., 2023) approaches. The reader is62

referred to the work by H̊aberg (2019), who provide an excellent survey on stochastic unit commit-63

ment models prior to 2020.64

With the rise of competitive electricity markets, UCP models have changed from minimizing65

production costs to maximizing profits or social welfare (Abdi, 2021); the new markets model66

includes the previous UCP constraints but adds new variants to meet new economic regulations.67

Bisanovic et al. (2010) present a market UCP model in high detail, although the paper focuses on68

handling long-term bilateral contracts. However, it was tested on a small electrical system. Chow69

et al. (2005) present the optimization model for energy and ancillary service in New York ISO. This70

model includes different types of reserves. Ma et al. (2009) present the network-constrained unit71

commitment and dispatch model implemented for Midwest ISO’s DAM; it optimizes both energy72

and ancillary services. In these previous market models, hydrothermal coordination is not included.73

Regulation is not included in these models either.74

Hydrothermal coordination is essential because it impacts future costs, secure operation, and75

security in reservoirs and rivers. Babona and Rossell Pujós (1999) introduce an uncoupled formu-76

lation of hydrothermal coordination and solve it with a MILP solver. However, the model lacks77

other significant operational constraints for effective real-life operation.78

Unlike the previous model, Yu et al. (2000) include several operational and hydro constraints79

such as losses, hydro production, water storage balance, water storage limits, water discharge limits,80

the relationship between water head and water storage, and import/export limits. The model solves81

the MIP-based hydrothermal coordination using off-the-shelf solvers. Conejo et al. (2002) introduce82

a MIP-based formulation that links hydropower production, water discharge, and water head.83

This model enables self-scheduling for hydro-generating companies in the day-ahead power pool84

electricity market, incorporating the hydro component. The authors employ discretized curves per85
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unit to capture the nonlinear relationship between the reservoir head, hydro unit power output, and86

water discharge, selecting a specific curve based on reservoir volume. However, the model overlooks87

water travel time delays between upstream and downstream reservoirs, assuming one-hour delays.88

It also lacks thermal unit commitment. For a study considering water travel time delays, refer89

to Gil et al. (2003). Catalão et al. (2010) addressed these issues by proposing a mixed-integer90

quadratic programming model for scheduling pure cascaded hydro systems. While this model91

does not account for water travel time delays, it offers several advantages. It incorporates head92

dependency, prohibited operating zones (POZ), and discharging ramping constraints. Furthermore,93

it integrates the effect of changes in the head into a single function for water discharge and storage,94

eliminating the need for multiple curves for different heads, as previously seen in Conejo et al.95

(2002). This simplification reduces the computational load for solving hydro generation scheduling.96

Catalão et al. (2010) also provided test models, including examples with three and seven cascaded97

reservoirs.98

Bisanovic et al. (2008) present a comprehensive model for hydro and thermal generators within a99

DAM. This model handles a multi-reservoir hydro system with hydraulic coupling, discharge limits,100

spillage, and reservoir level constraints. It uses a piecewise linear function, approximating the101

nonlinear power-discharge function. However, it overlooks water travel time delays and simplifies102

the water head-to-volume relationship with a piecewise linear function, resulting in underestimating103

hydropower production.104

Various intricate factors are considered in Santos et al.’s real-world model with 162 cascaded105

reservoirs (Santos et al., 2020) for day-ahead generation scheduling in Brazil. These include reser-106

voir limits, discharge and spilled outflows, competing water uses, evaporation, water delay times,107

pumping stations, and re-pumping to other reservoirs. Hydro generation is represented by a concave108

piecewise linear function with coefficients tied to reservoir storage, turbines, and spilled outflows.109

While Santos does not delve into the specifics of the HPF model, it is based on a detailed model by110

Diniz and Souza (2014). Furthermore, Santos’ model meticulously incorporates thermal generation111

constraints. This comprehensive model closely mirrors real-life scenarios. The authors devised an112

iterative procedure utilizing an interior point method and branch and cut, employing the CPLEX113

solver to solve it.114

Álvarez López et al. (2012) researched electricity planning in Mexico, introducing a Mixed115

Integer Quadratically Constrained Program (MICQP) for UCP with considerable detail focusing116

on fuel management. In a follow-up paper, Álvarez López et al. (2015) introduced a MILP for UCP,117

including constraints for modeling regulation, spinning, and non-spinning reserves. Those works118

are antecedents to many aspects of the proposed model that include hydro constraints in the new119

open electricity market, thus making it more in line with the system’s current needs for Mexico.120

Bisanovic et al. (2010), Chow et al. (2005), Ma et al. (2009) outline thermal UCP models in121

some electricity markets in the United States that optimizes energy and reserves similar to the DAM122
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in Mexico. However, those works do not include hydrothermal coordination. Specialized works on123

hydro generation are due to Babona and Rossell Pujós (1999), Yu et al. (2000), Gil et al. (2003),124

and Catalão et al. (2010). They employ different methods to model the non-linear relationship125

between the reservoir head, water discharge, and generation. Conejo et al. (2002), and Bisanovic126

et al. (2008) outline models that include the hydrothermal coordination component in a DAM.127

However, their hydraulic modeling can be improved to attain results with more accuracy and less128

computational work. Santos et al. (2020) elaborated a full-fledged model for day-ahead scheduling129

in Brazil. However, the calculation of transmission losses is not explicit, and different types of130

ancillary services are omitted. Furthermore, the POZ are not considered either. These aspects131

are essential to obtain a better schedule. Table 1 highlights the research work that influences132

our research the most. For more detailed reviews, we refer to the work of Kong et al. (2020)133

who present an overview on models and solution algorithms for the unit-based short-term hydro134

scheduling problem, the work by Taktak and D’Ambrosio (2016) who present an overview on135

mathematical optimization approaches for the deterministic UCP in hydro valleys, and the work136

by de Queiroz (2016) who presents a survey on models and methods for stochastic hydro-thermal137

scheduling. Moreover, the short-term scheduling is not conducted by itself, it relies on water values138

(or alternative costs) pricing hydro-resources. The overview of hydropower toolchains by Helseth139

et al. (2023) provide relevant background for the readers.140

Our work presents a highly detailed hydro-thermal MINLP model that considers the main141

elements outlined in the cited articles. This model is a reduced version of the DAM model published142

by Mexico ISO (Ceciliano-Meza et al., 2016), which schedules generators in the electricity market143

by combining loss estimation, network constraint, and HPF non-linearity. However, that document144

does not provide details about the solution method, making our work relevant as it presents a145

concise approach to solving this DAM model. Additionally, while the document published by ISO146

Mexico only models the energy limitation of power plants associated with a reservoir, our work147

takes a more comprehensive approach by considering the volume balance per reservoir, coupling148

between cascading reservoirs, water travel time, and spillage. Finally, we address the undocumented149

aspect of how the HPF constraint is handled in the Mexico ISO document, which is an important150

consideration. In summary, our paper presents a general method for incorporating non-linear HPF151

constraints, transmission loss constraints that approximate linearity, and network flow constraints152

into the scheduling of generators in the day-ahead market.153

The main innovation of this work consists of applying Taylor’s polynomial approximation em-154

bedded in a decomposition method to tackle the non-linear hydropower function and not a piecewise155

function. The linear approximation is calculated while the method runs.156
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Table 1: Research work comparison.

Methodology and Features Advantages and Disadvantages

Babona and
Rossell Pujós
(1999)

Developed a MILP solver for hydrothermal
coordination

Includes spinning reserves and network
constraints. Lacks some operational con-
straints.

Yu et al.
(2000)

Presented a MIP-based hydrothermal co-
ordination model

Considers both operational and hydro con-
straints. Oversimplified water travel time
delays.

Conejo et al.
(2002)

Created an MIP-based hydropower pro-
duction model for self-scheduling in a
DAM with hydro

Considers hydro constraints and schedul-
ing. Does not account for water travel time
delays.

Catalão et al.
(2010)

Developed an MIQP model for scheduling
pure cascaded hydro units

Includes head dependency and operating
restricted zones.

Bisanovic
et al. (2010)

Outlined thermal UCP models for energy
and reserves optimization

Optimized energy and reserves for thermal
units. No hydrothermal coordination.

Álvarez López
et al. (2015)

Introduced MICQP and MILP for UCP
with a focus on fuel management, includ-
ing regulation, spinning, and non-spinning
reserves

Detailed UCP model with a fuel manage-
ment focus. Lack of hydro constraints, not
fully adapted to Mexico’s current electric-
ity market needs.

Santos et al.
(2020)

Presented a real-world model for day-
ahead scheduling in Brazil, focusing on
hydro generation and thermal constraints.
Use a piecewise function for HPF.

Comprehensive, real-life model that repro-
duces practical scenarios. Lack of ex-
plicit details on transmission losses, ancil-
lary services, and POZ.

Our work Highly detailed hydro and thermal MINLP
model based on ISO Mexico’s DAM model,
addressing HPF constraints. Use a Taylor
series polynomial approximation for HPF.

A detailed approach covering HPF han-
dling, transmission loss constraints, ISO
Mexico DAM model, and a comprehensive
hydrothermal mode.

3 Mathematical formulation157

The proposed integer programming model is fully described in Chapter 5 of the doctoral thesis158

of Lezama Lope (2023). In addition, we provide the reader with a supplementary accompanying159

document. Both, the thesis and the document, are available at the following URL:160

http://yalma.fime.uanl.mx/˜roger/ftp/Submitted JCAES.161

The supplementary material part A presents in detail the integer programming model used to162

solve the DAM. The model focuses on minimizing all operation costs subject to power balance,163

loads, reserve, generation limits, ramps, up/down times, variable start-ups, hydraulic, hydropower164

function (HPF), network flow, transmission losses, and logical constraints. Due to space limita-165

tions, in this paper we present the nonlinear HPF constraints, transmission loss constraints that166

approximate linearity, and the power flow limit constraints.167

3.1 Notation168

Sets and indices169

BR Set of electric tie-lines; br ∈ BR170

E Set of reservoirs; e ∈ E171

GHI Set of hydroelectric generators; g ∈ GHI
172
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GTE Set of thermal generators; g ∈ GTE
173

HIe Set of hydro generators located in reservoir; e ∈ E ; g ∈ HIe174

HIν Set of hydro generators that discharge water over a river175

N Set for electric nodes in the system; n ∈ N ν ∈ Vde ; g ∈ HIv176

T Set of periods in the planning horizon; t ∈ T177

Vce Set of rivers converging to reservoir; e ∈ E ; ν ∈ Vce178

Vde Set of rivers diverging from reservoir; e ∈ E ; ν ∈ Vde179

Parameters180

a1,g, a2,g, a3,g Constant coefficients in the HPF (1) for g ∈ GHI; with units in MW, MW·s/m3, and181

MW·s2/m6, respectively.182

b1,g, b2,g, b3,g Linear coefficients associated with the water head h in the HPF (1) for g ∈ GHI;183

with units in MW/m, MW·s/m4, and MW·s2/m7, respectively.184

c1,g, c2,g, c3,g Quadratic coefficients associated with the squared water head h2 in the HPF (1) for185

g ∈ GHI; with units in MW/m2, MW·s/m5, and MW·s2/m8, respectively.186

fnbr,t,fpbr,t Maximum value for the power counterflow and flow on tie-line br ∈ BR in period187

t ∈ T , respectively; in MW.188

LSFn,t Sensitivity transmission losses in node n ∈ N with regard to changes in power189

injections in node n ∈ N in period t ∈ T ; dimensionless190

PTDFbr,n,t power transfer distribution factors in br ∈ BR at a node n ∈ N .191

Rbr Electric resistance of a tie-line br ∈ BR; dimensionless192

Decision variables193

fbr,t Power flow on br in period t ∈ T ; in MW194

hv,t Net hydraulic head of a river ν in period t ∈ T ; in m195

inyn,t Amount of power input at node n ∈ N in period t ∈ T , in MW196

LossSPt Amount of exact transmission losses in period t ∈ T , in MW197

LossMP
t Amount of approximate transmission losses in period t ∈ T , in MW198

pg,t Amount of power a generator g ∈ GTE ∪ GHI produces in period t ∈ T , in MW199

qg,t Water discharge of generator g in period t ∈ T ; in m3/s200

ug,t Equal to 1 if generator g ∈ GTE ∪ GHI is online in period t ∈ T , and 0 otherwise201

ωe,t Water volume in reservoir e in period t ∈ T ; in m3
202
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3.2 Hydraulic generation203

Hydro generation power depends on the turbine water discharge rate and the reservoir head, both204

quadratically. The function used here is known as Glimn-Kirchmayer (Kotharij and Dhillon, 2010).205

It is given by;206

pg,t =ug,t
(
(a1,g + b1,ghν,t + c1,gh

2
ν,t) + (a2,g + b2,ghν,t + c2,gh

2
ν,t)qg,t

+ (a3,g + b3,ghν,t + c3,gh
2
ν,t)q

2
g,t

)
, g ∈ HIν , ν ∈ Vde , e ∈ E , t ∈ T . (1)

This is known as the HPF, and its parameters {a1,g, ..., c3,g} depend on the reservoir design, turbine,207

and generator features.208

The nonlinear HPF constraints require an approximation method for smooth integration into209

a MILP. In our work, we utilize the Taylor polynomial approximation method, which produces210

an alternative constraint to replace (1). Although a second-order approximation of (1) would211

undoubtedly offer improved accuracy, we deliberately employ a first-order linearization to ensure212

compatibility with the MILP formulation. This choice strikes a practical balance between model213

fidelity and tractability, as second-order terms introduce nonlinearities that MILP solvers cannot214

directly handle. Moreover, given the iterative nature of the solution process, such a level of precision215

is not required at this stage.216

3.3 Power flow limits217

The power flow in a transmission tie-line is modeled as follows:218

fbr,t =
∑
n∈N

PTDFbr,n,tinyn,t, br ∈ BR, t ∈ T , (2)

where fbr,t represents the power flow in a transmission tie-line br which depends on parameters219

PTDFbr,n,t and the power injection inyn,t for each bus n for each period t. The variable inyn,t220

is a key decision variable that represents the net injection at bus n and time t, computed as the221

total generation minus the demand at that bus. A detailed description of the PTDF’s calculation222

is explained by Hinojosa and Gutiérrez-Alcaraz (2017). Also, the following constraints fix the223

maximum flow and counterflow power limits in tie-line br.224

fnbr,t ≤ fbr,t ≤ fpbr,t, t ∈ T . (3)

225

Although constraints (2) and (3) capture the relationship between bus injections and line flows,226

along with the operational limits of each tie-line, they are omitted from the initial formulation to227

improve computational efficiency. They are instead added iteratively during the solution process228
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when violations are detected, yielding a more compact and tractable problem.229

3.4 Transmission losses230

The losses in the system are calculated using the following constraints. The non-linear feature of231

these constraints requires an approximation method to be successfully integrated into a MILP. The232

method used in our work is tangent planes and provides a set of alternative constraints to replace233

these constraints.234

Losst =
∑

br∈BR
Rbr(fbr,t)

2, t ∈ T . (4)

4 Solution method235

The model posed in Section 3 has continuous and binary variables and some non-linear components236

such as the HPF (1) and the transmission losses (4). It also incorporates power flow constraints237

in the network. Those constraints keep the power flow within safe limits. In typical real-world238

instances, with 7000+ buses, 8000+ lines, and 400+ generators, simultaneously including all trans-239

mission constraints can significantly increase solution times. Consequently, due to this complexity, a240

common solution strategy involves initially relaxing constraints (4) and subsequently incorporating241

them into the model as violations are detected (Ezzati et al., 2010).242

• Streamlined hydraulic
parameters

•Water level in reservoirs

Master problem 
(MILP)

Sub-
problems

Approxma-
tion HPF

Approximation 
losses

Transmission 
generating cuts

DC-Power flow
solution

Generators’ 
schedule

• Transmission cuts
• Tangent planes of

losses

Figure 1: Iterative decomposition method, based on Garćıa Félix (2017).

The iterative approach depicted in Figure 1 involves solving a master problem (MP) that initially243

disregards transmission constraints and loss estimation. The resulting generator schedule is used to244
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identify overloaded transmission tie-lines and calculate losses in 24 power flow sub-problems. The245

information obtained from these sub-problems is then used to generate new constraints, such as246

transmission cuts and tangent planes of losses. The linearized HPF function is also updated. All247

the new constraints are added to the master problem, which is then solved again. This process is248

repeated until no further transmission violations occur and the criterion for losses is satisfied.249

The MP is formed by the objective function (S1) and the set of constraints (S2)-(S39), (S41)-250

(S42), (S44)-(S52), contained all in the supplementary material, part A. Note that the linear con-251

straints (7) replace the HPF non-linear constraints (1) so this can be handled as a MILP. Similarly,252

constraints (5) replace constraints (4). The MP is solved to determine the generators’ schedule,253

i.e., the MP aims to determine the generators to be turned on/off and their corresponding power254

production levels.255

The status of generators is fixed and sent to the SP, which calculates the power flow in the256

lines using the DC Power Flow method. With those results, a feasibility test can identify possible257

violations of network constraints (3). These violations or cuts are added to the model and passed258

to the MP. Moreover, constraints (2) that represent the power flow in the violated tie-lines are259

added too. Maŕın-Cano et al. (2019) and dos Santos and Diniz (2011) provide some examples of260

these approaches, including user cut adding iteratively.261

Constraints (4) consider the losses in the system. However, they are non-linear and cannot262

be added directly to a linear master problem. Therefore, the Tangential Approximation Method263

developed by Geoffrion (1970) is used to tackle its non-linearity. Notably, its application in the264

market in Mexico is widely documented by Garćıa Félix (2017). The constraints (tangential planes)265

have the following mathematical structure:266

Losst −
∑
n∈N

LSF k−1
n,t inyn,t ≥ LossSPt −

∑
n∈N

LSF k−1
n,t inyk−1

n,t , t ∈ T . (5)

The tangential plane method replaces the constraint of losses specified in (4) in the MILP model267

by incorporating linear constraints with the same structure as in (5). The approximation can be268

improved by iteratively adding more tangents (4). This method is an exact approach that can find a269

globally optimal solution with a certain level of accuracy by creating a concave problem equivalent270

to the original problem, provided that the nonlinear constraints being approximated complies with271

convexity, compactness, and continuity assumptions, as proposed by Geoffrion (1970). The accuracy272

of the solution can be measured by comparing the losses estimated by the MILP method with those273

calculated using the DC power flow method for subproblems.274

The variable LossSPt determines the exact losses in the network obtained from substituting275

the power flow in (4). However, unlike the variable LossSPt , Losst is a variable in the MP that276

approximates the total transmission loss in the system. The loss sensitivity factors parameters277

LSF k−1
n,t represent the variation in losses in the system when modifying a power unit in each node.278
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The parameters LSF k−1
n,t are calculated at the end of each iteration k and are expressed in the279

following equation:280

LSF k−1
n,t =

∂Losst
∂inyn,t

∣∣
inyn,t=inyk−1

n,t
, n ∈ N , t ∈ T , k ≥ 1. (6)

Equation (6) is solved numerically, and parameters LSF k−1
n,t are used to build a new set of281

constraints (5) (Menezes and da Suva, 2006).282

A decomposition approach such as the one presented in this paper is widely used to plan the283

operation of real-life power systems. However, this work has added a new component to deal284

with HPF’s non-linear characteristics using the first-order Taylor polynomial approximation. The285

method provides the following constraints that replace (1) in the MP. The procedure for obtaining286

this constraint and its parameters QWg,e,t, Qg,e,t,Wg,e,t, involves a new application of the Glimn-287

Kirchmayer model, which maps reservoir level to volume to fit available field data.288

gg,t ≤ βg,tQWg,e,t +Qg,e,tqg,t +Wg,e,twe,t, g ∈ HIe, e ∈ E , t ∈ T (7)

Finally, in each iteration k of the algorithm, the water levels in reservoirs are updated, and the289

streamlining of constraint parameters (7) is also carried out.290

Description of algorithm291

The proposed method in this work is outlined in Algorithm 1. This algorithm begins by solving292

the MP using CPLEX. In the first iteration, the MP does not include transmission losses (tangen-293

tial planes) nor any transmission constraints (cuts). The solution is saved in X, which contains294

the value of all the decision variables of the MP. An iterative process begins and runs until the295

stopping criteria are met. There are two conditions for stopping. The first is when the relative296

error in approximation losses (ErrLosses) is greater or equal to the given tolerance (tolerance).297

The second one is the absence of violations of the safe transmission limits. Within the loop, the298

method SolvingSP() that consists of solving a series of SPs using the DC Power Flow method is299

run, one for each period t. Then, power flow in the lines (F ) is calculated using the injection values300

at each node and the network’s topology, based on the SP’s results. Then, GeneratingCuts()301

identifies violations of safe operational limits in any branch. Whenever constraint (2) (the lin-302

earized power flow equation) is violated, a cut is generated to enforce feasibility. These cuts also303

incorporate constraint (3), which imposes upper and lower bounds on the flow for each branch304

and time period. Only constraints that are found to be violated in the SPs are added to the MP.305

The relevant decision variables involved in these cuts are the nodal power injections inyn,t, while306

the PTDF coefficients PTDFbr,n,t are fixed parameters that capture the network’s sensitivity to307

nodal injections and are derived from the topology and impedance data. The cuts are added to308
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the MP via the AddingCuts() procedure. Next, the exact losses are calculated using (4) and309

are registered in LossSPt . Then AddingTangentPlanes() generates the tangent planes of losses310

with the structure (5). Subsequently, the tangent planes are added to the MP. After this, MP is311

solved again, considering losses and safe limits in the tie-lines. Then, the maximum relative error312

in the estimated losses in all periods t is calculated and registered in ErrLosses. The value of the313

variable Losst, obtained from the MP, is the sum of estimated losses by multiplying LSF k−1
n,t by314

injections in yk−1
n,t at each node. Finally, the parameters LSF k

n,t are updated with (6) by using the315

new transmission losses in the lines LossSPk and the new injections in the nodes inykn,t. When there316

are no more violations in the safe limits of the transmission, and a user-defined loss tolerance is317

reached, the algorithm stops.318

Procedure 1 Iterative method employed

Input: P:=Instance of the problem, tolerance
Output: X∗:=An optimal solution to the problem
1: k ← 1
2: LossiSP ← 0
3: LSF k−1n, i← 0
4: Errlosses←∞ {Relative difference of the losses between approximated and exact losses}
5: Cuts ← ϕ {Set of transmission cuts}
6: X ← SolvingMP()
7: while (Errlosses ≥ tolerance) or (Cuts ̸= ϕ) do
8: Cuts ← ϕ
9: F ← SolvingSP(X) {Power flow in lines}

10: Cuts ← GeneratingCuts(F)
11: if Cuts ̸= ϕ then
12: MP ← AddingCuts(MP,Cuts)
13: end if
14: LossSP i← CalculatingLosses(F)
15: MP ← AddingTangentPlanes(MP, LSF k−1n, i, LossSPi )
16: X ← SolvingMP()
17: Errlosses← max((Lossi − LossSPi )/Lossi),∀i ∈ I
18: LSF kn, i ← updatingLSF()
19: k ← k + 1
20: end while
21: return X∗

Linearization of the hydro power function using Taylor Polynomial319

The value of the effective hydraulic head hν,t in constraints (1) is calculated with the height of320

forebay water minus the tailwater level minus the head losses that occur due to friction in pipes as321

follows:322

hν,t = γ(ωe,t−1)− µ

 ∑
g∈Hν

qg,t

− ∑
g∈Hν

ζ(qg,t), ν ∈ Vre , e ∈ E , t ∈ T , (8)
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where γ() represents a function with an input volume and an output forebay height and it is often323

non-linear; µ() represents a function with an input water discharge and an output tailwater level;324

ζ() is a function with an input water discharge and an output the head losses. These functions325

depend on each reservoir’s design; therefore, γ(), µ(), and ζ() are written generically.326

The method to linearize the hydropower function begins by transforming (1) in a function that327

depends on the flow qg,t and the volume ωe,t as follows:328

gg,t =βg,t
(
(A1,g +B1,gωe,t + C1,gω

2
e,t) + (A2,g +B2,gωe,t + C2,gω

2
e,t)qg,t

+ (A3,g +B3,gωe,t + C3,gω
2
e,t)q

2
g,t

)
, g ∈ HIν , ν ∈ Vde , e ∈ E , t ∈ T (9)

Then, parameters {A1,g, ..., C3,g} of (9) can be calculated from parameters {a1,g, ..., c3,g} of (1). An329

equivalent approximation between both constraints is shown in the following set of equations:330

Ai,g = ai,g, g ∈ HIν , i = 1, 2, 3 (10)

Bi,g ≈
bi,gh

∗
ν,t

ω∗
e,t

, g ∈ HIν , ν ∈ Vde , e ∈ E , t ∈ T , i = 1, 2, 3 (11)

Ci,g ≈
ci,g(h

∗
ν,t)

2

(ω∗
e,t)

2
, g ∈ HIν , ν ∈ Vde , e ∈ E , t ∈ T , i = 1, 2, 3 (12)

Parameter ω∗
e,t is the water volume obtained by the master problem (MP) in each iteration. The331

non-linear function (8) is used to obtain the effective head height h∗ν,t.332

Now, by substituting (10)–(12) into (9), we obtain the following equation:333

gg,t =βg,t
(
(a1,g +

b1,gh
∗
ν,t

ω∗
e,t

ωe,t +
c1,g(h

∗
ν,t)

2

(ω∗
e,t)

2
ω2
e,t) + (a2,g +

b2,gh
∗
ν,t

ω∗
e,t

ωe,tωe,t +
c2,g(h

∗
ν,t)

2

(ω∗
e,t)

2
ω2
e,t)qg,t

+ (a3,g +
b3,gh

∗
ν,t

ω∗
e,t

ωe,t +
c3,g(h

∗
ν,t)

2

(ω∗
e,t)

2
ω2
e,t)q

2
g,t

)
, g ∈ HIν , ν ∈ Vde , e ∈ E , t ∈ T (13)

Subsequently, (13) is linearized using the first-order Taylor polynomial method for two variables334

(ωe,t and qg,t) around the current operating conditions, denoted as we,t = ω∗
e,t and qg,t = q∗g,t. To335

achieve this, we first need to compute partial derivatives of the function with respect to both336

variables, h(ωe,t, qg,t). These partial derivatives are essential for the linearization process.337

The first-order Taylor polynomial approximation for two variables can be expressed as:338

f(x, y) ≈ f(a, b) +
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b) (14)

where f(x, y) represents the function’s value at the point of interest, (a, b) is the point about which339

the function is linearized, and ∂f
∂x (a, b) and

∂f
∂y (a, b) denote the partial derivatives of the function340

with respect to variables x and y evaluated at the same point. In our case, the function we want341
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to approximate is (13), denoted as gg,t. By applying the Taylor polynomial approximation method342

to gg,t, we can rewrite it as:343

gg,t ≈ g∗g,t +
∂gg,t
∂ωe,t

(ωe,t − ω∗
e,t) +

∂gg,t
∂qg,t

(qg,t − q∗g,t), g ∈ HIν , ν ∈ Vde , e ∈ E , t ∈ T (15)

where gg,t is the value of the function at the operating point w∗
e,t and q∗e,t. Linearization provides an344

approximation of gg,t, simplifying modeling and aiding subsequent computations. After algebraic345

manipulations, we have obtain (7), where parameters QWg,e,t, Qg,e,t, and Wg,e,t are found with the346

three equations below, respectively:347

QWg,e,t =
(
gg,t(qg,t, ωe,t)−Qg,e,tqg,t −Wg,e,tωe,t

)
g ∈ HIe, e ∈ E , t ∈ T (16)

Qg,e,t = A2,g +B2,gωe,t + C2,g(ωe,t)
2

+ 2(A3,g +B3,gωe,t + C3,g(ωe,t)
2
)
qg,t, g ∈ HIe, e ∈ E (17)

Wg,e,t = B1,g +B2,gqg,t +B3,g(qg,t)
2

+ 2(C1,g + C2,gqg,t + C3,g((qg,t)
2)ωe,t, g ∈ HIe, e ∈ E (18)

The first time the MP is solved, the ω∗
e,t is the initial volume ωe,0 and q∗g,t is the value of the348

flow in the turbine at maximum efficiency according to its design features.349

Finally, the water levels ω∗
e,t and h∗ν,t are updated in each iteration k of the Algorithm described350

in the paper. Furthermore, the streamlining of parameters from (10)–(12) is carried out in each351

iteration too. It is worth mentioning that the accuracy of the Taylor’s approximation depends on352

the number of iterations of the algorithm.353

5 Experimental work354

Two sets of experiments are conducted to evaluate the model’s performance and the method em-355

ployed in this work.356

The model and method were coded with Intel Fortran and C++ languages using the Intel one357

API DPC++/C++ version 2020. The solver employed was 64-bit CPLEX 12.10 with an optimality358

gap of 0.0001, running on a 64-bit with 16GB of RAM and an Intel(R) Xeon(R) CPU E3-1240 v3 @359

3.40GHz. Unlike the original method used for the ISO for planning MEM, this work omits several360

infeasibilities, such as variables dealing with unbalances, load cuts, surplus, network, and hydraulic361

violations.362

5.1 Experiment 1: A case study363

This section presents a case study that outlines the model. This instance is built from data pub-364

lished by CENACE in Mexico using the limits and offers of generators found in https://www.365

13

https://www.cenace.gob.mx/Paginas/SIM/Reportes/OfertasMDA.aspx
https://www.cenace.gob.mx/Paginas/SIM/Reportes/OfertasMDA.aspx
https://www.cenace.gob.mx/Paginas/SIM/Reportes/OfertasMDA.aspx


cenace.gob.mx/Paginas/SIM/Reportes/OfertasMDA.aspx. The demand for the zones is also ex-366

tracted from the same site. The operating limits of the generators used are as offered; however, the367

generator‘s parameters were artificially created (ramps, min-up/down times). We use the trans-368

mission network comprising 43 regions projected by Secretaŕıa de Enerǵıa (2018). The parameters369

of reservoirs are created artificially, too. The data for this instance can be found in this repository:370

https://github.com/urieliram/DAM.371

The elements modeled in the Central Interconnected System (CIS) power system are: Intervals:372

24; thermal units: 255; hydroelectric units: 63; river basins: 8; renewable: 64; buses: 45; lines:373

64; tie-lines: 64; loads: 6152; reservoirs: 16. The model has around 331,358 variables (298,768 are374

continuous and 32,590 are binary) and 240,080 constraints. The solution method scales really well375

as it has ben capable of solving instances of up to 100 renewable units and over 340,000 variables376

which are largest in the database.377

Figure 2 shows the expected load demand of the instance and the energy price component or378

dual variables of the power balance constraints. The load demand varies from 30,000 to 38,000 MW379

while the prices vary from 1,000 $/MW to 1,900 $/MW. As shown in Figure 2, the prices follow380

the expected demand trend, so the higher the demand goes, the higher the prices get. Additionally,381

the renewable energy sources, represented by the cyan (wind) and yellow (solar) bars, correspond382

to parameters from the mathematical model and are derived from forecasting methods. These383

sources, encompassing approximately 14% of the total system demand, contribute significantly to384

the overall system dynamics, emphasizing the critical interplay between renewable generation and385

the prevailing load-demand conditions. As part of future work, we acknowledge the importance of386

addressing the uncertainty associated with these sources and their potential impact on the economic387

and security dynamics of the system.388
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Figure 2: Expected load demand and energy prices.

Figure 3 shows that MP estimation of transmission losses matches SP calculation accuracy389

starting from the second iteration and improving with each subsequent one.390

Figure 4 illustrates the representative reservoir’s net hydraulic head and corresponding water391
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Figure 3: Transmission losses after the first iteration.
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Figure 4: Net hydraulic head and water discharged.

discharge. It reveals that a hydroelectric unit’s water requirement is inversely proportional to the392

reservoir’s net hydraulic head, with higher heads requiring less water for energy production.393

5.2 Experiment 2: Performance tests394

This experiment aims to test the model’s performance in other real-world instances using the CIS395

energy system of the electricity market in Mexico. The tests were carried out with four instance396

groups called MEM1, MEM2, MEM3, and MEM4. Each group has 80 instances made from publicly397

available information regarding the Wholesale Electricity Market (WEM) in Mexico. The original398

instances were modified by randomly choosing a percentage (70%, 80%, 90%, 95%) of all thermal399

generators, and the demand, reserve requirements and generator bids were modified. The number400

of instances for each percentage is 20. The dimensions of each of the instances are shown in Table401

2. MEM1 and MEM2 represent typical summer days, whereas MEM3 and MEM4 represent typical402

winter days. The load demand of each group is shown in Figure 5.403
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Figure 5: Summer and winter demands.

Table 2: Instance size by data set.

MEM1
summer

MEM2
summer

MEM3
winter

MEM4
winter

Intervals 24 24 24 24
Thermal units 255 255 253 253
Hydroelectric units 63 63 63 63
Renewable units 64 64 74 74
River basins 8 8 8 8
Tie-lines 89 88 106 105
Reservoirs 16 16 16 16

The key variables to measure and analyze the performance of the model are: average CPU404

time (t̄); worst CPU time (t̄∗); the number of iterations (k) between the MP-subproblem (SP)405

until reaching the (tolerance); the number of cuts (nviol) added by the SP (one for each tie-line406

violated); recorded loss error estimation (Errlosses). The instances were solved using a relative407

optimality gap of 0.0001% and (tolerance) in the approximation losses tolerance of 0.005%. The408

problems are solved until they reach the time limit of 3500 seconds for each iteration or until they409

reach optimality. There is no time limit to solve the overall problem.410

The results are outlined in Table 3. The column (instances) shows the names of each group411

of instances. The column (% ) indicates the percentage of thermal generators selected that can412

be committed for each group of instances. The columns (t̄) and (t* ) the CPU average time and413

the CPU maximum time used to solve the instances are registered. The columns (k̄) and (k* )414

display the median and a maximum number of iterations between the MP and its SP for the415
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Table 3: Results for each instance.

instances t̄ t∗ k̄ k∗ ¯nviol nviol∗ ¯Errlosses ¯profit

MEM1 70 8,593 24,573 3 5 17 25 0.0031 $1,880,824,498
80 8,948 23,455 3 5 16 19 0.0030 $1,895,011,558
90 14,375 29,437 3 4 17 20 0.0024 $1,910,265,699
95 14,755 46,101 3 4 16 19 0.0026 $1,921,684,506

MEM2 70 4,829 20,534 3 4 9 12 0.0027 $2,141,180,824
80 6,494 19,403 3 5 10 12 0.0028 $2,148,492,402
90 6,362 19,112 3 3 10 12 0.0029 $2,167,144,875
95 7,484 20,734 3 5 9 11 0.0025 $2,169,740,024

MEM3 70 4,632 18,493 5 7 14 19 0.0025 $20,044,116,952
80 6,234 12,001 6 6 16 21 0.0028 $20,064,006,287
90 9,779 22,156 6 8 13 19 0.0028 $20,091,123,339
95 11,075 20,344 6 8 12 15 0.0028 $20,099,986,114

MEM4 70 1,952 5,107 4 7 8 13 0.0026 $20,476,495,913
80 3,060 7,173 4 5 6 9 0.0024 $20,491,680,365
90 9,873 26,767 4 7 7 9 0.0026 $20,516,227,967
95 15,147 37,117 5 5 8 9 0.0023 $20,524,900,918

instances in each row. The column (nviol) records the median number of tie-lines violated in the416

SP that generated transmission cuts in the MP. The column ( ¯Errlosses) captures the average417

approximation loss reached. The column (profit) marks the market’s average economic profits. All418

instances reached the approximation losses tolerance required and the MILP gap by the MP’s.419

It is worth noting that the rough number of iterations k is between two and seven, yet it is420

assumed that this figure is related to a higher number of generators in the system. Likely, the421

transmission losses wane and wax depending on the number of generators connected in the system.422

The average error in estimating transmission losses in all instances is less than 0.005%; for423

instance, it represents an error of 0.00268% in a setting with maximum losses of 105.36 MW.424

To further analyze the impact of transmission losses on the power system, we present Figure 6425

that displays and compares losses across summer and winter energy scenarios in Mexico. This figure426

shows the distribution of losses along seasonal differences. As can be seen from the figure, during the427

summer months, with peak demands reaching approximately 39,388 MW, average losses range from428

713 MW to 994 MW, representing 1.8% to 2.8% of the maximum demand. In winter, when peak429

demand is closer to 35,500 MW, losses vary between 518 MW and 909 MW, accounting for 1.4% to430

2.5% of the maximum demand. While the relative percentages are modest, the absolute magnitudes431

are substantial and must be considered when modeling operational costs and transmission efficiency.432
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Figure 6: Hourly transmission losses in summer and winter scenarios.

An expected result is the increase of CPU time when the instances are solved due to a higher433

percentage of generators. This rise is produced by the increased combinatorial complexity of the434

UCP model. Another expected behavior is the decrease of profits with the rise in the generation435

offer caused by a higher number of generators in the system. This increment emulates an increasing436

competence in the market. With 95% of available generation, the economic profits nearly reach the437

minimum value.438

Figures 7, 8, 9, and 10 have been designed to analyze the behavior of economic profits, CPU439

time, number of of iterations between MPs and SPs, and the number of family of transmission440

cuts added to the MP. On one hand, in the profit subfigure of Figures 7, 8, 9, and 10 the vertical441

axis represents the benefit of participant in millions of pesos. On the other hand, in the CPU442

time subfigure, the vertical axis represents processing time. The horizontal axis represents the443

percentage of thermal generators to be committed for all Figures. The boxes represent statistical444

results of 20 randomly generated instances for each percent (70%, 80%, 90%, 95%) for each group445

(MEM1, MEM2, MEM3, MEM4).446

As it is observed in Table 2 and Figures 7, 8, 9, and 10, is shown a coherent behavior depicting447

a reduction of economic profits related with a higher number of generations in the system. Also,448

the results indicate that the more generators in the system, the more CPU time is required to449

process the data. It is shown that the economic benefits increase gradually with the increment450

of generators in the system since the instances resolved are closer to 100% of units. This pattern451

matches normal expectations. Furthermore, CPU times gradually increase while more generators452

are added to the system. This increase is an expected pattern since a more significant number of453

generators working entails more units to commit and a more complex problem to solve.454
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Figure 7: Results of MEM1 instances.
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Figure 8: Results of MEM2 instances.
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Figure 9: Results of MEM3 instances.
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Figure 10: Results of MEM4 instances.

6 Conclusions455

This work demonstrates that the model and its proposed method help determine the generators’456

production schedule in the day-ahead market. The model simultaneously optimizes energy and457

reserves and sets the maximum economic profit of the participants in such a market. The model458

consists of a large-scale mixed-integer non-linear programming (MINLP). To deal with its non-459

linear feature, several approximation methods were adopted to reduce it into a mixed-integer linear460
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program (MILP). For instance, the hydropower function’s non-linear feature was handled using461

the Taylor series polynomial. This approach is a simple but innovative solution to the problem of462

hydrothermal coordination.463

Simulation results are presented on key representative instances of the wholesale electricity464

market in Mexico to demonstrate that the model is consistent and applicable to other markets that465

require hydrothermal coordination.466

There are several lines for future research, including applying our linearization method for hydro467

coordination with renewable energy sources and batteries in a stochastic framework. Additionally,468

we aim to incorporate re-pumping in reservoir modeling. Its potential inclusion in reservoir opera-469

tions could enhance our hydro modeling. In addition, while the unique features of this model make470

other methods not directly applicable to solving this model, there are algorithmic frameworks that471

have been used for similar models that may be worthwhile exploring. These, of course, have to be472

adapted to handle the particular features and exploit the specific properties of the proposed model.473

Finally, while in our work we used a linearization technique that is easy to implement, there are474

other traditional linearization methods such as the fourth-dimensional HPF linearization (Diniz475

and Maceira, 2008) and the McCormick’s envelope technique (Castro, 2015; Bynum et al., 2018)476

that should be further analyzed. In this vein, it would be interesting to compare and analyize the477

trade-offs among these methods in terms of solution accuracy, computational time, and solution478

quality.479
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